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Zusammenfassung

Navigation ist eine besonders faszinierende Verhaltensweise, weil sie die Grundlage für
viele weitere Verhaltensleistungen ist, die für Tiere überlebenswichtig sind. Da Tiere so
sehr auf zuverlässige Navigation angewiesen sind, haben sich über die Zeit Navigationss-
trategien und Sinnessysteme herausgebildet. Diese ermöglichen es die zur Navigation
benötigen Informationen aus der Umwelt zu extrahieren, und sind optimal an die Um-
welt der Tiere angepasst. Was bei Tieren so einfach aussieht, ist in der Robotik noch
immer ein ungelöstes Problem, auch wenn in den letzten Jahren deutliche Fortschritte
erzielt werden konnten.

Diese Arbeit ist Teil eines Projektes, das es sich zum Ziel gesetzt hat, die nötigen
Steuerungs– und Navigations–Mechanismen für einen autonom fliegenden Zeppelin, der
über bebauten Gebieten eingesetzt werden soll, zu entwickeln. Ein erster Teilschritt
ist der Aufbau einer topologischen Karte, d.h. eines Netzwerkes aus bekannten Orten
und deren Verbindungen. Dazu werden verlässliche und gut wiederzufindende Landmar-
ken benötigt. Zur Vereinfachung der Problemstellung werden im Rahmen dieser Ar-
beit Luftbilder des Einsatzgebietes verwendet. In der vorliegenden Diplomarbeit wird
ein Verfahren vorgestellt, wie in einem Luftbild Punkte, die als Landmarken dienen
könnten, detektiert werden. Sie erweitert schon bestehende Algorithmen, die aus einer
Menge an möglichen Landmarken die aussichtsreichsten Kandidaten extrahieren, zu ei-
nem vollständigen Landmarken–Selektions–System. Dieses bildet somit die Grundlage
für den Aufbau der topologischen Karte und für alle weiteren Navigationsleistungen
bildet.

Ein zentrales Problem dieser Arbeit besteht darin, die in den Luftbildern enthalte-
ne Information zu reduzieren, ohne dabei zur Navigation relevante Informationen zu
verwerfen. Da Linienzüge ein elementarer Bestandteil von Luftbildern sind, wurde ei-
ne Kantenrepräsentation als Ausgangspunkt für die Detektion möglicher Landmarken
gewählt, die durch das Zusammentreffen unterschiedlich orientierter Konturen definiert
sind.

Sowohl die Kantendetektion als auch die Detektion von Kreuzungspunkten erfolgt
nach einem Modell für die visuelle Informationsverarbeitung beim Menschen. Besonde-
res Augenmerk wurde darauf gelegt, dass vor allem das Modell zur Kantendetektion an
die statistischen Eigenschaften der zu verarbeitenden Bilder angepasst ist. Dazu wurden
zunächst die statistischen Eigenschaften von Luftbildern mit denen von natürlichen Sze-
nen (Landschaften, Pflanzen, Tiere) und von Menschen gemachten Objekten (Städte,
Gebäude, Innenansichten) verglichen. Dadurch konnte gezeigt werden, dass Luftbilder
durch lange Kantenzüge ohne Vorzugsorientierung charakterisiert sind. Natürliche Sze-
nen zeigen hingegen kurze Kantenzüge jeglicher Orientierung und Szenen, die von Men-
schen gemachte Objekte zeigen, werden von kurzen Kantenzügen, die vor allem horizon-
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tal und vertikal orientiert sind, dominiert. Ausgehend von diesen Eigenschaften konnten
rezeptive Felder abgeleitet werden, die optimal an die Eigenschaften der jeweiligen Bild-
klasse angepasst sind. Verwendet man diese rezeptiven Felder, um Bilder einer anderen
Bildklasse damit zu verarbeiten, werden zwar die grundlegenden Strukturen erkannt.
Die Resultate, bei denen die Kantenrepräsentation die vorhandenen Kantenstrukturen
am besten beschreibt, werden aber mit den angepassten rezeptiven Feldern erzielt.

Die durch die Detektion von Kreuzungspunkten selektierten Landmarken–Kandidaten
werden durch die Anwendung der Algorithmen zur Landmarkenselektion weiter redu-
ziert. Im Rahmen dieser Arbeit konnte gezeigt werden, dass die Algorithmen auch mit
dem hier beschriebenen Verfahren zur Selektion von Landmarken–Kandidaten unter-
schiedliche Landmarken selektieren, die oft durch ein charakteristisches Muster aus Stra-
ßenzügen oder Gebäuden gekennzeichnet sind.

Insgesamt sind die Ergebnisse dieser Arbeit erfolgsversprechend, auch wenn einzel-
ne Teilaspekte noch verbessert werden können. Als Ziele für weiterführende Teilschritte
werden die Implementierung eines Modells zur Verstärkung zusammenhängender Kan-
tenzüge, eine Analyse der Verlässlichkeit der selektierten Landmarken und Experimente
mit einem Roboter oder einem detaillierten Simulator vorgeschlagen.
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Abstract

Navigation is a fascinating behaviour because it builds the basis for many other, often
very complex behaviours, which are essential for the survival of an animal. Since animals
have to rely on navigation capabilities, navigation mechanisms as well as sensory systems
have evolved to be optimally tuned to an animal’s environment. They allow the animals
to extract the relevant information from their environment. Even though navigation
behaviour might look very simple, it is still an unsolved problem from the viewpoint of
robotics.

This diploma thesis is part of a project which aims at developing the necessary control–
and navigation–strategies for an autonomous floating vehicle that will be used over urban
areas. A first step includes the selection of robust landmarks, which can then be used to
build topological maps, i.e. a network of known places and their connections. For sake of
simplicity, aerial images of the operational area are used for this work. Here, a method
is proposed to detect keypoints in an aerial image that can serve as possible landmarks.
Already existing work, which deals with the selection of distinctive landmarks from a
set of landmark candidates, is extended to a complete landmark selection system.

One challenge of this work is to reduce the information contained in the aerial images
without discarding information relevant for navigation taks. As contours can be identi-
fied as an essential building block of aerial images, for this work an edge representation
was chosen. This also facilitates the detection of landmark candidates which then can
be defined as points where several contours of different orientation intersect.

For the edge detection as well as for the junction detection, models for the visual
information processing in humans are used. In particular, attention was payed to adapt
the models to the statistical properties of the input images. Therefore, the statistical
properties of urban aerial images were compared to those of natural scenes (landscapes,
flowers, animals) and of manmade scenes (buildings, cities, indoor scenes). The compari-
son revealed that aerial images are characterized by long contours in various orientations.
Natural and manmade scenes are characterized by short contours in various orientations
and short contours in mainly horizontal and vertical directions, respectively. Based on
these properties, class–specific receptive fields were derived which are optimally tuned
to the statistical properties of the corresponding image class. If used to process images
of a different image class, the main structures are detected. Nevertheless the edge rep-
resentation describing the input image best is obtained by the class–specific receptive
fields.

The final set of landmark candidates is obtained by reducing the number of junction
points by assuring a certain inter–landmark distance. The most distinctive landmarks
are then selected using existing landmark selection algorithms. The results of this work
show that the algorithms, if used in conjunction with the proposed preprocessing stages,
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select distinctive landmarks, which often contain a characteristic pattern formed by
streets or buildings.

Although single processing stages can still be improved, the overall results of this work
promise that the proposed processing stages can be used to select good landmarks for
topological mapping and all navigation strategies beyond. As future work the imple-
mentation of an intermediate processing stage for contour grouping and enhancement,
an empirical reliability analysis of the selected landmarks, and experiments with a real
robot or at least a detailed simulator are proposed.
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1. Introduction

Navigation is a fascinating behavior because it builds the basis for many other, often very
complex behaviors that are essential for the survival of animals or humans. Migration,
territoriality, foraging, or mating are only view examples for such behaviors. Through
the need of reliable navigation capabilities, an astonishing variety of navigation strategies
has evolved in the animal kingdom and many of them are still poorly understood. The
same holds true for the variety of sensory systems that are used to extract relevant
information about the environment and the moving animal itself which can be used for
navigation.

Probably the most well known examples for such navigation capabilities are migration
in birds and homing in pigeons. During fall, many birds migrate from Northern or Cen-
tral Europe to Southern Europe or Africa. Many travel for thousands of kilometers, often
without any or almost any break, and many species cross the open see. According to
Mouritsen (2001) the Arctic Tern, Sterna paradisea, breeds close to the North Pole and
spends the winter close to Antarctica, therefore migrating for approximately 18000 km
twice a year. To master this journeys birds can rely on sun compasses, star compasses,
and magnetic compasses (Mouritsen, 2001; Wiltschko and Wiltschko, 2003). Although
the magnetic compass in birds has been known for approximately 40 years, there is still
an ongoing debate how the birds can sense the earth’s magnetic field (Mouritsen et al.,
2004; Mora et al., 2004). Also the relationships between the different compasses and
how they are recalibrated is a field of ongoing research (Cochran et al., 2004). Following
Wiltschko and Wiltschko (2003) there is also a change in the used navigation strategies
with increasing experience. While young birds have to rely on innate navigation pro-
grams, experienced birds rather rely on things they have learned in the past including
various landmarks.

The navigation capabilities of flying insects are even more amazing as they have smaller
brains than birds. Many insights about flying insects have been gained on the Honeybee,
Apis mellifera. A scout bee, which returned to the hive after finding an attractive food
patch, communicates its nest mates the direction and distance to the food patch using
the famous waggle dance. On their outward trip to the food patch the recruited bees
can estimate the traveled distance from optic flow, i.e. by the extent to which the image
of the environment they perceive changes (Si et al., 2003). In order to find back to their
hive, especially young bees do learning flights, usually referred to as Turn Back and
Look Behavior. On the outward flight the bees turn around, face the direction of the
nest, and then proceed in arcing and circling flight patterns of increasing radius (Wei
et al., 2002). Additionally, bees can rely on a polarization compass giving a reference
direction (Labhart and Meyer, 2002) and on visual landmarks (Collett and Collett, 2002).
For landmark navigation, the “snapshot” model was proposed according to which bees
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store a retinotropic snapshot of the surrounding landmarks at the goal position. While
approaching the goal the current retinal view is compared to the stored snapshot and
the direction towards the goal is derived.

Compared to these amazing capabilities the navigation capabilities of robots still seem
to be very poor, inaccurate and unreliable, although the computational power of a
today’s of–the–shelf computer is comparable to that of an insect brain (Webb, 2002)
and today’s navigation algorithms are much more flexible and robust than early work
in this area. Therefore, animal behavior is often used as an inspiration for technical
applications (see Webb (2000, 2001) for reviews). Thus, robotic researchers as well
as neurobiologists, ethologists and psychologists work on related questions concerning
how reliable navigation behaviors can be achieved, which sensor systems are used, how
different sensor readings are integrated, and how the necessary knowledge about the
environment can be represented.

The representation of the environment most favored in the literature is the so called
cognitive map. It is a mental representation of features, objects, and locations also in-
cluding their spatial relations (Golledge, 1999). The process of building such a cognitive
map –or more generally of building a representation of an environment– is referred to
as mapping.

This work deals with an important step in the mapping process: the selection of
landmarks or rather the preselection of possible landmarks. Here, landmarks are unique
image patches.

1.1. Outline of this Project

Before describing the aims of this diploma project in detail an overview over the project
which it is a part of will be given and related aspects of mobile robot navigation will be
outlined.

1.1.1. The RESCUE–Project

This diploma project can be seen as part of the RESCUE–project of the Instituto de
Sistemas e Robótica located at the Instituto Superior Técnico in Lisbon, Portugal. The
project dealt with cooperative navigation for rescue robots and aimed to develop robot
systems that can assist humans in search and rescue missions in disaster areas like areas
destructed by earthquakes, floods or terrorist attacks. For a summary see Lima et al.
(2003), or Bernardino et al. (2003a,b, 2004), as well as the project homepage.1

One subproject includes the use of an autonomous blimp flying over the scenario.
According to Lima et al. (2003), the advantages of aerial robots include that they can
provide a wide view from a bird’s position and are therefore able to gather information
about areas which might not be reachable for human rescue troops. Based on this
information these regions can be mapped, operators can better guide human or machine
rescue troops, or the mission planning can be done fully autonomously.

1See http://rescue.isr.ist.utl.pt
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This tasks can only be solved if the blimp is equipped with powerful and robust
navigation and localization capabilities. Since dealing with a complete catastrophic
scenario, which is highly dynamic, is still too difficult to handle due to moving rescue
troops and the excavation of debris, navigation over urban areas was selected as first
subgoal. However there are still many problems to master mainly related to changing
weather conditions, wind causing a drifting of the blimp, and daylight changes. Therefore
a practical setup was developed at the Laboratoria de Visão (VisLab):2 an indoor blimp
(approximately 0.8 m in diameter and 2 m in length) is flying over a huge poster of
an aerial image. The setup is shown in figure 1.1. The blimp is equipped with a
camera looking downwards to the “city”. The camera image as well as the movement
commands are exchanged via a radio link with a ground computer on which all the
necessary computations are carried out.

Figure 1.1.: The experimental setup with the blimp

The camera is also used to control the blimp. Elementary steps for vision–based
control include to explore the environment, to fuse the sensor readings to a consistent
map of the environment, to recognize and extract landmarks from this map as well
as their configurations, and to allow navigation between these selected reference points
which includes recognizing them when they are approached from different directions and
under different environmental conditions.

Since this work concerns more fundamental aspects of selecting good landmarks, it
was done without robot experiments, neither simulated nor real ones. However, running
robot experiments, e.g. by using the simulator developed in Metelo and Garcia (2003),
to proof the developed algorithms is an important and necessary goal for future work.

2See http://www.isr.ist.utl.pt/vislab
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1.1.2. Mapping and Localization

As sketched above, mapping and localization are fundamental building blocks for naviga-
tion strategies. According to standard robotics textbooks like Dudek and Jenkin (2000)
or Siegwart and Nourbaksh (2004), the following standard approaches to mapping and
localization can be distinguished. For a more detailed review on localization work see
Gerstmayr et al. (2004b).

Geometric localization: Geometric methods all use a 2D or 3D model of the envi-
ronment as map representation. The robot’s position is then determined with
respect to the map’s coordinate system by matching the sensory input with the
map. Geometric approaches are very exact, but also very error–prone and need
a huge amount of storage. Some examples for geometrical localization include
Dudek and Jugessur (2000), Kelly (2000), Artac et al. (2002a), or Shaw and
Barnes (2002).

Topological localization: Topological navigation strategies use an adjacency graph
as representation of the environment. The only information stored in the map are
the different places and their topological relations. Usually metric information is
discarded. Only the node closest to the robot’s current position is determined.
Therefore, the localization is less precise than for geometric navigation, less error–
prone, and for many applications more flexible. Examples for topological local-
ization include Franz et al. (1998), de Verdiere and Crowley (1998), Gaspar et al.
(2000), Ulrich and Nourbakhsh (2000), Freitas et al. (2003) and Hübner (2005).

Hybrid localization: Hybrid methods try to combine the accuracy of geometric ap-
proaches with the flexibility of topological navigation. An example for a hybrid
method is Bailey and Nebot (2001).

For the blimp, a topological approach as sketched in figure 1.2 was chosen. The
topological map will be determined from a mosaic–based representation of the environ-
ment. Since the blimp is supposed to fly at such altitudes that the image depth can
be neglected, mosaic–based maps can describe the environment appropriately. Such a
map can be obtained from consecutive frames of a video sequence recorded when the
blimp flies over the environment in an exploration phase. Therefore, the frame–to–
frame correspondences have to be estimated from which the movements of the blimp
can be estimated. For more details the reader is referred to Gracias and Santos-Victor
(2001), Santos-Victor et al. (2001) and Gracias et al. (2003). The methods proposed for
submarines can be applied to the blimp easily as submarines and blimps have similar
kinematics. Since the work reported here is independent of robotic experiments a set of
aerial images taken from an airplane is used instead of a mosaic–based map.

The main difficulty for extracting the topological map is to determine places that
allow robust navigation. Such places are often called landmarks, the process of selecting
appropriate places is referred to as landmark selection.
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Figure 1.2.: Schematic drawing for topological navigation of an autonomous blimp

1.1.3. Landmark Selection

A landmark is a pattern in the sensor reading that can be used as a reference for
navigation. This definition of a landmark was given by Thrun (1998) and is the most
abstract one that can be found in the literature. More concrete definitions include the
need for a concise geometric parameterization (Leonard and Durrant-Whyte, 1991), an
underlying map (Deng et al., 1996) representing the exact positions of other landmarks
(Mata et al., 2001), or the physical identifiability of a landmark (Mata et al., 2001).
Although those definitions of the concept of a landmark are correct for the specific
application, they often fail to cover all aspects of landmarks. Here, like in Knapek
et al. (2000), Ohba and Ikeuchi (1997), or many other related works on vision–based
navigation, a landmark is a subimage of a known image that is as dissimilar to all other
considered subimages as possible. However, the properties of good landmarks are usually
the same independent of the used definitions. The properties were summarized in Ohba
and Ikeuchi (1997) and include detectability, uniqueness and reliability.

Detectability: The landmark has to be detectable within the sensory input.

Uniqueness: The detectability criterion does not guarantee the global uniqueness of a
landmark. Thus, this property ensures that the structures to be used as landmark
are discriminative.

Reliability: Discriminative landmarks can still be useless for navigation tasks if they
are not stable over time, e.g. if they disappear or change their location. Addi-
tionally, a good landmark should enhance the robustness and reliability of the
navigation behavior.

This definition is very technically oriented. Definitions from psychology also include
these properties, but additionally take the relevance of a landmark into account Golledge
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(1999); Janzen and van Turennout (2004). The relevance is an important aspect for the
task an animal or a person has to solve. For example it could be shown that landmarks
along a path are not as well remembered as landmarks at decision points or intersections.
However, as the properties as proposed by Ohba and Ikeuchi (1997) are sufficient for the
special task of mapping, this work will neglect the relevance of a landmark.

The main aspect, which all approaches to landmark selection have in common, is to
reduce navigation uncertainty by extracting points that make navigation more robust.
The advantages of selecting landmarks are better localization and a speed up of the com-
putations because less landmarks are used. Some approaches like Thrun (1998) or Olson
(2002) therefore use probabilistic approaches. Another possibility used for example by
Sutherland and Thompson (1994) or by Burschka et al. (2003) is to use landmarks in
areas where it is known a priori that the landmarks lead to small localization errors.

Most of the approaches use two steps: in the first step socalled landmark candidates
are preselected using point–of–interest detectors such as corner detectors (Schmid and
Mohr, 1997; Ohba and Ikeuchi, 1997; Little et al., 1998; Jugessur and Dudek, 2000;
Knapek et al., 2000) or edge density (Bourque et al., 1998). In a second step, the pre–
selected points are tested for reliability or uniqueness, and the candidates not satisfying
that criteria are reject. Then, for vision–based localization, subimages around the se-
lected points are used. In the second step related work like Ohba and Ikeuchi (1997),
Schmid and Mohr (1997), or Knapek et al. (2000) compare image similarities and select
landmarks that are as dissimilar as possible. In Ohba and Ikeuchi (1997) the number
of landmarks is further reduced by discarding landmarks that are not stable to small
changes of the viewpoint. Little et al. (1998) use stereo information to detect and dis-
card corners that resulted from overlapping objects, keeping corners on planar surfaces.
Jugessur and Dudek (2000) compute the standard deviation of the pixel values in the
subwindows and only keep landmarks for which it is above a threshold. Johnson (2000)
proposes a method for terrain matching. Landmarks that are located in terrains with
high curvature or in planes are discarded because small changes in the sensor measure-
ment result in great localization errors, or the landmarks are too similar, respectively.
For a more detailed review of related work see Gerstmayr et al. (2004b).

1.1.4. Existing work

This work builds on the work presented in Gerstmayr et al. (2004a,b). There two
algorithms for appearance–based landmark selection were proposed that try to select
landmarks from a set of landmark candidates that are as dissimilar to each other as
possible. Since the algorithms use Principal Component methods they are counted to
the appearance–based navigation methods. The main advantages of using PCA (see
section A.1) is that it tends to obtain compact and efficient representations of the global
environment with good generalization capabilities. Although PCA got an established
method in localization and object recognition Gerstmayr et al. (2004a) is the only known
work that uses pure PCA features as criterion to select landmarks.

The existing work only addresses the second step of the landmark selection problem.
The landmark candidates were obtained by dividing the whole image into a regular
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grid. Further candidates were positioned at the adjoining points of the others, the
overlap between adjacent landmark candidates was at most 25 %. The set of landmark
candidates is visualized in figure 1.3.

Figure 1.3.: The set of landmark candidates used in Gerstmayr et al. (2004a,b).

The first algorithm, called profile–based algorithm, selects landmarks by comparing
the pairwise image dissimilarity between the landmark candidates. A good landmark is
a landmark candidate that is as dissimilar as possible to all others. The pairwise com-
parison of candidates is done in an eigenspace computed by PCA. The second algorithm,
called IPCA–based algorithm, uses incremental PCA (IPCA, see section A.1.2) to iter-
atively increment an already existing eigenspace by adding landmark candidates that
can not be expressed accurately in the existing eigenspace. Such landmark candidates
are dissimilar to all the other already selected landmarks. The results of Gerstmayr
et al. (2004a,b) reveal that none of the algorithms is superior to the other. Both select
distinctive landmarks that often contain a unique pattern formed by streets or buildings.
The profile–based algorithm does not select landmarks in repetitive areas, whereas the
IPCA–based algorithm covers also these regions with landmarks.

1.1.5. Goals of this work

The goal of this work is to overcome the drawbacks of the already existing work. Its main
drawback is that it only addresses the second step of landmark selection. As features like
corners, edge density, or symmetry have a rather uniform distribution, standard point–
of–interest operators can not be applied for aerial images because their discriminative
power is limited too much. Additionally simple solutions like downscaling the images
did not lead to robust and reliable interest points.
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Therefore, the main goal of this work is to find a meaningful representation – or a
method for image preprocessing – for the aerial images that robustly extracts the key
information contained in aerial images. This representation can facilitate the implemen-
tation of a robust point–of–interest (PoI) operator and can further make the selected
landmarks more reliable, thus enhancing the navigation and localization capabilities of
the blimp.

In order to approach such a meaningful representation and to extract the key infor-
mation contained in aerial images, it is worthwhile to have a look at related literature
from geographical psychology. In Haken and Portugali (2003) it was shown that remem-
bered city elements that are e.g. important for navigation tasks are exactly those that
convey the highest quantity of information (Shannon and Weaver, 1949). Thus, their
results also motivate the definition of landmark used for this work. The authors apply
Shannon information to geometric building blocks of cities3 which are motivated by the
five building blocks proposed in Lynch (1960):

Paths: Paths are channels along which traffic flows such as streets, railroads, or walk-
ways.

Nodes: Nodes are strategic points in the city formed by intersecting paths.

Edges: Edges are boundaries between different structures of the edge.

Districts: Districts are larger–scale structures combining areas with a common char-
acter such as construction style or purpose.

Landmarks: Landmarks are outstanding physical objects like characteristic buildings
or mountains that are used as references for navigation.

As shown in figure 1.4 these building blocks can also be established in aerial images.
However, these building blocks are already at a rather high level and can be further
abstracted to more general urban elements proposed including points, lines, and surfaces
(Golledge, 1999). Thus nodes and landmarks can be combined to points whereas paths,
edges and the boarders of districts can be fused to lines. Since for aerial images all these
low–level structures are closely related to contours in the image, contours were chosen
as key information contained.

An alternative motivation for that decision are the Gestalt laws which are early at-
tempts to describe and explain grouping and segregation of visual perception (Spillmann
and Ehrenstein, 2003). Among the different laws especially the law of good continuity,
which states that collinear parts of a stimulus tend to be grouped together, could explain
why the pattern formed by the streets and other long contours in the aerial images pop
out for human observers.

As biologically motivated approaches to contour detection and enhancement have
achieved very good results, a model for contour detection in the human visual system

3For the cited work the authors neglect semantic urban elements that have a personal, cultural or
symbolic values for people and that were shown to influence human behavior in cities
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(a) Paths (yellow) and Nodes (red circles) (b) Edges

(c) Districts (d) Landmarks

Figure 1.4.: Lynch’s elements shaping a city

is used. The employed model is based on Hansen (2002) because the models proposed
there can be implemented and combined in a very modular way. Motivated by the
assumption proposed by Barlow (2001) or Olshausen (2003), telling that any sensory
system is optimally tuned to the statistical properties of the stimulus occurring most
frequently, the statistical properties of aerial images will be investigated and the findings
will be used to optimally tune the contour detection model for aerial images.

This approach has to be understood as prior module for the landmark selection task.
Adapting the preprocessing system to the statistics of the environment is assumed to
yield an optimal representation of the environment. This representation can facilitate
landmark selection, which selects from the optimal representation the most outstanding
features.

1.1.6. Related Research Areas

For sake of completeness two additional aspects of related work shall be outlined briefly.
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Such work includes projects on unmanned aerial vehicles (UAV). For this thesis, the
project described in Hygounenc et al. (2004) is most related. It deals with Simultaneous
Localization and Mapping (SLAM) in outdoor environments and also relies on a blimp.
Projects using low–level navigation strategies often rely on optic flow for navigation and
control of the UAV. For recent reviews see Ruffier and Franceschini (2005) or Muratet
et al. (2005).

