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Abstract: Following the end-Permian crisis, microbialites were ubiquitous worldwide. For instance,
Triassic deposits in the Germanic Basin provide a rich record of stromatolites as well as of microbe-
metazoan build-ups with nonspicular demosponges. Despite their palaeoecological significance,
however, all of these microbialites have only rarely been studied. This study aims to fill this gap by
examining and comparing microbialites from the Upper Buntsandstein (Olenekian, Lower Triassic)
and the lower Middle Muschelkalk (Anisian, Middle Triassic) in Germany. By combining analytical
petrography (optical microscopy, micro X-ray fluorescence, and Raman spectroscopy) and geochem-
istry (δ13Ccarb, δ18Ocarb), we show that all the studied microbialites formed in slightly evaporitic
environments. Olenekian deposits in the Jena area and Anisian strata at Werbach contain stromato-
lites. Anisian successions at Hardheim, in contrast, host microbe-metazoan build-ups. Thus, the key
difference is the absence or presence of nonspicular demosponges in microbialites. It is plausible that
microbes and nonspicular demosponges had a mutualistic relationship, and it is tempting to speculate
that the investigated microbial-metazoan build-ups reflect an ancient evolutionary and ecological
association. The widespread occurrence of microbialites (e.g., stromatolites/microbe-metazoan build-
ups) after the catastrophe may have resulted from suppressed ecological competition and the presence
of vacant ecological niches. The distribution of stromatolites and/or microbe-metazoan build-ups
might have been controlled by subtle differences in salinity and water depth, the latter influencing
hydrodynamic processes and nutrient supply down to the microscale. To obtain a more complete
picture of the distribution of such build-ups in the earth’s history, more fossil records need to be
(re)investigated. For the time being, environmental and taphonomic studies of modern nonspicular
demosponges are urgently required.

Keywords: Upper Buntsandstein; Middle Muschelkalk; nonspicular (“keratose”) demosponges; end-
Permian mass extinction; microbialite; ecological niche; elevated salinity; palaeoenvironment; geobiology

1. Introduction

Microbialites represent benthic microbial communities (i.e., biofilms or microbial mats)
fossilized through trapping and binding of detrital sediment and/or localized mineral
precipitation [1–4]. Dating as far back as ca. 3.5 billion years ago (e.g., [5–7]), they were
abundant during most of the Precambrian. In the Phanerozoic, they showed a marked
decline [4], although the concept of decline is considered too simplistic [8]. However, mi-
crobialites display marked reoccurrences at certain times in the Phanerozoic, as for instance
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in the aftermath of the Permian–Triassic crisis (e.g., [9–19]). The temporary proliferation of
biofilms/microbial mats in this critical interval likely resulted from a suppressed ecological
competition and/or seawater chemistry at that time [2,3,20].

Depending on their characteristics, microbialites can be classified into different types
(e.g., stromatolites, thrombolites, dendrolites, and leiolites: [1,21–24]). Among these, stro-
matolites are particularly important. The name derives from the term ‘Stromatolith’, which
was coined by Kalkowsky [21] to describe layered carbonate structures in the Lower Triassic
Buntsandstein of central Germany. Importantly, this term does not consider the nature of
biofilms or microbial mats. In fact, the microbial communities involved in stromatolite for-
mation may range from phototrophs (e.g., cyanobacteria) (e.g., [25–28]) to light-independent
chemolithotrophic or heterotrophic microbes (e.g., [29–33]). Particularly noteworthy are
stromatolites formed by syntrophic consortia of anaerobic methane-oxidizing archaea and
sulfate-reducing bacteria [34–37].

