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Abstract

To know how anything is processed in the brain, it is crucial to know, which
format information is held in. Incoming sensory data need to be transformed
to make processing more e�cient: Some redundancies are needed, some only
cost capacity. Sparse coding proved itself valuable, as it minimizes energy
cost while retaining many useful features of the environment. It has been
broadly investigated in many areas, however depth perception remains nearly
untouched.
This work shows that a suitable representation of natural images, allows
inference of depth at di�erent orders of complexity. For that reason a binoc-
ular observer is simulated to generate a dataset of half-image pairs, based on
textured surfaces, manipulated in space. A Sparse Convolutional Arti�cial
Neural Network transforms these stimuli to a sparse stereo-representation.
Even through rudimentary methods, employing no prior knowledge of net-
work architecture or quality of stimuli, manipulation parameters of depth
could be inferred up to a certain point. This corroborates, that the sparse
coding approach is a viable model for sensory information representation.
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Chapter 1

Introduction

Seeing something seems simple, at �rst glance. We just know that an object
is rounded or green or even an object. It is obvious, that something lies before
something else or that the facade of a house lays slanted before us. There are
powers at work, that lie beyond our consciousness, covert to introspection.
But somehow we can infer a wide spectrum of features about our environment
- simply from patterns of bouncing light, hitting our eyes.

This work focuses on one of these features, namely depth, which is all so
needed in our daily lives. But the seemingly trivial statement The distance

to the hill is about x meters, requires some not so trivial computation.

Visual Depth Processing in the Primate Brain

If you close one eye, you are still able to put the above-mentioned hill into
perspective. In fact there are plenty ofmonocular depth cues, such as Motion
parallax (Ferris, 1972) or shading (Lipton, 1982). Yet, other tasks become
harder, for example touching the left tip of the index �nger with the right
tip of the index �nger, right before your eyes. Some information is lacking
for a vivid impression of depth - information, that your second eye provides.

Depth from Stereo

The fact, that the eyes are horizontally separated, leads to two di�erent
perspectives on the environment around you. Each eye has its own 2D-
projection of the world on its retina. The di�erences between the so-called
half-images are termed disparities and used as strong binocular cues (Parker,
2007).

To understand this concept of Stereopsis, one has to imagine the two eyes
having exactly the same retinae. Every location on one retina has a re-
spective counter-location on the other. When a primate focuses an arbitrary
point in space, the eyes move in an opposing, inward, but symmetric fashion.

1



1.1 Visual Depth Processing in the Primate Brain

The focus point is brought to the middle of both the foveas (called vergence
shift (Pierrot-Deseilligny et al., 2004)). By de�nition, the two retinal images
have no di�erences in this focus point, ergo no disparity. Around the focus
point, every single point from the environment projects on di�erent locations
on the retinae (respective to the fovea). By integrating the two half-images,
a pattern of disparities arises. One can think of a depth-map. But still one
problem remains: how does the brain establish, which points on the reti-
nae correspond to the same point in the environment. This correspondence
problem will be adressed later.

Indeed physiological evidence from macaque monkeys shows that, as soon
as the half-image information is integrated, disparity-sensitive, binocular
neurons can be found (in V1 (Kandel et al., 2000) for Absolute Disparity
(Kruger et al., 2013), in V2 for Relative Disparity, as well as V4 and V5
(Parker, 2007)). As for this work, the macaque monkey brain holds as an
animal model, as it was shown to achieve similar thresholds for 3D-object
discrimination and detection in psychophysical paradigms, as humans do
(Janssen et al., 2003; Verhoef et al., 2010; Orban, 2011).

Absolute and Relative Disparity

The mathematical de�nition of disparity should be readily describable. How-
ever it has some easy-to interchange terms, that might lead to confusion.

Parker (2007) for example, distinguishes between absolute disparity:

Focus on a point P in space. The projection of P falls along the optical
axes onto the fovea. Consider a second point Q. It projects onto di�erent
locations on the retinae. The absolute disparity of Q is de�ned as the angular
di�erence of Qs projections with respect to the fovea.

and relative disparity: the di�erence of the absolute disparities of two points.