The other related field to mention includes road detection systems as they are used
in geographical information systems. For recent reviews see Mena (2003) and Zhang
(2004). In general these models fuse knowledge derived from several sources of infor-
mation including aerial images of different resolution, satellite images, 3D surface maps,
and already existing maps. These approaches also include detailed statistical models
about cars, streets, street markings, railroads, vegetation, or buildings, which are then
used to proof the knowledge obtained so far. One particular road extraction model is
sketched in figure 1.5. It is based on the detection of edges and step by step gener-
ates more hypotheses which are then fused to a consistent estimation. This work does
not implement such a road extraction network. The first reason is that such models are
computationally not tractable due to the runtime requirements of robot navigation. The
second reason is that the objective of this work is not the exact detection of roads. It
aims at finding simple means of information processing that allow robust navigation.

Before pointing out the structure of this thesis an introduction to the processing of
visual information in the brain will be given.

Figure 1.5.: Sketch of a road extraction network for urban areas. The model also starts
with edge detection (marked in red) and then fuses several hypothesis to a
consistent road map. From Hinz and Baumgartner (2003).
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1.2. Processing of Visual Information by the Brain

Humans get most of their sensory perception by vision. During the time fascinating
organs and incredible processing facilities have evolved that are still far to complex
to be fully mimicked by computers – although according to Olshausen (2003) their
computational power with respect to speed and memory capacity has grown for a factor
of 1000 over the last 20 years. For the next paragraphs the most important aspects of
the human visual system and the underlying aspects of neural information coding that
are necessary to understand this thesis shall be summarized.

1.2.1. The Human Visual System

This summary is based on Kandel et al. (2000), reviews about the cutting–edge research
in visual neurosciences can be found in Chalupa and Weber (2003a,b).

1.2.1.1. Retina

Light reflected or emitted from objects, which are a part of the world, passes the cornea,
the lens, and the vitreous humor of the eye before reaching the photoreceptors located in
the retina. The retina is the first processing stage and contains two types of photorecep-
tors transforming physical light intensities to electric potentials: rods and cones. Rods
are designed to detect dim light because they amplify signals stronger than cones do,
they reinforce each other, and their signals are pooled by bipolar cells. Rods optimally
respond to light with a wavelength of 496 nm.

The cones mediate color vision. Although there are roughly 20 times more rods than
cones, the cones have a much better spatial resolution than the rod system because they
are concentrated in the fovea, the part with the best resolution in which no rods are, and
because less cones are pooled by bipolar cells. The color sensitivity is due to different
visual pigments that are sensitive for different parts of the light spectrum. There are
three subtypes of cones that are optimally tuned for short (419 nm), middle (531 nm)
and longer (559 nm) wavelengths. Therefore, they are often called S–, M–, and L–cones
or blue–, green– and red–cones respectively.

Like for the photoreceptors there also exist two types of bipolar cells: rod and cone
bipolar cells depending on the type of the photoreceptor projecting to them. Since the
cone system is not as complex as the rod system the following description will focus on
the cone system. Cone bipolar cells can be further divided into on–center and off–center
cells. On–center cells depolarize if light is falling onto the center of their receptive fields
and hyperpolarize by light falling onto the surrounding cones. The opposite holds for
off–center cells. Each cone synapses with both on–center and off–center bipolar cells.
The potential of surrounding cones is mediated by horizontal cells.

The antagonistic center–surround organization and the circular receptive fields of bipo-
lar cells are the first processing steps towards contrast perception and can also be found
in ganglion cells. An on–center ganglion cell optimally responds to a bright spot sur-
rounded by a dark annulus while an off–center ganglion cell is best tuned to the opposite
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Figure 1.6.: The human eye
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kind of stimulus. Ganglion cells transduce the potential changes of photoreceptors and
bipolar cells into action potentials. Their axons form the optic nerve and project in
parallel pathways for on–center and off–center ganglion cells to the LGN. Amacrine cells
mediate between different ganglion cells.

The ganglion cells can also be divided into P– and M–cells. P–cells constitute about
80% of all ganglion cells. They can be further divided into a red–green and a blue–
yellow type. The red–green cells receive input from L– and M–cones, the blue–yellow
type receives input from all cone types. Within both classes different connection patterns
result in the characteristic on–center and off-center response properties. The M–ganglion
cells are achromatic and have larger receptive fields than the P–cells.

1.2.1.2. Lateral Geniculate Nucleus

The LGN is part of the thalamus and the major target of retinal ganglion cells. It has
a complex layered structure and shows a precise topographic organization, such that
adjacent cells have adjacent retinal receptive fields. The properties of LGN–cells are
quite comparable to retinal ganglion cells with respect to their receptive field shape and
spectral tuning.

The LGN receives most of its input from cortical feedback neurons. Therefore it is
much more than a simple relay station between the retina and the cortex. It has been
proposed that the LGN is involved in attentional mechanisms and selection of salient
information.

On–center and off–center receptive fields have been successfully modeled by DoG–
filters as proposed by Marr (1982). The antagonistic structure of an on–cell is represented
by subtracting a surround Gaussian with large standard deviation from a center Gaussian
with smaller standard deviation, or for an off–cell by subtracting a Gaussian with small
standard deviation from a Gaussian with larger standard deviation. The result is a
mexican–hut–like function visualized in figure 1.7. The positive part models the on–
subfield of the receptive fields and its negative part models the off–subfield.
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Figure 1.7.: Difference of Gaussians (DoG). The red, blue and black lines represent the
center Gaussian, the surround Gaussian, and the DoG function, respectively.
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Figure 1.8.: The visual pathway in humans. Adapted from Kandel et al. (2000).

1.2.1.3. Primary Visual Cortex

The LGN projects along the optic radiations to V1 which has a layered structure based
on anatomic criteria. Each layer has specific afferent and efferent connections determing
the layer’s functional properties. Additionally, the topographic representation of the
LGN cells is kept. The mapping is highly nonlinear because the representation of the
fovea is much larger than the representation of the periphery. The mapping can be
modeled by a log–polar transformation.

In V1, most receptive fields are elongated with an axis of preferred orientation. There-
fore, they are optimally tuned to detect bars and lines. The cell types can be categorized
into two major groups: simple cells and complex cells. Simple cells are characterized by
alternating, elongated subfields with a preferred orientation. Therefore, the most effec-
tive stimulus is a light/dark patch that coincides with the simple cell’s subfields. Orien-
tation selectivity and sensitivity to dark/light and light/dark transitions arises because
each location of the visual field is analyzed by many different simple cells with differ-
ent properties. These properties are determined by pooling a large number of properly
aligned LGN–cells with certain properties: the simple–cell’s on–subfield receives input
from adjacent on–center cells, the off–subfield receives input from off–center cells.

Simple cells are often modeled by Gabor functions which are, as depicted in figure 1.9,
the product of a Gaussian envelope and a sinusoidal function resembling a plane wave
pattern:

G(x, y) =
K

2πs1s2

exp

(
−1

2

((
x′

s1

)2

+

(
y′

s2

)2
))

cos (2πFx′ + ϕ) (1.1)
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with

x′ = (x−mx) cos θ + (y −my) sin θ (1.2)

y′ = (y −my) cos θ − (x−mx) sin θ (1.3)
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Figure 1.9.: Gabor Function as product of a sinusoidal and a Gaussian. The red, blue
and black lines denote the Gaussian envelope, the sinusoidal and the Gabor
function, respectively.

The standard deviations s1 and s2 are oriented along the direction θ and θ + π
2
,

respectively. Usually a sine function generates an anti–symmetric Gabor functions and
cosine functions are used for the symmetric case. Since in (1.1) a phase shift ϕ was
introduced a cosine function can be used for both cases. Anti–symmetric functions are
generated for ϕ = ±π

2
, symmetric functions are generated for ϕ = 0 or ϕ = π. The

so–called n1–value, which is defined as n1 = Fs1, is a rough estimate for the number of
lobes of a Gabor function. The larger it gets the more alternating on– and off–subfields
the corresponding receptive field has. In the literature a related measure, the bandwidth
b, is often used which is defined as b = 2πn1. The n2–value, defined as n2 = Fn2, is a
measure for the elongation of a Gabor function. The larger it gets the more elongated
is the receptive field. The other parameters are explained in table 1.1.

Like for DoG–functions on–subregions are modeled by positive areas, off–subregions
by negative areas. Gabor functions have been proven to be an optimal trade–off between
being localized in space and frequency (Daugman, 1985). According to Hansen (2002),
this reflects the duality of simple cells being also located as well as frequency selective.

Complex cells also have a preferred axis of orientation and elongated subfields, but
their receptive fields cannot be divided into on– and off–subfields. They pool simple cells
of different contrast polarity with the same preferred orientation. Therefore, their main
property is contrast invariance which according to DeAngelis and Anzai (2003) cannot
be described by a linear system.

Most of the simple cells and complex cells respond best to achromatic stimuli and
only few cells respond most to color variations. This fact is due to the relatively small
amount of information carried by color variances.
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Table 1.1.: Parameters for Gabor functions

Parameter Meaning Unit

mx Center position in x–direction Pixel
my Center position in y–direction Pixel
θ Orientation, 0 ≤ θ < π rad
s1 Standard deviation along main orientation θ Pixel
s2 Standard deviation perpendicular to main orientation

θ. For practical use it holds s1 < s2.
Pixel

F Spatial frequency parameter. The spatial frequency is
the reciprocal of the wavelength F = ω−1

Cycles per
pixel

K Amplitude scaling factor. Usually K = 1 –
ϕ Phase shift. rad

V1 not only has a layered structure but also a columnar organization. Each of those
columns spans all cortical layers and contains for example neurons with a preferred axis
of orientation. Adjacent orientation columns show a shift of the their preferred orienta-
tion. Therefore, several orientation columns form a hypercolumn which can perform an
analysis of a certain region in the visual field for all orientations.

Additionally, there are horizontal long–range connections in the V1 that can influence
response properties of a cell by mediating the cell activity depending on the activation
of a cell from outside the classical receptive field. It has been shown that horizontal long
range connections contribute to contrast and contour processing.

1.2.2. Relevant Aspects of Neural Coding

As it has been shown in the previous section the human visual system can be un-
derstood as an hierarchical information processing system. This system progressively
extracts information by analyzing local features and combines these features to higher
level representations. In this section the focus will be on how to optimally encode the
visual input and how this encoding can be modeled mathematically.

1.2.2.1. The Role of Redundancy Reduction

Shortly after C. Shannon came up with his famous work on information theory and
channel capacity (Shannon and Weaver, 1949), people like F. Attneave and H. Barlow
started to apply these findings to visual neuroscience (Attneave, 1954; Barlow, 1961).
They argued that stimuli perceived from the natural environment have to be redundant
and that the sensory processing should be optimally adapted to deal with the occur-
ring redundancies. These redundancies might be a valuable source of knowledge about
the environment. If ignored, they might lead to errors in estimating probabilities of
hypotheses about the environment (Barlow, 2001). During that time, the key idea was
that all redundancy should be reduced because it is unnecessary information.
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A couple of decades later, Attneaves’s and Barlow’s ideas were more testable because
of the progresses in computer hardware as well as in neuroscience. In Barlow (2001) is
mentioned that Shannon’s work is still valid and correct, but the brain does not deal
with information in terms of classical communication engineering. So the concepts have
to be more flexible for neuroscience. It is further argued that discovering the statistical
structure of sensory input is still an important aspect. Nevertheless, the best way to
deal with the information is not necessarily redundancy reduction but rather to code
the information depending on the use that is made out of it.

1.2.2.2. Perception as Statistical Inference

Before discussing which coding strategy leads to meaningful representations in the visual
system, it is worth to formalize how the brain can infer knowledge about the environment
from the perceived data.

As mentioned in Olshausen (2003), this task is extremely difficult as there is no unique
solution for the mapping from environmental properties to sensor activations because
the 3D structure of the world is perceived as 2D image. Therefore, the eye can only do
probabilistic inference about the world, since some object configurations in the world
leading to the same sensory input are more likely than others.

Following Barlow (2001) and Olshausen (2003) this process of statistical inference can
be modeled in terms of Bayesian inference (Duda et al., 2001): A certain state E of the
environment results in a certain state of receptor activity A. Then, the conditional dis-
tribution P (A|E) describes the probability of the activation pattern A given the state E.
Further on, the receptor has some knowledge about which properties of the environment
are more likely than others. This knowledge is modeled in the prior distributions about
the environment P (E) and the activation patterns P (A). To do inference one can now
follow Bayes’ rule

P (E|A) =
P (A|E)P (E)

P (A)
(1.4)

and compute the state E that is most likely to lead to the given receptor activation A.
The above formalization of the problem makes clear that robust and reliable inference

is only possible if the underlying model represents the statistical properties of the envi-
ronment and receptor activity properly. Thereupon, as mentioned in Torralba and Oliva
(2003), these regularities are a relevant source of information concerning top–down and
contextual priming in the visual system. The importance of analyzing the statistical
properties of a certain environment is even stressed if one considers that the number of
possible images is extremely large. But in contrast, the number of images that arise from
a certain environment are almost infinitely small, far from random, and showing a large
degree of characteristic structure (Ruderman, 1994; van der Schaaf and van Hateren,
1996; Olshausen and Field, 1996; Srivasta et al., 2003).

Closely related to characterizing properties of the environment is the question to
which kind of stimulus the processing system is optimally tuned. In Hyvärinen and
Hoyer (2001) is mentioned that no statistical signal processing system can be optimally
tuned to process any input. The reasons given in Simoncelli and Olshausen (2001) or
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Hyvärinen et al. (2003a) include that the visual system is important for survival and
reproduction. Thus it should be optimally tuned to the kind of stimulus occurring most
frequently. The tuning can be a result from evolution or adaptation and learning in the
individual development. The experiments reported e.g. in Blakemore and Cooper (1970)
give hints that adaptation during the development is more essential.

Therefore visual neuroscience can gain new insights from modeling the properties of
an environment, applying different coding principles, and than testing which one leads
to the most meaningful representation of the data and best fits the responses measured
in real neurons.

1.2.2.3. Principles of Neural Coding

From the viewpoint of computational neuroscience coding schemes can be roughly or-
ganized into two groups, namely compact coding and sparse–dispersed coding. The
definition given here is based on Willmore et al. (2000).

In compact coding the number of neurons needed to encode information accurately
is minimized. This perfectly fits into the signal processing theories of efficient coding.
Mathematically compact coding is closely related to PCA (see section A.1) because it
seeks a transformation of the input such that the significant parts of the information
are coded in only little dimensions or (in terms of neurons) in only few units. Compact
codes are also distributed, which means that each unit is involved in representing many
different entities.

A sparse–dispersed code represents certain aspects of the information by a different,
relatively small subset of all units in the population. It therefore fuses the advantages
of a sparse code, requiring that at any time only few coding units are active, and of a
dispersed code, which requires that all units contribute equally to the overall coding. In
the related literature the term sparse code is frequently used in the sense of a sparse–
dispersed coding. Mathematically sparse–dispersed coding can be modeled by ICA (see
section A.2), a method maximizing statistical independence of the resulting codes.

Also population coding and “grandmother–neurons” can be explained in terms of
sparse–dispersed coding: For population coding, neurons are optimally tuned for a cer-
tain stimulus. They show weaker responses for similar stimuli and do not respond at all
for stimuli being very different to the optimal one. Population encoding occurs if few
units respond (differently) to a certain kind of stimulus. Grandmother–neurons are an
extreme form of sparse–dispersed coding, in which each unit is only active for one and
only one aspect of the input information.

1.2.2.4. Coding Principles in the Visual Pathway

Following Olshausen (2003) it can be stated that sparse–dispersed coding is the preferred
coding strategy in the visual system. By pooling cells of lower stages the information
can be represented using less active neurons in higher stages. This idea is depicted in
figure 1.10. The main difference between the retina and the LGN on the on hand and
the cortex on the other hand is how the areas deal with the occurring redundancy.
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(a) Redundancy reduction
in the retina by pooling
over several photorecep-
tors.

(b) Simple cells reduce
redundancy by pooling
several properly aligned
center–surround cells.
Thus the edge is repre-
sented with fewer active
units. Additionally the
resulting code is sparse as
only the optimally tuned
simple cell is active.

(c) Orientation selectivity
of simple cells is an exam-
ple for increasing the re-
dundancy as there are sev-
eral cells each coding a
specific orientation. Also
the code is sparse as only
the optimally tuned unit is
active.

Figure 1.10.: Coding principles in the visual pathway. Filled circles denote active units,
red and blue lines the shape of active and inactive receptive fields. Adapted
from Olshausen (2003)

In the retina redundancy has to be reduced because 100 million photoreceptors project
onto 1 million ganglion cells and the retina is further constrained by the limited number
of axon fibers that can leave the eye via the optic nerve.

In contrast to the retina, redundancy is actually increased in the cortex. As V1
has much more output than input neurons coming from the LGN and as assuming an
approximately constant bandwidth of the neurons, information cannot be created in the
cortex. This overcomplete representation allows each output to carry a very specific
interpretation of the input pattern occurring at a certain location of the input image
with a particular scale and orientation. However, each cortical simple cell also sparsifies
the signal by pooling several properly aligned cells in LGN. This sparse overcomplete
representation makes further analysis like contour grouping much easier because less
neurons have to be taken into account to model their relationships. Another advantage
mentioned in Barlow (2001) is that redundancy is more useful for error avoidance.

Sparse–dispersed coding is also the coding principle underlying complex cells. It can
be argued that their characteristic properties of being phase invariant can be achieved
by pooling certain simple cells, again leading to a more meaningful representation. The
latter makes it also easier for further processing steps to derive information, e.g. about
contours.

19



1.2.2.5. Modeling Sparse–Dispersed Coding

In order to find out transformations of the input image to a meaningful representation
in several works like Bell and Sejnowski (1997), van Hateren and van der Schaaf (1998),
Olshausen and Field (1997), Hoyer and Hyvärinen (2000), Hoyer and Hyvärinen (2002)
or Hyvärinen et al. (2003a) a linear superposition model has been assumed. As sketched
in figure 1.11, the model describes an image I as a linear combination of n basis images
ψi with amplitudes ai:

I =
n∑

i=1

aiψ + ν. (1.5)

Here, ν denotes all that parts of an image that cannot be expressed by the linear com-
bination like nonlinear effects or image noise. For purely linear models ν is neglected.
For sure the linear model cannot cover all aspects of images. For example in in Zetsche
and Röhrbein (2001) it is argued that linear mechanisms cannot describe images and
cortical mechanisms properly. However, the linear superposition model seems to cover
the most important aspects of image representation reasonable well.

= c1 · +c2 · +c3 · + ... + cn ·

Figure 1.11.: Linear superposition model. An image is represented as a linear combina-
tion of several basis images.

In works like Bell and Sejnowski (1997), Hoyer and Hyvärinen (2000), Srivasta et al.
(2003) it has been pointed out that a transformation only decorrelating the input data
(for example by applying a PCA–like transformation) is not sufficient to describe the
visual information processing. Tightly coupled with this result is that images cannot be
described by Gaussian distributions and higher–order dependencies play an important
role in image statistics. Therefore, stronger criteria have to be used in order to estimate
the base images.

One such criterion often used is the sparseness of the resulting code. That means that
the basis functions ψ should allow to describe each image I by only few basis functions.
As consequence only few of the coefficients ai are nonzero, while most of them are zero.
The resulting basis functions share the same properties like V1 simple cells, i.e. they are
spatially localized, oriented, and bandpass. It also has been shown, e.g. by van Hateren
and van der Schaaf (1998), that they can be described by Gabor functions reasonably
well.

Rather similar results can be achieved by ICA (see section A.2) which searches a basis
such that the transformed information is a linear combination of sources that are as
independent as possible. One frequently used approach to maximize the independence
of the resulting codes is to maximize the forth–order moment, the kurtosis. Since the
distribution of a sparse–dispersed code is highly kurtotic Olshausen and Field (1997)
could proof the equivalence between ICA and sparse–coding approaches.
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In the last couple of years ICA has been used to model several aspects of neural cod-
ing in areas related to visual information processing: Early work like Bell and Sejnowski
(1997) and van Hateren and van der Schaaf (1998) showed that the independent compo-
nents of natural images are a sort of edge filters that can be described by Gabor filters
and therefore resemble the receptive fields of simple cells. Olshausen and Field (1997)
modeled the increase of redundancy in V1 by estimating a sparse dispersed code with an
overcomplete basis set. For a review and a comparison of these and other similar studies
see Willmore et al. (2000). ICA–models have also been used to explain the spatial and
color tuning properties of V1 neurons (Caywood et al., 2004) and of binocular receptive
fields tuned for different disparities (Hoyer and Hyvärinen, 2000).

These simple ICA–models have also been extended to non–negative sparse coding
which is biologically more plausible since no negative activations can appear in the ner-
vous system (Hoyer, 2002). Work like Hyvärinen and Hoyer (2000), Hyvärinen et al.
(2001a) or Hyvärinen and Hoyer (2001) could explain the emergence of invariance prop-
erties comparable to those of complex cells and of topographic orderings like in the visual
cortex. In Hoyer and Hyvärinen (2002) a sparse coding network is used to learn contour
coding on top of a given complex–cell response. Reviews of these extensions can be
found in Hyvärinen et al. (2003a,b) or Inki (2004).

Based on the striking resemblance of all these findings to receptive fields in V1 and
visual information processing one can conclude that sparse–dispersed coding plays an
important role. However, it should be stressed that all the theoretical findings reported
here are just mathematical models describing certain aspects of visual information pro-
cessing. It does not have to mean that the “algorithm” implemented by cortical neurons
is similar to the algorithms of these models (Hoyer and Hyvärinen, 2000).

1.3. Outline of this Thesis

As outlined in section 1.1.5 the main contribution of this work is a point of interest
operator that is supposed to work on an edge representation of the input image. For
the edge and junction–point detection models inspired by the human visual system will
be used. Every biological perception system is optimally tuned to the environment. So,
a further key aspect of the work described here is to take the statistical properties of
the input images as well as some basic assumptions about neural information processing
into account to determine the model’s parameters. In order to achieve these objectives,
the results of different sub–parts had to be combined. These are sketched in figure 1.12
and described in the following.

In section 2.1 the statistical properties of different image classes, namely natural
scenes, manmade scenes, and aerial images of urban areas, are compared by computing
Power Spectra. The results reveal that the statistical properties of these classes are
indeed different. This motivates a more detailed analysis how the statistical properties
of the environment influence the shape of the receptive fields.

The analysis is presented in section 2.2. By computing the ICA for a huge number of
image patches the shape of receptive fields can be estimated. A statistical comparison
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Junction detecion (3.2)

Landmark candidate detection (4.1)

Edge detection (3.1)
using class–specific receptive fields (2.2)

Landmark selection (4.2)

Image

Complex cell response

Junction points

Candidate points

Landmarks

Landmark selection stage

Image preprocessing stage

Figure 1.12.: Sketch of the different processing stages. The numbers refer to section
numbers, the information passed from stage to stage is denoted in italics.

of the estimated receptive fields was done after fitting Gabor functions. It reveals sig-
nificant differences between the image classes, especially with respect to the elongation
and the distribution of preferred orientations. Based on these findings, class–specific re-
ceptive fields for the image classes are derived: Receptive fields tuned to natural scenes
are sensitive for short edges in various orientations, those tuned to manmade scenes
are sensitive to short contours which are mainly horizontally and vertically oriented,
and the receptive fields tuned to aerial images are sensitive to long contours in various
orientations.

The class–specific receptive fields are used as edge–detection filters in the simple cell
model proposed in section 3.1. The model is a feedforward model including mutual
inhibition as well as various other nonlinearities to sharpen the orientation tuning and
to suppress noise. The model parameters are determined by using an optimization that
tries to increase the distinctiveness between responses obtained for image elements lying
on an edge and those not lying on an edge. The results show that the edge representation
obtained by the simple cell model describes the image structures best if processed with
the receptive fields adapted to the image class.

Based on the edge representation, the next step (presented in section 3.2) includes
the detection of junctions. Therefore, an implicit model is used that detects junction
points by detecting hypercolumns showing activity in various orientation channels. So
far, the junction detection model is the bottle–neck of this work. It is very difficult to
set the detection threshold in order to achieve good and meaningful detection results.
Hopefully these drawbacks can be overcome in future work by implementing a grouping
mechanism that enhances the responses to collinear edges and can further reduce noise
in the edge representation.

22



In chapter 4 the biologically motivated models for early vision mechanisms are com-
bined to solve the landmark selection problem. In section 4.1, a detection algorithm
for landmark candidates is proposed which is based on the junction detection model.
Due to the dense distribution of junction points in the aerial images and the problems
with setting the detection threshold, additional distance constraints had to be added.
However, the detection algorithm selects landmark candidates with high changes in the
image texture.

The detected candidates are used as input for the existing landmark selection algo-
rithms and an extension of the profile–based algorithm to select landmarks based on
ICA features. Section 4.2 proofs the results of previous works showing that the land-
mark selection algorithms select distinctive landmarks that are often characterized by
different patterns formed by streets or buildings.

