
Eberhard Karls Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät

Wilhelm-Schickard-Institut für Informatik

Bachelor Thesis Bioinformatics

Self-Motion Estimation from Optic Flow with

Neural Networks in Simulated Zebrafish

Sebastian Bruijns

15.10.2017

Supervisor

Gerrit Ecke
Department of Biology, Cognitive Neuroscience

University of Tübingen

Reviewer

Prof. Dr. Hanspeter Mallot
Department of Biology, Cognitive Neuroscience

University of Tübingen

Bruijns, Sebastian:
Self-Motion Estimation from Optic Flow with Neural Networks
in Simulated Zebrafish
Bachelor Thesis Bioinformatics
Eberhard Karls Universität Tübingen
Date: 15.10.2017

Abstract

Abstract

The motion of the environment and the motion of objects in it in relation to an
observer provide important cues for him. To use this outside motion, the optic
flow, to gain information about self-motion, there need to be neurons which
react specifically to certain patterns of optic flow. Building on an existing
study which found specific response-behaviour of zebrafish neurons in the area
pretectalis when exposed to optic flow, we set out to compare the biological
with a modern computational approach. We used a simulated environment
to produce optic flow from the point of view of a zebrafish and trained a
neural network with backpropagation to estimate self-motion from that data in
different ways. We found some key differences in the distribution of responses,
which we mostly attribute to the willingness of neural networks to use as many
neurons as needed to process information, while biological networks have some
interest in using neurons sparsely. Additionally, we analyzed the receptive
fields of our networks and found similarities to the receptive fields of neurons
in flies which also serve the purpose of estimating self-motion, in that they
cover large parts of the field of view and strongly correspond to patterns of
optic flow resulting from self-motion.

I

Contents

Contents

1 Introduction 1

1.1 Optic flow and self-motion . 2

1.2 Artificial neural networks . 3

1.2.1 Basic structure . 4

1.2.2 Backpropagation . 4

1.2.3 Evaluation and regularization 6

2 Methods 8

2.1 Generation of training data . 8

2.2 Building the neural network . 12

2.3 Training the neural network . 13

3 Results 15

3.1 General performance of networks 15

3.2 Population behaviour . 18

3.3 Receptive fields . 19

4 Discussion 23

4.1 Outlook . 26

Bibliography 27

Appendices I

II

Contents

A Supplementary figures II

A.1 Results from Kubo et al. II

A.2 Results from Mikulasch . V

A.3 More receptive fields, from the best continuous network VI

III

Contents

IV

Chapter 1

Introduction

The movement of objects in the environment is an important part of the in-
formation from visual perception for animals. It includes, among other things,
the location of obstacles, the movement of predators and prey, and information
about the motion of the observer itself. Accordingly the outside movement has
also proven to be useful for robot navigation and algorithms are used to ex-
tract information from visual impressions. The visual perception of movement
is called optic flow, an optic flow field contains the direction and magnitude
of all movements within the visual field of an observer during a certain time
interval. Therefore, optic flow is not a primitive of visual information, it needs
to be constructed in time, by finding brightness changes in the environment
over time. Under the implicit assumption that the brightness of areas stay
about the same over a short period of time and that those areas belong to a
solid, coherent object, the movement of objects can be extrapolated, resulting
in optic flow.

Once the optic flow is determined further information can be extracted
from it, here we want to focus on the self-motion that can be inferred from it.
It is known that animals are able to deduce self-motion solely from optic flow
(Kubo et al. 2014) and moving robots do so as well. This makes the analysis of
self-motion from optic flow a common problem. In the zebrafish, neurons in the
area pretectalis are responsible for this process. These neurons have recently
been investigated, where it was found that most of the neurons in the area
pretectalis react selectively to certain patterns of optic flow which correspond
to translations and rotations of the observer (Kubo et al. 2014). Relating
to this work, there has been a bachelor thesis which used a sparse coding
network and optic flow from a simulated zebrafish, to find sparse components
in plausible optic flow (Mikulasch). Afterwards the receptive fields of these
neurons were analyzed, as well as the distribution of the reactions from the
neurons to different kinds of optic flow. There it has been found that the
population of sparse coding neurons show resemblance in their behaviour to
the population of neurons in the area pretectalis, which hints that sparse coding

1

Chapter 1. Introduction

is a biologically plausible, as well as a computationally efficient approach, as
has been suspected before (Vinje and Gallant 2000).

The aim of this work is to further explore the commonalities between the
processing of optic flow in animals and in technical applications, using another
approach that has proven successful for many problems, artificial neural net-
works. Whenever possible we will also compare the results of neural networks
to the sparse coding net, but it has to be noted that the two approaches have
rather different goals. Specifically, the sparse coding network tries to code the
optic flow using as few active neurons at any given time as possible, while our
neural network will try to estimate self-motion from the optic flow. Neural
networks in general have shown to be powerful, rivaling or even surpassing
human performances in some specialized tasks. The prime example for this
being image classification, in which state of the art convolutional neural net-
works deliver impressing results (Zhang et al. 2017). This has raised questions
as to what it is that neural networks really learn and there have been attempts
at visualizing this, some of the basic techniques will be used to analyze our
nets in the end as well.

In the rest of the introduction we will go into more details about the con-
cepts of optic flow and neural networks that will be vital for our methods and
results. In the next chapter, we will explain our methods, how the dataset
of optic flow fields was created and further processed to serve as input to the
neural network. The workings of the neural network will be explained in this
part as well. The results make up the third chapter, where we will show the
different structures and ideas that were used for the neural networks and how
they fared in estimating self-motion from optic flow. The final part of this
work will contain our conclusion and an outlook, to wrap up what was done.

1.1 Optic flow and self-motion

Two of the general behaviours that zebrafish display in reaction to optic flow
are the optokinetic response and the optomotor response. They both serve
to react to motion in the environment. The optokinetic response is triggered
by rotational optic flow and is used to keep the gaze upon a moving object
(Brockerhoff et al. 1995). The optomotor response is caused by translational
optic flow and compensates involuntary self-motion (Neuhauss et al. 1999).
It has been shown by Kubo et al. that the area pretectalis is sufficient and
necessary for the optokinetic response. Additionally, many neurons in the area
pretectalis react selectively to specific types of optic flow in a way such that
they can serve to distinguish self-motion from optic flow. The area pretectalis
is therefore our point of interest, the neural network that we built aims to
simulate the population of neurons in this area.

Rotation and translation produce distinctly different patterns of optic flow.

2

1.2. Artificial neural networks

If the point at which the translation is directed is in the field of view, it is easy
to make out as the focus of expansion, the point from which the movement
of all static objects points away. The opposite of this focus of expansion is
the point to which all movements point, the result of translation in the other
direction. Another important point about optic flow from translation is that its
magnitude is ambiguous with the depth of the object. In a static environment
with different depths, a sideways translation results in greater optic flow for
objects which are close to the observer, while objects that are more distant
produce smaller optic flow. For this reason translational optic flow can not be
determined absolute, but only relatively, only the direction of translation can
be found (at least without further depth information). This does not hold for
rotation, as it is indifferent to depth. The optic flow resulting from rotation
consists of vectors going in circles around a point, that point being the axis of
rotation, if it is in the field of view.