Recently, a new type of bioconstruction formed by microbes and metazoans (mainly
nonspicular demosponges) was discovered [38,39] and termed microbe-metazoan build-
ups [40]. Similar structures were described before in ancient rocks but not identified as
nonspicular (“keratose”) demosponges [41,42]. ‘Reticular fabrics’ in microbialites from
the Middle Muschelkalk Diplopora Dolomite of South Poland were generally related to
sponges but not further specified [43]. Furthermore, Lower Triassic metazoan reefs from
the western USA were attributed to non-specified sponges [44–46]. This implies that build-
ups with nonspicular demosponges are perhaps more widespread than currently thought.
One problem in the search for fossils of these organisms might be that they do not have
spicules and possess hardly identifiable morphological characteristics. After relatively
robust criteria for the identification of nonspicular demosponges in ancient records were
established, and the presence of these organisms in Phanerozoic microbe-metazoan build-
ups was demonstrated [38,39], several additional occurrences have been reported from
early Neoproterozoic–Palaeogene successions worldwide [16,40,47–52].

In the Lower and Middle Triassic, the Germanic Basin recorded at least four inter-
vals of major microbialite development, namely (i) in the Lower Buntsandstein [21,53],
(ii) in the Upper Buntsandstein [54], (iii) in the Middle Muschelkalk [55–59], and (iv) in
the Lower Keuper [60,61]. Recently, it was reported that some of the microbialites from
the Middle Muschelkalk were associated with nonspicular demosponges [39,40]. Despite
their significance for understanding the aftermath of the Permian–Triassic crisis, these
microbialites have only rarely been studied. We aim to fill this gap by examining and
comparing microbialites from other strata, including the Upper Buntsandstein (Olenekian,
Lower Triassic) and the lower Middle Muschelkalk (Anisian, Middle Triassic). Based on
our findings, palaeoecological implications of these records are further discussed.

2. Geological Setting

The Permian–Triassic Germanic Basin stretched across large areas of Central Europe.
During these times, the basin was situated on the edge of the subtropical Tethys Ocean
(Meliata Ocean) [62–64] (Figure 1). In the Olenekian (Early Triassic), it was connected to
the Tethys Ocean systems through the East Carpathian Gate (ECG). During the Anisian
(Middle Triassic), it was additionally linked by the Silesian–Moravian Gate (SMG) and
the Western Gate (WG) [63,65]. Palaeogeographically, the three studied sections (the Jena
area, Werbach, and Hardheim) were located between the Rhenish Massif (RM) and the
Vindelician–Bohemian–Massif (VBM) (Figure 1).
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Figure 1. Palaeogeographic map of the Germanic Basin during the Triassic [62–65]. During
the Olenekian (Early Triassic), the Germanic basin was connected to the Tethys (Meliata Ocean)
through the East Carpathian Gate (ECG). During the Anisian (Middle Triassic), the Germanic Basin
and the Tethys Ocean systems were additionally linked through the Silesian–Moravian Gate (SMG)
and the Western Gate (WG). The three studied sections (Jena area, J; Werbach, W; Hardheim, H)
were located between the Rhenish Massif (RM) and the Vindelician–Bohemian–Massif (VBM).
LBM = London–Brabant–Massif. MM = Malopolska Massif. FSH = Fenno–Scandian High.