The thesis closes with a final discussion (chapter 5). Future working directions beside
the implementation of the contour grouping mechanism include experiments with a
real robot or a detailed simulation as well as an empirical analysis of the landmark’s
reliability.

23



24



2. Estimation of Class–Specific
Receptive Fields

Sensory systems have evolved to optimally process the kind of stimuli occurring most
frequently and to transform the input into a meaningful representation facilitating fur-
ther processing (Barlow, 2001; Simoncelli and Olshausen, 2001). For this reason the
receptive fields of the neurons “implementing” that transformation are supposed to be
optimally adapted to the statistical properties of the input, i.e. the perceived parts
of the environment. In this chapter it is studied how the environment influences the
shape of the receptive fields for different environment types. The “environments” are
images from natural and manmade scenes and aerial images of urban Portuguese areas.
The image classes are characterized by short contours which are in various orientations,
short contours mostly horizontally and vertically oriented, and long contours in various
orientations, respectively. In section 2.1 it is shown by analyzing averaged Power Spec-
tra of the image classes that these classes have different statistical properties. Based
on these findings in section 2.2 class–specific receptive fields, i.e. receptive fields which
are optimally tuned to the statistical properties of the image class, will be estimated.
The main parts of this section have been presented as a poster at the Eighth Tübingen
Perception Conference (Gerstmayr and Mallot, 2005).

2.1. Analysis of Ensemble Power Spectra

In order to show that used image classes have different statistical properties, power
spectra were computed and the standard analyses suggested in the related literature
were done. The power spectrum of a function is equivalent to the Fourier transformed of
the autocorrelation function therefore giving insight into the correlation, i.e. the second
order statistics, between different points in the image.

2.1.1. Experiments

The used images of the natural and the manmade classes were taken from the Corel Stock
Photo Library showing landscapes, flowers, or animals and houses, cities, industrial
facilities, or indoor–scenes, respectively. The aerial images are showing urban areas
including coast and river lines, parks and city limits and were provided by the Laboratoria
de Visão of the Instituto de Sistemas e Robótica at Lisbon, Portugal. A representative
collection of the images is shown in figure 2.10. The natural and the manmade class
contained ρn,m = 2520 images each, the aerial class contained ρa = 2459 images. All
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images were grayscale images sized 256× 256 pixels. Each of the manmade and natural
images was taken from the center of an image sized 768×512 pixels. The aerial training
images have been taken at regular grid positions from urban aerial images of different
sizes, but the same resolution with a maximum overlap between two images of 50 %.

For each image the power spectrum S(fx, fy) defined as the squared modulus of the
2D–DFT of the image I(x, y) was computed according to

S(fx, fy) = |I(fx, fy)|2 (2.1)

=

∣∣∣∣∣
N−1∑
k2=0

N−1∑
k1=0

I(k1, k2)h(k1, k2) exp

(
2πik1fx

N

)
exp

(
2πik2fy

N

)∣∣∣∣∣
2

(2.2)

with N = 256 and h(x, y) the Blackman–Harris Window function as defined in equation
(A.52).

As a first experiment Ensemble Power Spectra (EPS), defined as the average spectrum
of all the ρ spectra of an image class,

EPS =
1

ρ

ρ∑
i=1

Si (2.3)

were computed. The contour plots of the results are shown in figure 2.1.
As a second analysis the power spectrum has been transformed to polar coordinates

(f, θ) with 16 angular and 24 radial sectors. All the elements within a sector have been
averaged, elements that were further away from the origin than the maximal radius of
128 pixels have been discarded.

In Ruderman (1994), van der Schaaf and van Hateren (1996), Oliva and Torralba
(2001), Balboa and Gryzwacz (2003), and many others it has been shown that the
average energy decay can be modeled as function of the orientation θ and the frequency
f

S (f, θ) =
b(θ)

f−a(θ)
(2.4)

with α ≈ 2 ∀ θ and b(θ) being a scaling function. This property arises from the scale
invariance of natural images (Simoncelli and Olshausen, 2001; Mumford and Gidas, 2001;
Srivasta et al., 2003). Using logarithms the right hand side can be written as a linear
equation with slope α(θ) and β(θ) being the intercept of the y–axis.

Since within the scope of this paragraph it shall only be shown that aerial images
are different from other classes, there was no such detailed evaluation like in Ruderman
(1994) or van der Schaaf and van Hateren (1996). In order to analyze the frequency de-
cay, α and β were computed for the average energy of all orientations therefore assuming
the EPS to be isotropic. The frequency bins for the six highest frequencies have not been
taken into account for the evaluation since their energies cannot be estimated reliably.
The results are summarized in table 2.1 and figure 2.2. To evaluate the frequency decay
in dependence of the orientation, the mean energy has been computed for all possible
orientations by averaging over the frequencies. The results are shown in figure 2.3.
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(a) “Natural” images

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Spatial Frequency (f
x
)

S
pa

tia
l F

re
qu

en
cy

 (f
y)

(b) “Manmade” images
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(c) Aerial images

Figure 2.1.: Contour plots of ensemble power spectra (EPS) for different image classes.
Black codes zero energy, the brighter the color is, the higher gets the energy.

Table 2.1.: Results of the linear fit to describe power spectra of different image classes.

Category α β

Natural −2.5075 5.9921
Manmade −2.4037 5.9621
Aerial −2.4462 6.2768
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(a) “Natural” images
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(b) “Manmade” images
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(c) Aerial images
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(d) Comparison of fitted lines

Figure 2.2.: Energy decay against spatial frequency. In plots (a) to (c) the blue dots
represent the mean energy for a certain spatial frequency, the red dots are
the mean plus/minus the standard deviation. The red dashed line is the
fitted line. Plot (d) compares the fitted lines for the different image classes
considered within this work, blue, red and green lines denote the line for the
natural, the manmade, and the aerial image class, respectively.
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Figure 2.3.: Mean energy against orientation. The blue, red, and green line denotes the
natural, the manmade, and the aerial image class, respectively.

2.1.2. Results and Discussion

The contour plots in figure 2.1 show that the EPS for natural and manmade scenes have
the typical shapes also described in related literature like Oliva and Torralba (2001) or
Torralba and Oliva (2003): The EPS of manmade structures has large tails for horizontal
and vertical orientations. The spectrum for natural scenes is almost isotropic with a
slight tendency towards horizontal end vertical oriented structures. For the aerial image
class the spectrum looks almost isotropic showing that there is no preferred orientation
in the used image dataset.

These findings are strengthened by analyzing the mean energy in relation to the ori-
entation (figure 2.3). Again, manmade scenes show large peaks for horizontal (0◦) and
vertical (90◦) orientation, while for oblique orientations the mean energy is almost iden-
tically low. The natural scene’s spectrum reveals peaks for horizontally, vertically, as
well as for diagonally (45◦) oriented structures. All in all, the difference between the
peaks and the minima is not as big as for manmade images. The same holds for aerial
images, except that there are no peaks for diagonal orientations. Instead the oblique
orientations are approximately all at the same level.

Determing the parameters α and β of equation (2.4) leads to the values given in table
2.1. The results show that the EPS for natural and aerial images decay stronger than the
EPS of manmade images, which is again due to the vertical and horizontal tails. Since β
is largest for aerial images it is a hint that aerial images contain the most variance. This
should be due to the special structure of aerial images being somehow more repetitive.

The computed values are in accordance with values reported in Ruderman (1994),
van der Schaaf and van Hateren (1996) or Mumford and Gidas (2001), although the
mean values of α reported there are all smaller than the values presented here. According
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to Mumford and Gidas (2001) this might be due to that fact that these studies took
extreme care of calibrating their vision systems and of correcting all the factors that can
influence the shape of the spectrum. For the computations presented here, simply the
JPEG–images as provided by the image databases were used. Since the JPEG–algorithm
(Pennebaker and Mitchell, 1993) does a DCT and cuts off high frequencies, it probably
influences the shape of the spectra. Anyway, since all the images in all classes have been
stored as JPEG–images, these effects should not influence the comparability between
the different image classes. It should only have an impact on the comparison to studies
with images chosen more carefully.

2.1.3. Conclusions

From the results shown above one can conclude that the three different image classes do
have different statistical properties. The images of the manmade class are characterized
by horizontal and vertical orientations that are due to horizontal and vertical structures
dominating manmade environments. The images of the natural class contain structures
in different orientations with only little preference for vertical and horizontal orientations
resulting from the horizon or objects following gravity like trees. The EPS for aerial
images is almost isotropic because the images do not show structures that are aligned
to any reference direction.

The findings are in accordance with the results presented in Oliva and Torralba (2001),
Torralba and Oliva (2003) and Balboa and Gryzwacz (2003) showing strong differences
depending on the environment thus making environment–specific adaptations of recep-
tive fields for different environment types very likely. A description of these adaptation
will be given in the following section.

2.2. Estimation of Receptive Fields

In the following section receptive fields of simple cells will be estimated for the three
different image classes using ICA and a statistical analysis of the results will be done.
Thereon, representative class–specific receptive fields will be derived.

2.2.1. Experiments

2.2.1.1. ICA of Grayscale Images

From the image database selected for the experiments described in section 2.1 a total
of 63000 image patches per image class sized 20× 20 pixels were selected from random
positions. For preprocessing the data was transformed to a 150–dimensional eigenspace
and was whitened.

The dimensionality of the eigenspace was been chosen comparably to related works
like Hoyer and Hyvärinen (2000) or Hyvärinen and Hoyer (2000), and in order to cover
approximately 98 % of the total information. The size of the image patches has been
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chosen larger than in related works since the computational power has increased and the
aerial images are characterized by longer contours.

The aerial image patches have additionally been scaled down before applying PCA
by a factor of 0.5 leading to a resolution of 16 m2 per pixel. Combined with the work
presented in Gerstmayr et al. (2004a,b) this leads to an image size of the blimp’s on
board camera of 50 × 50 pixels. In previous work image sizes of about 10 × 10 pixels
have been proofen to be optimally for landmark selection tasks. Such a high resolution
has been chosen since smaller image sizes would be too small for the filters needed for the
contour detection and enhancement mechanisms. After downscaling the resulting image
patches have been smoothed with a Gaussian smoothing filter with standard deviation
σ = 2

3
to make the proportional variance for 150 dimensions comparable to those of the

natural and manmade class. The eigenimages for the three different image classes are
shown in figure 2.12 at the end of this chapter.

ICA was computed using the MATLAB implementation of the FastICA–algorithm (see
Hyvärinen (1999a) and section A.2.3) with the hyperbolic tangent as nonlinearity and
for fine–tuning, a random initialization, and stabilization being enabled. The parameters
not mentioned here remained unchanged. The resulting independent basis vectors are
visualized in figure 2.13.

Since the resulting basis vectors resemble the receptive fields of cortical simple cells,
Gabor functions have been fitted using a Least Squares Approximation. Therefore, the
error function

η =
10∑

x=−9

10∑
y=−9

(ai(x, y)−G(x, y))2 (2.5)

was minimized where ai(x, y) is the i–th basis vector, i.e. the i–th column of the mixing
matrix A reshaped to an image sized 20×20 and G(x, y) is the Gabor function as defined
in equation (1.1) whose parameters are changed in order to optimally fit the basis vector.
The optimization was done with regard to the following constraints

−100 ≤ mx ≤ 100 (2.6a)

−100 ≤ my ≤ 100 (2.6b)

0 < θ ≤ π (2.6c)

0 ≤ s1 ≤ s2 ≤ 100 (2.6d)

0 ≤ F ≤ 100 (2.6e)

0 ≤ K ≤ 100 (2.6f)

−π < ϕ ≤ π. (2.6g)

which have been chosen rather loosely to allow a good approximation even to Gabor
functions with high spatial frequency and centered outside the image patch.

To compute the nonlinear regression an Evolution Strategy (ES, see A.6) has been used
with σ = 4 independent subpopulations of µ = 10 individuals producing λ = 12 offspring
and ρ = 3 recombined individuals. The mutation was done using the HMB–scheme with
intermediate recombination and a Comma–evolution strategy. The resulting parameters
have been analyzed statistically, the results are shown in figures 2.4 to 2.8 and table 2.2.
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2.2.1.2. ICA of Color Images

For an human observer the transitions from red roofs to dark gray streets form a very
striking contrast in the aerial images. Thus, one would expect that color information
plays a more important role in aerial images than it does in natural images. Therefore,
ICA was computed following Hoyer and Hyvärinen (2000) for colored versions of the
images used in section 2.1. Some of the images are shown in figure 2.11. Image regions
sized 256 × 256 pixels were selected at the image center of the database images. From
these regions a total of 63000 image patches sized 20× 20 pixels were picked at random
positions. The image patches have been described as a 1200–dimensional vector (400
pixels times 3 color channels). For aerial images the same additional preprocessing as
described above for grayscale images was done. Again, a 150–dimensional eigenspace
has been computed which covered about 98 % of the proportional variance contained in
the data. The resulting eigenimages are shown in figure 2.14. After the transformation
to the eigenspace the data was sphered and ICA was computed as described above. The
independent basis vectors are visualized in figure 2.15. For the colored images no further
computations and analyses were performed subsequent to the ICA.

2.2.2. Results

2.2.2.1. ICA of Grayscale Images

The eigenvectors shown in figure 2.12 for the three different image classes are not visually
distinctable and the eigenvectors generally resemble 2D–Fourier bases. The first few
eigenvectors consist of low frequency patterns. The higher eigenvectors, covering less
variance, more and more resemble to wave patterns of higher spatial frequencies.

The ICA basis vectors visualized in figure 2.13 resemble the receptive fields of V1
simple cells as it was expected. When having a close look, it seems that more natural
and manmade basis vectors resemble Gabor functions which are more elongated and
have higher spatial frequency.

To better qualify these differences, Gabor functions have been fitted to the basis
vectors. The mean fitting error was 0.2324 (0.1567), 0.2776 (0.1521), and 0.2099 (0.1619)
with standard deviations given in parentheses for the natural, the manmade, and the
aerial image class, respectively. From the analysis components have been excluded that
could not have been fitted well, that were located close to the boarder of the basis
vectors, and that had a great variance in either direction. Mathematically formulated
only patches that hold the following constraints were included in the analysis:

abs (mx) ≤ 17.5 (2.7a)

abs (my) ≤ 17.5 (2.7b)

sx ≤ 20.0 (2.7c)

sy ≤ 20.0 (2.7d)

η ≤ 0.50. (2.7e)
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By excluding patches that did not hold the constraints a total of 25, 35, and 23 basis
vectors have been discarded. The average fitting error of the remaining vectors were
0.2060 (0.1141), 0.2776 (0.1253), and 0.1742 (0.1214) for the natural, the manmade, and
the aerial images, respectively, with standard deviations shown in parentheses.

For the remaining patches relative frequencies for the various parameters have been
computed. The underlying distributions have been compared by computing significance
levels using the Kolmogorov–Smirnov–Test (KST, see Press et al. (2003) and section
A.4). The results are summarized in table 2.2.

Figure 2.4(a) shows the center positions (mx,my) of the Gabor functions within the
basis image. The center positions are not significantly different for the three different
image classes and most center positions are in the area [−10, 10] × [−10, 10]. Within
this area there is no particular distribution recognizable.
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Figure 2.4.: Scatter plots for center positions and standard deviations of fitted Gabor
functions. Blue, red, and green crosses denote the natural, manmade and
aerial image class, respectively.

A scatter plot of the variance s2 perpendicular to the tuning direction θ versus the
variance s1 along tuning direction θ is given in plot 2.4(b). As one would expect from
the constraints in equation (2.6) s1 < s2 holds for all analyzed Gabor functions. There
is no striking difference between the different image classes, most of the values are in the
area [1, 3]× [2, 9]. Figure 2.5(a) shows the relative frequencies of the standard deviation
s1 along the tuning direction. The distributions for natural and manmade structures
both have a peak at s1 ≈ 1.2 and are both relatively narrow. For aerial images the
distributions is clearly more narrow with a maximum for s1 ≈ 1.75. Additionally,
it differs highly significant from those of natural and manmade images. The standard
deviation s2 perpendicular to the tuning direction all differ significantly from each other.
The distribution of the natural image class raises fast in [0, 4] and then decreases slowly.
For manmade scenes a maximum is reached for s2 = 3 and for s2 ≈ 12, indicating that
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Table 2.2.: Summary of significance levels for analyzing the fitted Gabor functions

Parameter Compared image classes P Significance

mx natural vs. manmade 0.8143 —
natural vs. aerial 0.7363 —
manmade vs. aerial 0.8030 —

my natural vs. manmade 0.4795 —
natural vs. aerial 0.8973 —
manmade vs. aerial 0.7580 —

s1 natural vs. manmade 0.1454 —
natural vs. aerial < 0.0001 > 99.99 %
manmade vs. aerial < 0.0001 > 99.99 %

s2 natural vs. manmade 0.0001 99.99 %
natural vs. aerial 0.0023 99.77 %
manmade vs. aerial 0.0001 99.99 %

θ natural vs. manmade 0.0622 93.78 %
natural vs. aerial 0.6967 —
manmade vs. aerial 0.0064 99.36 %

ϕ natural vs. manmade 0.9649 —
natural vs. aerial 0.9535 —
manmade vs. aerial 0.5667 —

F natural vs. manmade 0.0443 95.57 %
natural vs. aerial 0.0010 99.90 %
manmade vs. aerial 0.0022 99.78 %

n1 natural vs. manmade 0.0269 97.31 %
natural vs. aerial 0.0012 99.88 %
manmade vs. aerial 0.0003 99.97 %
natural vs. monkey < 0.0001 > 99.99 %
manmade vs. monkey < 0.0001 > 99.99 %
aerial vs. monkey 0.0334 96.66 %

n2 natural vs. manmade 0.0499 95.01 %
natural vs. aerial 0.0052 99.48 %
manmade vs. aerial < 0.0001 > 99.99 %
natural vs. monkey 0.0024 99.76 %
manmade vs. monkey 0.1905 —
aerial vs. monkey < 0.0001 > 99.99 %
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there are receptive fields tuned for shorter and for very long contours. The distribution
for aerial images increases moderately and has a wide, almost plateau–like peak for [5, 8].

Figure 2.6(a) visualizes the distributions for the various orientations found in the
fitted Gabor functions. It strikes out that the distribution for the natural and aerial
image class are almost equally distributed but the distribution of the manmade class has
strong preferences for horizontal (θ = 0) and vertical (θ = 1

2
π) orientations and minor

preferences for diagonal directions. These results are strengthened by the computed
KST: the distribution for manmade images differs significantly from those of the natural
and aerial image class.

The distributions of the phase ϕ shown in figure 2.6(b) do not differ significantly.
For all image classes most of the Gabor functions are antisymmetric with phase ϕ =
±1

2
π. The proportions of negative and positive antisymmetric Gabor functions are only

approximately the same.
The spatial frequency parameter F visualized in figure 2.7(a) differs significantly.

However, all distributions are bimodal showing maxima for F ≈ 0.15 cycles per pixel
and for smaller spatial frequencies. With a value of F = 0.15 cycles per pixel the
antisymmetric Gabor functions have one on– and one off–subfield.
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Figure 2.5.: Relative frequencies for standard deviations s1 and s2. Blue, red, and green
bars denote the natural, manmade and aerial image class, respectively

Figure 2.7(b) is a scatter plot of n2 versus n1 for the three different image classes and
data of electrophysiological studies on Macaque monkeys as presented in Ringach (2002).
For an overview over the current state of electrophysiology in V1 see also Ringach (2004).
In comparison to the receptive fields estimated by ICA the receptive fields of monkeys
seem to be less elongated because the maximum for n2–values is smaller for the monkey
data than for the estimations. Since also the n1–values for the monkey data are larger
than the computed ones, the receptive fields of monkeys are also wider or have more
lobes.
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Figure 2.6.: Relative frequencies for different orientations θ and phase parameters ϕ.
Blue, red, and green bars denote the natural, manmade and aerial image
class, respectively

The relative frequencies of n1 and n2 values are visualized in figure 2.8(a) and 2.8(b).
Both plots include again data provided by Ringach (2002). The distribution of n1 values
for the monkey data increases, reaching a maximum at 0.3 cycles, and then decreases
again. Although showing peaks around 0.3, too, the distributions for the examined
image classes differ from the monkey data as they show peaks for very small values
of n1. These are probably due to some very broadly tuned Gabor functions. Also the
decrease for values greater than the maximum is steeper. All distributions show pairwise
significances. The same holds for the n2 values except for the comparison between
manmade scenes and monkey data. For manmade images there is a slight increase in
the range [0, 0.5], while for natural and aerial images the frequencies are almost constant
in the range [0, 0.5] and [0, 1], respectively.

Using these results, class–specific receptive fields have been derived from the distri-
butions shown above. They are meant to be average or representative receptive fields
of the corresponding image class. The parameters were manually adapted to the several
parameter distributions by finding appropriate tradeoffs. The class–specific Gabor func-
tions are visualized in figure 2.9 and the corresponding parameters are summarized in
table 2.3. As for the manmade image class a clear preference of horizontal and vertical
structures is identifiable, the number of orientations |θ| to be used for the simple cell
model described in section 3.1 was chosen to be 4. This choice was based on the as-
sumption that due to the dominance for horizontal and vertical structures less oriented
filters are needed to filter the images. The orientations are equally distributed in |θ|+ 1
steps over [0, π]. The exact number of orientations needed for an isotropic edge detector
depends on the width of the simple cell’s tuning curve (see 3.1.3). The width strongly
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Figure 2.8.: Relative frequencies for n1 and n2. Blue, red, and green bars denote the
natural, manmade, and aerial image class, respectively. Black bars denote
data of Macaque monkey as provided by Ringach (2002)
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depends on the used simple cell model. Thus, the choice here is somehow arbitrarily.

Table 2.3.: Overview over parameters for the class–specific receptive fields

Parameter Natural Manmade Aerial

(mx,my) (0, 0) (0, 0) (0, 0)
s1 1.25 1.50 1.75
s2 5.00 4.50 8.00
ϕ 1

2
π 1

2
π 1

2
π

|θ| 8 4 8
F 0.15 0.15 0.15
K 1.00 1.00 1.00
n1 0.188 0.225 0.263
n2 0.750 0.675 1.200

(a) Natural class (b) Manmade class (c) Aerial class

Figure 2.9.: Class–specific receptive fields for several image classes

2.2.2.2. ICA on Color Images

Most of the eigenvectors for the PCA of color images (see figure 2.14) are achromatic.
The resulting patterns that are similar to those of grayscale images and again resemble
2D–Fourier basis. The smaller fraction of the eigenvectors contain color information.
Unlike for the gray–scale eigenvectors, the first eigenvector of all image classes does not
represent a circle with a diameter of approximately the patch width, but is rather a
completely black image patch.

For the natural image class the second eigenvector is a completely lightblue patch, the
fifth eigenvector is completely purple. The other chromatic eigenvectors mainly code two
different types of color opponencies: The first type codes lightblue–orange transitions,
and the second one represents green–purple opponencies. The chromatic regions are not
uniform but also show some sort of wave pattern. The eigenvectors for the manmade
image class are comparable to those of the natural class. Again, the second eigenvector
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is a completely lightblue patch, the tenth eigenvector represents again a purple patch.
The other chromatic eigenvectors code lightblue–orange and green–purple transitions.

The chromatic eigenvectors for the aerial images are different from those of the other
classes. The first 18 eigenvectors are achromatic and there are no completely uniform
patches except the first eigenvector. Except for the fortieth eigenvector, which shows a
green–yellow transition, all chromatic eigenvectors represent red–cyan opponencies.

Comparing the obtained ICA basis vectors reveals that the vectors for aerial images
are beside one exception all achromatic. For the other image classes there are more
achromatic than chromatic patterns. The achromatic patches resemble various Gabor
functions. The chromatic patches can be divided into few uniform patches, a majority
of horizontal or vertical color transitions, and few more complex transitions. The transi-
tions include red–green, purple–green, blue–yellow, blue–orange, and blue–yellow–orange
for natural scenes and red–green, red–blue, and blue–orange for manmade structures.

2.2.3. Discussion

2.2.3.1. ICA on Grayscale Images

Discussion of the Results
Both, the computed eigenvectors (figure 2.12) as well as the independent basis vectors
(figure 2.13) are in good accordance with the related literature like Olshausen and Field
(1996), Hoyer and Hyvärinen (2000), and many others.

Gabor function were fitted to the basis vectors reasonable well allowing a detailed
analysis of the differences between the image classes. The results revealed that the
fitted Gabor functions for natural and manmade structures are not as elongated as
those for aerial images. Further the functions for manmade images were oriented mainly
horizontally and vertically, while for natural and aerial images the orientations were
equally distributed. Thus, the receptive fields reflect the statistical properties of the
images.

The comparison of the independent basis vectors or the independent component filters
for different environments has received only little attention so far. The work which is
closest to this thesis is Zhang and Mei (2003). There, the experiments reported in
Blakemore and Cooper (1970) were simulated and ICA for natural and aerial images
was computed. In the paper neither the type of the aerial images is specified closer
nor the distributions of the fitted Gabor functions are shown. However, the authors
claim that the ICA filters for the aerial images do have more horizontal and vertical
orientations than those of natural images. It is likely that these findings are due to the
characteristics of the used training images, which might contain areas with dominating
perpendicular structures possibly aligned along a common reference direction. Further,
the authors do not mention any comparison on the elongation of the subfields.

