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i

Abstract

Fine-grained plant image classification aims to classify similar images of plant
organs into different categories (i.e. plant species). In this thesis, we first study
two well-known deep convolutional neural network models that are pre-trained
on ImageNet dataset [JWR+09], namely Inception-V2 [IS15] and Inception-
Resnet-V2 [SIVA16]. Subsequently, we introduce a fine-tuning scheme that
is carried out on the basis of the PlantCLEF 2015 [GBJ16] training dataset.
Furthermore, we investigate several different data-processing mechanisms and
provide evaluations of their model performances in terms of classification re-
sults. Finally, we employ the visualization techniques including Class Activa-
tion Map [ZKL+16], Gradient-Class Activation Map [SCD+16], Guided Back-
propagation [SDBR14] and Guided Gradient-Class Activation Map [SCD+16]
into our fine-tuned network models, which help us interpret what the deep
neural network models can learn and understand how these models categorize
plant species.
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Chapter 1

Introduction

In recent years, an increasing interest in image-based plant identification task
can be seen both in the field of biological taxonomy and computer vision.
However, this kind of fine-grained image classification task is challenging due
to the small inter-class difference, which makes it extremely difficult even for
professional plant taxonomists. So far, the most promising solution towards
this problem is the deep learning approach proposed by computer vision
scientists. For such an image classification problem, the basic idea of the deep
learning approach is to transform this issue into an optimization problem and
train the convolutional neural networks (CNN) to find a good parameter set
which minimizes the total error on the training dataset.

Over the past years, deep CNN has gained popularity because of its tremen-
dous success in various image retrieval tasks including the Imagenet large scale
visual recognition challenge (LSVRC) [JWR+09] and the LifeCLEF Plant
Identification Task (PlantCLEF) [GBJ16], and several network structures
have been designed, e.g. the Alex-net [KSH12], VGG-net [SZ15], Googlenet
[SLJ+14], Residual net [HZRS15] etc. Most recent work exploiting deep
CNN for image classification task adopts a simple strategy: pre-train a
deep CNN on a large-scale external dataset (e.g. ImageNet) and fine-tune
the pre-trained models on new dataset to fit the specific classification task.
Following this idea, we utilized two widely used models, i.e. Inception-V2 and
Inception-Resnet-V2, which are pre-trained and achieved high classification
accuracy (73.9% and 80.4% top-1 accuracy, respectively) on ImageNet
dataset, and fine-tuned these models using the PlantCLEF 2015 training
data (91759 plant pictures belonging each to one of the 7 types of view
(Branch, Fruit, Leaf, Stem, Leaf, Leaf-Scan, Flower)). Beyond the fine-tuning
strategy, we investigated different data-preprocessing methods for improving
the performance and then we compared their results.
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2 CHAPTER 1. INTRODUCTION

However, although deep CNN models have demonstrated impressive perfor-
mance on image classification tasks, there is no clear understanding of how
they make predictions and why they perform well. For fine-grained image
classification it is particularly important to ensure that the CNN models
indeed learn the most discriminative features for each category and ignore
the irrelevant background correctly, otherwise the models are not generalized
enough and will lead to a large test error due to overfitting. To tackle this
issue, some visualization approaches have been proposed in the past few
years: Class Activation Map(CAM) [ZKL+16] and Gradient Class Activation
Map(Grad-CAM) [SCD+16] aim to localize the important region for making
prediction of the input image by finding the strongly activated neurons on
the last convolutional layer and upsampling this response until the input
layer; Deconvnet [ZKTF10] and Guided Backpropagation [SDBR14] visualize
the high resolution features captured by the CNN models by inverting the
data flow of a CNN, going from neuron activations in higher layer which we
are interested in down to the input layer. In our work, we employed these
methods on our models and combined them to interpret the classification
results generated by our fine-tuned CNN models.

This bachelor thesis is divided into six parts: In the first chapter, the intro-
duction, we introduce the fine-grained plant image classification task and how
we apply the deep learning approach on it. Besides, we illustrate the impor-
tance of understanding how the network models making prediction and which
algorithms we have adopted for explaining the network model behavior. In
the next section, we present general information about convolutional neural
networks and their components (Sections 2.1 and 2.2). Besides, we explain
the network architectures and the design intuition of the Inception models,
in particular the Inception-V2 and Inception-Resnet-V2 models (Section 2.3).
In the third part, we elaborate the general algorithm used for training deep
convolutional neural network (Chapter 3.1 and 3.2), and some widely used
techniques for improving the performance and accelerating the training proce-
dure (Chapter 3.3 and 3.4). In addition, we introduce our data preprocessing
methods (Chapter 3.5) in this part. In Chapter 4 we illustrate some visual-
ization techniques and how we adopt them for interpreting the classification
results given by our network model. The results of our networks, i.e. their
performance on the PlantClEF 2015 dataset and the training curves (Section
5.2) as well as the visualization of our models (Section 5.3) are discussed in
the fifth part. At the end, Chapter 6 contains our discussion and conclusion
based on our experiment results.



Chapter 2

Artificial Neural Network

In this chapter, we list the basic concepts of artificial neural network 2.1,
specifically the convolutional neural network 2.2. Besides, we elaborate the
network topology and the intuition behind the design for the architecture of
Inception models 2.3.

2.1 Artificial Neuron

The basic computational unit of each artificial neural network is a single
neuron, which is a simplified model of nerve cells in human brains.[Kar] In
the biological model, each neuron receives input signals from its dendrites and
sum up these signals in the cell body. Once the total input signal strength is
greater than a certain threshold, the neuron fires and generate output signals
which will be sent to other neurons along its axon. The signal strength is
controlled by the synaptic strengths which are learnable and thus influence
the human learning.

Figure 2.1: biological neuron model in human brains [Kar]

In the mathematic model, the time delay caused by the spikes in the biological

3



4 CHAPTER 2. ARTIFICIAL NEURAL NETWORK

model are not considered, and thus the computation is simplified. Besides, the
synaptic strengths are defined as weights, which along with bias serve as the
main parameters need to be learned in a model. The net input is then defined
as the weighted sum of all the inputs, which simulates the final signal captured
by the cell body of a biological neuron. This weighted sum then passes through
an activation function and the final output of the neuron is generated
according to the different activation function. In short, each neuron per-
forms a dot product with the input and its weights, adds the bias and applies
activation function to produce an output. The formal definitions are as follows:

netj =
∑
i

xiwij (2.1)

oj = φ(netj − θj) (2.2)

with:
xi - the i-th input value
wij - the weight of connection between neuron i and j
φ - the activation function
θj - the threshold(bias) of neuron j
oj - the output of neuron j

Figure 2.2: mathematic model of neuron [Wik]

Each neuron contains an activation function unit, which should be nonlinear
and differentiable. In our work, we choose the Rectified Linear Unit(ReLU)
[HSM+00][NH10] as the activation function. The definitions of ReLU and its
derivative are given in Equation 2.3 and 2.4. Figure 2.3 shows the function
graph.

f(x) = max(0, x) (2.3)

f ′(x) =

{
0 for x < 0
1 for x ≥ 0

(2.4)
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Figure 2.3: Graph for ReLU activation function and its derivative

2.2 Convolutional Neural Network

In this section, we elaborate the three main components of a typical Convo-
lutional Neural Network (CNN), namely Convolutional layer (2.2.1), Pooling
layer (2.2.2) and Fully-connected layer (2.2.3). For the image classification
task, a softmax layer (2.2.4) is inserted at the end of the network to generate
the final class scores.