Sedimentary rocks from the Jena area (50◦52′36.03′′ N, 11◦35′15.84′′ E, Thuringia,
central Germany) belong to the Lower Röt Formation (Upper Buntsandstein Subgroup,
Olenekian, Lower Triassic). The rocks consist of evaporites, marls, and muddy sandstones
that are intercalated with dolomites and bioclastic limestones (Figure 2). The Tenuis-bank at
the lower part of the section (SU 3) contains specimens of the ammonoid Beneckeia tenuis,
the earliest Triassic ammonoid in the Germanic Basin, and is followed by stromatolites
(Figure 2). The investigated stromatolites from the Werbach quarry (49◦39′54.38′′ N,
9◦39′47.91′′ E, Baden-Württemberg, Southwest Germany) occur in the Geislingen Bed,
a supraregional marker horizon [66] in the lower part of the Karlstadt Formation of the
Middle Muschelkalk Subgroup (Anisian, Middle Triassic) (Figure 2). From bottom to top,
the section can be subdivided into the Karlstadt, the Heilbronn and the Diemel Forma-
tions. The Karlstadt Formation is composed of dolomites, dolomitic marls, and dolomitic
limestones. In addition to stromatolites, it locally contains fossils of organisms that in-
habit elevated saline environments. The Heilbronn Formation with anhydrite and gypsum
is almost devoid of any fossils. The Diemel Formation consists of dolomitic limestones
and locally contains euryhaline faunas [66]. The microbe-metazoan build-ups exposed in
the abandoned quarry near Hardheim (49◦36′2.23′′ N, 9◦29′9.21′′ E, Baden-Württemberg,
Southwest Germany) occur on top of the Geislingen Bed and are stratigraphically correlated
with the stromatolites in the Werbach section.
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Figure 2. Stratigraphy, sedimentology, and palaeontology of sections from the Jena area (Up-
per Buntsandstein, Olenekian, Lower Triassic, and Germanic Basin; left) and Werbach (Lower
Middle Muschelkalk, Anisian, Middle Triassic, and Germanic Basin; right). Fm = Formation.
AZ = Ammonoid Zone. SU = Stratigraphic Unit.

3. Materials and Methods
3.1. Fieldwork and Petrography

Sections in the Jena area and at Werbach were examined in the field, and fresh samples
were taken (stromatolites from the Jena area, stromatolites and associated facies from
Werbach, and microbe-metazoan build-ups from Hardheim). Petrographic thin sections
were prepared and analysed using a Zeiss SteREO Discovery.V12 stereomicroscope coupled
to an AxioCamMRc camera. The samples were then further studied by means of analytical
imaging techniques and stable isotope analyses (see below).

3.2. Analytical Imaging Techniques

Micro-X-ray fluorescence (µ-XRF) was applied to obtain element distribution images of
the sampled stromatolites and microbe-metazoan build-ups. The analyses were conducted
with a Bruker M4 Tornado instrument equipped with an XFlash 430 Silicon Drift Detector.
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Measurements (spatial resolution = 25–50 µm, pixel time = 8–25 ms) were performed at
50 kV and 400 µA with a chamber pressure of 20 mbar.

Raman spectroscopy analyses included point measurements (single spectra) and
mapping (spectral images). For these analyses, a WITec alpha300R fiber-coupled ultra-
high throughput spectrometer was used. Before analysis, the system was calibrated using
an integrated light source. The experimental setup included a laser with an excitation
wavelength of 532 nm, an automatically controlled laser power of 20 mW, a 100 × long
working distance objective with a numerical aperture of 0.75, and a 300 g mm−1 grating.
The spectrometer was cantered at 2220 cm−1, covering a spectral range from 68 cm−1 to
3914 cm−1. This setup had a spectral resolution of 2.2 cm−1. For single spectra, each
spectrum was collected by two accumulations with an integration time of 2 s. For Raman
spectral images, spectra were collected at a step size of 1 µm in the horizontal and vertical
direction by an integration time of 0.25 s for each spectrum. Automated cosmic ray
correction, background subtraction, and fitting using a Lorentz function were performed
using the WITec ProjectFIVE 5.3. Raman images were additionally processed by spectral
averaging/smoothing and component analysis.

3.3. Stable Isotope Analyses (δ13Ccarb, δ18Ocarb)

Fifteen samples (ca. 100 µg each) of individual mineral phases were obtained from
polished rock slabs by using a high-precision drill. The measurements were performed at
70 ◦C using a Thermo Scientific Kiel IV carbonate device coupled to a Finnigan DeltaPlus
gas isotope mass spectrometer. Carbon and oxygen stable isotope ratios of carbonate
minerals are reported as delta values (δ13Ccarb and δ18Ocarb, respectively) relative to the
Vienna Pee Dee Belemnite (VPDB) reference standard. The standard deviation was 0.08‰
for δ13Ccarb and 0.11‰ for δ18Ocarb.