Another related study is Zieghaus and Lang (2003) in which the authors computed
ICA using several neural network based algorithms for a set of natural and urban images
and fitted Gabor– and Haar–wavelets, respectively. However, the paper focuses on the
comparison between different ICA algorithms and not on the comparison of different
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image classes. Therefore, and because important information and data is missing in the
paper a more substantiated comparison to the work presented here is not possible.

For the sake of completeness two other works exploiting the difference of ICA filters or
basis vectors for different input data shall be mentioned: the first is H. Le Borgne (2001)
in which a classification method based on the difference of ICA filters is proposed. The
second work is Lee et al. (2000) or Lee and Lewicki (2002). As by product of their actual
objective, an ICA mixture model, the authors report different ICA filters for different
image classes: printed text yields ICA filters representing bars of different length and
width capturing high–frequency patterns, whereas natural images yield Gabor–like ICA
filters.

So far none of the related work has shown the actual distribution of the parameters
for the fitted Gabor functions, or has derived something comparable to the class–specific
receptive fields. Further on results from image statistics have not been used in a biolog-
ically motivated computer vision approach.

Discussion of the Methods

Deriving the parameters for the class–specific receptive fields as described in section
2.2.2 is the simplest approach possible. However, each of the parameters was assumed
to be independent from all others which is not the case for “real” receptive fields as
argued in Ringach (2002): every simple cell’s receptive field is describable by a Gabor
function, but not every Gabor function describes a receptive field. A more exact esti-
mation, e.g. by means of Bayesian statistics, would have been difficult to realize since
much more information about the distributions and their dependencies would have been
needed. Another important question is whether the estimates could be more reliable if
the basis vectors would not contribute equally but would be weighted according to their
importance for the overall coding. It sounds reasonable that due to the whitening step
unimportant basis vectors can bias the estimation of the distributions. However, such a
weighting would be difficult to realize since ICA does not allow to order the basis vectors
with respect to their importance. On the other hand, in a sparse–dispersed coding each
neuron should contribute equally to the overall coding. Thus, it is justified that each
basis vector also contributes equally to the estimation of the distributions.

Another important aspect to discuss is the question whether the receptive fields should
be compared to the basis vectors or to the independent component filters. For this work
receptive fields have been compared to independent component basis vectors, although
many related studies like Bell and Sejnowski (1997), van Hateren and van der Schaaf
(1998), or Zhang and Mei (2003) argued that the receptive fields should be compared to
the independent component filters and not to the basis vectors.

The reason why receptive fields should be compared to ICA filters is that it is the
separating matrix W transforming an observation or sensory input x to an independent
signal s (see equation (A.22)). However, this work follows the argumentation of Hoyer
and Hyvärinen (2000) and Hyvärinen and Hoyer (2001) comparing receptive fields to the
independent component basis vectors arguing that each of the basis vectors ai forms some
sort of “optimal stimulus” giving a non–zero response if and only if the input stimulus
equals ai. Additionally, it is argued that the argumentation is stressed if inhibition
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mechanisms like gain control (Ringach, 2004) are taken into account that suppress neural
responses if a large number of neurons are simultaneously activated. Additionally, that
the visualization for the filters is not as straightforward. Caywood et al. (2004) mention
that for grayscale images there are no striking differences between ICA filters and basis
vectors. In Hyvärinen and Hoyer (2001) it has been shown that the basis vectors ai are
a low–pass filtered version of the filters wi having the same orientation, location and
frequency tuning properties.

ICA as Model for V1

Another important point is whether a linear transformation is sufficient to explain the
properties of cortical cells or not. It has been pointed out in van Hateren and van der
Schaaf (1998) or Zetsche and Röhrbein (2001) that independent components are not
completely independent, but only as independent as possible by a linear transformation.
ICA got an established method for investigating information theoretical questions and it
can explain neural coding in V1 reasonably well. Though it neglects nonlinearities, tem-
poral aspects, and various adaptation mechanisms. After Hoyer and Hyvärinen (2000)
this might be due to the fact that nonlinearities, such as rectification and shunting inter-
actions, involved in V1 can be thought of as operating on top of the linear representation.
However, in Ringach (2004) it is argued that these nonlinearities should be taken into
account more carefully because they do influence the neural information processing.

Closely related to that argument is the question whether ICA is an appropriate method
to estimate receptive fields. Although it is by the time used for almost 10 years to model
information theoretic aspects in V1, it is still a sophisticated method. van Hateren and
van der Schaaf (1998) describe a detailed comparison between receptive fields estimated
by ICA and receptive fields as measured by electrophysiological studies like Jones and
Palmer (1987a,b,c) or DeAngelis et al. (1993a,b). The authors of van Hateren and
van der Schaaf (1998) conclude that ICA gives qualitative predications about receptive
fields which can be compared reasonably well with neurophysiological data. The only
notable exception mentioned is the spatial frequency of the estimated receptive fields.
Compared to electrophysiological data ICA filters show less variability. Following the
authors this is due to the fact that ICA works at a scale which is close to the sampling
grid of the images. Based on this property, the authors also report that ICA leads to
receptive fields aligned with the sampling grid of the images. In their study they proofed
by rotating the scenes that the orientation preference does not result from horizontal
and vertical structures in the training images. For the natural and the aerial image class
no such preference was found in the described experiments of this work. Therefore, it
is likely that the preferences for horizontal and vertical orientations found in manmade
scenes are due to the statistical properties of the environment, and not to the sampling
grid.

In Ringach (2002) the data estimated by ICA in Olshausen (2001) is compared to
receptive fields measured by reverse correlation methods of Macaque monkeys. One
result of the paper is that the phase ϕ for the monkey data clusters nicely into two
clusters corresponding to even– and odd–symmetric receptive fields. However, ICA
seems to prefer antisymmetric receptive fields as most of the receptive fields described in
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Olshausen (2001) or this work are antisymmetric. Since symmetric receptive fields could
be separated into at least two antisymmetric receptive fields one could argue that ICA
reduces the redundancy contained in these fields. Like for the data computed in this
work, the data of Olshausen (2001) does not match the n–values reported for monkeys
in Ringach (2002). While there is mentioned that the estimated data contains more
subfields than the monkey’s receptive fields, i.e. that n1 is larger for the estimated
receptive fields, the receptive fields for all image classes estimated within this work
are much more narrow, i.e. n1 is smaller, than those of monkeys. This discrepancy
might be due to the different ICA algorithms used in Olshausen (2001) and this work.
Additionally, the receptive fields of all image classes computed within this work are more
elongated than the ones found in monkeys. The comparison between Olshausen (2001)
and the measured receptive fields does not reveal any difference. To summarize this
part of the discussion one can state that ICA does not reproduce all properties of simple
cell’s receptive fields exactly, but it estimates most properties reasonable well and it is
the most appropriate linear method available.

The last point to discuss is why a standard ICA–approach has been used for this work
and not a biologically more plausible extension. Such extensions include Hyvärinen et al.
(2001a, 2003b) or a generalized ICA approach like the one suggested in Utsugi (2002).
Since none of these models can cover all aspects of the visual cortex and since these
extensions have not been proven to give more plausible receptive fields, a standard ICA
approach has been used. It is an interesting question for future work to compare the
shapes of the receptive fields computed by the FastICA algorithm and several extensions.

2.2.3.2. ICA of Color Images

In the last years ICA on color images has received quite some attention, but various
studies came up with different results. Computing ICA on color images is according to
Caywood et al. (2004) quite sensitive to the used images, to the preprocessing, and to
the ICA–algorithm. In Wachtler et al. (2001) and Doi et al. (2003) LMS input images,
i.e. input images coded with spectral sensitivities of the human L–, M–, and S–cones,
have been used. Following Caywood et al. (2004) their results are quite suitable to ex-
plain certain aspects of neural color information processing in V1 like the emergence of
chromatic and achromatic processing units, color opponencies, as well as their distribu-
tions. In contrary, studies like Tailor et al. (2000) or Hoyer and Hyvärinen (2000) used
RGB–coded images. They argue that the difference between LMS– and RGB–coding
is not essential and that their studies also could explain visual information processing.
However, Caywood et al. (2004) pointed out that the results of these studies are not
comparable to those obtained by the studies mentioned above. Therefore, the results
presented here are only compared to the latter studies which used RGB–images. Since
the overall goal of this work was not to explain color information processing in the brain,
but rather to compare different image classes with different color information, it is not
important to use LMS–coding.

As there are no other related studies that computed ICA on aerial color images or
any other non–natural image class the results for natural scenes will be discussed first.
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The results presented here are not fully in accordance with those of related work. With
regard to the eigenvectors of natural images, studies like Buchsbaum and Gottschalk
(1983), Ruderman et al. (1998), or Hoyer and Hyvärinen (2000) report red–green and
blue–yellow opponencies instead of green–purple and lightblue–orange opponencies found
in the experiments described in this thesis. The relation of chromatic and achromatic
eigenvectors seems to be approximately the same as in the reviewed literature. An exact
comparison to related studies is difficult since the proportion of chromatic eigenvectors
obtained is dependent on the number of used eigenvectors. This is due to the fact that
most of the variance in the images is covered by achromatic eigenvectors and chromatic
eigenvectors covering little variance are discarded by reducing the dimensionality.

The results for the ICA differ significantly from those shown in Tailor et al. (2000).
There, a much larger proportion of chromacy is mentioned. In contrary to the work
presented here, Tailor et al. (2000) used all possible dimensions for the ICA step such
that the complete information contained in the images was taken into account. The
basis vectors shown in Hoyer and Hyvärinen (2000) are quite comparable to the results
shown above, except for the occurring opponencies.

In Caywood et al. (2004) a disagreement is mentioned whether the independent com-
ponent filters (Tailor et al., 2000; Doi et al., 2003) or the independent basis vectors
(Hoyer and Hyvärinen, 2000; Wachtler et al., 2001) should be used. Since the differences
between basis functions and filters does not have an impact on the comparison between
the image classes and since the rest of the work focuses on grayscale images, here the
independent basis vectors are shown, although Caywood et al. (2004) argue that for
color images there are striking differences between filters and basis vectors.

In comparison to manmade and natural images on the one hand side and aerial images
on the other, the most striking difference is that the first 18 eigenvectors of aerial image
patches and almost all independent basis vectors are achromatic. Further the emergence
of the red–cyan opponency is worth discussing. PCA and ICA are both unsupervised
learning methods finding the directions of the greatest variance or the directions corre-
sponding to maximally independent signals. One could argue that transitions from red
roofs to other elements in the aerial image do play an important role and therefore in-
fluence the statistical properties of the images. PCA and ICA discover these properties
leading to results differing from other images. However, this argumentation is somehow
restricted as the results for natural scenes are not fully compliant with results of other
works. In further work it is necessary to explain why the occurring color opponencies
were found in natural and manmade images. Since several trials (with the same input
images) always let to the same results and since the computation is rather straight-
forward, an error in the used programs seems to be unlikely but cannot be fully ruled
out. A good starting point for further investigations would be to recompute the analysis
using training images that have also been used for related studies or to analyze the color
distributions of the used training sets. This could reveal if the findings are due to the
particular color statistics of the training set.
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2.2.4. Conclusions

2.2.4.1. ICA on Grayscale Images

The main conclusion one can draw from the presented results is that statistical properties
of the environment are reflected in the shape of receptive fields. This substantiates the
theory that sensory systems are optimally tuned to the kind of stimuli occurring most
frequently. By comparing the parameter distributions of the fitted Gabor functions
it showed out that the images contained in the natural, manmade, and aerial image
class are characterized by short contours in various directions, short contours in mainly
horizontal and vertical directions, and long contours in various directions, respectively.
From this distributions class–specific receptive fields were derived that are optimally
tuned to the statistical properties of the environment. They will be used in the chapter
3 of this thesis for contour and junction detection.

2.2.4.2. ICA on Color Images

From the results for the analysis of color images one can conclude that color plays a
less important role in aerial images because almost all independent basis vectors and
the first 18 eigenvectors are achromatic. The results for the natural image class are
not fully accordant with the results of other studies, especially not with Hoyer and
Hyvärinen (2000) which is the closest of all reviewed works. Thus, it is difficult to
draw further conclusions. The emergence of a red–cyan opponency might be a hint that
transitions from red structures in aerial images (i.e. roofs) to other structures (e.g. streets
or gardens) play an important role and influence the statistical properties of aerial color
images. However, to fully proof or at least to strengthen this argumentation, the results
for natural images should be more comparable to those of other studies. Since the results
obtained for grayscale images were more promising, the open questions concerning color
image statistics have been left for future work.

2.3. Chapter Summary

The main conclusion of this chapter is that aerial images differ in their statistical prop-
erties from natural and manmade scenes. This was shown by analyzing EPS in section
2.1 and by computing ICA for a large set of training images of three different image
classes, namely natural, manmade and aerial images, in section 2.2. From the results
of this step one can also conclude that the statistical properties of the environment are
reflected in the shape of the optimally tuned receptive fields. These findings strengthen
the hypothesis that any perceptual system is tuned to its environment. They also mo-
tivate to use the derived class–specific receptive fields in conjunction with a model of
contour detection in the human visual system.
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(a) “Natural” images (b) “Manmade” images (c) Aerial images

Figure 2.10.: Representative grayscale images of the three image classes

(a) “Natural” images (b) “Manmade” images (c) Aerial images

Figure 2.11.: Representative color images of the three image classes
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(a) “Natural” images (b) “Manmade” images (c) Aerial images

Figure 2.12.: The first 150 eigenvectors for different classes of grayscale images

46



(a) “Natural” images (b) “Manmade” images (c) Aerial images

Figure 2.13.: ICA basis vectors for different classes of grayscale images
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(a) “Natural” images (b) “Manmade” images (c) Aerial images

Figure 2.14.: The first 150 eigenvectors for different classes of color images
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(a) “Natural” images (b) “Manmade” images (c) Aerial images

Figure 2.15.: ICA basis vectors for different classes of color images
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3. Biologically Motivated Image
Preprocessing

3.1. Contrast Processing

This section explains the use of class–specific receptive fields derived in section 2.2 in
conjunction with the simple cell model proposed in Hansen and Neumann (2004b) to
implement a biologically motivated edge detector. Before describing the model and the
obtained results, an overview over related work will be given.

3.1.1. Related Work on Simple Cell Models

The following review is neither very detailed nor complete, as most of the proposed
models are computationally not tractable for computer vision applications because they
use compartmental–modeling or spiking–neurons (Dayan and Abbott, 2001) to explain
results from electrophysiology or often model only one hypercolumn. More detailed
reviews of such models can be found in Carandini et al. (1999), Hansen (2002), and
Ursino and Cara (2004). According to Hansen (2002) three different types of models
can be distinguished:

Pure Feedforward Models
These models are just implementations of the model described by Hubel and Wiesel
(1962). However, due to the insight gained in neuroscience pure feedforward models are
no longer of interest for modeling V1 because they are not sufficient to exactly describe
the visual system.

Feedforward Models with Inhibition
This kind of model additionally takes inhibition into account. Inhibition is usually
non–linear and often implemented as divisive normalization, i.e. the activation of a
neuron is inhibited by the total activation of neurons tuned to similar and contrary
spatial frequencies or orientations. Neurons contributing to the inhibition thus form a
suppressive field (Carandini, 2004) or a non–classical receptive field Grigourescu et al.
(2003). As nonlinearities play an important role in V1 (DeAngelis and Anzai, 2003) this
kind of models have received a lot of interest in recent years by works like Carandini
et al. (1997) or Tolhurst and Heeger (1997a,b). The models proposed in Neumann et al.
(1999) and Hansen and Neumann (2004b), on which the model described in this section
builds, are also feedforward models with inhibition. Another example from the computer
vision domain includes Grigourescu et al. (2003). There, an extended energy operator for
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pooling simple cell responses is proposed that includes an inhibition of neighboring edge
elements which are are not in the preferred direction or which are outside the receptive
field of the Gabor filters.

Recurrent Networks

These models also include feedback from the same cortical areas (short–range interac-
tions) or from other cortical areas (long–range interactions) that can iteratively enhance
edges. Therefore, they take into account how this mechanisms sharpens orientation tun-
ing and influences contrast invariance. Examples from electrophysiology include Somers
et al. (1995) and Carandini and Ringach (1997). Examples from computer vision include
Neumann and Sepp (1999), Kolesnik et al. (2002), and Hansen and Neumann (2004a),
which model the long–range integration between V1 and V2. Recurrent simple cell net-
works are also used by models for texture or color segmentation. There, they are used
as preprocessing in order to detect different regions separated by edges. Such models
include Li (1998, 1999) and Kokkinos et al. (2004).

3.1.2. Proposed Simple Cell Model

The used model is based on Hansen and Neumann (2004b) or Hansen (2002) except
for the contrast detection filters. Here, the class–specific receptive fields estimated in
section 2.2 are used. The model follows the general structure of the visual pathway as
depicted in section 1.2.1.

3.1.2.1. Center Surround Stage

The LGN responses are modeled as rectified and non–linearly filtered signals of the input
image. The input image I with luminance values in the range [0, 1] is first processed by a
center–surround mechanism similar to LGN cells. The center stream Ic and the surround
stream Is are obtained by filtering I with isotropic Gaussians of standard deviation σc

and σs, respectively:

Ic = I ∗Gσc (3.1)

Is = I ∗Gσs . (3.2)

For the implementation the size of the mask for the Gaussians was determined by 6σ+1.
The choice of the model parameters is described in detail in section 3.1.2.4. These
responses form the input for a shunting interaction, which is a sort of divisive inhibition
yielding a bounded activity following the Weber–Fechner law. The change of activation
ui,j for a pixel I(i, j) over time t can be written as

∂ui,j

∂t
= −αLGNui,j + (βLGN − ui,j)net+

i,j − (γLGN + ui,j)net−i,j (3.3)
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where net+
i,j and net−i,j are the excitation and inhibition of the neuron, and αLGN denotes

the activity decay rate, which is according to Kokkinos et al. (2004) related to the leakage
conductance of the neuron. The lower and upper bound of the activity is influenced by
γLGN and βLGN. For a more detailed discussion on this type of shunting interaction see
Neumann (1996) and Kokkinos et al. (2004).

Equation 3.3 is assumed to quickly reach steady state and is solved at equilibrium,
i.e. for

∂ui,j

∂t
= 0. For that case the above equation can be rewritten as a function of

net+
i,j and net−i,j:

ui,j(net+
i,j, net−i,j) =

βLGNnet+
i,j − γLGNnet−i,j

αLGN + net+
i,j + net−i,j

(3.4)

The shunting interaction is modeled both for the on–center and the off–center domain.
For the first, excitatory input is provided by Ic and inhibitory input is provided by Is.
For the off–center domain the reverse holds true:

Xon = U(Ic, Is) (3.5)

Xoff = U(Is, Ic). (3.6)

The LGN responses Kon and Koff result from mutually inhibiting the opposite domains
and rectification

Kon = [Xon −Xoff]
+ (3.7)

Koff = [Xoff −Xon]
+. (3.8)

The contrast signals form the input for the next processing stage, the simple cell stage.
Models using opponent inhibition are often referred to as “push–pull” models. Opponent
inhibition is also an elementary building block for the simple cell stages.

3.1.2.2. Simple Cell Stage

The simple cells are modeled by Gabor functions and not as proposed in Hansen and
Neumann (2004b) by elongated weighting functions consisting of five isotropic Gaussians
aligned along the axis of preferred orientation. The advantage of this receptive fields is
a better adaptation to edge detection, whereas Gabor filters are a tradeoff between edge
detectors and spatial frequency detectors. One can argue that Gabor functions more
related to the shape of receptive fields found in V1. Therefore, and because the results
of section 2.2 shall be used to tune the simple cell model to the statistical properties of
the input images, Gabor function have been used for this work.

In order to detect light/dark transitions a Gabor kernel Gld
θ with preferred orientation

θ as given in equation (1.1) is used. The Gabor kernel detecting dark/light transitions is
given by the negative of the light/dark kernel: Gdl

θ = −Gld
θ . Since the equations for the

light/dark and the dark/light case are analogous the indices are left out for the simple
cell stage.
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The receptive fields have been modeled based on Gabor functions as described in
Troyer et al. (2001). Positive values of the Gabor function give the connection strength
for on–subfields Gθ

on, negative regions are used to model the off–subfields Gθ
off:

Gθ
on =

[
Gθ
]+

(3.9)

Gθ
off = abs

([
Gθ
]−)

. (3.10)

The input activation of the on– and off–subfields, Ron and Roff, is modeled as weighted
difference of the contrast signals Kon and Koff convolved with the subfield masks Gθ

on

and Gθ
off:

Rθ
on =

[
(Kon − ξKoff) ∗Gθ

on

]+
(3.11)

Rθ
off =

[
(Koff − ξKon) ∗Gθ

off

]+
. (3.12)

From that processing stage on all responses have to be computed for several discrete
orientations θ. For convenience the index for the orientations is left out as all the
following stages can be computed independently from each other.

For the activation Ron and Roff the contrast signals Kon and Koff compete using
the DOI–scheme as proposed in Hansen and Neumann (2004b), which uses a stronger
weighting of the inhibitory input from the opponent pathway, i.e. ξ > 1. The strong
inhibition can suppress weak excitations resulting in a sharper tuning curve and an en-
hanced robustness against noise. The DOI scheme is motivated by recent findings in
electrophysiology like Hirsch et al. (1998, 2003) revealing that strong inhibitory contri-
butions can overwhelm excitatory input.

In Hansen (2002) as well as in Hansen and Neumann (2004b) several simple cell models
are proposed depending on whether the excitatory and inhibitory input are weighted
equally (ξ = 1) and whether the input activations Ron and Roff are combined in a linear
or a non–linear way. This discussion will focus on the non–linear simple cell model with
DOI, the other models were also implemented and will briefly be discussed in appendix
B.

The nonlinear simple cell model is sketched in figure 3.1. The model first proposed
in Neumann et al. (1999) and later enhanced in Hansen (2002) consists of the three

intermediate stages S
(1)
on , S

(2)
on and S̃. The main building block of the circuit are the

excitatory connections Ron/off → S
(2)
on/off → S̃ providing the excitatory signals to the

simple cell S̃ from its subfields Ron and Roff.
The further connections in the model introduce nonlinearities and contribute to make

the model more selective for light/dark or dark/light contrasts, respectively. The chan-

nels Ron/off → S
(1)
on/off ( S

(2)
on/off implement a self–normalization by inhibiting S

(2)
on/off, thus

giving an upper bound for the activity.
The model also includes cross–channel inhibition Ron ( S

(1)
off and Roff ( S

(1)
on . The

cross–channel connections implement a soft AND–gate or a disinhibition because they
inhibit the inhibitory contributions of S

(1)
on/off. Therefore, the simple cell response is
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amplified if both subfields are simultaneously activated. The stages S
(1)
on/off and S

(2)
on/off

can be modeled by a shunting interaction of the type

∂ui,j

∂t
= −αSui,j + net+

i,j − βSui,jnet−i,j, (3.13)

which is again assumed to reach steady state quickly. Thus, the channels can be written
as

S
(1)
on/off =

Ron/off

αS + βSRoff/on

(3.14)

S
(2)
on/off =

Ron/off

γS + δSRoff/on

. (3.15)

The simple cell activity S̃ results from linearly pooling the activations of the on– and
the off–channel:

S̃ = S(2)
on + S

(2)
off . (3.16)

By combining the above equations and with δS = βSγS the simple cell response now
reads

S̃ =
αS(Ron + Roff) + 2βS(RonRoff)

αSγS + βSγS(Ron + Roff)
. (3.17)

As final processing step the simple cell activations are mutually inhibited according to

Sld =
[
S̃ld − S̃dl

]+
(3.18)

Sdl =
[
S̃dl − S̃ld

]+
. (3.19)

3.1.2.3. Complex Cell Stage

As depicted in section 1.2.1, complex cells are independent of the contrast polarity. They
can be modeled by pooling simple cells sensitive to light/dark and dark/light transitions:

Cθ = Sld,θ + Sdl,θ. (3.20)

For visualization purposes the pooled complex cell response is used for which all the
contributions of the different orientation channels are summed:

Cp =
∑

θ

Cθ. (3.21)
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Kon Koff

Ron

Roff

S
(1)
on

S
(2)
on

S
(1)
on

S
(2)
off

S̃

ξ

ξ

Figure 3.1.: Sketch of the nonlinear simple cell circuit. Filled circles denote neurons,
arrows denote excitatory connections, unfilled circles at the end of a con-
nection denote inhibition. Adapted from Hansen and Neumann (2004b)

3.1.2.4. Determing the Model Parameters

The single stages of the model were implemented in MATLAB. The most difficult part
was the tuning of the model parameters since the values proposed in Hansen (2002)
could not be used due to the different edge detection filters. One possibility to tune
the parameters would have been to manually balance the excitatory and inhibitory
contributions occurring in several stages. However, an optimization method was chosen
as a sensory system is supposed to optimally process the input and to transform it to a
meaningful representation.