2.2.1 Convolutional Layer

The Convolutional (Conv) layer is a combination of neural network and the
convolution operation in image processing, and it is actually the core building
block of a CNN model. Conv layers are based on the assumption of replicated
features, i.e. if a feature detector is useful in one place of an image, it is
likely that the same feature detector would be useful somewhere else. This
replication can greatly reduce the number of free parameters to be learned,
since we no longer need to connect neurons to all neurons in the previous
layer, but can use filters (kernels) which only look at only a small region in
the input image (the filter size is called the receptive field from a biological
viewpoint.) and slide the filter windows across the whole image to generate
feature maps. Different feature maps learn to detect different features, which
allows each patch of image to be represented by features in many different
types. Hence, the usage of Conv layers can still extract information carried by
the image while achieving considerable reduction in computational complexity.

Conv Layers contain three hyperparameters, which control the size of the
output volume: the filter size, stride and zero-padding. Equation 2.5
shows the relation between the input volume size and the output volume size.
Apparently, if the result given by this equation is not an integer, then the
hyperparameter combination is not feasible because the size (width,height)
of a image can never be a float number. Figure 2.4 displays the convolution
process with hyperparameters stride=2 (in both directions), filter size=3
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(height and width) and zero-padding=1 (in both directions).[DV16]

O =
(I − F + 2P )

S
+ 1 (2.5)

with:
P - zero-padding
F - filter size
S - stride
O - output size
I - input size

Figure 2.4: A convolution operation for an input of size 5×5. The hyperparam-
eters are: stride=2 (in both directions), filter size=3×3 and zero-padding=1 (in
both directions). This will generate an output feature map of size 3×3. [DV16]

The example above in Figure 2.4 is only two-dimensional. In practice, the
data always have a depth value greater than one. (e.g. an RGB image has
three channels and thus has depth=3. For a neuron in a CNN model with
many feature maps, the depth value may be even higher.) For an input with
depth we need to operate over all 3-dimensional volumes, and that the filters
always extend through the full depth of the input volume.

2.2.2 Pooling Layer

In a typical CNN architecture, pooling layers are normally inserted between
successive convolutional layers. Pooling is a downsampling operation which
reduces the number of inputs to the next layer of feature extraction, thus
decreasing the amount of parameters and allowing more different feature
maps in the network. This way, pooling also prevent overfitting in some sense.
In practice, there are two common types of pooling operation, namely max
pooling and average pooling.

Similar to Conv layers, the output volume size is controlled by the hyper-
parameters stride and filter size. The difference is that zero-padding is not
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allowed in a pooling layer. relation between the the input volume size and the
output volume size can be described by Equation 2.6. [Kar]

O =
(I − F )

S
+ 1 (2.6)

with:
F - filter size
S - stride
O - output size
I - input size

The most common form of a pooling layer is to apply filters of size 2× 2 with
a stride of 2, which actually downsamples every depth slice in the input by
2 along both width and height, discarding 75% of the activations. By max
pooling, the maximum in each small 2× 2 region is taken , while the average
value is taken by average pooling. Figure 2.5 demonstrates how max pooling
and average pooling with filter size=2 and stride=2 work.[TG17]

Figure 2.5: Max pooling and average pooling operation for an input of size
4× 4. The hyperparameters are: stride=2 (in both directions), filter size=2× 2
and zero-padding=2 (in both directions). This will generate an output feature
map of size 2× 2. The input is divided into four 2× 2 parts, which corresponds
to the filter size. By max pooling, the maximum of each small region is taken,
while average pooling takes the mean of each part. [TG17]

Global Average Pool

In most modern deep neural network models, a global average pooling layer
[LCY13] is used after the last convolutional layer and before the final softmax
operator to replace the traditional fully connected layers. The basic idea is to
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take the average of each feature map and feed the resulting vector directly into
the softmax layer. This way, the amount of parameters is greatly reduced since
pooling layers do not contain trainable parameter but fully connected layers
do. In our work, we use the Inception-V2 and Inception-Resnet-V2 models,
both of which use a global average pooling before the final softmax layer in
the structure. Figure 2.6 compares the traditional fully connected layer with
the global average pooling layer.

Figure 2.6: A comparison between fully connected layers and the global av-
erage pooling layer. Left: the fully-connected layers are used in traditional
CNN models such as VGG-net[SZ15] and Alex-net [KSH12]. Right: Network-
In-Network(NIN) [LCY13] uses a global average pooling at the end of the model.
The mean value of each feature map of the last convolutional layer is taken and
directly passed to the final softmax layer. [DLW+]

2.2.3 Fully Connected Layer

In a regular feed-forward neural network model, the fully connected layer is the
most common layer type. Figure 2.7 shows the topology of a neural network
in which each neuron of the hidden layer is pairwise connected, i.e. fully
connected, to every neuron in the adjacent layers[Kar]. For CNN models, the
fully connected layers are normally used at the end of the network to compute
the final class scores.

2.2.4 Softmax Classifier

For multiclass classification task, a softmax layer is used at the end of a
network to generate the final class scores. The softmax function generalizes
the logistic (sigmoid) function (See Figure 2.8), which can only be used
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Figure 2.7: A feed-forward neural network with two fully connected layers,
i.e. the hidden layers in this case. Each neuron (depicted by circles) of the fully
connected layer is pairwise connected (depicted by arrow) to every neuron in
the adjacent layers.[Kar]

for binary classification.

Figure 2.8: Graph for logistic(sigmoid) function f(x) =
1

1 + e−x

The softmax function takes as input a n-dimensional vector of real numbers
and squashes these values to a n-dimensional vector of values between zero
and one that sum to one. This function is a normalized exponential and the
formal definition is as follows:

oj = f(netj) =
enetj∑C
k e

netk
(2.7)

with:
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oj - the output of neuron j.
f - the softmax function.
net - the input vector. netj represents the j-th element of the input

vector.
C - the total number of classes. (C = 1000 for PlantCLEF 2015 dataset)

The derivative of the softmax function has a quite nice form and thus can be
calculated easily in the backpropagation algorithm (Chapter 3.1):

if i = j :
∂oi
∂netj

= oi(1− oi) (2.8)

if i 6= j :
∂oi
∂netj

= −oi · oj (2.9)

If we set neti as the unnormalized log probability of class i, then the softmax
score can be interpreted as the normalized categorical probability assigned to
the correct label given the input xi parameterized by W .

P (yi|xi;W ) =
enetyi∑
j e

netj
(2.10)

with:
xi - the input vector.
W - the weight matrix.
yi - the correct label.
net - the function mapping: net = Wxi.

Cross-entropy Loss Function

The loss function corresponds to softmax classifier is the cross-entropy loss
function [NBJ02]. From the viewpoint of information theory, it can be written
in terms of entropy and the Kullback-Leibler divergence, and thus get its name
as cross-entropy.