All preparation and analytical work were carried out at the Geoscience Center of the
Georg-August-Universität Göttingen.

4. Results
4.1. Stromatolites from the Jena Area (Upper Buntsandstein, Olenekian, Lower Triassic)

The Jena area section begins with a 1.5 m thick stratigraphic unit of bedded gypsum
but no fossils (SU 1) (Figure 2). This unit is followed by a ~3.5 m thick interval of greyish-
green marls with two intercalated dolomite layers (SU 2). The marl interval is overlain by a
0.5 m thick unit of grey bioclastic limestone (Tenuis-bank) (SU 3) which is marked by the
first occurrence of the ammonoid Beneckeia tenuis. In addition to ammonites, the Tenuis-
bank contains various bivalves such as Pseudomyoconcha gastrochaena, Hoernesia socialis,
Neoschizodus elongatus, Neoschizodus ovatus, and Costatoria costata. It is directly followed
by a 10 cm thick stromatolite unit, which can be divided into a lower nonlaminated and
an upper laminated part (Figures 2 and 3a). The lamination is planar to wavy (Figure 4a)
but locally appears to be disrupted (Figure 4b). The stromatolite unit consists mainly of
dolomite as indicated by µ-XRF and Raman spectroscopy (Figures 5 and 6). It is overlain
by a ~4.5 m thick interval of greyish-green sandy marl (SU 4). The upper part of this
interval contains a 0.6 m thick bed of greyish-green sandstone that contains fossils of
various bivalves (Pleuromya musculoides, Bakevellia mytiloides, and Costatoria costata) and
brachiopods (Lingularia tenuissima).

The top half of the section starts with a ~0.7 m thick unit of red muddy sandstone
(SU 5), followed by a ~1.3 m thick greyish-green marl unit (SU 6) and a ~0.1 m thick
dolomite unit (SU 7) (Figure 2). The dolomite unit is overlain by a ~0.9 m thick interval of
bioclastic limestones with abundant fossils (e.g., Costatoria costata, Neoschizodus elongatus,
and Beneckeia tenuis) and an oolitic limestone layer (SU 8). The succession continues
with a thin marl layer and a ~0.8 m thick red muddy sandstone layer that shows wave
ripple structures, desiccation cracks, and various types of bivalves (SU 9). The section is
terminated by a ~6.5 m thick interval of greyish-green marl, intercalated with thin layers of
sandstone, and grey dolomite (SU 10). The dolomite layers exhibit wave ripples and contain
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body and trace fossils (e.g., Costatoria costata, Rhizocorallium isp.). The uppermost part of
the greyish-green interval contains red gypsum nodules and fossils (bivalves: Leptochondria
albertii, Costatoria costata; trace fossil: Rhizocorallium isp.) (Figure 2).
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Figure 3. Stromatolites from the Jena area (a); polished slab; Röt Formation, SU 3, and Werbach (b–d);
outcrop photos; Karlstadt Formation, SU 2. Note that stromatolites from the Jena area can be divided
into a lower nonlaminated and an upper laminated part (a), and that stromatolites from the Werbach
exhibit columnar shapes (d). The rectangle in (b) is magnified in (c). The scale in (c,d) is 5 cm.
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disrupted, resulting in dislocated intraclasts (b). Stromatolites from Werbach show wavy to columnar
laminations (c,d).
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image (reflected light). (b) Calcium (Ca) distribution. (c) Magnesium (Mg) distribution. (d) Calcium
(Ca) plus Magnesium (Mg) distribution.
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Figure 6. Raman spectroscopy data (single spectra) for a stromatolite from the Jena area.
(a,c,d) Raman spectra of dolomite in the lower nonlaminated part of the stromatolite. (b,e,f) Raman
spectra of dolomite in the upper laminated part of the stromatolite. The unmarked peaks in (c–f) are
attributed to fluorescence interference in Raman spectroscopy.
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4.2. Stromatolites from Werbach (Middle Muschelkalk, Anisian, Middle Triassic)