Up to that step the simple cell model is nothing else than an edge detector. In the
literature about edge detectors the following criteria for an optimal edge detector are
formulated: good detection, good localization and good response (Canny, 1986). A stan-
dard approach to measure the quality of edge detectors is based on Geman and Jedynak
(1996) and evaluates the Chernoff bound (Cover and Thomas, 1991). Here, only the brief
idea underlying the optimization will be sketched, for a more detailed introduction see
section A.5. The complex cell response can be divided into two disjunctive sets of pixels.
The pixels lying on an edge are in further referred to as on–edge pixels, and the pixels
not lying on an edge are in further referred to as off–edge pixels. Both, the response
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for on–edge as well as for off–edge pixels form characteristic probability distributions
p(.|on–edge) and p(.|off–edge). The edge detector works well if the two distributions
can be distinguished easily which is the case if a classificator has a small classification
error. In that case inference about the world as outlined in section 1.2.2.2 is facilitated
by the visual system. For this purpose the log–likelihood classificator can be used whose
classification error decreases exponentially by

ε = exp (−NC(p(.|on–edge), p(.|off–edge))) (3.22)

where N is the length of a sequence of samples drawn either from the on–edge or the
off–edge pixels.

C (p, q) = − min
0≤λ≤1

log
m∑

j=1

pλ(yj)q
1−λ(yj) (3.23)

is the Chernoff bound between the distributions p and q which can take the discrete
values yi; i = 1 . . .m. Thus, the two distributions can be separated more easily if the
Chernoff bound is large.

Therefore, the model parameters for the simple cell circuit were tuned in the opti-
mization step such that the response to a stimulus maximizes the Chernoff bound. As
stimulus a test stimulus similar to the one depicted in figure 3.2 was used. The width of
each bar was 120 pixels, the height were 2600 pixel. The contrast for the optimization
was 0.085, a Gaussian noise of standard deviation σ = 0.05 was added. The contrast
was chosen such that the models can detect it well but not perfect at the beginning of
the optimization steps.

Figure 3.2.: Sketch of the stimulus used for optimization

The optimization was done using an ES with µ = 10, σ = 1, λ = 10, ρ = 3, a HMB
strategy mutation with β = 3, intermediate recombination, and a Comma–evolution
strategy. For every optimization step the complex cell response Cθ for the test stimulus
was computed, the on–edge and off-edge distributions were estimated, and the Chernoff
bound was computed and used as fitness function. For the on–edge distributions only the
responses for θ = 0 around the step edges of the pattern were used, all other responses
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were counted as off–edge pixels. This method should ensure that only complex cell
responses of preferred orientation influence the on–edge distribution, whereas responses
of other orientations influence the off–edge distributions. Thus, responses of cells not
optimally tuned for the direction of the edge decreased the distinctiveness of the two
distributions and sparse–disperse codes of the complex cell response were preferred.

The optimization was done using the following constraints

4.0 ≤ αLGN ≤ 15.0 (3.24a)

0.1 ≤ βLGN ≤ 15.0 (3.24b)

0.1 ≤ γLGN ≤ 15.0 (3.24c)

0.01 ≤ αS ≤ 0.1 (3.24d)

1000.0 ≤ βS ≤ 20000.0 (3.24e)

0.01 ≤ γS ≤ 15.0. (3.24f)

The other model parameters were fixed to σc = 1, σs = 3 and ξ = 3 as they always
approached the limits in early trials of the optimization process. The results of the
optimization for the nonlinear simple cell model with DOI are summarized in table 3.1.

Table 3.1.: Model parameters for the nonlinear model with DOI

Parameter Natural filters Manmade filters Aerial filters

σc 1.000 1.000 1.000
σs 3.000 3.000 3.000
αLGN 14.517 12.604 14.323
βLGN 0.573 0.011 0.048
γLGN 0.048 0.013 0.107
ξ 3.000 3.000 3.000
αS 14.935 13.358 11.050
βS 1039.600 9999.800 9995.700
γS 0.424 9.546 0.121

3.1.3. Results and Discussion

This section includes a couple of simulations that are supposed to point out important
properties of the model. It closes with results of processing real images for the three
image classes described in chapter 2. All responses shown in the following section visu-
alize the pooled complex cell response CP and are normalized to the range [0, 1]. White
regions show areas of no response, black ones denotes maximum response.
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3.1.3.1. Artificial Test Images

Siemens Star
For a first test the simple cell model was applied to the Siemens star. The Siemens star
is a test pattern known from photography where it is used to test the limits of resolution
for optical systems or films. Here, it can show how well the simple cell model can detect
edges in various directions, if the response strength is comparable for all directions, and,
especially for the center region of the star, how well it can resolve fine patterns. The
results of the simulation are shown in figure 3.3.

(a) Stimulus (b) “Natural” filters (c) “Manmade” filters

(d) “Aerial” filters, 8 ori-
entations

(e) “Aerial” filters, 10 ori-
entations

(f) “Aerial” filters, 12 ori-
entations

Figure 3.3.: Edge detection results for the Siemens star. Each complex cell response was
normalized to [0, 1].

The results for processing the Siemens star with receptive fields optimized for natural
images show that all orientations are detected with an approximately equal response.
Even fine structures at the center of the star can be detected reasonably well. For the
filters optimized for manmade scenes and aerial images it appears that the network does

59



not respond equally to contours in various directions. The filters optimized for manmade
scenes are tuned for θ ∈ {0, π

4
, π

2
, 3π

4
}. As these orientations are detected better than

oblique directions, the result is due to the limited number of used orientations |θ|. Since
in manmade scenes there is a strong preference for horizontal and vertical directions (see
section 2.1) the number of orientations was not increased to see how the model can deal
with realistic images of manmade scenes. Thus, the following results for the manmade
image class have to be understood as tests and not as perfect results.

For the simple–cell model optimized for aerial images, the number of orientations was
corrected, as one can conclude from the statistical analysis that aerial images do not
have an orientation preference. The results for processing the Siemens star with 10 and
12 different orientations show that for both simulations the network responds equally
to all orientations. Therefore, |θ| = 10 orientations are sufficient to get good detection
results. All further results shown here and in subsequent sections were processed with
10 different orientations.

A nice result for this simulation is that in none of the simulations a difference between
the response to light/dark and dark/light transitions occurs and that all can detect fine
structures reasonable well. The latter is because of the fact that the used Gabor filters
are comparable narrow, i.e. s1 is rather small. However, for all models the edges are
surrounded by a region of more or less strong response. This is due to the fact that in
the neighborhood various cells tuned for a similar orientation respond to the edge.

Response to Small Contrasts

In order to analyze the responses to small contrasts a pattern of alternating light/dark
and dark/light transitions of increasing contrast was used, comparable to the one pro-
posed in Hansen (2002). The contrast was increased from 0.05 on in steps of 0.05 to
0.145. White noise of standard deviation σ = 0.05 was added. Each patch of the pattern
was sized (500 × 120) pixels. The results are visualized in figure 3.4 at the end of this
section.

For all three models the detection threshold is approximately the same: for a contrast
of 0.06 the edges appear as closed contours. For the model with receptive fields optimized
to natural and manmade images first edge elements get visible for a contrast level of
0.04, whereas for the model with receptive fields tuned to aerial images only a contrast
level of 0.03 is needed. This might be due to the better signal to noise ratio because
for the third model the off–edge regions appear brighter in the complex cell response.
The contrast values of this work are comparable to the results obtained in Hansen and
Neumann (2004b): there, fragmented edges appear for a contrast of 0.045, for closed
contours a contrast of 0.07 is necessary.

3.1.3.2. Model Properties

In this paragraph two important properties of the model will be analyzed: the tuning
curve and the influence of the DOI.
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Tuning Curves

To measure the tuning curve a single step edge which was corrupted by white noise of
σ = 0.05 was analyzed by the simple cell network. The receptive fields were tuned to
|θ| = 21 different orientations distributed equally in the range

[
−π

5
, π

5

]
, thus sampling

the range in steps of 3.6 ◦. Along the edge the mean response of the complex cells for
each orientation was computed in order to determine the tuning curve. The tuning
curves for the simple cell model with receptive fields optimized to the different image
classes and for different contrast levels are shown in figure 3.5.

For all tested models the orientation tuning of the simple cell model is contrast in-
variant, i.e. the width of the tuning curve is not dependent on the contrast. According
to Hansen (2002) this is a property which can only be obtained by simple cell models
with inhibition. The shape and the width of the tuning curves varies for the different
models tested. For the filters optimized to aerial images the tuning curve orientation
selectivity is more restricted than for the other two models. This model only shows
activities for orientations deviating ±18.0 ◦ from the preferred orientation. The man-
made and the natural model show activities for orientations deviating ±25 ◦ and ±29 ◦,
respectively. Usually the width of the tuning curves is determined by the Half Width
at Half Height (HWHH), which measures half the width at the curve’s inflection points.
The HWHHs of the models are 10.1 ◦, 13.8 ◦, and 6.8 ◦ for the receptive fields tuned for
natural, manmade, and aerial images, respectively. These values are smaller than the
HWHH of 14.7 ◦ reported in Hansen (2002). With respect to the shape it has to be
mentioned that the tuning curve for the natural and aerial filters are tapering, whereas
the one for the manmade filters have a very round peak.

The different width of the tuning curves is probably also responsible for the results
obtained for the Siemens star (see figure 3.3). As the receptive fields for natural images
are tuned very broadly, |θ| = 8 different orientations are sufficient to detect all orienta-
tions equally well, whereas for the aerial filters, which are tuned much narrower, more
orientations are needed. Due to the broad tuning, the region surrounding the actual
edge is wider and the responses are stronger than for the other image classes.

Influence of DOI to Noise

As mentioned above the DOI has an important influence on the reduction of noise. To
measure this influence the complex cell response for an image of constant intensity cor-
rupted with a certain amount of noise was computed. The mean response in dependence
of the DOI–parameter ξ, which was varied over a wide range for the measurements, was
analyzed. The plots are shown in figure 3.6.

On a first glance all curves have the same shape as they all decay and converge against
zero. For all curves the results show that weighting the inhibitory contributions stronger
than the excitatory ones reduces the noise contained in the complex cell responses. The
main difference between the filter families is how fast the curves decay, i.e. for which ξ
they reach a response level where the complex cell response is independent of the noise.
For the natural and manmade filters this is only the case for ξ ≥ 8, whereas for the aerial
filters the response is noise–independent for ξ ≥ 4. These findings might explain the
worse signal to noise ratios reported above for analyzing the responses to small contrasts.
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However, as pointed out in Hansen (2002), ξ should not be chosen arbitrarily large. As
there is a tradeoff between edge detection and noise reduction, ξ was fixed for ξ = 3.0 for
all models. Although a direct comparison is difficult it seems that the model proposed
in Hansen and Neumann (2004b) is more robust against noise. This should mainly be
due to the different kind of filters used there. For a further analysis of the DOI–scheme
the reader is referred to Hansen (2002).

3.1.3.3. Edge Detection for Real Images

A central aspect of this work is to tune the receptive fields of the simple cells to the
statistical properties of the stimuli which it is supposed to process. Thus, in the following
paragraph a comparison of the complex cell responses resulting from processing an image
with class–specific filters and the filters of the other classes will be given. It has to be
mentioned that all evaluations presented here are based on visual inspection of the
results, which is a very subjective method. Additionally, the evaluation was done on the
computer screen that allowed a better comparison of the results than it is the case for
the printed version of the thesis.

Natural Scenes
On the first glance all three receptive field classes lead to good detection results. The
shape of the animals is represented best when processed with the filters tuned for natural
images. By applying the other filters the smooth and round contours like the penguin’s
head get more jaggered and do not look very naturally. Especially the eyes of the
penguins get almost rhombic if processed by the receptive fields tuned to manmade
scenes. This is again due to the problems of the model to detect oblique oriented edges.
The very low contrast edge arising from the left penguin occluding the right one is
detected very weakly with all models. However, as in figure 3.7(d) the noise resulting
from the bird’s feathers is very low, the edge is most outstanding in this image.

Similar results are obtained for figure 3.8. By processing the image with filters adapted
to aerial images the vertical structures of the tree are detected very well, all other
structures are detected well, although the results for the other filters appear more realistic
and do not drop as many details, especially in the horizontal structures of the tree or
the animal’s leg.

Manmade Scenes
Figure 3.9 shows the results for an image with almost only horizontal and vertical edges.
There is no obvious difference between the results obtained by receptive fields tuned to
natural and manmade scenes, respectively. This is due to the structure of the image
and the similarly parameterized Gabor functions used to model the receptive fields. If
the image is processed with the filters tuned to aerial images the main shapes of the
buildings are detected well, but some details like the vertical structures of the long flat
house directly at the shore are not detected, whereas the other two receptive field types
can detect it very weakly.

The image showing the row of houses is also characterized by vertical and horizontal
structures but oblique oriented edges play a more important role, especially for details.
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The results are visualized in figure 3.10. When processed with receptive fields adapted to
natural images, the main structures as well as many details are detected and the round
structures are represented smoothly. For processing with filters tuned to manmade
scenes, some differences can be revealed, especially for the second building from the
right. There, the oblique structures of the roof and the gable are not detected. Also,
the round structures are not represented well. When filtered with the receptive fields
optimized for aerial images there are some details missing again, e.g. the decorations
at the second gable from the right. However, the main forms are detected well, round
contours look smooth.

Aerial Images
The results for aerial test images are shown in figures 3.11 to 3.14. The differences
between the several test images are not very obvious. For all test images the model
with receptive fields tuned to aerial images extracted mainly long contours, which are
assumed to be one of the key informations of aerial images. However, small round
structures, such as the roundabout close to the lower right corner in figure 3.11, are not
detected very well. For such fine structures, the Gabor filters tuned to aerial images are
too elongated. On the other hand, when using the receptive fields optimized for natural
images the resulting representation contains still a lot of noise and jitter, although the
main structures are detected. The results for processing the images with filters tuned
to manmade scenes were not applied to aerial images as the results are comparable to
those obtained for natural filters except for problems with detecting oblique contours.

3.1.4. Conclusions

The simple cell model detects edges and contours robustly. It seems that the imple-
mented model is not as robust against noise and the orientation tuning is not as sharp
as for the original model proposed in Hansen (2002) or Hansen and Neumann (2004b).
This is due to the different orientation selective filters used here. The filters used in
Hansen (2002) are comparable to the filters proposed in Canny (1986). They are opti-
mized for edge detection purposes and are not a tradeoff between edge and frequency
detectors as it is the case for Gabor filters. In future work it might be worthwhile to
implement such an optimization step as it was proposed in Lähdesmäki et al. (2001) in
order to tune an edge detector to cave inscriptions.

The analysis of real photographies revealed that taking the statistical properties of
the environment and the receptive fields into account helps to enhance the quality of the
edge detection results. The rough edge structures of the images is also obtained when the
test images are processed with filters optimized for a different image class. However, the
best results, i.e. the edge representation looking most naturally or the representation
containing the least amount of noise and jitter, is always obtained by filtering with
optimized filters. One can also conclude that when applying receptive fields from the
“aerial” class to images of the “natural” and “manmade” class aerial receptive fields to
natural and manmade scenes fine detail is often not detected. Applying filters tuned
for natural scenes to aerial images results in a complex cell response with too many
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details and a lot of jitter making the further processing for the landmark selection and
navigation task hard or even not possible. Although the problems are due to the different
scales of the used filters, it is still a nice result that ICA adapts to this different scales.
This relationship between scale space theory (Lindeberg, 1999) and the tuning of Gabor
filters estimated by ICA might also be a future working direction.

The results for the manmade scenes that were filtered with receptive fields of only |θ| =
4 different orientations revealed that, although the simple cell network does not detect
oblique contours as well as horizontal, vertical, and diagonal contours, this property
influences mainly detailed structures. Therefore, it does not decrease the quality of the
overall edge detection too much. However, to model an isotropic edge detector |θ| has
to be enlarged.

Although the edge detection works it could be worthwhile to implement an iterative
contour enhancement and grouping mechanism as proposed in Neumann and Sepp (1999)
or Hansen and Neumann (2004a). These models for the recurrent V1–V2 interactions
enhance collinear edge elements and inhibit edge elements of other orientations. Thus,
the grouping mechanism can close gaps in the edge representation, sharpen the edge
response, and suppress noise. All properties could be useful to enhance results of the
edge detection network. An interesting part of this work could include the investigation
how the statistical properties of the contours vary for different image classes. Thereupon,
one could tune the contour grouping to the specific image class by adapting the range
of enhancement or the range of inhibition. Works that could be used as starting point
for these investigations include Geisler et al. (2001), Sigman et al. (2001), or Hoyer and
Hyvärinen (2002) that analyzed the statistical properties of contours in natural images.
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(a) Stimulus

(b) “Natural” filters

(c) “Manmade” filters

(d) “Aerial” filters, 10 orientations

Figure 3.4.: Response properties to small contrasts. As the responses for the different
models are normalized to [0, 1] only the signal to noise ratio between the
plots can be compared.
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(c) “Aerial” filters, 10 orientations

Figure 3.5.: Tuning curves. The tuning curves were measured for several contrast levels
and 21 orientations distributed equally in [−36 ◦, 36 ◦]. Plotted are the re-
sponses of complex cells with preferred orientation θ to a vertical edge (i.e.
θ = 0 of contrast c which was corrupted with noise of σ = 0.05. Error bars
denote the standard deviation of the response
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(b) “Manmade” filters
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(c) “Aerial” filters

Figure 3.6.: Influence of DOI to noise. A unique patch corrupted with different levels
of noise was used as test pattern. The mean complex cell response to the
patch is plotted over the change of ξ.
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(a) Stimulus (b) “Natural” filters

(c) “Manmade” filters (d) “Aerial” filters

Figure 3.7.: Edge detection results for a natural scene, example 1
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(a) Stimulus (b) “Natural” filters

(c) “Manmade” filters (d) “Aerial” filters

Figure 3.8.: Edge detection results for a natural scene, example 2
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(a) Stimulus (b) “Natural” filters

(c) “Manmade” filters (d) “Aerial” filters

Figure 3.9.: Edge detection results for a manmade scene, example 1
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(a) Stimulus (b) “Natural” filters

(c) “Manmade” filters (d) “Aerial” filters

Figure 3.10.: Edge detection results for a manmade scene, example 2
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(a) Stimulus

(b) “Natural” filters (c) “Aerial” filters

Figure 3.11.: Edge detection results for an urban aerial image, example 1
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(a) Stimulus

(b) “Natural” filters (c) “Aerial” filters

Figure 3.12.: Edge detection results for an urban aerial image, example 2
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(a) Stimulus

(b) “Natural” filters (c) “Aerial” filters

Figure 3.13.: Edge detection results for an urban aerial image, example 3
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(a) Stimulus

(b) “Natural” filters (c) “Aerial” filters

Figure 3.14.: Edge detection results for an urban aerial image, example 4
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3.2. Junction Detection

In this section the complex cell response is used to detect junctions and corners. For-
mally, the term junction refers to image configurations with one or more ending edge
segment, whereas a corner is a junction with one of the angles between line segments
larger than 180 ◦ (Würtz and Lourens, 2000). Here, both terms are used interchange-
ably. The detected junctions will be used to select landmark candidates as input for the
landmark selection algorithms proposed in Gerstmayr et al. (2004a,b). Since the corner
detector is used as point–of–interest (PoI) operator, the review will include related work
on PoI operators in general and not only on edge detectors.

3.2.1. Related Work

The general advantages of PoI–selection are that computation time is saved and that
robustness is improved because only the relevant parts of the image have to be processed.
Additionally, only few but very distinctive and promising cues are taken into account
(Triggs, 2004). To only pay attention to few outstanding points instead of the whole
image is motivated by psychophysiological findings (Loy and Zelinsky, 2003).

Following Schmid et al. (2000), the following three approaches to PoI–detection can
be distinguished:

Intensity–based Methods: These methods have in common that they are based on
detecting contrast variations of different orientations. PoI–operators analyzing
the structure tensor like Triggs (2004) are often based on Harris and Stephens
(1988) or Shi and Tomasi (1994). An alternative intensity–based method is the
symmetry transform. Based on gradient information works like Reisfeld et al.
(1995) and Loy and Zelinsky (2003) detect points of high radial symmetry. Other
intensity–based approaches evaluate Gaussian curvature, edge density (Bourque
et al., 1998), or model the visual pathway in humans. Using the complex cell
responses, corners and junctions can be detected using so–called end–stopped
cells (Heitger et al., 1992; Würtz and Lourens, 2000) or implicitly like in Hansen
and Neumann (2002, 2004a) or in this work.

Contour–based Methods: These methods are build on top of an edge detection
scheme and detect characteristic patterns in the change of curvature.

Parametric Methods: Parametric models try to fit junction models to the image.
These methods are computationally rather expensive as they include many image
comparisons and an optimization step.

PoI–detection is a field of ongoing and very active research in Computer Vision. For
reviews see Schmid et al. (2000), Sim et al. (2003), and Loy and Zelinsky (2003). A
subtopic, which currently receives special interest, are PoI–detectors which are invariant
to rotation, scale, illumination, and position (Triggs, 2004; Lowe, 2004).
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3.2.2. The Model

Corners or junctions can be characterized by high activity in several orientation domains
at a model hypercolumn of the complex cell response as computed by equation (3.20).
The model proposed in Hansen and Neumann (2002, 2004a), which was inspired by
Zucker et al. (1989). It does not rely on the distributed activity in several domains
of a hypercolumn and does not need an explicit representation of corners or junctions.
It is faster than a parametric model approach because there is no optimization step.
Additionally, it can deal adequately with image structures of more than two intersecting
edges, which is not the case for approaches based on the structure tensor (Medioni et al.,
2000).

For a given complex cell response Cθ a measure for the “junctioness” is given by

J = circvar (Cθ)
2
∑

θ

Cθ (3.25)

The function “circvar” is a measure for the circular variance at a certain location of the
complex cell response and takes values in the range [0, 1]. A low value indicates activity
in a single orientation domain. The ratio between low and high circular variances is
further enhanced by the squaring operation. The circular variance is complementary to
the orientation significance function:

circvar (Cθ) = 1− osgnf (Cθ) (3.26)

= 1− |
∑

θ Cθ exp(2iθ)|∑
θ Cθ

(3.27)

The circular variance function is also used in electrophysiological work like Ringach
et al. (2002) and Gur et al. (2004) to analyze orientation tuning in V1. The model is not
restricted to operate on the complex cell response but can work on any phase–invariant
and orientation selective cell response like the result of long–range integrations such as
proposed by Neumann and Sepp (1999) and Hansen and Neumann (2004a).

In order to localize the corner points, the junction map J is blurred with a Gaus-
sian smoothing filter of standard deviation σJ. Local maxima are computed within a
neighborhood of size δJ. Points in J are marked as corner points if they reach the local
maximum and their strength exceeds a fraction αJ of the overall maximum response.

3.2.3. Results and Discussion

3.2.3.1. Localization Accuracy for Different Junction Types

In order to find out how the model detects various junction types and how accurate
the localization of the detected junctions is, it was applied to several artificial images
showing various junction types proposed in the literature. Each junction was located in
the center of the images sized 128× 128 pixels and the distance from the center to the
closest detected junction was computed using the Euclidean distance. The stimuli and
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complex cell responses are shown in figure 3.15, the localization accuracy is summarized
in table 3.2. Only for the X–junction the localization of the detected junctions are
correct. The computed distance of 0.707 pixels is due to discretization errors of the
junction detection. For all other junction types the localization error is comparable
large. This might be due to the Gaussian smoothing filter which was parameterized with
a rather large standard deviation of σJ = 9 in order to average over several maxima.
Otherwise, double responses would have obtained. It seems that the model works best
if filters optimized for aerial images are used. The localization accuracy of the original
model presented in Hansen (2002) is slightly better for the junction detection model
applied to the complex cell response. The detection is significantly more accurate for
the model applied to the response after the iterative grouping mechanism which models
the long range interaction between V1 and V2 (Hansen and Neumann, 2004a). As the
localization accuracy is also a problem for the corner detection quality of real images,
implementing the contour–grouping mechanisms seems to be useful to improve the edge
detection quality.

Table 3.2.: Localization accuracy for different junction types. Shown are the Euclidean
distances of the closest junction to the center position of the image which
is the correct localization of the junction. The first three columns show the
results for different class–specific receptive fields, the forth and fifth column
show the results of Hansen (2002). The forth column shows the results for
applying the junction detection model to the pure complex cell response,
the fifth column shows the accuracy for the junction detection after contour
grouping.

Type Natural Manmade Aerial Hansen Hansen LR

L 1.581 7.106 2.915 3.54 0.70
X 0.707 0.707 0.707 0.00 0.00
T 7.778 7.106 4.743 2.92 0.05
Y 5.701 5.523 4.528 2.96 1.58
W 2.121 1.581 2.121 2.55 0.70
Ψ 7.906 7.649 4.528 6.50 3.50

mean 4.299 4.945 3.257 3.08 1.09
std 3.228 3.042 1.634 2.08 1.32

3.2.3.2. Junction Detection for Real Images

In the following paragraphs the junction detection results for the testimages shown
in section 3.1.3 were used to evaluate the model. Again, the complex cell response
computed with receptive fields optimized for natural and aerial images will be compared
by applying the junction detection with the same parameters. Results for manmade
scenes are not shown, as the results would not reveal any new insights or problems. As
in section 3.1.3 it shall be stressed that the evaluation is based on visual inspection.
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Natural Scenes

The results for natural scenes are depicted in figure 3.16 and 3.17. Again, it was necessary
to choose σJ = 7 and δJ = 7 rather large, in order to prevent double responses. Since the
features are not to close together in the natural scenes, this choice only had an influence
of the localization accuracy. Like for the artificial test images it is not too accurate, as
can be seen e.g. in figure 3.16 at the transition between snow and background or the
penguin’s heads.