Figure 1.1 subsumes the confusion. While the absolute disparity ofQ is α−β,
the relative disparity of Q in respect to P is also α − β. However, if one
would focus on another point than P , absolute and relative disparity would
di�er. As Mallot (2000) (p. 129) points out, the relative disparity can also
be calculated as the di�erence between the angles at P and Q, irrespective
of focus point.

Hence, absolute disparity (with sensitive neurons in V1) establishes a refer-
ence system in respect to the fovea - it moves, as the gaze moves. Human
stereopsis on the contrary seems to rely on relative disparity (with sensi-
tive neurons in V2) (Parker, 2007)). This appears plausible, since only with
the help of relative disparities one can start to put di�erent objects into
depth-context and infer the 3D-shape (Kruger et al., 2013).

2



1.2 Building Images from Scratch

Figure 1.1: Eyes focusing at point P . P projects onto the middle of the fovea in
both eyes. Qs projection on the contrary, is on di�erent locations on the retinae.
The di�erent locations of the red lines are incorporated by α and β. (Figure from:
Parker (2007), p. 381)

Building Images from Scratch

Still, it is not enough to know, what brain region is sensitive to which infor-
mation. It is also crucial to know, which format it might be held in. The
retinal receptors receive a constant bombardment of photons, resulting in a
mass of data, which can neither be fully transported via the optic nerve, nor
fully processed (Zhaoping, 2006). Thus, the information needs to be held
in a format, which appropriately minimizes redundancies, while maximiz-
ing brain resources (Simoncelli, 2003). There surely are data compression
methods, like the JPEG-algorithm, that can compress images up to 20 fold,
without noticable information loss (Zhaoping, 2006), but this must not mean,
the brain applies similar mechanisms.

Therefore, Barlow (1961) proposed the hypothesis of e�cient coding, sparsely
broken down to: the code (or format) in which the brain holds information,
should be adapted to stimuli from the individual's environment. The code
should minimize action potential (e�cient), but retain all useful information
for stimulus processing. On the one hand side, this corroborates an evolu-
tionary approach, on the other hand (in terms of vision), it breaks down
the possible image-space to a clearly de�ned subset of images, which indeed
show speci�c statistical properties, to be exploited: so-called natural images.

Olshausen & Field (1996) proposed a promising algorithm which gives rise
to such an e�cient code. Not only do the code's atoms (Fig. 1.2) re�ect

3



1.2 Building Images from Scratch

some of the characteristics of mammalian simple cells of the visual cortex:
they are spatially localized, oriented and bandpass (Hubel & Wiesel, 1968;
Olshausen & Field, 1996), they also emerge from a set of simple rules.

Basis Functions, Gabor Filters and Kernels

To grasp the algorithm's concept, one has to make the basic assumption, that
an image I can be represented by a linear combination of basis functions Φi:

I =
∑
i

aiΦi (1.1)

The set of these functions (termed dictionary) should enable a reconstruction
of every image in the set of natural images and thusly forms a complete code
(Olshausen & Field, 1996). There are many methods of achieving such codes,
for example Principle Component Analysis (PCA). Yet, the resulting basis
functions of most methods do not resemble any physiologically con�rmed
properties . This stems from the fact, that natural images mainly show
higher-order statistical dependencies, that can't be accounted for by (in the
case of PCA) linear decorrelation (Olshausen & Field, 1996). Natural images
show highly non-gaussian behaviors (Ruderman & Bialek, 1994).
The resulting basis functions from Figure 1.2 on the contrary, capture the
quality of simple cell receptive �elds. They seem to resemble 2D Gabor �l-
ters, which are known to be a model for neurons from V1 (Jones & Palmer,
1987). Gabor �lters are sine/cosine functions enveloped by a Gauss fun-
tion, where positive sine/cosine parts resemble the excitatory ON-region of
a receptive �eld, while negative parts resemble the inhibitory OFF-region.
The basis functions can also be interpreted as (convolutional) kernels, known
from image processing, where they act as edge or feature detectors Mallot
(2000), p.78-93). This latter fact will be revised in section 1.4.