In the case of Werbach, our study focused on the Karlstad Formation, which constitutes
the lower part of the section. The relevant part begins with a ~1.2 m thick unit of grey
marl (SU 1) (Figure 2). This passes into a ~1.2 m thick layer of ochre-coloured dolomite
and a ~1 m thick layer of ochre-coloured dolomitic limestone with about 25 cm thick
stromatolites (SU 2) (Figures 2 and 3b–d). Unit 2 corresponds to the Geislingen Bed, a
supraregional marker horizon [66]. The stromatolites exhibit columnar shapes (Figure 3d)
and wavy to columnar laminations (Figure 4c,d). They are mainly composed of calcite as
revealed by µ-XRF and Raman spectroscopy (Figures 7 and 8) but locally contain dolomite
crystals (Figure 8b,e). Following the dolomitic limestone with stromatolites, the section
continues with a ~6.5 m thick interval of alternating grey dolomite and dolomitic marl layers
(SU 3). Bivalve fossils and intraclasts are observed at the base of this interval. The thickness
of the above Heilbronn Formation is strongly reduced due to subsurface dissolution. It
mainly consists of halite and gypsum, intercalated with dolomitic marls and limestones
(SU 4). The section ends with the Diemel Formation, characterized by dolomitic limestones
(SU 5) (Figure 2).
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4.3. Microbe-Metazoan Build-Ups from Hardheim (Middle Muschelkalk, Anisian, Middle Triassic)

Microbe-metazoan build-ups from Hardheim are ~10 cm thick (Figure 9). The build-
ups generally consist of calcite and dolomite but also contain quartz, anatase, and organic
matter, as demonstrated by µ-XRF and Raman spectroscopy (Figures 10–12). Two types
of dolomite can be distinguished, that is, euhedral crystals of pure dolomite (Figure 12c)
and anhedral crystals with organic matter (Figure 12d). The microbe-metazoan build-ups
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are characterized by distinctly laminated columns (Figure 9). The laminae either consist of
pure calcite or of calcite containing organic matter (Figure 11a,c,d). Possible nonspicular
(“keratose”) demosponges can be found between and within the columns (Figure 13).
The sponges can clearly be distinguished by mesh-like fabrics and clotted to peloidal
features [40]. The clotted to peloidal parts are composed of calcite and contain organic
matter (Figure 11b,e), whilst areas characterized by mesh-like fabrics solely consist of calcite
(Figure 11b,f).
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Figure 11. Raman spectroscopy data (single spectra) of a microbe-metazoan build-up from Hardheim.
(a,c,d) Laminae consist of either calcite containing organic matter or pure calcite (d). (b,e,f) Clotted to
peloidal parts of possible nonspicular demosponge fossils (Sp) consist of calcite and contain organic
matter (e), while areas characterized by mesh-like fabrics solely consist of calcite (f). The unmarked
peaks in (c–f) are attributed to fluorescence interference in Raman spectroscopy.
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Figure 12. Raman spectroscopy data (spectral images) of a microbe-metazoan build-up from Hard-
heim (location of analytical map is indicated in Figure 13a). (a) Combined image of calcite, dolomite,
quartz, anatase, and organic matter. (b) Distribution of calcite. (c) Distribution of pure euhedral
dolomite. (d) Distribution of anhedral dolomite with organic matter. (e) Distribution of quartz.
(f) Distribution of anatase.