1.2 Artificial neural networks

Artificial neural networks (ANNs) are a very general tool. The universal ap-
proximation theorem states that a neural network with only one layer, addi-
tional to an input and output layer, is able to represent any possible function
to an arbitrary degree of precision (any connection between a number of inputs
and a number of outputs possible), as long as the number of neurons in this
layer is not bounded (Cybenko 1989). However this is not a statement about
how many neurons are needed in this one layer or how hard it is to actually
learn about the problem, even though it is representable. That is why the
trend for modern neural networks goes to very deep structures, networks with
many successive layers, even though they would not be needed in theory. Usu-
ally the area of application for neural networks are tasks for which concrete
algorithms are hard to develop, mostly because of complexity, but where a
large amount of data on which to train a network are available. This is not
the case for the detection of self-motion from optic flow for which there are a
number of algorithms which operate on different assumptions (for a review see
Raudies and Neumann 2012).

The goal of this work is therefore not so much to develop a neural net-
work that can efficiently compete with these algorithms, but to analyze the
structures such a neural network develops to accomplish it’s task and compare
them with the biological system. While the basic idea for neural networks
is rooted in neural science of organisms, it has to be acknowledged that the
workings of artificial neural networks are in large parts not comparable with
the biology. One of the greatest differences is the teacher signal, which tells the
artificial network what the output should have been. Therefore our network is
not supposed to accurately model neurons in zebrafish, but to offer a point of

3

Chapter 1. Introduction

comparison.

1.2.1 Basic structure

The principle building block for ANNs is the neuron, a single unit. The usual
function of a neuron is to take the activity of previous neurons and multiply
them by a certain factor, called a weight, that is learned and different for
each neuron with which it is connected this way. All these weighted outputs
from previous neurons are then summed up. This operation can be compactly
described as the dot product of a vector of neuron activations with a vector of
weights to these neurons. The sum then gets passed through a non-linearity,
such as the standard sigmoid function or the tangens hyperbolicus. The output
of this function is then the activation of the neurons itself, which gets passed
on to more neurons, or serves as output.

The neurons are usually arranged in layers and connected layerwise. That
is to say, each neuron in one layer only receives input from all neurons in the
previous layer, while itself passing its output only to all neurons in the next
layer. This design is called fully connected feed forward, the layers which do
not serve as input or output are called hidden layers (because they do not
interact with the environment directly) and the number of hidden layers of
a network is called its depth. For an ANN to calculate its output, given an
input, all that needs to happen is that every neuron calculates its activation
and passes it along, until the output layer is reached, a forward-pass. With
the neurons arranged in layers, the activations of one layer can be expressed
concisely with the following equation

o = f(W · x+ b) (1.1)

o being the output of the given layer, f the chosen non-linearity, applied ele-
mentwise, x the output of the previous layer, W the weight matrix, containing
the weights between all neurons of the previous layer with neurons of this
layer and finally the bias b which gets added to the sum. Once this has been
calculated for all layers in order, the output of the network is determined.

1.2.2 Backpropagation

The way the network learns to compute the desired output from the given
input, is by adapting the weights between neurons so that the difference be-
tween output and ground truth (later often called label, as it labels the data
into classes) is reduced, in a process called backpropagation. Prerequisites
are of course the ground truth itself, which has to be known somehow so as
to serve as an example for the net because neural networks learn supervised.
Additionally, there has to be an error function which measures how great the

4

1.2. Artificial neural networks

difference is between output of the net and label. The error function is defined
as a real-valued function on a high dimensional Euclidean space where the
weights are taken from as variables. The graph of the error function is some-
times called error landscape for visualization purposes in the following. The
goal of the learning process is to find weights which minimize the error func-
tion. Backpropagation is performed by using stochastic gradient descent, an
iterative approximation of gradient descent. The basic idea is to traverse the
error landscape by taking the derivative which gives the direction of steepest
ascent and then go in the opposite direction, so as to reach a minimum.

The process of backpropagation starts in the last layer, each output value
is compared with the corresponding label value. Thereby it is determined
whether the neuron should decrease or increase it’s output for the given input.
Using the derivate of equation 1.1 we can determine the change of error in
regard to the weights of the neuron (this requires the derivative of the non-
linearity). The result is the information how to change the weights towards
the specific neuron, so that the error is reduced and the output comes closer
to the ground truth. Additionally, the information about the error is relayed
to the network layer second to last, so that it can also change the weights to
improve the output of the entire net. In this way the error signal works its way
back through the entire net, each neuron receives information how its output
should have looked, and can then change its weights accordingly. All this is
formally expressed in the generalized delta rule from Rumelhart et al. 1986:

∆wij = ηoiδj (1.2)

with δj =

{
f ′(netj)(tj − oj) j output unit

f ′(netj)Σkδkwjk j hidden unit
(1.3)

Here ∆wij denotes the change of the weight from neuron i to neuron j, this
is what needs to be calculated for all the weights of the net for one iteration
of backpropagation. It is simply the product of the error signal δ of the later
neuron j, the output of the earlier neuron i and the learning rate η, which is a
hyperparameter of the training process, deciding how big each change should
be. We call parameters that govern the course of training hyperparameters,
they are set before the learning begins. This is opposed to the normal param-
eters, the weights between neurons of the network, which are derived during
training. The error signal itself is calculated as indicated above for output
neurons, the difference between ground truth tj and actual output oj, times
the derivative of the non-linearity at the point of the net input for the neuron
j, which is just the weighted sum of all inputs, before it is transformed by the
chosen non-linearity. The error signal then propagates backwards through the
net to the hidden layer, since there is no direct ground truth for these neurons,
they instead take the weighted sum of all the error signals in the following

5

Chapter 1. Introduction

layer. The error landscape looks somewhat differently for each particular ex-
ample and so to find real general minima these values get averaged out by
using more than one example before a weight change, a so called batch. How
many examples precisely there are in each batch is another hyperparameter
called batch-size. Generally it is advantageous to us a large batch-size, so as to
even out individual oddities of the examples as best as possible. Usually the
examples are presented to the net more than once, the number of times that
each example has been used for learning is called the epochs, so one epoch is
one full pass of each example.

A common addition to plain backpropagation with the above formulas,
is the use of a momentum term. The calculation of the weight change is
expanded by adding the weight change from the last iteration, times a factor,
the momentum. This momentum factor is somewhere between 0 and 1 and
lets the last weight change influence the new one. The momentum term has
the effect of accelerating the weight changes if they point in the same direction
for more than one iteration by continuing to add up, like a ball rolling down
a hill, and decreasing the speed of the change when the terrain of the error
landscape is more rugged.