Sparseness

What distinguishes the method of obtaining Gabor-shaped basis functions
(Olshausen & Field, 1996), from simple PCA-like methods, is the introduc-
tion of sparseness. Not only should an image be reconstructed well, it should
be reconstructed well, by as few basis functions, as possible: Most activa-
tion weights ai from equation 1.1 should equal to zero (for one image). This
creates a trade-o� between goodness of reconstruction

[preserve information] = −
∑

|Images|

[I −
∑
i

aiΦi]
2 (1.2)

and sparseness of the code

[sparseness of ai] = −
∑
i

S(
ai
σ

) (1.3)

4



1.2 Building Images from Scratch

Figure 1.2: 192 basis functions. The shape of the functions resemble Gabor �lter-
like structure. If an edge-like feature from an image patch falls into the white
edge-like area of one �lter, the �lter enhances the edge-structure, while inhibiting
the adjacent parallel parts (that fall on the black �lter-parts). This dictionary was
obtained by training of 16×16-pixel patches from ten 512×512-pixel natural images
(Figure from: Olshausen & Field (1996), p. 609).

which is to be minimized:

E = −[preserve information]− λ[sparseness of ai] (1.4)

Here S(x) is a function, that weights the sparseness. The worse a reconstruc-
tion from 1.2 or the more ai are active in 1.3, the bigger resulting values from
equation 1.4 become. λ is a trade-o� factor, which modulates how much spar-
sity is taken into account for minimization. Elements from a sparse activition
weights vector A then follow a zero-peaked LaPlace distribution, with most
ai inactive for speci�c image reconstructions.
Finding a solution for the minimum of E, results in the optimal sparse code.

5



1.3 Sparse Codes for Stereo Stimuli

Sparse Codes for Stereo Stimuli

One crucial property of early vision remains uncaptured by the above men-
tioned sparse codes: sensitivity to disparity (1.1). Ensuing from binocular
vision, Lundquist et al. (2016) presented an approach, how the minimization
problem in equation 1.4 could be extended, giving rise to binocular basis
functions, seen in Figure 1.3. A binocular disparity neuron should then
have di�erent receptive �elds, one for each eye. The two receptive �elds are
slightly shifted (in position or phase), making the binocular neuron sensitive
to the feature encoded by its Gabor at a given disparity (de�ned by the shift
and/or phase).

Figure 1.3: Four basis function pairs. One pair mirrors the two receptive �elds
of one binocular neuron. The pair on the upper left shows shift in posistion, the
pair on the lower right shows shift in phase.

Therefore, now two images, namely the half-images from each eyes's retina,
should be reconstructed as good as possible, while sharing the same activa-
tion weights vector.

E =
1

2

(
‖G(IL,Φl, A)‖22 + ‖G(IR,Φr, A)‖22

)
+ λ ‖A‖p (1.5)

with

G(I,Φ, A) = I −
∑
i

aiφi (1.6)

Here the function G() captures the residual from equation 1.2. In addition,
the elements from Φ should not only compete in encoding of single inde-
pendent image patches (as in conventional sparse coding (Lundquist et al.,
2016)), they should locally compete for more patches.
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1.4 Convolutional Networks and Overcompleteness

Convolutional Networks and Overcompleteness

For this matter, the basis functions - now in light of image convolutions,
interpreted as convolutional kernels - are replicated over the whole image.
One can imagine to overlap a kernel with size of r× r-pixel over a r× r-pixel
patch of the image (see bottom-side of Figure 1.4). The value of the mid
point of the image patch is then summed with the weightened (weightening
according to kernel values) values of its neighbours. Information is accord-
ingly condensed from a r×r-pixel patch to a single pixel value. The kernel is
then translated by a stride of px pixel in x direction or py pixel in y direction
(replication), so that the whole image is covered. Edge e�ects should be
considered, as the kernel is overlapping corners or edge points of the image.

r speci�es how much of the neighboring area should be taken into account
for one resulting pixel value. If the stride p < r, the to-be convoluted image
patches overlap after translating a kernel, meaning that two adjacent result
pixel values share information from the original image.

An M × N -pixel image, convoluted with a kernel f at stride px = py = s,
then results in a layer of Ms ×

N
s pixel and consecutively, in M

s ×
N
s replications

of f . One such layer is then called a feature map z. Repeating this procedure
with all kernels (basis functions) contained in Φ results in |Φ| feature maps.
Note that the resulting size of z is independent of the size of f .

