Lambda Calculus and Combinatory Logic		SS 2016
Exercise sheet 4	due 13.5.	T. Piecha

Exercise 1 (4 + 1 points)

A term *M* is called *minimal* with respect to β -reduction iff for all terms *N*: If $M \succ_{\beta} N$, then $M \equiv_{\alpha} N$.

Show that all β -normal forms are minimal, but that not all minimal terms are β -normal forms.

Exercise 2 (2 + 2 + 2 + 3 points)

Find λ -terms **B**, **W**, **X** and **Z** such that the following equalities hold:

- (a) $\mathbf{B}xyz =_{\beta} x(yz)$
- (b) $\mathbf{W}xy =_{\beta} xyy$
- (c) $\mathbf{X}xy =_{\beta} \mathbf{X}yx$
- (d) $\mathbf{Z}x =_{\beta} y\mathbf{Z}$

Show that your λ -terms have the desired behaviour by reducing the following terms:

- **B**MNO
- WMN
- $\mathbf{X}MN$
- ZMNO

Could Z be a combinator?

Exercise 3 (3 + 3 points)

Reduce the following terms to β -normal form:

- (a) $(\lambda u. \mathbf{R} \underline{0} (\lambda uv. (\lambda xy. x)uv)u) \underline{1}$
- (b) $(\lambda u. \mathbf{R} \underline{0} (\lambda uv. (\lambda xy. y)uv)u) \underline{1}$

where $\mathbf{R} := \mathbf{\Theta}(\lambda uxyz.\mathbf{D}x(y(\mathbf{V}z)(uxy(\mathbf{V}z)))z).$

Hint: Reduce applications of **D** and **V** according to Lemma 1.29, cases 2 and 3.