1.2.3 Evaluation and regularization

While the formulas in the last section are the basis for training a neural net-
work, there are a few details aside from training which ensure the success of
the network in the end. To check the quality of learning, before the actual
process of training the given dataset is divided into three parts. By far the
largest part is the training data, examples from this set are used to train the
network. The two other parts are the testing and the evaluation data, which
represent two distances from the actual training set, so as to see how well the
trained network can handle data it has never seen before, how well it general-
izes. The testing data are used to test a trained network at frequent intervals
and see if it is still making real progress. The net has never seen the test
data before, so it gives more valuable information about the learning process
than the error on the training set. While training on this set, the net might
start to pick up on certain pattern which are present in this particular data set
but do not translate to actual correlation for the real problem. This is called
overfitting, if the net is too powerful it learns specific input output relations of
the training data, instead of real correlations, which we want it to learn. The
test set is the way to find this overfitting, by checking with new data. The test
set is therefore used to tune the hyperparameters and finding a good way to
set up and train the network, so as to get good results. In this way, the test
set becomes part of the learning process and it can happen that it too, though
not directly, is overfitted. The evaluation data serve the purpose of checking
whether or not this is the case. It should only be used after one is done training

6

1.2. Artificial neural networks

different nets, as a final test to see if the problem was successfully learned.

While test and evaluation data serve to detect overfitting, regularization is
used to prevent it. There are different techniques which in some sense limit
the power of a neural network, so as to prevent overfitting. Two simple ones
are L1 and L2 regularization. For this method, the error function mentioned
above, is extended by adding a term giving the L1 or L2 norm of the weights.
In this way, it becomes part of the goal of training to learn the problem with
smaller weights, thereby limiting its capacity. The two norms act in different
ways and do actually have a biological motivation. The L2 norm punishes large
weights, which is biologically sensible because the connection strength between
two actual neurons is limited. The L1 norm discourages weights to have a value
other than zero, thereby introducing sparseness into the network, not in the
usual sense in that as few neurons as possible should be active at any one time,
rather so that as few neurons as possible are connected. This addresses one of
the issues in biological plausibility of networks, the fully-connected architecture
allows too many neurons to interact, to a degree that would be impossible for
real neurons, for lack of space. With the L1 norm encouraging weights to be
zero not all neurons would have to be connected. These kinds of regularization
which become part of the error function are weighted with a factor, so that
their influence on the training process can be set freely.

Dropout is a another powerful regularization method, introduced by Srivas-
tava et al. 2014, which deactivates neurons in the net independently according
to a chosen probability, this probability being the only hyperparameter in-
fluencing dropout. The basic application of dropout really only needs this
random deactivation of hidden neurons, setting their output value to 0 instead
of whatever they would have passed on normally. However it is practice to
also scale the output value of active neurons by the inverse of the dropout
probability. If this would not be done, the output values of the finished net-
work without dropout would always be too great, since the neurons are used
to receiving less input from their predecessors because of neurons that were
dropped. Inverted dropout solves this problem by scaling the other neurons.
All in all the point of regularization is to successfully transfer the progress the
network makes on the training data, to the test and evaluation data, so that
what is learned is really applicable to the actual problem.

7

Chapter 2. Methods

Chapter 2

Methods

The neural network that we wanted to train can be thought of as represent-
ing some of the neural circuitry in the area pretectalis in zebrafish, the part
responsible for the detection of self-motion from optic flow. The input to this
network was the activation of retinal ganglion cells which are driven by optic
flow. These activations in turn are caused by optic flow in the environment.
So to create appropriate training input we followed this line, recorded natural
images in the simulation, calculated their optic flow and then distributed its
values into input cells. The desired output of the network is the self-motion,
so the actual movements had to be recorded at the time of simulation. With
these examples we then trained neural networks, trying different structures.

2.1 Generation of training data

For the generation of the dataset, we used the existing infrastructure a simu-
lation of zebrafish in a plausible environment and some processing of the data
from the simulation with slight modifications. The simulation was written for
a bachelor thesis which aimed at finding sparse components in natural optic
flow in the form of receptive fields of neurons which were trained by sparse
coding (Mikulasch). This thesis was also concerned with a comparison with
the data published by Kubo et al. 2014.

The existing infrastructure of the simulation, written in Blender (Blender
Online Community), contained a simulated zebrafish with two cameras for
eyes, as well as a set of other zebrafish with the same proportions and random
sizes (for more details see the mentioned thesis). Additionally, the environ-
ment was randomly filled with stones and algae of random sizes, as well as some
background textures which were picked randomly. At the start of the simula-
tion the fish were set in motion in a random but plausible pattern, meaning
random translational and rotational speeds which decayed over time (plausible
motion meaning for example that backward motion was very unlikely, because

8

2.1. Generation of training data

Figure 2.1: From simulation pictures to input for the neural networks

At the beginning 4 pictures are taken, from 2 cameras at 2 successive points in time. These
pictures then get projected onto the retina, note that the deformations of objects in the
first picture disappear. From these 4 pictures 2 optic flows are calculated, only one is shown
here. The optic flow is then distributed into the 2048 input neurons, 256 for each eye and
each direction, the strength of the optic flow at the position of the neurons is stored in the
brightness of the pixels (note the somewhat distinct border separating 8 squares).

fish do not swim backwards). A brief time after the start two pictures were
taken in short succession with the camera eyes, which served as the basis for
further processing. This processing included the projection of the pictures onto
an imaginary retina so as to obtain realistic pictures. On these successive pic-
tures the optic flow was calculated using the Deepflow algorithm (Weinzaepfel
et al. 2013). The calculated optic flow was then projected onto a set of 256
imaginary retinal ganglion cells with positions on the retina. Each ganglion
cell actually represented 4 cells which coded for the possible components of
optic flow, namely up, down, left and right. The activity of these 2048 (2 eyes
times 4 directions times 256 positions) cells served as the input for the sparse
coding network. For a visualization of the process see figure 2.1.

We modified the existing structure at points that were required for our
needs, or where adaptations promised to be advantageous. We randomly
slanted and rotated or hid the ground texture in the simulation so as to have
more diversity in the perception of the background. For the optic flow we used
the FlowNet algorithm (Fischer et al. 2015), a convolutional neural network for
calculating optic flow from images, as the results looked smoother. Addition-
ally we changed the projection of the optic flow onto the retinal ganglion cells,
whereas before each cell took the optic flow from its position on the virtual
retina, now each cell takes the mean of all the pixels closest to it on the virtual
retina. This is of course still not entirely correct biologically but the resulting
activation from the optic flow is now more robust. One important change in
the simulation is the saving of the momentary coordinates and heading of the

9

Chapter 2. Methods

fish at the times when the pictures are taken. This information is needed for
the labels in the training of the supervised neural net since it allows us to
calculate the actual movement of the fish. This process will be described in
detail later on.

With these changes we generated 2 new data sets. In the first, the simulated
fish performed mostly plausible swimming movements, unchanged from the
given simulation. This set consisted of close to 75000 examples. To briefly
reiterate, one example consisted of 2048 numbers, the activations of neurons,
and the positions of the fish for calculating the label of the example. After
the first set has proven somewhat problematic because of the strong biases for
certain movements, resulting in a neural network that could learn the biases
of the data set instead of the actual problem, we generated a second set with
uniform probabilities for all directions. Additionally, it had the useful property
that with a 30% probability motion along any one degree of freedom of motion
was greatly decreased, resulting in barely any motion along it. The reason
for this will become apparent during the discussion on how the labels were
created. This second data set consisted of 74489 examples, of which 64489
were used for training, 5000 for testing and 5000 for evaluation. The data set
was used to generate three different kinds of labels. Since the labels ultimately
determine the function that the neural network needs to learn, we basically
phrased the problem in three different ways. Two of those were very similar,
while the last one was different in many regards.