4.4. Carbon and Oxygen Stable Isotopes (δ13Ccarb, δ18Ocarb)

δ13Ccarb and δ18Ocarb data for microbialites from the different localities clustered in
three discrete groups (Figure 14; Table 1). δ13Ccarb and δ18Ocarb values of Group 1 (Jena area
stromatolite) ranged from −5.5‰ to −4.7‰ and −2.1‰ to −0.6‰, respectively. δ13Ccarb
values of Group 2 (Werbach stromatolite) varied between −5.8‰ and −5.5‰, in a similar
range to those of Group 1. δ18Ocarb signatures of these samples, however, appeared to be
more negative, with an average value of −6.5‰. Marl samples from below the stromatolite
layer at Werbach exhibited completely different δ13Ccarb and δ18Ocarb values, ranging from
1.3‰ to 1.5‰ and −2.0‰ to −1.9‰, respectively. δ13Ccarb and δ18Ocarb values of Group 3
(Hardheim microbe-metazoan build-up) varied from−1.5‰ to 0.6‰ and−6.8‰ to−5.8‰,
respectively. An extraclast contained in a microbe-metazoan build-up from Hardheim had
a δ13Ccarb value of −4.7‰ and a δ18Ocarb value of −6.6‰ (Figure 14; Table 1).
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(a,b) Possible nonspicular demosponges (Sp) between the laminated columns, showing characteristic
mesh-like fabrics and clotted to peloidal features (red box in (a) enlarged in (b)). (c,d) Possible
nonspicular demosponges within laminated columns (red box in (c) enlarged in (d)).
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Table 1. Carbon and oxygen stable isotope data (δ13Ccarb and δ18Ocarb, respectively) for microbialites
from the Jena area, Werbach, and Hardheim.

Sample Name Sample Number δ13Ccarb vs. VPDB (‰) δ18Ocarb vs. VPDB (‰)

Jena area stromatolite 4

−4.7 −1.3

−4.9 −1.0

−5.5 −2.1

−5.1 −0.6

Werbach stromatolite 2
−5.8 −6.5

−5.5 −6.5

Werbach marl 2
1.3 −2.0

1.5 −1.9

Hardheim microbe-metazoan build-up 6

−0.6 −6.8

−0.7 −5.8

−1.4 −6.2

−1.5 −6.2

0.4 −6.6

0.6 −6.3

Hardheim extraclast 1 −4.7 −6.6

δ13Ccarb and δ18Ocarb values of Group 1 (Jena area stromatolite) showed a relatively
low coefficient of determination (R2 = 0.4005; n = 4) (Figure 14), which might indicate a
small effect of diagenetic alteration [67]. The R2 value for Group 3 (Hardheim microbe-
metazoan build-up) was also low (0.1117; n = 6) and may be interpreted similarly (Figure 14).
However, the significantly negative δ18Ocarb values of Group 3 perhaps reflect meteoric
influence during diagenesis [68], which could also be the case for Group 2 (Werbach
stromatolite).

5. Discussion
5.1. Sedimentary Environments

During Permian and Triassic times, the Germanic Basin was located on the edge of
the subtropical Tethys Ocean systems [62–64] (Figure 1). In the Olenekian, a transgression
from the Tethys via the East Carpathian Gate resulted in the establishment of marine shelf
environments in the surroundings of South Poland. Temporary, short-term transgressions
entered the central Germanic basin. In the area of Thuringia, this is reflected by the
widespread deposition of marls, limestones, and dolomites, together with oolitic limestones
and stromatolites. Changes in sea level and/or clastic input resulted in the subsequent
deposition of marls and siliciclastic sediments. Desiccation cracks and gypsum nodules at
the base and top of the section suggest slightly evaporitic conditions during deposition.

Strata of the Werbach section belong to the Middle Muschelkalk Subgroup (Anisian,
Middle Triassic) and are thus stratigraphically younger than those exposed in the Jena
area (Figure 2). Lithologically, the Werbach section comprises evaporites and carbonates
such as dolomites, limestones, and marls [66] (Figure 2). The lack of fossils except for local
occurrences of fauna that could cope with elevated salinities [66]) suggest saline lagoonal
environments. Since Hardheim is palaeogeographically proximal to Werbach (Figure 1),
and the microbialites at both sections can be correlated stratigraphically [66], a similar
palaeoenvironment appears plausible. δ13Ccarb values indicate that microbe-metazoan
build-up at Hardheim thrived under marine conditions, while the habitats of stromatolites
from the Jena area might have been influenced by freshwater. This is in good accordance
with palaeogeographic reconstructions, suggesting an increased connection between the
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Germanic Basin and the Tethys Ocean during the Lower-Middle Triassic [63,65] (Figure 1).
Nonetheless, combined sedimentological and palaeontonogical evidence indicate that
the investigated stromatolites/microbe-metazoan build-ups probably formed in slightly
evaporitic environments, which might prevailed in certain areas.