E = −
∑
j

tj log oj (2.11)

with:
E - the cross-entropy error.
oj - the softmax value output of neuron j.
tj - the target value. It is 1 if j is the correct label, and 0 otherwise.
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2.3 Inception Models

Inception models refer to a CNN architecture family developed by Google In-
corporation which achieve the state-of-the-art results in ImageNet [JWR+09]
Large-Scale Visual Recognition Challenge. In our experiment, we investigated
the Inception-V2 [IS15][SLJ+14] and the Inception-Resnet-V2 [SIVA16] mod-
els. In this section, we elaborate both of these methods.

Inception-V2

Inception-V2 is a further development of the original Inception model
(GoogleNet)[SLJ+14]. The basic components, i.e. the Inception module
(See Figure 2.9), are highly similar in these network architectures, since both
architectural decisions are base on the intuition of multi-scale processing and
sparse connection.

type patch size/stride output size input size

input - 224× 224× 3 -
convolution 7× 7/2 112× 112× 64 224× 224× 3
max pool 3× 3/2 56× 56× 64 112× 112× 64

convolution 1× 1/1 56× 56× 64 56× 56× 64
convolution 3× 3/1 56× 56× 192 56× 56× 64
max pool 3× 3/2 28× 28× 192 56× 56× 192

10 Inception See Figure 2.9 7× 7× 1024 28× 28× 192
global average pool 7× 7 1× 1× 1024 7× 7× 1024

linear - 1× 1× 1024 1× 1× 1024
convolution 1× 1/1 1× 1× 1000 1× 1× 1024

softmax - 1× 1× 1000 1× 1× 1000

Table 2.1: Outline of Inception-V2 architecture

In the original Googlenet [SLJ+14], the local structure is a clustering of
1× 1, 3× 3 and 5× 5 filters and the feature maps are concatenated after the
convolutional layer (Figure 2.9(a)). As this module consists of filters with
different receptive fields, patterns of different scales in the input image can
be captured and merged after the filter concatenation. One more important
point of this structure is the employment of 1× 1 convolutional layers. In the
original papers [SLJ+14] and[LCY13], it is illustrated that 1 × 1 convolution
not only increase the representational power of neural network, but also reduce
the dimension of input data, thereby removing computational bottlenecks and
enable the increasing in depth and width of the networks.

There exists two main difference between Inception-V2 and the original
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(a) Inception module in GoogleNet(the first version of Inception)

(b) Inception module in Inception-V2

Figure 2.9: 2.9(a): filters of different sizes(1×1, 3×3, 5×5) are used to capture
features of different scales. All these feature maps are then concatenated and
passes to higher layers of the network. 2.9(b): the 5 × 5 filter is replaced by a
stack of two 3× 3 filters in the Inception-V2 model. [SLJ+14]
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Googlenet (Inception-V1). The most remarkable change is the Batch-
Normalization (See Chapter 3.4 for detailed explanation.) which accelerates
the training process by reducing Internal Covariate Shift. This algorithm now
becomes a standard component of most the modern network architecture.

The other main difference is that Inception-V2 replace all the 5 × 5 fil-
ter by a stack of two 3 × 3 filter 2.9(b). This follows the idea that a stack
of small filters can cover a large receptive filed but has fewer parameters [SZ15].

Table 2.1 outlines the structure of Inception-V2, which includes:

• A 7× 7 convolution with 64 filters and stride=2

• A 3× 3 max pooling layer

• A 1× 1 convolution wit 64 filters and stride=1

• A 3× 3 convolution with 192 filters and stride=1

• A 3× 3 max pooling layer

• 10 Inception modules with 4 branches:
branch 0: a 1× 1 convolution
branch 1: a 1× 1 convolution followed by a 3× 3 convolution
branch 2: a 1× 1 convolution followed by two 3× 3 convolutions
branch 3: a average pooling followed by a 1× 1 convolution

• A global average pooling layer

• A linear mapping layer with batch-normalization and dropout

• A 1× 1 convolution with 1000 filters and stride=1

• A softmax layer which outputs the final class scores

Inception-Resnet-V2

Inception-Resnet-V2 achieves the state-of-the-art performance in ImageNet
[JWR+09] Large-Scale Visual Recognition Challenge. It is a combination of
the Deep Residual Net(ResNet)[HZRS15], which was the winner of the
ILSVRC 2015 classification task [RDS+15], and the Inception models.

The basic idea of ResNet [HZRS15] is to insert ”shortcut connections” that
performs identity mapping into the network, so the model learn to approximate
the residual function H(x) − x instead of the original function H(x). It is
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(a) The overall structure of Inception-
Resnet-V2 model

(b) The structure of the ’Stem’ part in a
Inception-Resnet-V2 model

Figure 2.10: Schema for the overall Inception-Resnet-V2 model and the ’Stem’
part. The output size of each level is shown on the right hand side of each
diagram. [SIVA16]
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asserted that this change considerably simplifies the training and prevents
degradation problem occurs in deep neural networks. Following this idea,
Szegedy et al. insert a shortcut connections into a basic Inception module so
as to build a Inception-ResNet module (See Figure 2.11).

Figure 2.11: Schema for Inception-ResNet-A module( 35 × 35 grid) of the
Inception-Resnet-V2 model. [SIVA16]
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Chapter 3

Training of Neural Networks

In the previous chapter, we elaborate all the basic components of an artificial
neural network and explain how we assemble them to obtain a complex CNN
architecture. To solve the plant image classification problem, we now need
to train the networks and let them make predictions according to the input
images.
In this chapter, we first illustrate the general training algorithm used in our
experiments (Chapter 3.1 and 3.2). Then we present some widely used tech-
niques which improve the performance and accelerate the training procedure
(Chapter 3.3 and 3.4) . Finally, we introduce the data preprocessing methods
we applied in practice (Chapter 3.5).

3.1 Backpropagation

Training the neural network is exactly an optimization problem of finding
the parameter set (weight and bias) which minimizes the cost function. To
solve such an optimization problem, the most common way is to use the
gradient descent algorithm, which means the parameters are updated in
the direction to decrease the cost function in each step. However, although
the gradient descent algorithm is straight forward and easy to implement, it
is normally computationally hard to compute the gradients, i.e. the partial
derivatives, of the cost with respect to each parameter. Backpropagation
algorithm [RHW+88] solve this problem by using the chain rule to propagating
the gradients from the output end to the input end of a network.

In backpropagation algorithm, an additional variable δi =
∂E

∂neti
is introduced,

and the gradients of the cost w.r.t. the weight and bias are:

∂E

∂wij
=

∂E

∂netj

∂netj
∂wij

= δj
∂netj
∂wij

= δjoi (3.1)

17
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∂E

∂bi
=

∂E

∂netj

∂netj
∂bi

= δj
∂netj
∂bi

= δj (3.2)

with:
E - the cross-entropy error.
netj - the input of neuron j.
wij - the weight of the connection from neuron i to j.
bi - the bias of the neuron i.
oi - the output of the neuron i.

Apparently, in order to compute the gradients, we should calculate both δ

and
∂netj
∂wij

(
∂netj
∂bi

)
. The key point of backpropagation algorithm is that δ can

be computed effectively, if we start computing δ from the output layer and
then propagate this value backwards by using chain rule.