For the first two strategies the labels were discrete, the net just had to
decide whether or not self-motion along a principal axis was present above
a chosen threshold or not. This neglected the precise magnitude of the self-
motion, using the assumption that it was, for example, not necessary for the
fish to know exactly how fast it is involuntarily drifting. The information that
translation is happening could be enough to start to counteract it if needed,
until no self-translation is detected anymore, at which point the fish has sta-
bilized. This would of course not work well for gaze stabilization triggered by
rotational flow, as information about the speed of the object which the eyes
are following is needed to keep up. Another problem is the fact that the precise
direction of self-motion is not measured, as the vector is projected onto the
principal axes and parts below threshold are ignored. Still this assumption
provides an easier starting point, since neural networks are better at classify-
ing than at giving precise continuous numbers, and the more difficult case is
taken care of in the third strategy.

For the discrete cases, the label consisted of 6 numbers in the first strategy
and of 12 numbers in the second strategy. These numbers represent the 6 de-
grees of freedom (DOFs) of motion, there are 3 DOFs in translation, up/down,
left/right and forward/backward, as well as 3 DOFS for rotation, yaw, pitch
and roll. For each of these DOFs, motion can happen in two directions (or of

10

2.1. Generation of training data

course not at all). In the case of 6 classes, these two directions are summarized
in one class, the discrete values it can take on are -1, 0 and 1. So for example
one class represents the information if forward movement is happening (-1),
if backwards movement is happening (1), or neither (0) (or if any, below a
certain threshold, to be more precise). This setup forces the network to han-
dle forward and backward motion as opposites of each other, and while they
certainly are, it was not clear if this is reflected in the optic flow detected by
the two forward tilted eyes of the fish. This was why the second kind of labels
removed this dependency and split the 6 labels into 12. Now the example given
previously changes to this: one class represents whether forward motion was
detected above a certain threshold, or not, while another class reports whether
backward motion was perceived, or not. This introduces some redundancy into
the labels by having 4 cases for only 3 possibilities. The label can never have 1s
in two classes belonging together, since that would imply motion in opposite
directions at the same time, but the net can output such values. In reality
this never happened, after only a few training steps only possible outputs were
given from the net.

The last class of labels were the continuous labels, with 7 output neurons.
The first 6 neurons coded for translation and rotation, as in the case with
6 discrete classes, and the last neuron represented the rotational speed. As
explained in the introduction, translational optic flow cannot be determined
absolutely but only relatively which is why the translational parts of the mo-
tion were turned into a unit vector with the network then having to guess the
proportion of the unit vector for each translational DOF. The same was done
for the rotation vector, however, since the speed of rotation can be determined,
the seventh neuron coded for rotational speed, allowing for the absolute rota-
tional movements to be recovered. The values of the first 6 neurons naturally
had the range [-1,1], since they were all part of unit vectors, while the rota-
tional speed neuron only gave positive outputs, the highest going somewhat
above 1.

For the calculation of the labels we needed to compare the positions and
the heading directions of the fish in the simulation that were saved during
the taking of the pictures. The calculation of the heading movement simply
required a subtraction of the earlier angles from the later angles, which were
part of the fish’s internal state, the difference of these two angles being the
rotational movement along that axis1. For the translational part the heading
had to be considered since e.g. forward movement is just movement in the
direction in which the head is pointing. To find out the relative translation
from the absolute translation that was given we had to ’subtract’ the heading

1A small number of calculated rotational speeds around the z-axis were inexplicably large,
more than ten times as large as all other values. Since this was only the case for around 60
of the 75000 examples and they gave the networks great trouble, they were simply dropped
from the data.

11

Chapter 2. Methods

rotation from the absolute translation vectors. This has the effect of resetting
the heading to a neutral point and allows us to just read out the relative
translation. For this ’backrotation’ we used the basic rotation matrices in 3D
around the principal axes, with the sign-reversed angle of heading for that axes,
averaged out over the two values in time. Since the type of translation changes
with the rotation this compromise by averaging gave the best approximation.
With these values calculated we normalized the translation vectors for the
known reasons.

All that was left to do for the discrete labels was the thresholding, to
determine whether or not the amount of movement in a certain direction was
far enough away from zero or not. For this purpose we used two different
thresholds, one for translational and one for rotational movements, since they
used different units. The thresholds were chosen in such a way as to give all
possible cases an about equal amount of example data. This is also the reason
why in creating the data there was a 30% probability for each individual kind
of motion to be greatly diminished, so that motion below threshold now really
is not very significant (we chose 30% because, since the speed was uniformly
distributed, there was a natural chance for it to be small). For the continuous
labels, instead of thresholding the values, we also normalized the rotation
vector. The inverse of the normalization factor was stored for the seventh and
last position of the label. Afterwards the labels were ready for training. As
a last step the information of the examples was turned into a TFRecords file,
the native format for TensorFlow, making it easier to feed the data into the
network later on.

2.2 Building the neural network

The neural network was written in TensorFlow (Abadi et al. 2015). TensorFlow
provides high-level abstractions for neural networks thus making it easy to
write and quickly modify the structure and behavior of a neural network. An
input pipeline was used to read in the data, the activities of the 2048 input
neurons, from the TFRecords. The only preprocessing that was performed
on the input was to bring the activity of the neurons into the interval [0,1].
Other common forms of preprocessing, such as mean subtraction or whitening
(though whitening has proven to give smoother results in case of the sparse
coding network) were not deemed appropriate since we are not working with
pictures or something similar but with excitation of neurons. These 2048
numbers thus served as the input neurons for the network and were processed
further by the hidden layers. The number of hidden layers and the number
of neurons in them were variable and we tried different constellations. All
neurons in hidden layers used the rectified linear unit (ReLu) as an activation
function. The ReLu is a popular activation function in state of the art neural

12

2.3. Training the neural network

networks (Zhang et al. 2017), being a rather simple function

f(x) = max(0, x) (2.1)

Noticeably the ReLu is not everywhere differentiable, the problem being x = 0,
where the difference quotient does not tend to a limit. With the derivative
being 0 for every x < 0 and 1 for every x > 0, this problem is solved by simply
using

f ′(x) =

{
1, if x > 0

0, otherwise
(2.2)

Between the layers the neurons were usually fully-connected, except that some-
times we split the first hidden layer in three equal, parallel parts. Two of these
were each fully-connected to one eye and the last one was fully connected to
both eyes as usual. We did this to force some neurons to have monocular recep-
tive fields and study the results. After this split in the first layer, all of these
parts were fully connected to the second hidden layer. The output layer after
all the hidden layers contained either 6, 7 or 12 output neurons, representing
the possibilities in translational and rotational movements, as described in the
last section.

The different requirements for the labels were reflected in the non-linearities
of the last layer. In the six label case we used the tangens hyperbolicus to trans-
form the input of the neurons into the range (-1,1). The twelve label case used
the standard sigmoid function to get the output range (0,1). These functions
were used to cap the output of the network, thereby allowing the network to
represent the data freely internally with the last non-linearity forcing the out-
put into the right range. For the continuous labels we tested taking the outputs
of the network and normalizing the values which belonged to translation or
rotation, as they are normalized in the label. However, this made performance
worse and we let the network handle the normalization itself. This was some-
what surprising, as one would think that doing the work of normalization for
the network, allowing it to give output without having to pay attention to this
restriction, would give it more freedom. The positive effect that was observed
by not normalizing might have been a form of regularization, by forcing the
network to limit itself to such values.