Additionally, it was very difficult to define an appropriate threshold. The chosen
threshold of αJ = 0.2 was therefore chosen more or less arbitrarily. For decreasing αJ

the number of detected features increases extremely with also increasing the number
of false negative and false positives, i.e. missed junctions and detected junctions at
places where no junction is expected. If αJ is increased, only very little junctions are
detected, which are additionally often located at unexpected and for an observer not very
meaningful positions. This means that the junctioness values J vary over a large range
and that there is no guarantee that relevant or meaningful structures are detected with
high junctioness values. Examples of false positives in figure 3.16 include the background
structures and the snow, which an human observer would not rate as corner or junction.
False negatives include the tips of the wings, the front penguin’s head occluding the
back penguin’s body, and the front penguin’s tail end.

When comparing the results for processing the image with filters tuned for natural
and aerial images there is no big difference visible for figure 3.16. Both detectors seem
to have the same problems mentioned above. However, for figure 3.17 the junction
detection of the natural filter’s complex cell response gives significantly more junctions
and corners than for the aerial filter’s response. Both detect the main features in the
image which include the animal’s nose, eyes, ears, and paw. The main difficulties arise
in the tree and the animal’s coat. There, it is difficult to judge from just looking at the
results which model performs better. It seems that – as expected from the results of
the edge detection – the results for the complex cell response obtained with receptive
fields adapted to natural scenes include small detailed as well as large–scale features.
The results for the complex cell response obtained by processing with filters tuned to
aerial images do only include small–scale features. These results are not surprising, as
the filters tuned for aerial images work at a larger scale than those for aerial images.

Aerial Images

The results for aerial images are shown in figures 3.18 to 3.21. For this image class it
is even more difficult to find appropriate parameters. On the one hand the features are
distributed more densely than in natural and manmade scenes. On the other hand larger
corners and junctions resulting from larger structures as roundabouts or intersections,
which look very important for human observers, only have very small junctioness values.
Therefore, αJ = 0.0, σJ = 5, δJ = 5 were chosen.

For the images processed with filters tuned to natural images this parameter choice is
for sure not optimal. However, there are only few responses very close together, mainly
in areas where the edge detector resolved small details and not only the main image
structures dominated by streets, river lines, or parks. Most of the detected features
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do indeed correspond to meaningful structures in the image, although the features are
rather low–level features and not high–level features like crossroads formed by larger
roads.

The junction detection model seems to give slightly less junctions for the complex cell
response obtained from filtering the images with filters tuned to aerial images. Also the
distance between two detected junctions seems to be larger which is due to the larger
scale of the filters tuned to aerial images. This filters produce a “cleaner” representation
of the aerial images that does not contain as much jitter and low–scale details.

The large amount of features in the images makes it difficult to analyze the perfor-
mance of the junction detector in more detail. There are some sporadic false negative
and false positives among the detections. It is difficult to interprete their influence on the
detector’s performance. Another problem which influences the quality is the worse local-
ization accuracy, which is very obvious in figure 3.20. There, the corners and junctions
of the river line are all detected in the river.

3.2.4. Conclusions and Future Work

The biggest problem of the model is the inaccurate localization of the detected junctions
and corners. This is due to the rather large standard deviations σJ needed to smooth the
junctioness values J to avoid double responses. In Hansen (2002) it is shown that the
contour–grouping mechanism as intermediate processing stage between edge and junc-
tion detection can increase localization accuracy significantly. Thus, it is an important
step for future work to implement this mechanism as intermediate stage between the
edge and corner detection.

As the contour grouping mechanism also increases contour saliency, closes gaps in
contours, and enhances the contour strength up to a saturation level (Hansen, 2002)
one can hope that this mechanism also helps to overcome the other drawback discussed
above: the huge variety of junctioness values which makes it extremely difficult to set a
detection threshold δJ . Additionally, it has been shown in Hansen and Neumann (2004a)
that the grouping mechanism can reduce the number of false detections significantly.

Although the results can still be improved, it is likely that the junction detection
model can be used as PoI–detector to preselect a set of landmark candidates.

A point not analyzed in detail yet is the influence of the class–specific receptive fields
to the results of the junction detection. There is a tendency that the model detects less
junctions and corners if applied to the complex cell response obtained by filters tuned
to aerial images than if applied to the complex cell response resulting from filtering
with filters adapted to natural scenes. However, the responses were only analyzed by
visual inspection which is for sure not sufficient for a well–founded comparison. A good
approach for a statistical evaluation is approach of Hansen (2002) using ROC–curves. A
ROC–curve visualizes the proportion of true positive responses against the proportion
of false positive responses for a varying decision threshold (Duda et al., 2001). The
proportions are obtained by comparing the results of the junction detection to a ground
truth.
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3.3. Chapter Summary

In this chapter the models for the biologically–motivated image preprocessing that will be
used in chapter 4 to preselect landmark candidates were described. For the preprocessing
the class–specific receptive fields derived in chapter 2 have been used.

In section 3.1 a simple cell model for edge detection has been proposed which uses
the class–specific receptive fields. The results revealed that the receptive fields have an
influence on the edge detection quality. Although the main structures are also detected
if the image is processed with filters not tuned to the characteristics of the input image,
the best results, i.e. the results looking most smooth or containing the least amount of
jitter, are always obtained by processing with class–specific receptive fields. Another
nice result was that the edge detector with receptive fields tuned to manmade structures
can detect the main structures, although it is anisotropic and does not detect oblique
structures. However, one can argue that these do not play an important role in aerial
images.

The corner and junction detection model proposed in section 3.2 can detect corners and
junctions in the image, although it still needs some improvements. Therefore, it is worth
to implement a contour grouping mechanism as intermediate processing stage between
the edge and junction detection. The main drawbacks of the junction detection model,
which can hopefully be overcome in future work, are that its localization properties are
rather inaccurate and that the tuning of the model parameters is difficult.
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Figure 3.15.: Localization accuracy for different junction types. The rows show the dif-
ferent junction types, namely L–, X–, T–, Y–, W–, and Ψ–junctions. The
columns show the stimulus and the results obtained with receptive fields
for natural, manmade, and aerial images, respectively. The parameters
were σJ = 9, δJ = 15, and αJ = 0.2.
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(a) “Natural” filters

(b) “Aerial” filters

Figure 3.16.: Corner detection for a natural scene, example 1

83



(a) “Natural” filters

(b) “Aerial” filters

Figure 3.17.: Corner detection for a natural scene, example 2
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(a) “Natural” filters

(b) “Aerial” filters

Figure 3.18.: Corner detection for an aerial image, example 1
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(a) “Natural” filters

(b) “Aerial” filters

Figure 3.19.: Corner detection for an aerial image, example 2
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(a) “Natural” filters

(b) “Aerial” filters

Figure 3.20.: Corner detection for an aerial image, example 3
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(a) “Natural” filters

(b) “Aerial” filters

Figure 3.21.: Corner detection for an aerial image, example 4
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4. Landmark Selection

In this section the results of the previous chapter will be used to overcome the draw-
backs of the existing work on landmark selection sketched in section 1.1.4. First, a
Point–of–Interest (PoI) detector based on the edge and junction detection models will
be described. In section 4.1 an algorithm to reduce the number of junction points to an
appropriate number of landmark candidate points is proposed. It assures a minimum
distance between the landmarks. In section 4.2 sub–images around the detected land-
mark candidate points are used as landmark candidates. These are used as input for the
landmark selection algorithms proposed in Gerstmayr et al. (2004a,b), which select the
most distinctive landmarks.

All algorithms will only be applied to aerial images since the main goal of this thesis
was to implement a preprocessing system for the landmark selection task of the flying
blimp. However, all of them can be applied to other tasks like object recognition or
image retrieval and are not at all restricted to aerial images.

4.1. Point–of–Interest Detection

4.1.1. Proposed Algorithm

The proposed algorithm uses the early vision models described in chapter 3 to detect
edges and junctions in the image I. The entries of the junctioness matrix J are trans-
formed to image coordinates (x,y) representing junctions. Junctions which are closer to
the boarder than αL pixels are discarded. As discussed in section 3.2, it is very difficult
to set an appropriate threshold αJ, which achieves good detection results. Additionally
the features are distributed very densely over the aerial image. Thus, it is difficult to
reduce the number of detected junctions by increasing αJ, but passing two landmarks
that are too close together to the landmark selection algorithms will decrease their dis-
tinctive power. Therefore, a further reduction step is included. The landmark candidate
points are selected from the set of junction points iteratively. In each step the candidate
(xm, ym) with maximum detection strength sm is selected. For all other junction points
(xi, yi) a reduction factor ν for the detection strength si at the current iteration t is
computed:

νi = [1− exp (−βL(di − γL))]+. (4.1)

There, di is the Euclidean distance between the selected candidate (xm, ym) and the
junction point (xi, yi). The detection strength used in the next iteration step is given by
s(t+1) = νisi(t). This means that within a given range γL around the selected candidate
all other detection strengths are set to zero preventing two candidate points to be too
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close together. For a transition region the detection strength is only reduced to a certain
degree decreasing exponentially with the distance d and depending on the choice of βL.
This helps to select junction points with a low detection strength which are far away
from already selected candidates. The iteration stops if the number of candidate points
to select nC is reached or if the detection strength of all candidates is reduced to zero.
A pseudocode notation of the algorithm is depicted in figure 4.1.

Figure 4.1.: Landmark candidate detection algorithm

Input: An image I,
all the necessary model parameters

Output: A list of nC coordinates (x,y)
begin

Cθ = ComputeComplexCellResponse(I);
J = ComputeJunctions(Cθ, σJ, αJ, δJ);
(x′,y′, s′) = Junctionmap2Coordinates(J);
(x′′,y′′, s) = CheckMargins(x′,y′, s′, αL);
nJ = |x′′|;
for i = 1 to nc do

m = arg maxnJ
(s);

if sm = 0.0 then
nc = i;
break;

end
xi = x′′m;
yi = y′′m;
for j = 1 to nc do

d =
√

(x′′j − xi)2 + (y′′j − yi)2;

sj = sj · [1− exp (−βL(d− γL))]+;
end

end
end

4.1.2. Results and Discussion

The results for some test images are shown in figures 4.2 to 4.3. All test images are
sized (700 × 1075) pixels with a resolution of 16 m2 per pixel. Thus, the images cover
an area of 4300 × 2800 meters. For all shown test images the model parameters were
chosen as follows: σJ = 5, δJ = 5, αJ = 0.015, αL = 50, nC = 150, βL = 0.25,
and γL = 30. This choice results in approximately 700 junction points denoted in the
plots by red points, which are then reduced to nC = 150 landmark candidate points
denoted by yellow points. As input histogram equalized images were used and not as in
previous chapters images that were contrast normalized. The equalization results in an
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enhancement of the contrast between streets and other objects such as houses, leading
to stronger responses of the edge detection network.

The results do not vary too much for the different test cases, thus they all will be
discussed together. The selected landmark candidate points are distributed all over the
images at reasonable distances between each other.

All in all most of the corners and junctions are detected at the junction detection
stage. Again, there are some false positives like some detected corners in the Tagus–
river in figure 4.3. The most prominent false negatives include the motorway exit close
to the park in figure 4.2. It is a general problem of the model that such huge intersec-
tions are not detected very well. Since the contrast in the surrounding of these image
features is very low, the resulting complex cell response is very low. The same holds for
the junctioness values. Thus, these features are only very rarely selected as landmark
candidate point. These findings show again the importance to somehow enhance weak
but very long contours. This would ensure that all responses passed to the junction
detection stage are at approximately the same magnitude.

Another problem of the current solution is the response of the edge detection network
to small parallel structures like separate lanes of an highway or narrow streets in certain
districts. Examples include the highway close to the park in figure 4.2 or some neighbor-
hoods in figures 4.3 and 4.4. In these areas junction points are detected which are due to
fine detailed structures. Although almost no landmark candidate points are selected in
these neighborhoods, it would be a great improvement of the proposed models if these
responses could be suppressed and responses stretching the outlines of these districts
could be enhanced. This could help to detect good landmark candidates at places where
adjacent neighborhoods meet. An easy approach to suppress these responses would be to
smooth the image. However, it is likely that it would be difficult to find an appropriate
level of smoothing as tradeoff between the reduction of details and keeping sharp con-
trast transitions. A more advanced approach could be to add appropriate enhancement
mechanisms and regions of inhibition to the grouping stage.

4.1.3. Conclusions

Again, the junction detection stage can be identified as the bottle–neck of the whole
processing stages. Since many junction features which are very prominent for an human
observer are surrounded by areas of low contrast, they are only detected weakly by the
complex cell model and thus receive small junctioness values. Hopefully, these drawbacks
can be solved by implementing the contour grouping mechanism as already proposed in
chapter 3.

4.2. Landmark Selection

For sake of completeness the two landmark selection algorithms proposed in Gerstmayr
et al. (2004a,b) are briefly recapitulated here. They work on the landmark candidates,
i.e. image patches around the detected landmark candidate points, and select the most
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(a) Stimulus

(b) Complex Cell Response

Figure 4.2.: Landmark candidate detection, example 1. Red dots mark junction points,
yellow dots mark selected landmark candidates.
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(a) Stimulus

(b) Complex Cell Response

Figure 4.3.: Landmark candidate detection, example 2. Red dots mark junction points,
yellow dots mark selected landmark candidates.
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(a) Stimulus

(b) Complex Cell Response

Figure 4.4.: Landmark candidate detection, example 3. Red dots mark junction points,
yellow dots mark selected landmark candidates.
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distinctive candidates. Therefore, they evaluate dissimilarities in a lower–dimensional
feature space.

4.2.1. The Algorithms

4.2.1.1. Profile–based Algorithm

The algorithm uses a lower–dimensional representation of the landmarks. This gains
a speed up of computation, but also a generalization if information is discarded in
the dimensionality reduction step. Here, PCA and, additionally to Gerstmayr et al.
(2004a,b), ICA are used as methods to reduce dimensionality. However, as the algorithm
only compares pairwise image dissimilarities other dimensionality reduction methods
such as Linear Discriminant Analysis (Duda et al., 2001), Factor Analysis (Duda et al.,
2001), projection pursuit (Hyvärinen, 1999b), or nonlinear or kernel–based extensions
of these methods (Müller et al., 2001) can be used. A very interesting technique is the
tensor–rank principle, which exploits the spatial relation of pixels as it does not reshape
the sub–view to a vector. Applications to recognition tasks yields a high recognition
rate and an high stability against occlusions and image noise (Shashua and Levin, 2001;
Rupar et al., 2002)

The profile–based algorithm first extracts sub–windows sized (δL, δL) around the land-
mark candidate points (x,y) and transforms them to vectors. The lower dimensional
representation is then obtained as described in sections A.1 and A.2 for PCA and ICA,
respectively. The dimensionality k is controlled by the proportional variance τL. It is
determined as the smallest k; 1 ≤ k ≤ nC for which∑k

i=1 λi∑nC

i=1 λi

≥ τL (4.2)

holds.
The algorithm computes pairwise image dissimilarities Di,j between all the nC land-

mark candidates. As dissimilarity function the normalized SSD between two zero–mean
vectors g1,g2 ∈ Rk×1 is used, which gives dissimilarity values in the range [0, 1]:

dist (g1,g2) =

∑k
i=1(g1(k)− g2(k))

2

2(‖g1‖2 + ‖g2‖2)
. (4.3)

Then, the so–called distance profile vector p is computed by averaging over the dissim-
ilarities of a landmark j to all other landmarks:

pj =
1

nC − 1

nC∑
i=1,i6=j

Di,j. (4.4)

As Di,j is close to unity if the landmarks gi and gj are very dissimilar, pj will be
close to unity if landmark gj is very dissimilar to all other candidates and therefore is
considered to be a good landmark. Finally, the candidates are sorted with respect to the
profile values pi and the nL best landmarks are selected and returned. The algorithm is
summarized in figure 4.5.
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Figure 4.5.: Pseudocode notation of profile–based landmark selection

Input: An image I,
the coordinates of landmark candidates (x,y),
all necessary model parameters

Output: The landmark coordinates (x′,y′)
begin

X = ExtractCandidates(I,x,y, δL);
G = ComputeLowDimRepresentation(method, τL);
for i = 1 to nC do

for j = i to nC do
Di,j = Dj,i = dist (gi,gj);

end
end

end
for i = 1 to nC do

pi = 1
nC−1

∑nC

i=1Di,j;

end
[v, l] = SortDescending (p);
x′ = x (l (1 : nL));
y′ = y (l (1 : nL));

4.2.1.2. IPCA–based Algorithm

This algorithm first computes a small eigenspace of dimensionality n that will in later
steps be updated. The computation is done by the standard PCA batch method using
the start candidates (xs,ys). Usually the sub–windows around the strongest four candi-
date points are used. The candidate detection mechanism overcomes also the drawbacks
of Gerstmayr et al. (2004a,b), where it was difficult to determine the start candidates.
The next landmarks are selected iteratively. In each step, the norm qi = ‖ri‖ of the
residue ri is computed for each of the remaining landmarks giving a measure of how
good each remaining landmark can be expressed in the already existing eigenspace. The
landmark with the greatest qi can be expressed worst. Therefore it is as dissimilar as
possible to all other already selected landmarks and will be added to the eigenspace in
the updating step as described in section A.1.2. The updating step increases the dimen-
sionality n. Of course, in each step the sets of selected and remaining candidates have
to be updated, too. The algorithm is outlined in figure 4.6.

4.2.2. Results and Discussion

The results of the landmark selection for the candidates selected in the previous section
are shown in figures 4.7 to 4.9. Red, cyan, and yellow circles denote landmarks selected by
applying the PCA–profile, the ICA–profile, and the IPCA–based algorithm, respectively.
All selections were done for nL = 20, δL = 50, τL = 0.75, and 4 starting landmarks for
the IPCA–based algorithm. The landmark selection algorithms were applied to the
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Figure 4.6.: Pseudocode notation of IPCA–based landmark selection

Input: An image I,
the coordinates of landmark candidates (xc,yc),
a set of landmark candidates (xs,ys) j (x,y),
all necessary model parameters

Output: The landmark coordinates (x′, y′)
begin

xr = xc\xs;
yr = yc\ys;
X = ExtractCandidates(I,xr,yr, δL);
S = ExtractCandidates(I,xs,ys, δL);
(x̄,T,Λ, n) = ComputeEigenspace(S);
while n ≤ nL do

q = 0 ∈ RnC−n;
for i = 1 to nC − n do

g = T>(xi − x̄);
qi = ‖(Tg + x̄)− xi‖;

end
m = arg maxi(q);
X = X\xm;
xs = xs ∪ xr(m);ys = ys ∪ yr(m);
xr = xr\xr(m);yr = yr\yr(m);
(x̄,T,Λ, n) = UpdateEigenspace(xm, (x̄,T,Λ, n));

end
x′ = xs;y

′ = ys;
end

image as well as to the pooled complex cell responses.

In comparison to Gerstmayr et al. (2004b) only representative results are shown. A
detailed analysis how the choice of the different model parameters influences the results
of the selection is far beyond the scope of this diploma thesis.

4.2.2.1. Profile–based Algorithm

The selected parameters usually lead to a dimensionality of approximately 50 dimen-
sions for the profile–based algorithm if applied to the image, and of approximately 45
dimensions if applied to the complex cell response. Using PCA as well as ICA as lower
dimensional representation, the algorithm detects distinctive landmarks if applied to
image data as well as if applied to the pooled complex cell response. The selected areas
usually include areas of high contrast which are frequently characterized by structures
or patterns that are highly characteristic for that place. These patterns are formed by
streets, buildings, parks or forests if the algorithm is used to process image data or by
complex edge responses if applied to the pooled complex cell response. Although the
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algorithm selects often the same landmarks if the lower–dimensional representation is
computed using ICA or PCA, it is not yet clear which method prefers which features.
This would give a deeper understanding why a certain landmark was only chosen by one
of the methods.

4.2.2.2. IPCA–based Algorithm

It strikes out that the IPCA–based algorithm very often detects other landmarks than
the profile–based algorithm. The selected landmarks are also distinctive and are also
characterized by a specific pattern. Nevertheless, it seems that the algorithm prefers
landmarks in very bright or very dark image regions. Examples include various land-
marks in parks that only differ in streets or arrangements of buildings such as in figures
4.7(a) or 4.9(a), or the selected landmarks in the left part of figure 4.7(a).

4.2.3. Conclusions

The results reveal that the proposed landmark selection algorithms can select distinctive
landmarks from the detected landmark candidates. Between the IPCA–based and the
profile–based algorithm there are obvious differences in the selected landmarks: the
IPCA–based algorithm detects landmarks in bright or dark areas, whereas the profile–
based algorithm selects landmarks in areas of high contrast. For both algorithms the
landmarks are characterized by a specific pattern formed by streets or buildings. If the
subspace used in the profile–based algorithm is computed using ICA or PCA, there are
slight differences in the selected landmarks. However, there is no obvious criterion which
method preferably selects which landmarks.

In future work the reliability of the landmarks has to be analyzed. Further it has to
be proofen that the selected landmarks can be used to build a topological map allowing
robust navigation.
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(a) Selection on image data

(b) Selection on pooled complex cell response

Figure 4.7.: Landmark selection, example 1. Red, cyan, and yellow circles denote the
landmarks selected by the PCA–profile, the ICA–profile, and the IPCA–
based method. Empty blue squares denote the landmark candidates.
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(a) Selection on image data

(b) Selection on pooled complex cell response

Figure 4.8.: Landmark selection, example 2. Red, cyan, and yellow circles denote the
landmarks selected by the PCA–profile, the ICA–profile, and the IPCA–
based method. Empty blue squares denote the landmark candidates.
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(a) Selection on image data

(b) Selection on pooled complex cell response

Figure 4.9.: Landmark selection, example 3. Red, cyan, and yellow circles denote the
landmarks selected by the PCA–profile, the ICA–profile, and the IPCA–
based method. Empty blue squares denote the landmark candidates.
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4.3. Chapter Summary and Future Work

The main conclusion from the results is that the candidate as well as the landmark
selection stage work together. They now form a complete landmark selection system
following the usual two–step approach reported in related literature. This helps to
overcome the drawbacks reported in Gerstmayr et al. (2004a,b). Although a direct
comparison between the results presented in this work and in prior work is difficult,
the results of Gerstmayr et al. (2004a,b) could have been reproduced insofar as the
algorithms also selected distinctive landmarks characterized by specific patterns if used
in conjunction with the proposed preprocessing system.

Another aspect is that although the landmark candidate detection stage does no longer
restrict the candidates to be located at given grid positions, almost none of the selected
landmarks is characterized by such outstanding patterns as those formed by highways
or roundabouts. Nevertheless, future work has to reveal that the selected landmarks can
though be used to achieve robust navigation strategies with the blimp.

4.3.1. Future Work

4.3.1.1. Towards Real Robot Experiments

Although the landmark selection stage works, there is still a long way till the algorithms
proposed in this thesis can be used for autonomous navigation. The different model
parameters have to be tuned, it has to be decided whether the edge or the image repre-
sentation will be used for navigation, the real–time demands put strong constraints on
the used algorithms and the resolution of the camera image, and the algorithms have to
be linked together with the control architecture described in Metelo and Garcia (2003).

The methods described in this thesis only select the nodes of the topographical map,
but there is also a mechanism needed to navigate from landmark to landmark. This
can be done using some sort of visual odometer based on optic flow. One possible
algorithm is sketched in Gerstmayr et al. (2004b). Other methods could include optic
flow based approaches such as Iida (2003) or Ruffier and Franceschini (2005). More
technically motivated approaches based on homography estimation between consecutive
images include Gracias and Santos-Victor (2001) or Ferruz et al. (2004).

The selected topological map could also be used to increase the quality of position
estimates in a geometrical navigation approach. If the blimp is supposed to fly from
its current position to a given position, it could first approach the closest landmark.
There it could reset its position estimate, because the landmark is assumed to be a
place that can be approached with high accuracy. Then, it could follow the topological
map resetting its odometer and position estimate at each landmark. After reaching the
landmark closest to the goal position, it could finally approach it. This method should
allow robust geometric navigation, which is e.g. needed for surveillance tasks.
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4.3.1.2. Robustness and Reliability Evaluation

Although real robot experiments or at least experiments using a detailed simulator are
extremely important, an in–depth analysis of the selected landmarks can be helpful to
show that the selection mechanisms can increase the robustness and reliability of the
navigation. In Gerstmayr et al. (2004a,b) such a method was introduced.

The idea behind the reliability measure is that the blimp is assumed to be at exactly
the same position as when the landmark was selected except for deviations in either the
altitude, the orientation, or the position. This results in little deviations between the
camera view remembered as landmark and the current camera view. By iteratively in-
creasing the simulated deviation one can compute a limit for which a correct localization
is still possible but will fail if the deviation is increased more. The idea is sketched in
figure 4.10.