As illustrated in chapter 2.2.4, we use the cross-entropy error for multi-class
classification task, and the gradient is:

∂E

∂neti
= −

C∑
j

∂tj log(oj)

∂neti

= − ti
oi

∂oi
∂neti

−
C∑
j 6=i

tj
oj

∂oj
∂neti

= − ti
oi
oi(1− oi)−

C∑
j 6=i

tj
oj

(−ojoj)

= −ti + tioi +
C∑
j 6=i

tjoi

= oi − ti (3.3)

For a neuron i on the output layer, we get δi = ∂E
∂neti

= oi − ti. Now, we
need to compute this value for neurons in the hidden layers. The idea is
that each hidden activity can affect many output units and can therefore have
many separate effects on the final cost, so all these effects must be combined.
Following this idea, we derive the rule:

δj =
∂oj
∂netj

∑
k

∂E

∂netk

∂netk
∂oj

= f ′(netj)
∑
k

δk
∂netk
∂oj

(3.4)

with:
f - the activation function.
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k - subsequent neuron of neuron j.
netj - the input of neuron j.
oi - the output of the neuron i.

In our work, ReLU function is used as the activation function. The derivative
is :

f ′(netj) =

{
0 for netj < 0
1 for netj ≥ 0

(3.5)

Now we only need to compute ∂netk
∂oj

. For convolutional layers, this is quite

straight forward to obtain: ∂netk
∂oj

= wjk. As for the pooling layers, we must

distinguish between average pooling and max pooling:

average pooling:
∂netk
∂oj

=
1

m
(m denotes the filter size) (3.6)

max pooling:
∂netk
∂oj

=

{
1 if oj = max(o)
0 otherwise

(3.7)

So far, all the components needed can be calculated by the backpropagation
algorithm effectively, and thus the gradients can be computed with a reasonable
computational burden.

3.2 Optimizer

In the previous section, we explain how to compute the gradients of the cross-
entropy error with respect to the parameters. The next step is to update the
parameters accordingly. Several different methods have been proposed to cope
with this task which are all based on gradient descent. In our experiment, we
apply the Stochastic Gradient Descent and Adaptive Moment Estima-
tion. We elaborate both approaches in section 3.2.1 and 3.2.2.

3.2.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is the simplest form of update to
change the parameters along the negative gradient direction. As an on-line
approach, SGD-Optimizer performs an update for each training sample,
thereby reducing the computational cost at every iteration, which is especially
effective for large-scale optimization problems.
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θt := θt−1 − α∇θE (3.8)

with:
θt - the value of parameter θ at time step t.
α - the learning rate.
∇θE - the gradient of the cost w.r.t. θ

One drawback of the SGD-optimizer is that it is tricky to set an appropriate
learning rate α. Setting this value too high can cause the algorithm to diverge,
because it overshoots the optimum at each each step, while setting learning
rate too low makes it slow to converge. In the following section, we will discuss
a method that adapts learning rate scale for different layers instead of hand
picking manually as in SGD.

3.2.2 Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) [KB14] computes individual
adaptive learning rates for different parameters from estimates of first and
second moments of the gradients. It is proved mathematically that this
algorithm naturally performs a form of step size (learning rate) annealing
and guarantees convergence. In practice, Adam-optimizer consistently
outperforms other methods and achieves the state-of-the-are performance.

The detailed algorithm is as follows:
The first step is to compute the gradient at timestep t:

gt = ∇θft(θt−1)

with:
gt - the gradient at timestep t.
∇θft - the derivative of the cost function w.r.t. θ at timestep t
θt−1 - the value of parameter θ at time step t− 1.

Then, Adam employs two variables m and v to denote the 1st and 2nd moment
vector, respectively. After computing the gradient at timestep t, the biased
first and second raw moment estimate is updated accordingly.

mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2t

with:
mt - the biased first moment estimate at timestep t.
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m is initialized as 0. m0 = 0
vt - the biased second raw moment estimate at timestep t.

v is initialized as 0. v0 = 0
g2t - the elementwise square of gt.
β1 - the exponential decay rates for the 1st moment.
β2 - the exponential decay rates for the 2nd moment.

And the bias-corrected moment estimates are computed based on the biased
moment estimates:

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

with:
m̂t - the bias-corrected first moment estimate at timestep t.
v̂t - the biased-corrected second raw moment estimate at timestep t.
βt - β to the power t.

Finally, the update rule for the parameter is:

θt = θt−1 − α ·
m̂t

(
√
v̂t + ε)

with:
α - the step size.
ε - the smoothing term which avoids division by zero.

This method has four hyperparameters, namely α, β1, β2 and ε. β1, β2 ∈ [0, 1)
and the recommended values are β1 = 0.9, β2 = 0.999.

3.3 Dropout

So far, we explained how to compute the gradient and how to update the
parameters accordingly. Although we can start training already, there remains
the potential to improve the performance. Dropout [SHK+14] is a simple and
effective regularization technique, which helps to prevent overfitting. The key
idea is to randomly drop some units during training, but keep all the neurons
during testing. This prevents neurons from co-adapting too much, and thus
performs well to avoid overfitting.
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3.4 Batch Normalization

Batch Normalization (BN) is another recently introduced technique and
is widely used in most modern network models. Ioffe et al. [IS15] noticed that
the distribution of each layer’s inputs changes during training, which makes
deep neural network extremely hard to train. They called this phenomenon
internal covariate shift, that the distribution of network activations changes
due to the change in network parameters during training. The key idea of
BN is to do normalization each scalar feature independently and make it
have the mean of zero and the variance of 1. The formal definition of this
normalization operation is as follows:

x̂k =
xk − E[xk]√
V ar[xk]

(3.9)

with:
x - the input vector x = (x1, ..., xd). This normalization will be done

for each dimension separately

However, simply normalizing each input of a layer might change what the layer
can represent. To address this problem, two additional variables γk and βk are
introduced, which scale and shift the normalized value:

yk = γkx̂k + βk (3.10)

These parameters are also learned along with the original model parameters,
and help to recover the original activation learned by the network.

The mathematic details will not be presented here. In short, BN mainly solve
the problem of gradient vanishing(explosion) and dramatically accelerate the
training in practice.

3.5 Data Preprocessing and Augmentation

In the previous sections, we introduce the mechanisms for training the
network. Now the last step before feeding data into the network and starting
training is to preprocess the data. There are three main reasons why we
should perform data preprocessing and augmentation. The first one is from
the practical aspect: the images in a dataset might have various sizes, but the
networks only accept input of a fixed size, hence the images should be resized
before being fed to the network. Another reason is that theoretically the input
data should be zero-centered and each dimension should have the standard
deviation. Intuitively, by doing this kind of normalization, we prevent the
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gradients from becoming too large and avoid data of each dimension have
markedly different scale. This way, we ensure that the objective function is
relatively easy to optimize, which means each update step is closed to the
right direction points to the optimum instead of oscillating between the saddle
points. Lastly, data augmentation decreases the chance of overfitting. The
commonly used operations are horizontally flipping, randomly scaling, color
distortion etc.