2.3 Training the neural network

The nets were trained with backpropagation, using stochastic gradient descent
(SGD) on batches with a momentum term and a decaying learning rate. We
tried using the Adam algorithm for optimization (Kingma and Ba 2014), which
determines learning rate and momentum itself, but it did not prove faster or
better than SGD with fixed values for these parameters. The learning rate

13

Chapter 2. Methods

decayed exponentially over the course of training, measured in steps, one step
being the processing of one batch (in our case one batch always contained 1024
examples). The explicit formula for the learning rate η at step s, using the
decay rate d, initial learning rate η0 and step rate r is:

ηs = η0 · d
s
r (2.3)

The decaying learning rate significantly improved the convergence speed, with
large steps at the beginning of training, so as to get in the general vicinity of
good weight values, and smaller steps later on allowing for more fine-grained
scanning of the error landscape. Dropout was only used for the discrete class
labels, as it is not recommended to use the technique when the output of the
net are specific numbers instead of a binary classification (an effect we also
observed when trying it). When it was used, every neuron in the hidden layers
had the same chance for being set to 0, while all other neurons were scaled by
the inverse of that probability (so neither input nor output neurons were ever
set to 0 or scaled by dropout).

Regularization was implemented by taking the weights between neurons
layerwise, treating them as a vector and calculating the L1- and L2-norm on
them. All these values were added up and ultimately became part of the
error function which was to minimize with a choosable factor to control their
influence. How many neurons, how they were arranged into layers, as well as
the values of the hyperparameters such as momentum, dropout probability,
L1- and L2-norm factors, learning rate and so on, was determined by trial and
error. Structures and parameters which seemed to work better were modified
and used again but there was no real guidance in this search other than to try
and check different combinations somewhat systematically.

14

Chapter 3

Results

Over the entire course of this thesis we trained more than 150 neural net-
works to varying degrees of completion (they were generally stopped when
they showed bad or non-improving results on the test data), many of which
were not relevant anymore by the end. The main reasons for why some of
the networks became uninteresting are that we generated a new, better data
set for training and that we used new methods for calculating the labels, often
requiring a change in the general architecture of the net. In this section we will
therefore only present the networks which faired best, under the most refined
(also most recently implemented) circumstances. We will only briefly discuss
the networks which worked with discrete labels, as they scored similarly to each
other, while not providing immediately interesting results. Most of this section
will be on networks that gave continuous and therefore detailed answers to the
question of estimating self-motion. We will of course look at the results of the
networks on the test and validation data so that we can later compare them
to existing algorithms for self-motion estimation. Afterwards we will compare
the distribution of responses to certain optic flow from neurons of our nets
with the same distribution of neurons in zebrafish as measured by Kubo et al.
Lastly we will look at the receptive fields of neurons in the first hidden layer
of our nets to see if we can find obviously sensible patterns in them.

3.1 General performance of networks

The top 3 networks in each category are listed in tables 3.1 to 3.3 (we omitted
networks that were technically in the top 3 if there was a similar configuration
that performed better). For the discrete labels we calculated the accuracy, i.e.
how many guesses, when rounded to the next -1, 0 or 1, were equal to the
label (specifically, not if label and guess correspond entirely, but each position
individually). Note that the difference in accuracy between 6 and 12 labels is in
large part due to the fact that the number of cases is doubled with the new half

15

Chapter 3. Results

Table 3.1: Top 3 networks in accuracy on test set for discrete labels with 6
classes

Hidden neurons Epochs Dropout L1-reg. L2-reg. Accuracy in %
500 285 0. 0. 3e-3 84.38 84.13
180, 180 214 0.33 0. 0 84.16, 83.68
250, 150, 100 2357 0.5 0. 3e-3 84.00, 83.41

The number of hidden neurons is listed from left to right for the first layer to last
(so the best network just had one hidden layer with 500 neurons). Epochs describes
after which epoch the best test accuracy was reached, not how long the net was
trained in total. Dropout lists the probability with which each neuron was dropped,
L1- and L2-reg. give the factor with which the norms were valued in the error
function. Accuracy lists accuracy on test-set first and on evaluation-set second

basically being free, because each of the 6 classes in one case is split into two for
the twelve class case, which are highly dependent on each other. As has been
mentioned, the network quickly learns that when one of the interconnected
classes is active the other cannot be, once that has been achieved the problem
is reduced to the 6 classes case but with 50% accuracy for free. With that in
mind the two approaches score basically the same, the 12 classes case being
only slightly worse. In the case of continuous labels we calculated the mean
angular error between the translation vectors and the rotation vectors, with
the estimated vector v, the correct vector w and the number of trials n the
mean angular error is:

ζ =
1

n

n∑
k=1

arccos(
vkwk

||vk|| ||wk||
) (3.1)

The mean angular errors can later be compared with the angular errors
of methods for self-motion estimation as presented in Raudies and Neumann
2012. For the distribution of angular errors see figure 3.1. The seventh posi-
tion of the label, the rotational speed value, cannot really be compared with
anything, as it is difficult to assign a unit to it. For our networks it only
served the purpose of forcing the network to calculate some form of speed, but

Table 3.2: Top 3 networks in accuracy on test set for discrete labels with 12
classes

Hidden neurons Epochs Dropout L1-reg. L2-reg. Accuracy in %
500 642 0.25 0. 0 91.89, 91.68
120, 90, 60 1285 0.23 0. 0 91.87, 91.64
180, 180 500 0.33 0. 0 91.87, 91.63

The same descriptors apply as for the 6 classes table.

16

3.1. General performance of networks

Table 3.3: Top 3 networks in mean angular error for continuous labels

Hidden neurons Epochs L1-reg. L2-reg. Trans. error Rot. error
1000, 600, 200 2714 0. 3.5e-4 15.05, 15.00 18.82, 19.55
500, 300, 200 2929 0. 3e-3 15.05, 15.05 18.82, 19.59
240, 120, 80, 60 2286 0. 3e-3 15.36, 15.23 19.24, 19.90

The descriptors that also appear in the other tables retain their meaning. Addition-
ally we have the mean angular error for translation and rotation.

it can not be related with other methods. As was said, the nets were simply
trained by trying and expanding upon successful combinations, to see if they
can be further improved. Thus, though for the best nets that we found it holds
that a change of hyperparameters in any way leads to worse performance, it is
still entirely possible (in fact likely) that a completely different set of hyper-
parameters performs better because of the complex interactions between the
parameters.

