Exercise 1 (4 +1 points)
A term M is called minimal with respect to β-reduction iff for all terms N : If $M \triangleright_{\beta} N$, then $M \equiv{ }_{\alpha} N$.
Show that all β-normal forms are minimal, but that not all minimal terms are β-normal forms.

Exercise $2(2+2+2+3$ points)
Find λ-terms $\mathbf{B}, \mathbf{W}, \mathbf{X}$ and \mathbf{Z} such that the following equalities hold:
(a) $\mathbf{B} x y z={ }_{\beta} x(y z)$
(b) $\mathbf{W} x y={ }_{\beta} x y y$
(c) $\mathbf{X} x y={ }_{\beta} \mathbf{X} y x$
(d) $\mathbf{Z} x={ }_{\beta} y \mathbf{Z}$

Show that your λ-terms have the desired behaviour by reducing the following terms:

- BMNO
- WMN
- $\mathbf{X} M N$
- ZMNO

Could \mathbf{Z} be a combinator?

Exercise 3 (3 +3 points)
Reduce the following terms to β-normal form:
(a) $(\lambda u \cdot \mathbf{R} \underline{0}(\lambda u v .(\lambda x y . x) u v) u) \underline{1}$
(b) $(\lambda u \cdot \mathbf{R} \underline{0}(\lambda u v .(\lambda x y . y) u v) u) \underline{1}$
where $\mathbf{R}: \bumpeq \boldsymbol{\Theta}(\lambda u x y z . \mathbf{D} x(y(\mathbf{V} z)(u x y(\mathbf{V} z))) z)$.
Hint: Reduce applications of \mathbf{D} and \mathbf{V} according to Lemma 1.29, cases 2 and 3.