In our experiment, we performs cropping, rescaling, horizontally flipping,
color distortion and normalization. The details are listed as follows:

Crop and Resize

As our dataset PlantCLEF [GBJ16] contains plant images of various size, all
these input images should be rescaled to a certain size (224 × 224 × 3 for
Inception-V2 model, 299 × 299 × 3 for Inception-Resnet-V2 model). This is
the most important part of the data augmentation, since this step might lead
to information loss. In order to obtain better prediction results, we test two
different methods in our experiment.

The first method we test is to randomly select a small region of the input
image and then rescale this small pad to a fixed size. As a result, the shape of
the original object in the image might change, since the rescaling can change
the aspect ratio.

The other method is to define a size interval whose minimum is larger than
the input size of a network, at first. Then we rescale images to a randomly
selected size from that interval while preserving the aspect ratio. Afterwards,
we randomly crop a path of size 224× 224× 3 (229× 229× 3).

Color distortion

For color distortion, we distort the brightness, saturation and hue of the orig-
inal image by a small factor. Since the color of a plant is also a feature that
provide information, we also trained some models without doing color distor-
tion.

Normalization

All the images in our dataset are color image of type uint8, i.e. the value
interval is [0, 255]. We first change all the input images to type float and
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subtract 0.5 from the values and multiply them by 2. Therefore, the final
input values are in [−1, 1].



Chapter 4

Visualization

For fine-grained image classification, it is of significance to understand and
interpret the classification results generated by the CNN models. To address
this issue, we first applied Class Activation Map [ZKL+16](Chapter 4.1) and
Gradient-weighted Class Activation Map [SCD+16](Chapter 4.2) approach to
our finetuned Inception-V2 and Inception-Resnet-V2 models to localize the
important region of an input image for making prediction, and the corre-
sponding heatmaps are plotted. Subsequently, we use Guided Backpropagation
[SDBR14] (Chapter 4.4), which is an extension of Deconvolutional Network
[ZKTF10][ZF14] (Chapter 4.3), to capture high-resolution details learned by
the CNN model in higher layers. Finally, we combine these methods to find
the fine-grained details learned by the CNN models which greatly contribute
to the classification result.

4.1 Class Activation Map

A simple visualization technique called Class Activation Map proposed
in [ZKL+16] localizes the discriminative regions for a particular class by
using the localization ability of a global average pooling layer. The basic
idea follows from the fact that most of the CNN networks can retain their
remarkable localization ability until the final layer. By definition, global
average pooling outputs the spatial average of the feature map of each
unit at the last convolutional layer and subsequently, a weighted sum of
these values is calculated to generate the final output. Similarly, the Class
Activation Map (CAM) is defined as the weighted sum of the feature maps
of the last convolutional layer. It can be proved mathematically that
the CAM directly indicates the importance of the image regions and can
identify the discriminative image regions used by the CNN to make prediction.

25
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(a) The classification output

(b) The CAM of a correct classified image

Figure 4.1: The classification output given by Inception-V2 model and the
corresponding CAM of a corrected classified image of species Fabaceae Medicago
Iupulina L.Medicago. (a) The first line show the classId (label) and the species
name of the input image. The top-5 predictions and the output scores are
shown in the following lines. The left subfigure is the normalized input image
and the right one is the original image. (b) The important image region for
discrimination is highlighted.
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Given a neural network model with a global average pooling as the penultimate
layer, the score output Fk of this layer can be computed as:

Fk =
1

N

∑
x,y

fk(x, y) (4.1)

with:
N - the number of pixels in the feature map
fk(x, y) - the activation of k-th feature maps in the last convolutional

layer at spatial location (x, y)

Then, the input sc to softmax layer for a given class c is:

sc =
∑
k

wckFk

=
∑
k

wck ·
1

N

∑
x,y

fk(x, y)

=
1

N

∑
k

wck
∑
x,y

fk(x, y)

=
1

N

∑
x,y

∑
k

wck · fk(x, y)

=
1

N

∑
x,y

Mc(x, y) (4.2)

with:
wck - weight corresponding to class c for the k-th feature map
Mc - the class activation map for class c. And the spatial element at

location (x, y) is Mc(x, y) =
∑

k w
c
kfk(x, y).

Since the input to softmax sc is proportional to the sum of the class activation
map over all pixels, Mc(x, y) can be interpreted as the importance of the
activation at location (x, y) to classify the input image into the category c.
However, the computation is based on the usage of a global average pooling
layer. Thus, this method is restricted to the CNN network with a global
average pooling layer. In this thesis, Inception-V2 and Inception-Resnet-V2
models are used, both of which use the global average pooling before the final
softmax layer and thus CAM can be applied here.

4.2 Gradient-weighted Class Activation Map

Gradient-weighted Class Activation Map (Grad-CAM) proposed by Selvaraju
et al. [SCD+16] is a generalization of the CAM approach, and is applicable to
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a wide variety of CNN model-families. The basic idea is to use the gradient
information the last convolutional layer of the network to compute the class
discriminative localization map (Grad-CAM), which indicates the importance
of each neuron to make a prediction.

The procedure to calculate the Grad-CAM of width u and height v for class c
LcGrad−CAM ∈ Ru×v works as follows: First, the gradient of class score yc before
the final softmax layer with respect to feature maps Ak of a convolutional

layer
∂yc

∂Ak
are computed. Afterwards, these gradients flowing back are global

average-pooled to get the neuron importance weights αck.

αck =
1

Z

∑
i,j

∂yc

∂Akij
(4.3)

with:
yc - the score of class c before the final softmax layer
Z - the size of the pooling region
∂yc

∂Akij
- the gradient of the class score w.r.t. the k-th feature map Ak

at location (i, j)

Then the Grad-CAM is defined as the weighted combination of forward activa-
tion maps followed by a ReLU unit. A ReLU nonlinearity is used here because
only the features that have a positive influence (i.e. pixels whose intensity
should be increased in order to increase yc) on class c matter.

LcGrad−CAM = ReLU(
∑
k

αckA
k) (4.4)

4.3 Deconvolutional Networks

Deconvolutional Networks (deconvnet) [ZKTF10] proposed by Zeiler et al. in
2010 are currently widely used in Semantic Segmentation, Covolutional Sparse
Coding, CNN Visualization [ZF14], etc. Given a high-level feature map, the
deconvnet approach inverts the data flow of a CNN, going from neuron activa-
tions in the layer which we are interested in down to the input layer. If a single
neuron is non-zero in the high level feature map, then the reconstructed image
shows the part of the input image that is most strongly activating this neu-
ron, and hence represents the region that is most discriminative to this neuron.

Typically, a convolutional layer consists of three main portions (See Chapter
2), namely the convolution, max-pooling and a nonlinear activation function
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Figure 4.2: The top left part shows a deconvnet layer corresponding to a con-
vnet layer on the top right region. The bottom part illustrates the unpooling
operation in a deconvnet: ’switches’ record and store the location of the maxi-
mum in each pooling region during a forward pass. In the backward pass, the
values will be passed to the entries recorded in ’switches’. (The black and white
bars represent negative and positive activations respectively. [ZKTF10]
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(ReLU in this thesis). In order to obtain a reconstruction from a high layer to
the input layer, the reverse of these three operators should be defined explicitly.