There are some notable networks that did no perform particularly well, but
gave insight in some other way. For all three different strategies we trained
networks without any hidden neurons. Their success was of course limited,
but they showed interesting receptive fields (see section 3.3). Another notable
structure was the splitting of the first layer, forcing some of the neurons to
work on monocular input, as described in section 2.2. In the few tests that we
did those networks always performed worse than comparable fully-connected

Figure 3.1: Distribution of mean angular errors

The distributions of the angular errors of the best continuous network on the test-
set (the data looks basically the same for the evaluation set). Left: The angular
errors between estimated translations and ground truth. Right: The angular errors
between estimated rotations and ground truth. Note that while most estimations
have a rather low angular error, some examples are still causing errors up to the
maximum of 180 degree angular error. These high values shift the mean by a decent
amount to the right.

17

Chapter 3. Results

networks, so they were not pursued further. Tested networks with a depth
beyond 4 layers also did not show promising results and were discarded.

3.2 Population behaviour

Kubo et al. recorded the activity of neurons in the area pretectalis while
subjecting zebrafish larvae to horizontal optic flow. We used the same optic
flow patterns, generated by the simulation, and used them as an input for our
neural network to compare the responses of our artificial neurons with neu-
rons from the area pretectalis, with both groups being responsible for similar
computations.

The stimulus protocol used by Kubo et al. entailed presenting horizontal
movement to the zebrafish on one or both sides, so either monocular or binoc-
ular. Each eye was either presented with motion to the back, to the front, or
none at all, resulting in 8 different kinds of stimuli (23 − 1 because they did
not care about no motion on both sides). Of those 8 stimuli 4 are monocu-
lar, and the other 4 correspond to some kind of motion, those being forward,
backward, and rotation clock- and counterclockwise. The neurons were then
classified according to during which stimuli they were active. For the original
results along with a visualization of the stimuli and explanations of the used
abbreviations see figure A.1, figure A.2, and figure A.3.

The procedure was straightforward to reproduce for our neural network,
with all the neurons in the hidden layer using the ReLu non-linearity (except for
the last layer which was not considered for this purpose). We simply presented
the generated optic flow and recorded which neurons passed on output above
0, since the ReLu outputs 0 for any input that sums to or below 0. We then
grouped them after different criteria in the same way as Kubo et al. First of
all we listed all of the 256 different response types in general (neuron is either
on or off during the 8 stimuli, 28) and also sorted them according to relative
frequency (see figure 3.5). Note that the number of neurons reacting to all 8
stimuli was so great that the bar representing them was cut off in all diagrams,
because it would have dwarfed all other response types. Additionally, the
neurons were classified by the number of logical operations needed to compute
the function they implement after minimization with the Quine-McCluskey
algorithm (Biswas 1971). The classification after logical complexity is rooted
in the assumption that neurons in the area pretectalis make use of simple logical
operations (AND (∧), OR (∨) and NOT (¬)) while calculating their output
from the input of retinal ganglion cells. Lastly, the neurons were organized
in different types, one being simple cells which did not use a logical negation
in their minimized form, another being translation or rotation specific cells
which fired specifically for one of those patterns and monocular parts of it,
and the last group being all other neurons not attributable to a special group.

18

3.3. Receptive fields

Figure 3.2: Frequency and Response Profiles of Functional Neuron types

Classification of 27 out of the 256 response types according to their proposed function
(for abbreviations see figure A.3). (Top) A histogram of the 27 classified response
types (”simple,” blue, ”translation/rotation-selective,” green). The remaining 229
response types were not further classified (”unclassified,” red). (Middle) Response
profiles of the 27 types (compare Figure 4A). (Bottom) Functional classification and
nomenclature. (Adapted with own data from Kubo et al. 2014.)

These classes were divided again into more specific groups with neurons in the
same group all fulfilling similar roles. For a peculiarity of the neural networks,
see figure 3.3 for the same visualization as in figure 3.2, but only filled with
neurons after the first hidden layer. This is no individual case as it turns out
the continuous networks do not implement most of the functions specifically
observed by Kubo et al. after the first hidden layer. In discrete networks this
trend cannot be observed, the distribution of response types stays roughly the
same for the first hidden layer and the following layers.

3.3 Receptive fields

Lastly we analyzed the receptive fields of neurons in the first hidden layer
of our networks. For this purpose we will visualize the optimal stimulus of

19

Chapter 3. Results

Figure 3.3: Frequency and Response Profiles of Functional Neurons beyond
the first Layer

The same diagram as 3.2, but only neurons from layers after the first hidden layer
are shown. As can be see there are basically no neurons computing specifically
labeled functions beyond the first layer (there is still some variety in the computed
functions, they just did not get a label by Kubo et al. and are rather difficult to
interpret specifically).

the neurons, the pattern of optic flow which drives them most strongly, see
figure 3.4. This technique was also used by Mikulasch and we rely mostly on
existing code. By taking the incoming weights of a neuron in the first hidden
layer, we can see how strongly it weighs input from the corresponding position.
Since the values are the result of optic flow in a certain direction, we can infer
the preferred pattern of optic flow, by offsetting the different weights for the
same position with each other. The result then tells us which patterns the
network has found to be important first abstractions. The receptive fields
from this tactic cannot directly be connected to specific kinds of translational
or rotational optic flow, because the first hidden layer is further processed
in a nonlinear way (except of course for the networks with no hidden layer,
where the output is directly connected with the input). However the receptive
fields still provide interesting points for comparison, especially with receptive

20

3.3. Receptive fields

fields of real neurons processing optic flow, for example those of flies (Krapp
and Hengstenberg 1996), or the receptive fields of the sparse coding network
in the earlier thesis. The receptive fields which we will study originate from
networks calculating continuous labels, as the fields from the other approaches
were mostly messy. See figures A.6 to A.11 for some more receptive fields (the
attached DVD contains all receptive fields of all top 3 networks).

Figure 3.4: Receptive field of neuron in the first hidden layer

One of the most structured receptive fields, it covers most of the field of view, as do
most receptive fields in our networks.

21

Chapter 3. Results

A

B

C D

Figure 3.5: Distribution of Neuronal Response Types and Computational
Complexity

(A) A histogram showing the number of neurons of the network classified according to
the 256 possible response types. The white-and-black plot below the histogram illustrates
the response profile of each response type. Each vertical 1×8 line represents one response
profile, and the squares indicate whether the response type is active (black) or inactive
(white) during the stimulus phases indicated on the right. The copper-colored line shows
the computational complexity of the response type, as in (D)
(B) The histogram from (A) sorted by abundance of the response type.
(C) Quantification of response complexity. The 256 possible response types are binned
according to the number of logical operations needed.
(D) Histogram of the number of cells per network versus the number of logical operations.
The color code (blue, green, and red) in (A-C) corresponds to the one used in figure 3.2.
(Adapted with own data from Kubo et al. 2014.)