Localization in a topological map is nothing else then a nearest neighbor search in the
feature space of selected landmarks. The localization is correct if the current landmark
is selected as the current camera view’s nearest neighbor, otherwise the localization will
fail. However, the method does not take into account whether the analyzed landmark gi

is very dissimilar to all others or whether it is very similar to at least one other landmark.
Therefore, a maximal image dissimilarity ε was introduced that is defined as half the
minimal dissimilarity between the considered landmark gi and all others:

ε =
1

2
min

j=1,...,nL,j 6=i
dist (gi,gj) . (4.5)

If gi is a good landmark ε is assumed to be large. If it has at least one close neighbor, ε
will be small.

Therefore, the method iteratively increases the deviation until the image dissimilarity
between the current camera view g and the considered landmark gi exceeds ε. An
advantage of the method is that it also takes into account how much the image changes
for a certain deviation. For the same ε, a landmark is rated more reliable if there are
huge deviations needed to exceed ε. A landmark for which small deviations are sufficient
to exceed the threshold will be rated unreliable.

However, the reliability measurement gives one value for each measured parameter
and the parameters do not tell how good a landmark is in comparison to an average
landmark. In order to overcome this drawback, one can compute the average limits for
all the parameters taken into account. For nC landmark candidates and nL landmarks
to select, there exist

(
nC

nL

)
possibilities to select a set of nL landmarks. As the number

is very large, one can randomly sample many selections, measure their reliability, and
estimate the mean of the possible deviations. For each parameter one can then use the
ratio between the measured limits of deviation and the average limits. These ratios can
easily be combined to a single score because they are independent from the dimension
of the parameters.

The parameters to measure can include stability against deviations in the blimp’s
altitude, orientation, yaw– and pitch–movements, position, the size of the catchment
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(a) The blimp’s altitude deviates slightly
from it’s altitude when the landmark was
selected, thus the current view and the re-
membered view are different.

gi

g

(b) In the eigenspace the current cam-
era view g and the considered landmark
gi are also different. A correct localiza-
tion is possible if g is closer to gi then
to any other landmark, i.e. if g is within
the Voronoi–cell around gi. However, a
stronger criterion is used for the reliabil-
ity evaluation: the deviation is step by
step increased and the maximal deviation
is determined for which the current cam-
era view’s projection g is still within the
sphere of radius ε around gi.

Figure 4.10.: Sketch of the reliability measure

area, the size of the zero–vector area,1 global and local changes in image brightness or
contrast, camera noise. This score could also be used for a landmark selection algorithm
that searches for the selection with the highest score. In a first approximation the aerial
image would be sufficient to run this evaluation. For a more accurate estimation of a
landmarks reliability, a more detailed simulation building on a 3D–model of an urban
area is needed. Such a 3D–model simulation could for example build on the Open–
Source flight simulation environment Flight–Gear.2 Real–world experiments would take
too long and are thus not an option.

1defined in Hübner (2005) as the area where the localization method predicts the robot is at a known
position although it is not exactly at the known position. The size is influenced by the resolution of
the camera system as well as by the the local image variance.

2See: http://www.flightgear.org
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5. Final Conclusions

The estimation of the receptive fields of cortical simple cells in section 2.2 revealed signif-
icant differences between receptive fields estimated for different types of environments.
From the results of this statistical comparison, class–specific receptive fields were de-
rived that are optimally tuned to the statistical properties of the input images and cover
implicit knowledge about the environment.

In section 3.1 the class–specific receptive fields are used in conjunction with a simple
cell model for edge detection. The best edge representation is obtained for processing
images with the appropriate class–specific receptive fields. In that case the representa-
tion looks most natural or contains the least amount of jitter. Based on the complex
cell response a corner and junction detection stage is proposed in section 3.2, which, up
to now, is the main bottle–neck of the entire system. This is due to the fact that the
edge representation provided by the edge detection stage still contains a lot of responses
and that responses are contrast dependent. One way to reduce the number of detected
junction points would be to restrict them to images of actual street junctions. This
could be achieved by including a contour completion algorithm, but the validation of
the algorithms requires future work.

The detected junctions are then used in a further processing stage, the landmark
candidate detection stage, described in section 4.1. Due to the dense distribution of
junction features, additional distance constraints have been added in order not to select
two candidates which are too close together. The detected candidates are then passed
to a landmark selection algorithm, which selects the most dissimilar landmarks. The
results of section 4.2 reveal that all landmarks are distinctive and are often characterized
by a unique pattern formed by streets, buildings, or forests.

The whole work is based on a couple of assumptions layed out in the introduction. The
first one is the edge representation that was chosen in order to reduce the information
contained in aerial images to the key information and to facilitate further processing.
This assumption is motivated by findings in neurophysiology that contour detection
plays an important role in the early visual system of humans. It is further strengthened
by findings in psychology that lines and contours play an important role in the seg-
mentation of a city. Especially if processed with filters tuned to the statistics of aerial
images, the underlying edge structure is detected well. However, in some regions such
as neighborhoods with very narrow streets, the computed representation still contains
too much information that should be reduced to facilitate further processing.

Another key aspect of the work was to always take the statistics of the environment
into account and to follow the principles of neural information processing. When filtering
the images with kernels derived from their own or a different image class, different results
are obtained as can be seen from visual inspection. However, a detailed analysis that
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can reveal the advantages of taking the statistical properties of the environment into
account, also requires further work.

A further question to discuss concerns the definition of a landmark. Here, landmarks
are simply distinctive image patches. They are selected without any object knowledge
only according to their dissimilarity in the image space or after edge detection. This defi-
nition of a landmark is very close to the snapshot model discussed in the insect literature.
It is assumed that insects use a more or less unprocessed snapshot of their surrounding
for navigation. In contrast, human observers often suggest to select large structures such
as roundabouts or highway exits, which are normally not found by the algorithm. This
choice might be influenced by semantical information about these structure or by their
relevance for human navigation.

Although many questions still need to be answered, this thesis hopefully can contribute
to the general understanding of sensory systems, how these systems are optimized to
their particular environment, and how these links between the sensory system and the
environment can be used to achieve robust navigation strategies.
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A. Mathematical Methods

In this chapter a short introduction to the most important mathematical methods used
in this thesis shall be given. First PCA, ICA, and Fourier Transformation will be intro-
duced. These methods are important tools for data analysis because they transform the
data to another representation allowing a different view to the same data. Then, a brief
outline of the Kolmogorov–Smirnov–Test and on error bounds for classification tasks
will be given. Finally, Evolution Strategies as an optimization method will be described.

A.1. Principal Component Analysis

PCA got an established method in computer vision as well as for finding patterns or re-
ducing dimensionality in high dimensional datasets. It has been extensively used for face
and object recognition (Turk and Pentland, 1991; Murase and Nayar, 1995; Leonardis
and Bischof, 2000) and for robot localization and navigation (Jogan and Leonardis, 2000;
Gaspar et al., 2000; Winters and Santos-Victor, 2002; Vasallo et al., 2002). The follow-
ing overview over PCA is based on Murase and Nayar (1995) and Rencher (2002). For
a comprehensive overview on the advantages and disadvantages of PCA for computer
vision see Gerstmayr et al. (2004b).

The idea behind PCA for a set of observations is to compute an orthogonal basis of
eigenvectors for the training set, so that the origin of the new coordinate system equals
the average observation and the first axis points into the direction of the dataset’s great-
est variation, the second axis points into the direction of the second greatest variation,
and so on. Additionally, if one of the last axes covers only little information, dimen-
sionality can be reduced by projection to the remaining axes. These basic ideas of
PCA are also depicted in figure A.1. Although for an exact representation often a large
set of eigenvectors is needed, only few eigenvectors are sufficient to capture significant
characteristics of the observation.

A.1.1. Computing the Eigenspace

In case the observations are images, all the n images have to be reshaped to m–
dimensional column vectors xi, i = 1, . . . , n, where m is the number of pixels in each
image. All observations are now represented by a (m× n) matrix X. In the next step,
the average observation x̄ is subtracted from each observation leading to the zero–mean

107



(a) The zero–mean data
set with the original coor-
dinate axis

(b) The data set with ro-
tated axis, so that the
first axis covers the great-
est variance and the sec-
ond axis is perpendicular
covering the second great-
est variance.

(c) The data set with re-
duced dimensionality. The
points are projected to the
first axis

Figure A.1.: PCA in a nutshell

observation matrix X̃ with columns

x̃i = xi − x̄ (A.1)

= xi −
1

n

n∑
i=1

xi. (A.2)

Then the covariance matrix of X̃ is computed:

C = cov
(
X̃
)

(A.3)

=
1

n− 1
X̃X̃>. (A.4)

Solving the EVD for C leads to a diagonal matrix of eigenvalues Λ = diag (λ1, . . . , λn)
and the associated eigenvectors ei ∈ Rn×1 with i = 1, . . . , n.

The eigenvectors belonging to the non–zero eigenvalues span a basis with at most
κ := min (m,n) dimensions because the rank of C can be smaller than κ and the matrix
has at most κ non–zero eigenvalues. Since C is positive definite each eigenvalue λi is
positive and is a measure of the variance in the data set covered by ei. Up to that point
PCA is nothing else than a rotation of the existing basis so that the first axis covers the
greatest variation, the second axis covers the second greatest variation, and so on. The
axis of the new basis are the eigenvectors.

To reduce the dimensionality of the eigenspace a dimension k with 1 ≤ k ≤ κ has
to be chosen. Determing the number of dimension to use is a rather critical step in
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applying PCA and many different methods have been proposed in the literature. For
this work the proportional variance τk, defined by

τk =

∑k
i=1 λi∑κ
i=1 λi

(A.5)

is used. It gives the percentage of the covered information if a k–dimensional PCA–space
is used.

At this step, an eigenspace model Ω = (x̄,T,Λ, n) has been computed and an obser-
vation y can be transformed to the k–dimensional eigenspace using

g = T> (y − x̄) (A.6)

with

T = [e1, e2, . . . , ek] . (A.7)

A transformation of the data to a full–dimensional eigenspace does a decorrelation of
the data with the covariance matrix of the decorrelated data being equal to the matrix
of eigenvalues Λ.

The retransformation is defined up to a residue vector r, with r = 0 for k = κ:

y = Tg + x̄ + r. (A.8)

The great advantages of PCA for computer vision are that it gives very compact
representations of images or image features with good generalization capacities, although
for a very accurate representation of the images a large number of dimensions might be
needed. Since the transformation to the eigenspace is only a rotation, similar images will
be transformed to similar points in the eigenspace. Therefore, the image dissimilarity is
approximately

‖x1 − x2‖2 ≈ ‖g1 − g2‖2. (A.9)

In case k = κ the above equation holds strictly.

A.1.2. Incremental Principal Component Analysis

The batch method to compute the PCA described in the previous section has several
drawbacks if the eigenspace has to be enlarged like in exploration tasks for robot local-
ization or for learning new objects in a recognition task. Because of these drawbacks,
algorithms for IPCA were proposed e.g. by Hall et al. (1998) and improved by Artac
et al. (2002a). Like the batch method, IPCA is widely used in robot localization and
navigation (Artac et al., 2002a; Freitas et al., 2003) or object recognition (Artac et al.,
2002b). In the following paragraphs, the algorithm will be described.
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The description is based on Artac et al. (2002a) and Freitas et al. (2003) and is
restricted to updating an existing eigenspace Ω by adding an new observation xn+1.
Therefore, the mean has to be updated:

x̄′ =
1

n+ 1
(nx̄ + xn+1) . (A.10)

Then, the observation is projected into the existing eigenspace

gn+1 = T> (xn+1 − x̄) . (A.11)

The residual vector r caused by projecting xn+1 into the existing eigenspace and recov-
ering, can be computed using equation (A.8)

rn+1 = (Tgn+1 + x̄)− xn+1. (A.12)

As the residue vector is orthogonal to all the basis vectors used so far, its normalized
equivalent

r̂n+1 =

{
rn+1

‖rn+1‖ ‖rn+1‖ 6= 0

0 otherwise
(A.13)

is used as new basis vector in order to enlarge the eigenspace. The new (m× k + 1) sized
basis T′ is obtained by appending r̂n+1 to the current basis T and applying a rotation
R:

T′ = [T, r̂n+1]R, (A.14)

where R is of the size (k + 1× k + 1). To update the existing eigenimages gi; i = 1...n
it is necessary to reconstruct each image gi using (A.8) and to transform it again to a
new low dimensional representation

g′i =
(
T′>
)

(xi − x̄′) ; i = 1...n+ 1. (A.15)

After the updating step the old basis can be discarded. The n + 1 images are now
represented exactly in a k + 1 dimensional eigenspace.

In equation (A.14) a rotation has been applied to compute the basis T′. As the
derivation of the rotation matrix R is not essential for the IPCA–based landmark–
selection algorithm only a brief description will be given here. Readers interested in the
complete derivation are referred to Hall et al. (1998).

The rotation matrix R is a solution for the eigenproblem

DR = DΛ′ (A.16)
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where Λ′ is a diagonal Matrix with the new eigenvalues λ′i; i = 1...k + 1 and D is a
matrix consisting of known components of λ and xn+1

D =
n

n+ 1

[
Λ 0
0 0

]
+

n

(n+ 1)2

[
gn+1g

>
n+1 γgn+1

γg>n+1 γ2

]
(A.17)

with

γ = ĥ>n+1 (xn+1 − x̄) . (A.18)

Another important aspect not covered by this brief description is the dimensionality of
the eigenspace model. As the dimensionality grows with every added observation all
observations are represented exactly in the eigenspace. However, if an observation can
be described very well in the existing eigenspace it might be desired to not enlarge the
dimensionality in order to keep the feature description compact. For that case and for
methods on how to decide whether to enlarge the number of dimensions or not, the
reader is referred to the references cited above.

A.2. Independent Component Analysis

ICA was developed for applications in signal processing like BSS or the analysis of signals
like MEG or EEG data. This approach to ICA is depicted in figure A.2: two signals (2)
that are a linear mixture of two unknown independent source signals (1) are recorded.
ICA can then be used to recover these source signals (3) from the observations. From a
more abstract point of view ICA is a statistical method in which observed data is linearly
transformed into a new vector so that the observations are now statistically independent.
Independence is a stronger criterion than decorrelation which can be obtained by PCA.
This approach to ICA is sketched in figure A.3.

ICA(1) (2) (3)

Figure A.2.: ICA for BSS in a nutshell. The signals (2) which are a linear mixture of
the unknown source signals (1) are recorded. ICA can recover these source
signals (3). After Stone (2004).

Here, a short introduction to ICA based on Hyvärinen (1999b) and Hyvärinen (2000)
shall be given. For an in depth discussion the reader is referred to Hyvärinen et al.
(2001b) or Stone (2004).
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A.2.1. Definition of ICA

Let x be a random vector representing an observation whose elements x1, . . . , xn are
linear mixtures of unknown or latent source signals s1, . . . , sn. The linear mixing is
represented by a (n×n)–mixing matrix A with columns a1, . . . , an which are also latent.
Formally the ICA–problem can be written as

x = As (A.19)

=
∑

i

aisi. (A.20)

Usually this equation cannot be solved analytically, but neural networks or constrained
optimization algorithms can be used to find a solution for the mixing matrix A from
a set of observations xi. Further on, the model is only identifiable up to a nonzero
and possibly negative scaling factor of the components and base vectors and to the
permutation of the components. This is in contrast to PCA, where the order of the
components plays an important role.

Important are also the socalled independent component filters which are the rows of
the separating matrix W defined as

s = Wx (A.21)

= A−1x (A.22)

A.2.2. ICA and Gaussianity

Another fundamental restriction of ICA is that it does not work with Gaussian distribu-
tions. For Gaussian distributions, decorrelation is equivalent to independence. Since the
probability density function of a Gaussian with unit variance is completely symmetric,
no direction information is available and therefore no direction of the base vectors can
be estimated.

An important property of ICA is the statistical independence of the source signals.
Statistical independence means that information on one variable x1 does not give infor-
mation on any other variable x2. This means mathematically formulated that the two
variables x1 and x2 are independent if and only if their joint pdf is factorizable to the
product of the marginal distributions:

p(x1,x2) = p(x1)p(x2). (A.23)

Closely related to Gaussianity of a random variable is the Central Limit Theorem. It
states that the sum of two independent random variables is closer to a Gaussian than
any of the two original variables. Additionally, the sum of the two variables is more
dependent than any of the original variables. Therefore, ICA searches a new variable
that is more independent, i.e. further away from a Gaussian, than the original variables.
ICA algorithms often turn the estimation of the base vectors to an optimization problem
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using a measure of non–Gaussianity as a criterion of statistical independence. In the
following paragraphs a short overview over different optimization criterions shall be
given:

Kurtosis
Kurtosis or the forth–order cumulant is a standard measure for non–Gaussianity. It is
defined by

kurt (X) = E
(
X4
)
− 3

(
E
(
X2
))2

(A.24)

or assuming unit variance by

= E
(
X4
)
− 3. (A.25)

For a Gaussian random variable the kurtosis is zero, for most other distributions it is
nonzero. So Gaussianity can be measured by the absolute or the squared value of the
kurtosis.

Negentropy
Entropy is a very fundamental concept of information theory and can be interpreted
as the amount of information that an observation contains. The more random, i.e.
unstructured and unpredictable, a variable is, the larger is its entropy. For a discrete
random variable X with realizations xi entropy is defined as

H (X) = −
∑

i

P (X = xi) logP (X = xi) . (A.26)

An important theorem of information theory (Cover and Thomas, 1991) states that a
gaussian random variable has the largest entropy among all possible distributions of the
same variance. To use entropy as a measure of gaussianity, negentropy J is defined as

J (X) = H (Xgauss)−H (X) (A.27)

where Xgauss is a Gaussian random variable with the same variance than X. Due to the
mentioned properties J is always positive and zero only if X is Gaussian.

Mutual Information
Mutual information is an important measure of the dependence or redundancy of random
variables. It is defined as the difference between the sum of entropies of a group of
random variables and the entropy of their joint distribution

IX =
∑

i

H (Xi)−H (X) (A.28)

If entropy is understood as coding length, H (Xi) gives the lengths of codes for the Xi

when these are coded separately and H (X) gives the coding length if all the observations
are coded together in one vector X. Then, it gets clear that mutual information is only
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zero if the observations are statistically independent, i.e. if there is no redundancy in
the observations.

All these criteria and many others mentioned in Hyvärinen (2000) for non–Gaussianity
can be used to formulate objective functions to maximize the independence of the source
signals and to estimate the mixing matrix.

As mentioned in section 1.2.2.5, neural network approaches to sparse–dispersed coding
are equivalent to ICA. For the training of these networks, constraints are put on the
resulting output code assuring sparseness. As objective functions the above measures of
non–Gaussianity can be used.

A.2.3. The FastICA Algorithm

In this work the ICA estimation was done using the FastICA algorithm, which was
presented in Hyvärinen (1999a) and has established as standard algorithm for computing
the ICA.1

The proposed algorithm is – like most neural algorithms – parallel and distributed.
The optimization is turned into a fixpoint problem, so a standard Newton–Iteration can
be used for the optimization. Therefore, the convergence of the algorithm is cubic for
the most cases, and squared for some rate cases. The algorithm maximizes the Mutual
Information of the sources, therefore reducing also dependencies higher than of forth
order. The other main advantages are that there are no step size parameters to tune
and that the components are estimated one by one.

Preprocessing
The first preprocessing step is to transform the observations xi to a zero mean observa-
tion x̃i by subtracting the mean observation x̄. The next step is the whitening of the
data. This is a linear transformation of the observation so that the observed components
have unit variance, i.e. the covariance matrix is the unit matrix:

cov (X) = 1. (A.29)

A method frequently used for whitening is the EVD of the covariance matrix

cov (X) = EΛE>. (A.30)

The whitening step then contains

X̂ = Λ−1
2E>X (A.31)

So the whitening is nothing else than a linear transformation to the eigenspace and a
multiplication with

Λ− 1
2 = diag

(
λ
− 1

2
1 , λ

− 1
2

1 , . . . , λ
− 1

2
n

)
. (A.32)

1A MATLAB package is freely available at http://www.cis.hut.fi/projects/ica/fastica.
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Since the whitening is done using PCA the dimensionality can be effectively reduced as
described in A.1. Using (A.20) equation (A.31) can be rewritten

X̂ = EΛ−1
2As (A.33)

= Âs, (A.34)

The new mixing matrix Â is now orthogonal and further reduces the number of param-
eters to estimate, because Â contains less degrees of freedom.

Additionally, if whitening is done by computing the EVD, an easy and effective re-
duction of dimensionality can be done by reducing the dimensionality of the eigenspace
as described in section A.1.1.

(a) A uniformly distributed data
cloud after shearing.

(b) The same data cloud after decor-
relation, i.e. after computing PCA.
The data is not yet independent.

(c) The whitened data cloud. The er-
ror ellipse is now a circle.

(d) After computing ICA. None of the
coordinate directions gives informa-
tion about the other, the distribution
is independent.

Figure A.3.: ICA for data mining in a nutshell
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A.3. Fourier Transformation

Fourier Analysis is one of the most frequently used mathematical methods and the
numerical algorithm to compute the Fourier transformed of a function has become the
most frequently used numerical algorithm. By the means of Fourier transformation the
data is transformed to another representation, in this case the frequency domain, whose
basis consists of orthogonal wave patterns of different frequency. The introduction given
here is based on Jähne (2002) and Press et al. (2003), for an in depth introduction the
reader is referred to Kammler (2000) or particularly for computer vision and Fourier
methods to Bracewell (2003).

A.3.1. Introduction to Discrete Fourier Transformation

For a continuous function h(x) its Fourier transformed H(f), which is no longer a func-
tion of space or time but of frequency, is defined as

H(f) =

∫ ∞

−∞
h(t) exp (2πift) dt. (A.35)

Since for this work only discrete sampled data is used, the focus will be on DFT. For the
discrete case a continuous function is sampled or recorded at N evenly spaced intervals
∆ in space, resulting in a sequence of sampled values

hn = h(n∆) with n = . . . ,−2,−1, 0, 1, 2, . . . (A.36)

Instead of estimating the Fourier transform of hn, only estimates at discrete frequencies

fn =
n

N∆
with n = −N

2
, . . . ,

N

2
(A.37)

are seeked. The lower and upper frequency limits are exactly the Nyquist critical fre-
quencies that will be introduced in section A.3.2. Then, equation (A.35) can be written
as follows:

Hn =
N−1∑
k=0

hk exp

(
2πikn

N

)
. (A.38)

The equation shows that DFT maps the N complex coefficients hk; k = 1, . . . , N − 1 to
the coefficients Hn, which are independent from the interval size ∆.

The DFT can be understood as a scalar product of the vector h = [h0, h1, . . . , hN1 ]
>

with a set of N orthonormal basis vectors

bn =
[
w0, wn, w2n, . . . , w(N−1)n

]>
(A.39)
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with

w = exp

(
2πi

N

)
. (A.40)

because equation (A.38) can be rewritten as

Hn =
N−1∑
k=0

wnkhk (A.41)

= b>n h. (A.42)

From this notation it gets clear that the DFT is a linear transformation method pro-
jecting the data to a basis of complex exponential basis functions.

To apply the DFT on images it is necessary to define a 2D–Transformation. The com-
plex function is now sampled at N1N2 locations resulting in the function values h(n1, n2)
which are arranged in the matrix H. The 2D–DFT is then defined as a complex function

H(n1, n2) =

N2−1∑
k2=0

N1−1∑
k1=0

exp

(
2πik2n2

N2

)
exp

(
2πik1n1

N1

)
h(k1, k2). (A.43)

In the 2D–case one can express the above equation using a set of complex basis matrices
Bn1,n2 defined as an outer product of two basis vectors bn1 and bn2 :

Bn1,n2 = bn1b
>
n2

(A.44)

=


w0

wn1

w2n1

...
w(N1−1)n1


[
w0, wn2 , w2n2 , . . . , w(N2−1)n2

]
. (A.45)

Thus, (A.43) reads

H(n1, n2) =

N2−1∑
k2=0

(
N1−1∑
k1=0

h(k1, k2)w
k1n1

)
wk2n2 (A.46)

= 〈Bn1,n2 ,H〉, (A.47)

with the scalar product between to complex matrices being defined as

〈G,H〉 =
M−1∑
m=0

N−1∑
n=0

ḡm,nhm,n. (A.48)
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(a) Real part (cosine functions) (b) Imaginary part (sine functions)

Figure A.4.: The first nine basis functions for 1D DFT. After Jähne (2002)

Equation (A.46) reveals an important property of DFT, its separability. Thus, the 2D–
DFT can be obtained from the one–dimensional case by taking 1D–DFTs sequentially
on each index of the original function.