In the deconvnet approach, the reversed process of convolution is simply a reg-
ular convolutional layer with its filters transposed. By applying these trans-
posed filters to the output of a convolutional layer, the input can be retrieved.
However, the reverse of a max-pooling operation is non-trivial, as data about
the non-maximum features can be lost. The paper describes a method named
’switches’ in which the positions of each maximum is recorded and saved dur-
ing forward pass, and when gradients are passed backwards, they are placed
where the maximums had originated from. Finally, to reverse the ReLU unit
is the easiest. All we need to do is to pass the data through a ReLU again
when propagating backwards.

4.4 Guided Backpropagation

An alternative method called Guided Backpropagation [SDBR14] visualizes
the part of an image that most activates a given neuron by computing the
gradient of the class score with respect to the input image activation with
respect to the input image. As a gradient-based method, it is indeed a
generalization of deconvolution network (deconvnet) and these two methods
differ mainly in the way they handle backpropagation through the rectified
linear (ReLU) nonlinearity. The relation between gradient-based visualization
approach and deconvolution network is discussed in [SVZ13].

Both guided backpropagation and deconvnet perform a simple backward
pass of the activation of a single neuron after a forward pass through the
network. They are equivalent to a normal backward pass, except that when
propagating through a ReLU nonlinear function. As illustrated in Figure
4.3, deconvnet computes the gradient merely based on the gradient signal
coming from the higher layer and pass a 0 to the lower layer for the negative
entries, whereas the normal backpropagation only propagates the gradient if
the corresponding entries in the lower layer is non-negative. (See section 3.1
for detailed explanation)

Guided Backpropagation is a combination of deconvnet and backpropagation:
Once at least one of the values from the lower layer and from the higher layer
is negative, this value will be masked out and stop flowing back. This process
gets its name since it adds an additional guidance signal from the higher
layers to usual backpropagation, which prevents the backward flow of negative
gradients. Therefore, the gradient signals only pass through the neurons
which increase the activation of the higher layer unit we aim to visualize, and
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Figure 4.3: a) In order to obtain a reconstruction of a given input image, a
forward pass should be performed at first. Subsequently, only the value of one
entry which we are interested in will be kept and all other values will be set to
zero. After propagating back to the input layer, the result is the reconstruction
of the given input. b) A comparison of different methods for propagating back
through a ReLU nonlinear function. c) Formal definition of different methods for
propagating an activation back through a ReLU function at layer l; [SDBR14]

thus the image region which contributes to the discrimination can be shown
in the reconstruction.

In conclusion, both the deconvnet approach and guided backpropagation com-
pute an imputed version of the normal gradient. In practice, guided back-
propagation generated a better visualization result since it is in general more
robust than the deconvnet approach.
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Chapter 5

Evaluation

In this chapter, we present the results of our CNN models on plant image
classification task. First, we provide a brief introduction of the PlantClEF
dataset in section 5.1. Next, we evaluate our models on the test dataset using
two measures: the top-1 accuracy and top-5 accuracy, and outline the results
generated by different data preprocessing methods in section 5.2. Finally,
we interpret our CNN models by using visualization approaches described in
chapter 4.

5.1 Dataset

PlantCLEF 2015 [GBJ16] dataset contains 113205 RGB pictures belonging
each to one of the 7 types of view (Branch, Fruit, Stem, Leaf, Leaf-Scan,
Flower, Entire) reported into the meta-data, in a xml file with explicit tags.
The whole dataset is divided into a training set and a test set.

The training data finally results in 27907 plant observations illustrated by
91759 images with complete xml files associated to them.

The test dataset contains 21446 images with purged xml files, i.e some infor-
mation is missing.

5.2 Classification Results

In the testing stage, we evaluated our fine-tuned Inception-V2 and Inception-
Resnet-V2 models using the top-1-accuracy and top-5-accuracy metric. Top-1
accuracy refers to the proportion of correctly classified images, and the top-5
accuracy is computed as the proportion of images such that the ground-truth

33
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category is one of the top-5 predicted categories.

We used the training set of PlantCLEF 2015 for fine-tuning the pre-trained
Inception-V2 and Inception-Resnet-V2 models. The training parameters are
set as following: learning rate=0.001, batch size=32, the dropout keep proba-
bility=0.8, the input size is 224× 224× 3 for Inception-V2 and 299× 299× 3
for Inception-Resnet-V2 model (The third dimension corresponds to the RGB
channels). Besides, we took 20% of the training data as the validation set and
tested our model on the validation set to see how the validation error changed
as the learning processed.

network data preprocessing optimizer top-1 (%) top-5 (%)

Inception-V2 method A Adam 49.32 72.08
Inception-V2 method B Adam 52.05 74.03
Inception-V2 method C Adam 50.05 72.53
Inception-V2 method B SGD 58.54 80.07

Inception-Res-V2 method A Adam 56.03 76.99
Inception-Res-V2 method B Adam 55.84 77.50
Inception-Res-V2 method C Adam 55.54 76.72
Inception-Res-V2 method B SGD 65.05 84.57

Table 5.1: classification results on the PlantCLEF 2015 test dataset.

In order to improve the performance, we tried three different combinations
of data augmentation methods during training, which are described in chap-
ter 3.5. We named them method A,B,C and the precise details are listed here:

• method A: Randomly select a small region of the input image and then
rescale this small pad to a fixed size.(This might change the aspect ratio
of the original object.) Then we normalized the input image, so the input
data values are in the interval [−1, 1]. (See chapter 3.5 for more details.)

• method B: The cropping and rescaling are identical to method A. But
now, the input image can randomly be horizontally flipped and subtle
color distortions, e.g. change of the brightness,contrast,hue and satura-
tion, are applied. Finally, the input data is normalized as described in
method A.

• method C: We first defined the size interval, which is [256, 512] for
Inception-V2 and [320, 512] for Inception-Resnet-V2. Then we rescaled
the input image so that the smallest side of the image is equal to a
randomly selected number from that interval while preserving the aspect
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ratio. Afterwards, we randomly cropped a small part from the resized
image. The final normalization is identical to method A and B.

During testing, we used a preprocessing approach similar to method C. First,
we rescaled the image to a certain size while preserving the original aspect
ratio. Then, we performed central cropping and fed the center part into the
network.

(a) training accuracy (b) training loss

Figure 5.1: (a): The accuracy (in %) of the input training batch during the
training is present. Form top to bottom: the purple line - Inception-Resnet-
V2 model using Adam optimizer; the greenyellow line - Inception-V2 modle
using Adam optimizer; the orange line-Inception-Resnet-V2 model using SGD
optimizer; the dark red line- Inception-V2 model using SGD optimizer. (SGD-
optimizer took much longer to converge, we only plot the first 240,000 iterations
here.) (b): the cross entropy loss of the training batch.

As shown in Table 5.1, the data preprocessing methods exerted an influence
on the final prediction accuracy. In general, the model achieved a higher
accuracy when color distortion was performed, but the effect of preserving
the original aspect ratio is hard to assess. Besides, we noticed that the
Inception-Resnet-V2 model always achieved better results when compared
with Inception-V2. It is quite straightforward since the network architecture
of the Inception-Resnet-V2 model is much more complicated and can extract
more information intuitively. However, one iteration took a longer time for
Inception-Resnet-V2 and the training process required more time in total.