22

Chapter 4

Discussion

While the sparse coding approach showed notable similarities to the results
measured by Kubo et al., general neural networks behaved differently in sig-
nificant ways. However, neural networks produced results similar enough to
biological models to give ground for comparison. The most obvious difference
between neural networks and natural neurons as well as sparse networks, is the
overshadowing number of neurons reacting to a large spectrum of stimuli (ac-
tually all the stimuli presented for our case). This becomes even more drastic
considering that both other models disregarded a great number of neurons in
their consideration as they were not reacting to any of the 8 horizontal stimuli
(9220 of 12802 for the sparse-coding network and around 11000 of 11500 in
zebrafish as per an estimation by Mikulasch), while in our case only a handful
of neurons expressed this behaviour. In part this is a consequence of the ab-
sence of mechanisms driving a neural network to sparseness in its activations
(it is possible to place such restrictions, just not common for normal networks).
At this point it should be emphasized that the L1-norm that we sometimes
used as regularization punishes the weights and leads to sparse weights, not
to sparse activations of neurons. Sparseness is of course enforced in the sparse
network, and it is economical for organisms to have as few neurons as possible
expanding energy to convey information at any one time, rendering neurons
which always react impractical for both cases. This result is thus a statement
to the value of more active neurons in the transfer of information. At the same
time however it stresses how huge the receptive fields of our neurons are and
how easy it is to excite them, a major difference between our model and the
other two.

An interesting point in the same direction is the comparison between figure
3.2, figure A.2 and figure A.5. For all kinds of horizontal translation or rotation
detecting neurons in our networks, the biggest group by a large margin is
always the one that reacts to the binocular stimulus as well as both monocular
components, continuing the trend of firing to more stimuli rather than few.
This is contrasted by the other two approaches in which the mentioned group

23

Chapter 4. Discussion

is always the smallest (though sometimes not as pronounced in the case of real
zebrafish). On the same note, neurons which only reacted to the binocular
stimuli and not to its monocular components where virtually absent in our
networks, while they were rather common in the other two approaches. Even
though the details are off in these groups, the general distribution shows that
the neural network had some neurons that were detectors for the same patterns
as the neurons of the zebrafish. The percent of neurons computing unclassified
functions in our networks was the highest of all three models, showing that
the neurons computed many not intuitively understandable functions (at the
same time the overall variety of different response types was lower than that of
the zebrafish neurons). The distribution of logical complexities shows stronger
similarities between the three models, though the neural network does not
show as strong a tendency toward the simplest functions as the other two.
Still, compared to the overall spectrum of possible functions our networks
preferred simpler functions (compare figure 3.5 C and figure 3.5 D).

The most glaring characteristic is the total absence of neurons comput-
ing classified self-motion functions in layers beyond the first of our continuous
networks. It seems that only the first layer is responsible for finding these
specific patterns and the following layers are concerned with calculating the
components of the output vectors from this information. The fact that this
effect cannot be observed for the discrete networks suggests that the reason for
this drastic effect is the need to calculate specific numbers instead of a more
general classification. Usually neural networks are used for broad classification
(e.g. the mentioned image classification) and our demand to calculate contin-
uous numbers puts very specific requirements on the network, resulting in this
remarkable structure. Since discrete networks did not show this effect, they
might be interpreted as a better fit to the biological model.

As we have mentioned the discrete networks were not explored as exten-
sively and probably have a lot more potential. The constellations that per-
formed best were very simple and reached their highest accuracy rather early
on, which is certainly far from optimal. Interestingly it seems that the ad-
vantage of having 12 classes and thereby being more flexible in regard to the
output is outweighed by the need to prevent two classes which belong together
from being active at the same time, as the networks with 6 classes performed
relatively better.

The comparison with explicit algorithms for self-motion estimation from
optic flow is only rough but suggests that neural networks can perform similarly
well (we compare with the review from Raudies and Neumann 2012). Our
network suffers the disadvantages of a very noisy environment with random
fish moving independently, additionally the background does not cause optic
flow at all points of the field of view, in the worst case even ground is occluded
resulting in hardly any useful optic flow. On the other hand the network

24

has the advantages of a much greater viewing angle (160° vs. 30°) as well
as two cameras pointing in almost opposite directions, which is useful for self-
motion estimation (Dahmen et al. 2001). Comparisons with for example figure
9 of Raudies and Neumann 2012 seem the most sensible, since they introduced
outlier noise in that evaluation. We can see that the angular error of translation
vectors reaches 15% for some algorithms, somewhat below 20% outlier noise,
15% being the value we reached with our best continuous network. For the
angular error of rotation we even fare considerably better, with our value of
around 19% being surpassed by most algorithms at 20% outlier noise, and
most algorithms perform worse with much less outlier noise. So while these
numbers are not really comparable for the above mentioned reasons we can
at least assume that the neural networks learned some useful patterns and
can in principal deliver meaningful results. Additionally, we observe the trend
of rotational estimation being harder for all approaches. For our networks
the angular error of rotation is always higher and even increases notably on
the evaluation set (while the error for translation stays basically the same).
This hints at some overfitting for this subproblem, even through the test-set
(remember that both sets were never trained on and only the test-set was used
for evaluating nets before the end).

Figure 3.1 shows us that the mean angular errors result in large part from
some examples for which the net performs about as good as a pure guess. There
are two obvious reasons for this. The first being the mentioned high noise of
the environment making it hard in some settings to extract useful information
from the optic flow. The second reason is that, because of the normalization
of the vectors, in cases where all 3 values are rather small, tiny differences in
magnitude result in way larger differences in the normalized vectors. These fine
differences are undoubtedly very hard to learn for the network. For rotational
estimates this is even worse as the values and thereby differences for rotation
are smaller to begin with due to their representation.

As for the receptive fields, first of all we can observe that they are generally
different from the ones found by Mikulasch. The receptive fields of the sparse
coding network were usually localized, only reacting to optic flow at some se-
lected places in the field of view. Our receptive fields on the other hand usually
covered the entire field of view. In particular the lower and upper edge were
regions of interest for our neurons, certainly because the ground and water
surface provided valuable optic flow information about movement in the envi-
ronment. This is similar to the results reported in Krapp and Hengstenberg
1996, where high motion sensitivity was found in areas of the receptive fields
where the ground would cause optic flow during flight. Additionally, the re-
ceptive fields shown in the same paper cover a large area, as do ours. In this
comparison we can find good similarities to biological neurons.

We set out to develop a neural network that performs computations sim-

25

Chapter 4. Discussion

ilar to the area pretectalis of the zebrafish. Using an existing simulation we
generated data that was suitable for training a network and used it to learn to
estimate self-motion from optic flow. As we have seen we were able to reach
reasonable levels of precision and the receptive fields of the network seem intu-
itively sensible. From the commonalities between the best continuous networks
we can infer that the major differences between neural networks and biological
or sparse networks are systematic. This entails mostly the disposition of our
networks to have neurons react to a large number of stimuli instead of being
specific for only a few. Even so, the computations performed by our networks
and the biological model are obviously related. Regarding the receptive fields
of flies we also see strong similarities with our neurons, further solidifying the
legitimacy of the trained networks. We thus consider our comparison com-
pleted for the time being.

4.1 Outlook

While the basic question about similarities between neural networks and bio-
logical networks in this particular case has been answered for the most part and
we would not expect to see greatly differing results by continuing this line, there
are still some interesting points to pursue and small improvements to make.
For one it would be interesting to see how far the continuous network can go.
By extensively testing different structures the angular errors could probably
be reduced. A more precise comparison with explicit algorithms would be in
order at that point to see if neural networks could actually be efficient in that
regard. For that purpose it would also be useful to generate more training
data, 75000 examples is not that much in regard to the enormous data sets
usually used for training neural networks and more examples always help to
improve performance. We observed that greater accuracy also rapidly led to
more structured receptive fields, making a better network a good candidate
for further analyzing the receptive fields and also making the effort to visu-
alize receptive fields beyond the first layer more worthwhile. Additionally, it
would be advantageous if the problems with small self-motion resulting in bad
estimates could be worked around (the simplest approach would probably be
to manually normalize the network output, as we have done initially).