For the experiments described in section 2.1 the power spectrum of the Fourier trans-
formed is important. It gives the energy that is present in a certain frequency and dis-
cards amplitude and phase information. The power spectrum of a Fourier transformed
H(f) is defined by the squared modulus of the k–th Fourier coefficient

S(fk) = |H(fk)|2 (A.49)

or for the 2D–case

S(fx,k, fy,k) = |H(fx,k, fy,k)|2. (A.50)

A.3.2. Discrete Sampling

Although equation (A.37) does not depend on the interval width ∆, the interval width
plays an important role for computing the DFT because it influences the accuracy or
the resolution of the discretization. The accuracy is measured by the sampling rate and
is defined as the reciprocal of the interval size ∆. Directly linked to the sampling rate
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is the Nyquist critical frequency defined by

fc =
1

2∆
. (A.51)

The Nyquist critical frequency is that frequency for which an exact sampling is still
possible. In this case the underlying waves consist of two sampling points per cycle. For
computer vision applications each sampling point corresponds to one pixel. Since space
is often measured in units of the sampling interval ∆, the critical frequency fc is often
denoted by 1

2
cycles per pixel.

From Shannon’s sampling theorem further follows that a continuous function h(x)
is fully determined by its samples hn if it is bandwidth limited. That means that all
frequencies are smaller in magnitude than fc, i.e. H(f) = 0 for abs (f) > fc. If a
function is not bandwidth limited to a frequency range less than the critical frequency,
it is by sampling and computing the power spectrum falsely forced into the frequency
range −fc < f < fc. This phenomenon is called aliasing.

To reduce aliasing effects for data where the the sampling rate cannot be influenced,
windowing of the data is used. A windowing function is a function raising smoothly from
zero to unity and falling back to zero again at the boarder of the range. To reduce the
aliasing effects the data is bin by bin multiplied with the window function before the FFT
is computed. Since for FFT the input data is assumed to be periodic, there is a large
proportion of high frequencies at the boarders of the data, leading to aliasing effects.
This proportion of high frequencies is reduced by windowing because the function values
at the boarders are than close to zero.

There are many different window functions with subtle differences described in the
literature. For the work described here, the choice of the windowing function is not
essential. So, the Blackman–Harris window was chosen that is defined by

ωj = 0.3586− 0.4883 cos

(
2πj

N

)
+ 0.1413 cos

(
4πj

N

)
− 0.0117 cos

(
6πj

N

)
(A.52)

with j = 0, . . . , N − 1. From the resulting vector ω of windowing weights the weighting
matrix W for the 2D case is given by the outer product W = ωω>. The Blackman–
Harris window function is plotted in figure A.5.

A.4. Kolmogorov–Smirnov–Test

Statistical tests are among the most frequently used statistical techniques. For this
work the Kolmogorov–Smirnov–Test (KST) is relevant. It is used to test if two sets of
unbinned samples, which are functions of a single independent variable, are likely to
be drawn from the same or from different continuous distribution functions. The short
introduction given here is based on Press et al. (2003).

Formally spoken it is tested whether the null Hypothesis H0 that the two sets are
equally distributed can be accepted or not. If H0 is rejected, it is proven that the sets
are from different distributions. If H0 is not rejected, it is likely that the two sets share
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Figure A.5.: Blackman–Harris window

a common distribution, but it cannot be proven that the sets are drawn from identical
distributions.

For both sets S1 and S2 the cdfs SN1 and SN2 are computed. They are stepwise con-
stant functions jumping at the locations of the samples of each set. Different distribution
functions will lead to different estimates of the cdf. To measure the difference between
the distributions the KST computes the maximum value of the absolute distance of the
two cdfs:

Dobs

SN1(x)

SN2(x)

cd
f

1

0
x

Figure A.6.: Kolmogorov–Smirnov–Test (KST) in a nutshell. It computes the maximum
absolute difference Dobst between the estimates SN1 and SN2 of the cdf
for the two sets of samples. Using this measure the significance value is
computed. After Press et al. (2003).
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Dobs = max
−∞<x<∞

abs (SN1(x)− SN2(x)) . (A.53)

The probability that the maximum of the absolute difference D of the real cdfs is greater
than Dobs is given by

P (D > Dobst) = QKS

(√
Ne + 0.12 + 0.11√

Ne

Dobs

)
(A.54)

with

Ne =
N1N2

N1 +N2

(A.55)

and QKS(ρ) being defined as

QKS(ρ) = 2
∞∑

j=1

(−1)j−1 exp−2j2ρ2 (A.56)

with limiting values QKS(0) = 1 and QKS(∞) = 0. In case the KST is used to test if
an observation is distributed according to a given distribution, SN2 is replaced by the
distribution’s cdf and Ne = N1.

The hypothesis H0 is rejected for the chosen significance level α if

P (D > Dobst) > α (A.57)

Advantages of the KST are, that it is already reasonable accurate for Ne > 4 and that
it is invariant under reparametrization, i.e. using a logarithmic scale for the samples will
result in the same significance values as using a standard scale.

A.5. Error Bounds for Classification

In classification tasks it is essential to compute the classification error. A classification
error occurs if an element x is classified as belonging to class R1 instead of class R2 and
vice versa. This idea is sketched in figure A.7. Using Bayesian decision theory (Duda
et al., 2001) one would decide for x belonging to R1 if P (R1|x) > P (R2|x) and vice
versa for P (R1|x) < P (R2|x). The decision error is then given by

P (error|x) = min (P (R1|x) , P (R2|x)) . (A.58)

As the two sources of error are mutually exclusive the overall probability of error is given
by

P (error) = P (x ∈ R1|R2) + P (x ∈ R2|R1) (A.59)

=

∫
R1

P (x|R2)P (R2) dx+

∫
R2

P (x|R1)P (R1) dx. (A.60)
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R1 R2

x

∫
R1

P (x|R2)P (R2)dx

∫
R2

P (x|R1)p(R1)dx

P (x|Ri)p(Ri)

Decision boundary

Figure A.7.: Decision error in a nutshell. After Duda et al. (2001)

The classification task is usually not considered for one sample x, but for a large num-
ber of samples. The introduction given here will therefore focus on the Log–Likelihood
Test and two bounds for its classification error, the Chernoff bound and the Bhat-
tacharyya bound. The introduction is based on Konishi et al. (1999, 2003).

A.5.1. Approach via Log–Likelihood Test

Let R1 and R2 be two distinctive classes and x1,x2, . . . ,xn a set of N observations
randomly drawn from one of these classes. According to the Neyman–Pearson lemma
(Cover and Thomas, 1991; Duda et al., 2001) the optimal test for determing whether
the samples were drawn from R1 or R2 is the log–likelihood ratio

r = log
P (R1|x1,x2, . . . ,xn)

P (R2|x1,x2, . . . ,xn)
. (A.61)

Assuming independence gives

= log

∏n
i=1 P (R1|xi)∏n
i=1 P (R2|xi)

(A.62)

=
n∑

i=1

log
P (R1|xi)

P (R2|xi)
. (A.63)
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In order to estimate the the pdfs for R1 and R2 the observations are usually divided
into bins yj; j = 1 . . .m with y(xi) indicating the bin of xi. So the log likelihood can be
rewritten:

=
n∑

i=1

log
P (R1|y(xi))

P (R2|y(xi))
(A.64)

=
m∑

j=1

log
P (R1|yj)

P (R2|yj)
. (A.65)

The larger the log–likelihood ratio r the more likely the sequence of observations was
drawn from R1, for r = 0 R1 and R1 are equally likely, for r < 0 it is more likely that the
sample was drawn from R2. Using the theory of types (Cover and Thomas, 1991; Yuille
and Coughlan, 2000) providing a statistical framework for sequences of observations one
can show that the expected error rate ε for the lok–likelihood test decreases exponentially
by

ε = exp (−NC (P (.|R1) , P (.|R1))) (A.66)

where C (p, q) is the Chernoff information between pR1 and pR2 defined as

C (p, q) = − min
0≤λ≤1

log
m∑

j=1

pλ(yj)q
1−λ(yj). (A.67)

The Bhattacharyya bound is given for λ = 0.5. In general

C (p, q) ≥ B (p, q) (A.68)

holds since for the Chernoff bound λ is chosen to minimize log
∑m

j=1 p
λ(yj)q

1−λ(yj), while
for the Bhattacharyya coefficient it is just set to λ = 0.5.

Because of equation (A.66) the classification error gets smaller the larger the Chernoff
information or the Bhattacharyya coefficient get. A huge advantage of the Chernoff
bound is that the minimization of λ is always done in an one–dimensional space.

A.6. Evolution Strategies

Algorithms from the field of Evolutionary Computation are inspired by the biological
evolution and model the evolutionary processes to solve technical optimization prob-
lems. By the time, three subfields of evolutionary computation can be distinguished:
Evolutionary Algorithms (EA), Genetic Programming (GP), and Evolution Strategies
(ES). While the first two are mainly used for integer– or combinatorial optimizations
and optimizations of whole program fragments (e.g. for symbolic regression), the latter
one was especially designed for real–valued optimization problems. Other advantages of
ES include that they are robust, flexible, have little parameters to tune, and that only
little function evaluations of the objective function and no computations of derivatives
are needed.
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A.6.1. Key Aspects of ES

The short overview over ES given here is based on Jacob (2003). ES simulate a collec-
tive learning or search process within a population of individuals in the search space.
Therefore, ES are often counted to the Stochastic Search Methods. The key aspects of
ES include:

Populations and Individuals
A population G at time t is described by a multi–set of µ individuals:

G (t) = {I1(t), I2(t), . . . , Iµ(t)}. (A.69)

Each individual is represented by a tuple of n–dimensional real vectors

Ii(t) = (p, s) (A.70)

= ((p1, p2, . . . , pn) , (s1, s2, . . . , sn)) (A.71)

with pi, si ∈ R. The vector p is also called the chromosome of the individual, the pi are
referred to as object parameters. The chromosome specifies at which point of the search
space the corresponding individual is located. The si are called the strategy parameters
and control the range of mutation on the object parameters.

Mutation
Mutation is considered the driving force introducing variability in the chromosomes.
Mutation on an individual can be described as follows:

Imut = (pmut, smut) (A.72)

= (p +N0(s), ωmut(s)) . (A.73)

This equation also shows the meaning of the strategy parameters: they are the standard
deviation of a vector with independent Gaussian random values with zero mean. So the
mutation adds Gaussian noise to the individuals, changing slightly the location of the
individual in the search space.

The mutation operator ωmut mutates the strategy parameters. Two common mutation
operators are the MSA– and the HMB–operator. The first one is defined as

ωmut, MSA = (s1ξ1, s2ξ2, . . . , snξn) (A.74)

with

ξi =

{
β X ≤ 0.5

β−1 otherwise
, (A.75)

where β is the mutation parameter usually chosen to be approximately 1.5. With X
beeing a uniform distributed random number, the standard deviation of one half of the
strategy parameters is enlarged, the other half gets smaller.

The HMB–Operator is defined as

ωmut, HMB = (s1ξ1, s2ξ2, . . . , snξn) (A.76)
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with

ξi = expN0(β). (A.77)

Again, β controls the range of the stepsize adjustment and is commonly chosen to be
approximately 2. At the beginning of the optimization, individuals with larger stepsize
adjustments are more likely to be selected. At the end of the optimization, when the
individuals are close to the maxima, small stepsize adjustments are preferred.

Recombination
The recombination allows the mixing of genetic information between the parents and
their offspring or between different subpopulations. Two commonly used recombination
operators are the discrete and the intermediate recombination. With xa,i = (pa,i, sa,i)
being the i–th object and strategy parameter of the individual a, the discrete recombi-
nation operator can be written as follows:

ωrec,dis(xa,i, xb,i) =

{
xa,i X ≤ 0.5

xb,i otherwise
. (A.78)

Therefore, the discrete recombination function assigns the recombined individual with
50% probability either the parameters of individual a or those of individual b.

The intermediate recombination operator works on at least two individuals and assigns
the recombined individual the mean of the object and strategy parameters:

ωrec,int(x1,i, x2,i, . . . , xp,1) =
1

p

p∑
j=1

xj,i. (A.79)

Since ES were developed for real–valued optimization problems, the intermediate recom-
bination is often the recombination operator of choice.

The Fitness Function
In terms of ES the objective function is called fitness function η : Rn → R and assigns
each individual I a real–valued fitness according to its chromosome p. Like for any other
optimization method, the choice of the objective function is crucial to the results of the
optimization.

Selection
The selection operator ωsel selects those individuals that will form the next generation
by comparing their fitness. Depending on the used strategy the parent individuals are
included (plus–strategy) or excluded (comma–strategy).2 Additional requirements can
for example be that from each parent’s offspring exactly one offspring makes it to the next
generation. The choice of the selection strategy has a large influence on the performance
of the optimization: comma–strategies are more tolerant to local maxima while plus–
strategies get trapped in local maxima more easily. On the other hand plus–strategies
tend to converge faster than comma–strategies.

2For sake of simplicity a simpler notation than the standard notation of ES literature is used here.
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A.6.2. The ES–Algorithm

After introducing all these key elements of ES the optimization algorithm can be for-
mulated. A pseudo–code notation of the ES–algorithm is depicted in figure A.8. The
algorithm starts with the initialization of the initial population G(0). Then, the fitness of
the initial population is evaluated using the fitness function. If the termination criterion
is not true, the algorithm starts iterating. Such termination criteria can be the fitness
function or the fitness change between two generations falling below a threshold. The
next step in the loop is to λ–times identically replicate the parent’s genome. Afterwards,
the offspring generation is mutated and replication takes place. Then, the fitness of the
offspring generation is evaluated and the individuals that form the new generation are
selected. If the iteration ends, the last generation of individuals and their fitness are
returned.

Figure A.8.: The ES–Algorithm

begin
t := 0;
Initialization: G(0) := {I1(t)I2(t), . . . , Iµ(t)};
Initial fitness evaluation: η (G(0)) := {η (I1(t)) , η (I2(t)) , . . . , η (Iµ(t))};
while Termination criterion not true do

t := t+ 1;
Create offspring generation G ′(t): For each individual: Ii → {I1

i , I2
i , . . . , Iλ

i };
Mutation: G ′′(t) := ωmut (G ′(t));
Recombination: G ′′′(t) := ωrec (G ′(t));
Fitness Evaluation: η (G ′′(t) ∪ G ′′′(t));
Selection: G(t) := ωsel (G(t− 1) ∪ G ′′(t) ∪ G ′′′(t));

end
return G(t), η (G(t))

end
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B. Alternative Simple Cell Models

As mentioned in section 3.1.2 several simple cell models were proposed in Hansen (2002)
and Hansen and Neumann (2004b). From these models only the one leading to the most
promising results, namely the nonlinear model with DOI, was used and analyzed in de-
tail in section 3.1.2. However, the others have also been implemented. One alternative
to the described model does not use the DOI–scheme, i.e. inhibitory and excitatory con-
tributions to the equations (3.11) and (3.12) are weighted equally with ξ = 1. Another
alternative results from using a linear simple cell circuit as depicted in figure B.1. The
simple cell response S̃ is computed by directly pooling the input activations Ron and
Roff:

S̃ = Ron + Roff. (B.1)

Due to the different combinations of alternatives four different models were implemented:
quasi–linear without DOI, quasi–linear with DOI, nonlinear without DOI, and nonlinear
with DOI. The term quasi–linear refers to the linear simple cell circuit which builds on
a nonlinear center surround circuit.

S̃

Kon Koff

Ron

Roff

ξ

ξ

Figure B.1.: Sketch of the linear simple cell model.

For all models the model parameters have been determined as described in section
3.1.2. For the models without DOI the test stimulus used in the optimization step had
a contrast of 0.1, all other parameters remained unchanged. The results of the models
not described in section 3.1.2 are summarized in the following tables.
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Table B.1.: Model parameters for the quasi–linear model without DOI

Parameter Natural filters Manmade filters Aerial filters

σc 1.000 1.000 1.000
σs 3.000 3.000 3.000
αLGN 14.105 12.092 14.218
βLGN 3.108 0.628 0.800
γLGN 13.663 0.176 0.806
ξ 1.000 1.000 1.000

Table B.2.: Model parameters for the quasi–linear model with DOI

Parameter Natural filters Manmade filters Aerial filters

σc 1.000 1.000 1.000
σs 3.000 3.000 3.000
αLGN 4.285 13.810 14.934
βLGN 0.511 0.497 0.434
γLGN 0.189 0.087 0.370
ξ 3.000 3.000 3.000

Table B.3.: Model parameters for the nonlinear model without DOI

Parameter Natural filters Manmade filters Aerial filters

σc 1.000 1.000 1.000
σs 3.000 3.000 3.000
αLGN 12.479 13.700 14.941
βLGN 0.013 0.016 0.023
γLGN 0.053 0.010 0.015
ξ 1.000 1.000 1.000
αS 13.361 14.840 13.875
βS 1079.100 1115.300 1024.500
γS 1.732 6.822 0.783
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C. MATLAB Package Overview

All the necessary computations were done using MATLAB Release 14. The functions
related with this work were bundled in different packages. To manage these packages and
to make the necessary functions available in the MATLAB search path, a simple package
management system was written, which can also resolve dependencies by recursively
loading other packages.

The packages which are relevant for the whole department of Cognitive Neuroscience
are named with the prefix cog_, those that are only relevant for this work have the
prefix lg_. Packages provided by other people are labeled with the prefix lib_. A list of
packages is given below and is supposed to be a starting point for people that are going
to build on this work. For each package a Contents.m file will be made available so that
information about the functions contained in the package can be accessed by typing
help <package_name> on the MATLAB shell or by using the browsable documentation
created by m2html.

Table C.1.: List of relevant MATLAB packages

cog_base Package management system
cog_plot Department–specific plotting utilities
cog_imshow Department–specific functions to visualize images
cog_aux Other department–specific auxiliary functions
cog_es A comprehensive library for Evolution Strategies
cog_demo A couple of demos, mainly visualizations for this thesis
cog_compvis Early vision models (chapter 3)
lg_compvis Specific additions for early vision models (chapter 3)
lg_image_spectrum Analysis of Power Spectra (section 2.1)
lg_imageica Estimation of receptive fields (section 2.2)
lg_contour Analysis and optimization of edge detection model (section 3.1)
lg_lms Landmark selection (chapter 4)
lib_fastica The FastICA–algorithm (http://www.cis.hut.fi/projects/

ica/fastica/code/dlcode.shtml)
lib_contournet Non–negative ICA for contour analysis

(http://www.cs.helsinki.fi/u/phoyer/)
lib_nnica Non–negative ICA (http://www.cs.helsinki.fi/u/phoyer/)
lib_m2html Creates HTML–documentation

(http://www.artefact.tk/software/matlab/m2html/)

129

http://www.cis.hut.fi/projects/ica/fastica/code/dlcode.shtml
http://www.cis.hut.fi/projects/ica/fastica/code/dlcode.shtml
http://www.cs.helsinki.fi/u/phoyer/
http://www.cs.helsinki.fi/u/phoyer/
http://www.artefact.tk/software/matlab/m2html/


130



Bibliography

M. Artac, M. Jogan, and A. Leonardis. Mobile robot localization using an incremental
eigenspace model. In Proceedings of the ICRA 2002, pages 1025–1030, 2002a.

M. Artac, M. Jogan, and A. Leonardis. Incremental PCA for on–line visual learning and
recognition. In Proceedings of the ICPR 2002, pages 781–784, 2002b.

F. Attneave. Some informational aspects of visual perception. Psychological Reviews,
61:183–193, 1954.

T. Bailey and E. Nebot. Localization in large–scale environments. Robotics and Au-
tonomous Systems, 37:261–281, 2001.

R. Balboa and N. Gryzwacz. Power spectra and distribution of contrasts of natural
images from different habitats. Vision Research, 43:2527–2537, 2003.

H. Barlow. Sensory Communications, chapter Possible Principles underlying the Trans-
formations of Sensory Messages, pages 217–234. MIT Press, 1961.

H. Barlow. Redundancy reduction revisited. Network: Computation in Neural Systems,
12:241–253, 2001.

A. Bell and T. Sejnowski. The independent components of natural images are edge
filters. Vision Research, 37:3327–3338, 1997.
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C. Blakemore and G. Cooper. Development of the brain depends on the visual environ-
ment. Nature, 228:477–478, 1970.

131



E. Bourque, G. Doudek, and P. Ciaravola. Robotic sightseeing – a method for au-
tomatically creating virtual environments. In Proceedings of the ICRA 1998, pages
3186–3191, 1998.

R. Bracewell. Fourier Analysis for Imaging. Prentice Hall, 1st edition, 2003.

G. Buchsbaum and A. Gottschalk. Trichromacy, opponent colours coding, and optimum
colour information transmission in the retina. Proceedings of the Royal Society of
London, B, 220:89–113, 1983.

D. Burschka, J. Geiman, and G. Hager. Optimal landmark configuration for vision–
based control of mobile robots. In Proceedings of the ICRA 2003, pages 3917–3922,
2003.

J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8:679–698, 1986.

M. Carandini. The Cognitive Neuroscience, chapter Receptive Fields and Suppressive
Fields in the Early Visual System. MIT Press, 2004.

M. Carandini and D. Ringach. Predictions of a recurrent model of orientation selectivity.
Vision Research, 37:3061–3071, 1997.

M. Carandini, D. Heeger, and J. Movshon. Linearity and normalization in simple cells
of macaque primary visual cortex. Journal of Neuroscience, 17:8621–8644, 1997.

M. Carandini, D. Heeger, and J. Movshon. Cerebral Cortex, Volume 13, Cortical Models,
chapter Linearity and Gain Control in V1 Simple Cells, pages 401–443. Plenum Press,
1999.

M. Caywood, B. Willmore, and D. Tolhurst. Independent components of color natural
scenes resemble V1 neurons in their spatial and color tuning. Journal of Neurophysi-
ology, 91:2859–2873, 2004.

L. Chalupa and J. Weber, editors. The Visual Neurosciences, volume 1. MIT Press, 1st
edition, 2003a.

L. Chalupa and J. Weber, editors. The Visual Neurosciences, volume 2. MIT Press, 1st
edition, 2003b.

W. Cochran, H. Mouritsen, and M. Wikelski. Migrating songbirds recalibrate their
magnetic compass daily from twilight cues. Science, 304:405–408, 2004.

T. Collett and M. Collett. Memory use in insect visual navigation. Nature Reviews
Neuroscience, 3:542–552, 2002.

T. Cover and J. Thomas. Elements of Information Theory. Wiley Interscience, 1st
edition, 1991.

132



J. Daugman. Uncertainty relation for resolution in space, spatial frequency, and ori-
entation optimized by two–dimensional visual cortical filters. Journal of the Optical
Society of America, A, 2:1160–1169, 1985.

P. Dayan and L. Abbott. Theoretical Neuroscience – Computational and Mathematical
Modeling of Neural Systems. MIT Press, 2001.

V. de Verdiere and J. Crowley. Local appearance space for recognition of navigation
landmarks. In Proceedings of the SIRS 1998, pages 261–269, 1998.

G. DeAngelis and A. Anzai. The Visual Neurosciences, chapter A Modern View of the
Classical Receptive Field: Linear and Nonlinear Spatiotemporal Processing by V1
Neurons, pages 704–719. MIT Press, 2003.

G. DeAngelis, I. Ohzawa, and R. Freeman. Spatiotemporal organization of simple-
cell receptive fields in the cat’s striate cortex I, general characteristics and postnatal
development. Journal of Neurophysiology, 69:1091–1117, 1993a.

G. DeAngelis, I. Ohzawa, and R. Freeman. Spatiotemporal organization of simple-
cell receptive fields in the cat’s striate cortex II, linearity of temporal and spatial
summation. Journal of Neurophysiology, 69:1118–1135, 1993b.

X. Deng, E. Milios, and A. Mirzaian. Landmark selection strategies for path execution.
Robotics and Autonomous Systems, 17:171–185, 1996.

E. Doi, T. Inui, T. Lee, T. Wachtler, and T. Sejnowski. Spatiochromatic receptive field
properties derived from information–theoretic analyses of cone mosaic responses of
natural scenes. Neural Computation, 15:397–417, 2003.

R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley–Interscience, 2001.

G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. Cambridge
University Press, 2000.

G. Dudek and D. Jugessur. Robust place recognition using local appearance based
methods. In Proceedings of the ICRA 2000, pages 1030–1035, 2000.

J. Ferruz, S. Hurtado, and A. Ollero. Robot position estimation based on homographies
of the ground plane. In Proceedings of the IAV 2004, 2004.

M. Franz, B. Schölkopf, H. Mallot, and H. Bülthoff. Learning view graphs for robot
navigation. Autonomous Robots, 5:111–125, 1998.

R. Freitas, J. Santos-Victor, M. Sarcinelli-Filho, and T. Bastos-Filho. Performance eval-
uation of incremental eigenspace models for mobile robot localization. In Proceedings
of the ICAR 2003, pages 417–422, 2003.

133



J. Gaspar, N. Winters, and J. Santos-Victor. Vision-based navigation and environmental
representations with an omnidirectional camera. IEEE Transactions on Robotics and
Automation, 16:890–898, 2000.

W. Geisler, J. Perry, B. Super, and D. Gallogly. Edge co–occurrence in natural images
predicts contour grouping performance. Vision Research, 41:711–724, 2001.

D. Geman and B. Jedynak. An active testing model for tracking roads in satellite images.
IEEE Transaction on Pattern Analysis and Machinge Intelligence, 18:1–14, 1996.

L. Gerstmayr and H. Mallot. How does the environment influence the shape of receptive
fields. In Proceedings of the Eighth Tübinger Perception Conference, 2005.
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