In our experiments, we also tested both the SGD and Adam optimizer.
We noticed that both network models required much more iterations to
converge when using SGD optimizer, but the SGD outperformed the Adam
optimizer in terms of the prediction accuracy on the test dataset, i.e. the
models trained by using SGD optimizer generalize much better. This is an
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(a) validation accuracy (b) validation loss

Figure 5.2: (a): The accuracy (in %) of the validation set during the training is
present. Form top to bottom: the green line - Inception-Resnet-V2 model using
Adam optimizer; the yellow line - Inception-V2 modle using Adam optimizer;
the dark red line-Inception-Resnet-V2 model using SGD optimizer; the purple
line- Inception-V2 model using SGD optimizer. (SGD-optimizer took much
longer to converge, we only plot the first 240,000 iterations here.) (b): The loss
on the input batch of the validation set.

interesting phenomenon because intuitively Adam should be better than
SGD optimizer. Figure 5.1 shows the training curve of Inception-V2 and
Inception-Resnet-V2 networks. Figure 5.2 presents the validation accuracy
and loss during training. And the classification outputs, i.e. the ground-truth
category, the top-5 predicted categories and the corresponding prediction
scores, are visualized in Figure 5.3(a).

As for the technical details, our implementation is based on the publicly
available tensorflow-slim toolbox [GS]. The training is performed on a sin-
gle NVIDIA TITAN X GPU with 12 GB memory.

5.3 Visualizing models

In this section, we applied the network visualization approaches introduced in
chapter 4 on our fine-trained models.

In our experiment, we first applied the class activation map algorithm on our
fine-tuned models to generated the CAM (Chapter 4.1) for the ground-truth
category and the top-1 prediction, respectively. Figure 5.3 demonstrates an
example generated by Inception-V2 model. In this example, the model did
not make a correct prediction, but the ground-truth category is inside the
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(a) The classification output

(b) CAM for the ground-truth
category

(c) CAM for the first prediction

Figure 5.3: (a): The classification results given by a fine-tuned Inception-V2
model. The top-5 predictions and the ground-truth category are shown on the
top. The first line refers to the true classId and the species name of the input
image. The top-5 predictions are sorted according to the prediction scores and
are shown in the following lines. The left image is the normalized input which is
fed to the network. The right image is the original input image directly rescaled
to 224 × 224. (b): CAM for the ground-truth category. The discriminative
region are highlighted in the image. (c): CAM for the top-1 prediction, whose
classId and the species name of the top-1 prediction are shown above the image.
The discriminative region are highlighted. Notice that the CAM differs for
different class.
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top-5 predicted categories. Figure 5.3(b) and 5.3(c) show the regions which
are important for the model to predict the input image as of a certain class.
When comparing the CAM in 5.3(b) and 5.3(c), we notice that the strongly
activated regions differ when making different decision, which means the
important regions are not the same for different categories. But the strongest
response is still inside the leaf object in the input image, which makes sense
intuitively.

Figure 5.4 shows some examples of CAMs and the original plant images of
the PlantCLEF 2015 test dataset. All these images are correctly classified
by the Inception-Resnet-V2 model. As shown in the figure, the highlighted
regions, i.e. the discriminative image regions used for categorization, in gen-
eral approximate the extent of important plant organ objects in images, e.g.
the fruit,leaf and flower, and the backgrounds are not or only slightly activated.

As for fine-grained classification, it is necessary not only to localize the
important regions but also identify the fine-grained details in the images
which contribute to categorizing. To address this problem, we apply the
guided backpropagation algorithm [SDBR14] (chapter 4.3) to our fine-tuned
models to find high-resolution fine-grained details learned by our networks.
Then we apply the Gradient CAM approach [SCD+16] (chapter 4.2), which
is also a localization technique similar to CAM, to our network models. At
the end we combined Grad-CAM and guided backpropagation approaches
to visualize the high resolution details used by the CNN models to make
predictions. (See Figure 5.5)

As illustrated by Figure 5.5, our model successfully localized the region where
there exist a plant organ object, although no supervision on the location of
the object was provided. In our examples, our fine-tuned Inception-Resnet-V2
model recognized the flowers and leaves in the input images and ignored the
background. Besides, our model captured the fine-grained features which are
intuitively important for classifying the plant images correctly, in this case,
the contour of the flower petals and the leaf veins.

We also investigated how the features evolve when the network go deeper. To
do this, we first fed an input image into our fine-tuned network model and let it
perform a forward pass. Subsequently, we used guided backpropagation to pass
the gradient information down to pixel space.(See chapter 4.4 for more details.)
This way, we obtained the strongest activation for a given feature map of each
layer. When projecting down to the input layer, this strongest activation get
displayed and the visualization corresponds to the detailed features captured
by different network layers. As shown in Figure 5.6, the first convolutional
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: The input images and the CAMs for correctly predicted plant
images. The red regions are the class discriminative regions. (a): a flower of
species Orchidaceae Epipactis atrorubens (Hoffm.) Besser Epipactis with classId
6448. (b): a flower of species Fabaceae Anthyllis vulneraria L. Anthyllis with
classId 8629. (c): a flower of species Colchicaceae Colchicum autumnale L.
Colchicum with classId 6293. (d): the stems of species Asteraceae Taraxacum
officinale F.H.Wigg. Taraxacum with classId 29903. (e): the fruit of species
Oleaceae Olea europaea L. Olea with classId 3956. (f): the leaves of species
Apiaceae Heracleum sphondylium L. Heracleum with classId 187.
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(a) Input image (b) Grad-CAM (c) Guided BP (d) guided Grad-CAM

(e) Input image (f) Grad-CAM (g) Guided BP (h) guided Grad-CAM

(i) Input image (j) Grad-CAM (k) Guided BP (l) guided Grad-CAM

Figure 5.5: (a)(e)(i): the unnormalized resized input image; (b)(f)(j): The
Gradient Class Activation Maps are shown by Heat maps. The redder the
area, the more important the region for the prediction is; (c)(g)(k): Guided
backpropagation visualizes the detailed features captured by the last convolu-
tional layer which contribute to the classification (The contrast is artificially
enhanced); (d)(h)(l): Combining Grad-CAM and Guided BP gives Guided
Grad-CAM, which displays high resolution features that are important for clas-
sifying the plant species in the input image; 1st row: Species name: Malvaceae
Althaea officinalis L. Althaea(ClassId: 3806); 2nd row: Species name: Primu-
laceae Primula vulgaris Huds. Primula(ClassId: 4353); 3rd row: Species name:
Amaryllidaceae Narcissus tazetta L. Narcissus(ClassId: 5824)
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(a) Input image (b) conv1a (c) conv2a

(d) conv2b (e) conv3b (f) maxpool5a

(g) mix7a (h) conv7b (i) guided Grad-CAM

Figure 5.6: Visualization of features captured by different layers of fine-tuned
Inception-Resnet-V2 model using guided backpropagation. From (a) to (h), as
the layer becomes higher, the feature is more discriminative. In this example,
the last convolutional layer, i.e. conv7b in (h), capture the contour and the
texture of the fruit. (i): The bright region shows the detailed feature which is
the most important for making prediction. This image show a fruit of speices
Moraceae Ficus carica L. Ficus(ClassId: 30126)
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layer 5.6(b) roughly recognizes all the edges in the original input image. As
the layer becomes higher, some background information is ignored and the last
convolutional layer extracts the contour and the texture of the fruit object. The
fine-grained features which are most discriminative, i.e. most important for
distinguishing between different species, are displayed in the bright region in
Figure 5.6(i).