Finally, increased attention toward the discrete labeling of self-motion
might be worthwhile as they were not developed much further after the con-
tinuous networks showed better results. Especially the results concerning the
layers after the first hidden layer in continuous networks show us that discrete
networks have a greater similarity to biological networks. The strange recep-
tive fields and a lack of plausibility caused us to not further pursue discrete
networks, but in light of these results it seems promising to continue working
on discrete classification of self-motion.

26

Bibliography

Bibliography

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng
2015. TensorFlow: Large-scale machine learning on heterogeneous systems.
Software available from tensorflow.org.

Biswas, N. N.
1971. Minimization of boolean functions. IEEE Transactions on Computers,
C-20(8):925–929.

Blender Online Community
. Blender - a 3D modelling and rendering package. Blender Foundation,
Blender Institute, Amsterdam.

Brockerhoff, S. E., J. B. Hurley, U. Janssen-Bienhold, S. C. Neuhauss,
W. Driever, and J. E. Dowling
1995. A behavioral screen for isolating zebrafish mutants with visual system
defects. Proc Natl Acad Sci U S A, 92(23):10545–10549. 7479837[pmid].

Cybenko, G.
1989. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2(4):303–314.

Dahmen, H.-J., M. O. Franz, and H. G. Krapp
2001. Extracting Egomotion from Optic Flow: Limits of Accuracy and Neu-
ral Matched Filters, Pp. 143–168. Berlin, Heidelberg: Springer Berlin Hei-
delberg.

Fischer, P., A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox
2015. Flownet: Learning optical flow with convolutional networks. CoRR,
abs/1504.06852.

27

Bibliography

Kingma, D. P. and J. Ba
2014. Adam: A method for stochastic optimization. CoRR, abs/1412.6980.

Krapp, H. G. and R. Hengstenberg
1996. Estimation of self-motion by optic flow processing in single visual
interneurons. Nature, 384(6608):463–466.

Kubo, F., B. Hablitzel, M. Dal Maschio, W. Driever, H. Baier, and A. B.
Arrenberg
2014. Functional architecture of an optic flow-responsive area that drives
horizontal eye movements in zebrafish. Neuron, 81(6):1344–1359.

Mikulasch, F.
. Self-organization of motion-sensitive receptive fields in the zebrafish op-
tokinetic system. Bachelor thesis, Universität Tübingen.

Neuhauss, S. C. F., O. Biehlmaier, M. W. Seeliger, T. Das, K. Kohler, W. A.
Harris, and H. Baier
1999. Genetic disorders of vision revealed by a behavioral screen of 400
essential loci in zebrafish. Journal of Neuroscience, 19(19):8603–8615.

Raudies, F. and H. Neumann
2012. A review and evaluation of methods estimating ego-motion. Comput.
Vis. Image Underst., 116(5):606–633.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams
1986. Parallel distributed processing: Explorations in the microstructure
of cognition, vol. 1. chapter Learning Internal Representations by Error
Propagation, Pp. 318–362. Cambridge, MA, USA: MIT Press.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov
2014. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958.

Vinje, W. E. and J. L. Gallant
2000. Sparse coding and decorrelation in primary visual cortex during nat-
ural vision. Science, 287(5456):1273–1276.

Weinzaepfel, P., J. Revaud, Z. Harchaoui, and C. Schmid
2013. Deepflow: Large displacement optical flow with deep matching. In
Proceedings of the 2013 IEEE International Conference on Computer Vision,
ICCV ’13, Pp. 1385–1392, Washington, DC, USA. IEEE Computer Society.

Zhang, Z., F. Xing, H. Su, X. Shi, and L. Yang
2017. Recent advances in the applications of convolutional neural networks
to medical image contour detection. CoRR, abs/1708.07281.

28

Appendices

I

Appendix A. Supplementary figures

Appendix A

Supplementary figures

A.1 Results from Kubo et al.

Figure A.1: Results from Kubo et al.

Figure 4 from Kubo et al., see there for more information, compare with figure 3.5.

II

A.1. Results from Kubo et al.

Figure A.2: Results from Kubo et al.

Figure 5 from Kubo et al. 2014, see there for more information, compare with fig-
ure 3.2. Kubo et al. suggest that rotational optic flow is mostly recognized my
monocular neurons which is why the number of rotational-specific cells is unexpect-
edly low.

III

Appendix A. Supplementary figures

Figure A.3: Nomenclature from Kubo et al.

Table 1 from Kubo et al. 2014, explanations of the abbreviations used in 3.2.

IV

A.2. Results from Mikulasch

A.2 Results from Mikulasch

Figure A.4: Results from Mikulasch

Figure 7 from Mikulasch, see there for more information, compare with figure 3.5.

Figure A.5: Results from Mikulasch

Figure 8 from Mikulasch, see there for more information, compare with figure 3.2.

V

Appendix A. Supplementary figures

A.3 More receptive fields, from the best con-

tinuous network

Figure A.6: Receptive field of neuron in the first hidden layer

Receptive field of neuron that reacts to rotation. At the outer parts there is a close
resemblance to optic flow detecting neurons in flies, the middle is unstructured.

Figure A.7: Receptive field of neuron in the first hidden layer

The most common ordered areas are at the bottom of the receptive fields, where the
ground is a reliable source of information, as is seen in this example.

VI

A.3. More receptive fields, from the best continuous network

Figure A.8: Receptive field of neuron in the first hidden layer

A messy receptive field, no larger areas where the neuron looks out for continued
optic flow. Its usefulness is not intuitively obvious. This type of field is not uncom-
mon over the entire population. The receptive fields of discrete basically all looked
like this (see the attached DVD).

Figure A.9: Receptive field of neuron in the first hidden layer

An unusually sparse field with nice structured areas between points that do not
matter to the neuron.

VII

Appendix A. Supplementary figures

Figure A.10: Receptive field of neuron in the first hidden layer

Most arrows point away from a point straight ahead, a field for backwards move-
ment?

Figure A.11: Receptive field of neuron in the first hidden layer

Another remarkably structured field.

VIII

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig und
nur mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen,
die dem Wortlaut oder dem Sinne nach anderen Werken entnommen sind,
durch Angaben von Quellen als Entlehnung kenntlich gemacht worden sind.
Diese Bachelorarbeit wurde in gleicher oder ähnlicher Form in keinem anderen
Studiengang als Prüfungsleistung vorgelegt.

Ort, Datum Unterschrift

	Introduction
	Optic flow and self-motion
	Artificial neural networks
	Basic structure
	Backpropagation
	Evaluation and regularization

	Methods
	Generation of training data
	Building the neural network
	Training the neural network

	Results
	General performance of networks
	Population behaviour
	Receptive fields

	Discussion
	Outlook

	Bibliography
	Appendices
	Supplementary figures
	Results from Kubo et al.
	Results from Mikulasch
	More receptive fields, from the best continuous network