5.2. Stromatolites vs. Microbe-Metazoan Build-Ups

Olenekian stromatolites from the Jena area exhibited planar to wavy laminations
(Figure 4a) and consisted mainly of dolomite (Figures 5 and 6). Anisian stromatolites from
Werbach showed wavy to columnar laminations (Figure 4c,d) but were mainly composed
of calcite (Figures 7 and 8), which perhaps formed through dedolomitization [69]. Microbe-
metazoan build-ups at Hardheim were characterized by columnar laminations (Figure 9)
and consisted mainly of calcite, dolomite, and organic matter (Figures 10–12). The distinct
lamination textures resulted from the relative proportion of organic matter (Figure 11a,c,d).
Organic matter in some of the laminae likely indicates that mineral formation was associ-
ated with exopolymeric substances (EPS) secreted by microbial mat communities [70–72],
although trapping and binding of detrital materials might also have played a role in some
cases [73].

The major difference between all the studied microbialites was the presence of possible
nonspicular demosponges in microbe-metazoan build-ups from Hardheim. As discussed
above, nonspicular demosponges occur between and within laminated columns and are
readily discernible by mesh-like fabrics and clotted to peloidal features (Figure 13). Such
textures have already been described in the aftermath of the Permian–Triassic crisis from the
western USA [46,74,75], South China [76], Iran [16,49], southern Armenia [48], and the Germanic
Basin [40]. Similar occurrences were also reported from the early Palaeozoic [50,51] and the
early Neoproterozoic [52].

Enigmatic mesh-like fabrics and clotted to peloidal features were previously inter-
preted as filamentous cyanobacteria [25], green algae [77], or hexactinellid sponges [61].
However, three-dimensional reconstructions of modern nonspicular demosponges revealed
the presence of mesh-like fabrics and clotted to peloidal features that are much more sim-
ilar to characteristics observed in some ancient records. In such cases, mesh-like fabrics
in fossil record represent skeletal elements of nonspicular demosponges originally con-
sisting of spongin/chitin [38–40] (Figure 1). The clotted to peloidal features, in contrast,
reflect automicrite that form through the in situ microbial decay of microbe-rich sponge
tissue [78,79].

Anhedral dolomite crystals in microbial-metazoan build-ups from Hardheim con-
tained organic matter (Figure 12d). They were tentatively attributed to protodolomite
(cf. [80]), which hypothetically may be related to microbial sulfate reduction [81,82]. Vari-
ous modern demosponges (e.g., Chondrosia reniformis, Petrosia ficiformis and Geodia barretti)
harbour abundant sulfate-reducing bacteria. Notably, taphonomically mineralized tissue
of these sponges contained pyrite crystals, which is a typical end product of microbial
sulfate reduction [83–86]. It is, thus, tempting to speculate that the anhedral dolomite crys-
tals in microbe-metazoan build-ups from Hardheim resulted from taphonomic processes
associated with the sponges.