Chapter 6

Discussion and Conclusion

6.1 Discussion

Our main goal is to classify similar images containing plant organs into
different categories of plant species with deep convolutional neural network.
The PlantCLEF task is comparable with the Imagenet challenge since both
datasets contain 1000 classes of objects. But the fine-grained plant image
classification task is even harder because of the large within-class variance
and the small between-class variance, e.g. leaves of different species can be
extremely similar and only have subtle differences but images of the same
category might contain different plant organs which are clearly different. So
far, the deep CNN have achieved the best performance on this task regarding
the classification accuracy. Therefore, we adopted deep CNN models for this
fine-grained classification challenge.

Instead of training a network model from scratch, we use the pre-trained CNN
models and fine-tune them on our dataset. There are two reasons why we
followed this simple fine-tune strategy: First, the computational cost is huge
and it is almost infeasible for us to train from scratch since we only possess one
GPU with limited memory (12 GB) and it will take too long to converge. The
second reason is that the lower layer features are always simple and similar for
different dataset and thus can be shared. But it is more likely that the model
is trapped into local minimum if trained from scratch due to bad initialization.

Considering the aforementioned reasons, we fine-tuned two different CNN
models pre-trained on ImageNet, namely Inception-V2 [IS15] and Inception-
Resnet-V2 [SIVA16], which are modified versions of the original Google-net
architecture [SLJ+14]. The basic component of both these network models
are called Inception-module which is design based on the idea of multiscaled
features mentioned in [LCY13]. Each Inception-module contains small filters
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of different size to capture features of different scaled and all these features are
then combined by performing a filter concatenation at the end of each module.
Small filters are used in order to reduce the number of model parameters, and
in particular, a 1× 1 filter is used to reduce the dimension of input data while
increase nonlinearity at the same time. Both of them performs well on the
ImageNet dataset, i.e. Inception-V2 achieves a 73.9% top-1 accuracy while
Inception-Resnet-V2 obtains a 80.4%. For our PlantCLEF 2015 dataset,
both of these models approximately achieve 100% accuracy during training
and the best Inception-Resnet-V2 model achieved 65.05% top-1 accuracy,
84.57% top-5 accuracy and the best Inception-V2 model generated 58.54%
top-1 and 80.07% top-5 accuracy. These results are worse than that on the
ImageNet dataset mainly because of the higher intra-class variance of our
dataset. Since each category contains images of different plant organs, which
means clearly different input images might be of the same class, it is hard for
the last fully connected layer in our models to learn appropriate weights, i.e.
the models can hardly find a good feature combination which best represents
each category. Thus, the classification performance might be improved, if
we modify the existing network architecture to allow different combinations
of high level features when making prediction. Since there is no promising
solution to this problem so far, there remains a lot to do for further research.

We also noticed that different data-preprocessing methods affected the test
results to some degree but are not the decisive factor. And it is hard to
determine which method works best because of the variance during training.
In general, using color distortion during training improved the network
performance. The reason might be that color distortion has the effect of
preventing overfitting. In addtion, we found that resizing the image while
preserving the aspect ratio always worked better when doing evaluation on
the test dataset, and it increased the accuracy by around 2%.

Besides, we investigated two different approaches while performing parameter
update, namely the SGD and the Adam [KB14]. The SGD is the simplest
gradient descent algorithm but performed surprisingly well on our test
dataset. Although it took much longer to converge (Inception-Resnet-V2
needed 240000 iterations, while Inception-V2 required approximately 450000
iterations.) and the training accuracy was relatively low when using SGD-
optimizer, the model generalized much better than Adam-optimizer. However,
the Adam-optimizer, as shown in our learning curve (Figure 5.1), greatly
accelerated the training process by computing individual adaptive learning
rates for different parameters. It might be an interesting further topic to
understand the behaviors of different optimizers and improve them.
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As mentioned in Chapter 1, it is of significance to understand how deep
CNN models distinguish different plant species. Specifically, for fine-grained
image classification it is necessary to ensure that our models indeed learn
the most discriminant features for each category and ignore the irrelevant
background correctly. Otherwise they are not reliable and can result in a
large test error when generalized to different test dataset. To tackle this
issue, we employed different visualization approaches to interpret how CNN
model making predictions. As shown in Figure 5.4 and 5.5(b)(f)(j), CAM
and Grad-CAM localize the class-discriminative regions of the input images.
And our fine-tuned model recognized the plant objects even though there are
no location information provided. From this fact we deduce that our model
learned to localize the important target objects, e.g. flowers and leaves, at
first, and learned the fine-grained details next during the training.

In our next step, we utilized Guided Backpropagation [SDBR14] to visualize
the high resolution features captured by the last convolutional layer of our
CNN models. And the results are plotted in Figure 5.5(c)(g)(k), which shows
the contour of the flowers and the leaves vein in our examples. After combining
the Guided Backpropagation with the Grad-CAM methods, we obtain our
results shown in Figure 5.5(d)(h)(l). Actually, we obtained the results we
expected, i.e. the model looked at the most discriminative fine-grained details
(e.g. the flower petal shape, the leaves shape etc.) when making prediction.
This provided us inspiration that it might be helpful if we can extract these
details and can train the network to select different features when receiving
input images contain different types of plant organs.

In Figure 5.6, we investigated the evolution of features when the layers go
higher. In this example, the contour of the fruit become clearer from the
lowest layer to the highest layer. And at the last convolutional layer, only the
center part which included the fruit object are activated and the background
are ignored. When we applied this procedure for other images which contains
the same plant species but different plant organs, we found that in lower layers,
the pixels which contain edge information are strongly activated. As the layer
becomes higher, the intuitively most discriminative part of the input image,
e.g. the leaves, flowers and fruits, have intenser response. This indicates that
networks are able to learn the discriminative features of a plant species no
matter which kind of plant organ is provided, which means the network models
inherently have the generalization capability to some extent. It might be an
interesting topic for further research to understand how much generalization
capability each model has, where this ability comes from and how to im-
prove the model architecture design in order to reduce the generalization error.
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6.2 Conclusion

In this thesis, we tackle the fine-grained plant image classification task by
fine-tuning pre-trained Inception-V2 [IS15] and Inception-Resnet-V2 [SIVA16]
models on the PlantCLEF 2015 dataset [GBJ16]. Furthermore, we investigate
different data-processing methods and evaluate the model performance on the
PlantCLEF test dataset and show our best model yield an acceptable result
(65.05% top-1 and 84.57% top-5 accuracy). Finally, we employ the visualiza-
tion techniques including CAM [ZKL+16], Grad-CAM [SCD+16], Guided BP
[SDBR14] and combine them to illustrate that our fine-tuned models learned
the discriminative features of each species and used them for categorizing.
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Studiengang als Prüfungsleistung vorgelegt.

Ort, Datum Unterschrift
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