5.3. Palaeoecological Implications of the Microbialites

The Permian–Triassic crisis was characterized by a potentially catastrophic decline
in biodiversity in marine and terrestrial ecosystems [87–90]. Furthermore, it was associ-
ated with ubiquitous occurrences of unusual sedimentary features, including microbialites
(e.g., [9–19]). As stated before, microbe-metazoan build-ups containing nonspicular demo-
sponges are easily overlooked in geological records but have received increasing attention
recently [16,38–40,46–52,74,75]. One possible explanation for the widespread occurrence of
diverse microbial mats is a suppressed ecological competition with grazing metazoans that
would prevent their development [20]. Although the details remain to be studied, it is plau-
sible that microbes and nonspicular demosponges had a mutualistic relationship [39,50],
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which allowed them to thrive under ecologically restrictive conditions [40]. Given the
possible presence of nonspicular demosponges in early Neoproterozoic environments [52],
it is tempting to speculate that microbial-metazoan build-ups reflect an ancient evolutionary
and ecologic association that date back to the origin of animal life.

The Lower-Middle Triassic microbialites and microbe-metazoan build-ups studied
herein formed in slightly evaporitic environments. The presented study, thus, lends fur-
ther support to the idea that the development of such communities was influenced by
water depth and salinity [39,40]. Indeed, the distribution of stromatolites and/or microbe-
metazoan build-ups might have been controlled by subtle differences in salinity and water
depth, the latter influencing hydrodynamic processes and nutrient supply down to the
microscale. This may explain the preferential development of nonspicular sponges in
morphological valleys between laminated columns, since these areas might have been
characterized by slightly different conditions as compared to the top parts of the columns.

6. Conclusions

Triassic microbialites from the Jena area (Upper Buntsandstein Subgroup, Olenekian,
and Lower Triassic) as well as from Werbach and Hardheim (both lower Middle Muschel-
kalk Subgroup, Anisian, Middle Triassic) formed in slightly evaporitic environments.
Olenekian stromatolites in the Jena area exhibited planar to wavy laminations, while
Anisian stromatolites from Werbach were characterized by wavy to columnar laminations.
Anisian microbe-metazoan build-ups from Hardheim consisted of columnar laminations.
The presence of nonspicular demosponges that originally consisted of spongin/chitin
supports that these organisms can be preserved in geological time. The taphonomic key
process was organomineralization linked to the microbial degradation of sponge tissue,
ultimately resulting in the formation of characteristic clotted to peloidal features. The
proliferation of microbial mats and/or microbe-metazoan build-ups was likely due to the
suppressed ecological competition after the Permian–Triassic crisis. It is plausible that
microbes and nonspicular demosponges in the build-ups had a mutualistic relationship,
and it is tempting to speculate that this association reflects an ancient evolutionary and
ecologic strategy. Given the palaeoenvironments, water depth and salinity might have been
the most important ecological controls on the presence of nonspicular demosponges.
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formation of microbial-metazoan bioherms and biostromes following the latest Permian mass extinction. Gondwana Res. 2018, 61,
187–202. [CrossRef]

17. Chen, Z.-Q.; Tu, C.; Pei, Y.; Ogg, J.; Fang, Y.; Wu, S.; Feng, X.; Huang, Y.; Guo, Z.; Yang, H. Biosedimentological features of major
microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic. Earth Sci. Rev. 2019, 189, 21–50. [CrossRef]

18. Pei, Y.; Chen, Z.-Q.; Fang, Y.; Kershaw, S.; Wu, S.; Luo, M. Volcanism, redox conditions, and microbialite growth linked with the
end-Permian mass extinction: Evidence from the Xiajiacao section (western Hubei Province), South China. Palaeogeogr. Palaeoclim.
Palaeoecol. 2019, 519, 194–208. [CrossRef]

19. Zhang, X.-Y.; Li, Y.; Wang, G.; Yang, H.-Q. Different accretion and diagenetic patterns within the fabrics of the Permian–Triassic
boundary microbialites on the Leye isolated carbonate platform, South China Block. J. Palaeogeogr. 2021, 10, 1–12. [CrossRef]

20. Foster, W.J.; Heindel, K.; Richoz, S.; Gliwa, J.; Lehrmann, D.J.; Baud, A.; Kolar-Jurkovšek, T.; Aljinović, D.; Jurkovšek, B.; Korn, D.;
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