In this way the convolution can be inverted. The inversion reframes the
mathematical problem of image reconstructions through sparse codes: De-
convolutional networks (Zeiler et al., 2010) approximate images with the aid
of feature maps zj :

IL,R ≈
J∑
j

fL,Rj ∗ zj (1.7)

fL,Rj are binocular basis functions (1.3) from a dictionary of size J . The zj
incorporate the sparse activation weights, retaining spacial organization and
independent of L or R. Finding the minimum of the extended (from 1.5)
energy function:

E =
1

2

(
‖D(IL,ΦL, Z)‖22 + ‖D(IR,ΦR, Z)‖22

)
+ C(z) (1.8)

7



1.5 Di�erent Orders of Depth

with

D(I,Φ, Z) = I −
J∑
j

Φj ∗ zj residual

C(z) =
J∑
j=1

Cλ(Zn) sparsity term

Cλ(a) =

{
λ, if |a| ≥ λ
0, else

cost function

yields a layer in form of a (Mpy ×
N
px

)× J matrix (see Figure 1.4), resembling

a model for V1 ((Schultz et al., 2014)). Every element can be interpreted as
a neuron with a Gabor-like receptive �eld (depending on which feature map,
the neuron is located in) for image feature encoding and disparity sensitivity
through binocularity (Lundquist et al., 2016).
The dictionary size K = M

py
× N

px
× J was disregarded so far, although it has

an impact on the shape of the basis functions.
As there is only one possible linear combination of dictionary elements, ap-
proximating (arbitrarily well, depending on the chosen norm) any image, the
dictionary is called complete. If an element is removed from the dictionary
and it is still possible to approximate any image, such a dictionary is called
overcomplete (Heil, 2010).
In case of image reconstruction it is possible to compute the order of overcom-
pleteness in form of the overcompleteness factor (for stride px = py = s 6= 1):

overcompleteness factor =
J

s2 × 2
(1.9)

According to Schultz et al. (2014) basis functions start to look less like Gabor
�lters, as the overcompleteness factor becomes bigger. Because more dictio-
nary elements are availible, more unconventional features can be encoded by
basis functions, giving rise to, amongst others, end stopping �lters, similarly
found in V1 (Pack et al., 2003).

Di�erent Orders of Depth

With the aid of the V1 model, one could infer a manifold of information
about the image. The population of neurons sensitive to disparity, can again
show many forms of statistical dependencies, re�ecting the depth structure
of the image. Disparity patterns, however, are not repetitious or constant
across the whole �eld of view. Fronto-parallel planes, slanted or tilted objects
and curved structures all give rise to speci�c, discernible disparity-behavior
along their surface. Because of this, depth-structures can be categorized into
orders of depth.
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1.5 Di�erent Orders of Depth

Figure 1.4: The blue point depicts a binocular neuron with two shifted receptive
�elds. Each receptive �eld congregates information from a r×r pixel patch, through
convolution. The blue point then integrates the two responses into the value of one
voxel. The red arrows depict the stride px in x-direction. Their value determines
the width of the upper layer N

px
. Similarly a stride in y-direction determines the

height Mpy . The whole green column from the upper V1 layer holds information from

the green points in the two half-images. The Figure was adapted from (Schultz et
al., 2014; Lundquist et al., 2016)

The zeroth depth order is simply an observer-perceived distance, for example
to the focus point. The observer can tell, if something is in front of something
else or the distance between two depth planes (Anzai & DeAngelis, 2010).
The distance to a focus point could simply be estimated through the vergence
angle (see 1.1).

First-order depth occurs at tilted and/or slanted planes. As one focuses at
such a surface, the disparity is at no two points the same, but, the change-rate
of disparity across the surface remains constant. Thereby �rst-order depth
could be interpreted as the derivative of depth, along an axis in the fronto-
parallel plane (Orban, 2011). With such information, object orientation in
space can be deduced.

Second-order depth appears along curvatures, such as convex or concave
shapes. Here, neither disparity, nor disparity change is constant, but the
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1.6 Summary and Thesis Statement

amount at which the disparity change itself changes, is constant, tantamount
to the second derivative along an axis in the fronto-parallel plane (Orban,
2011).

Figure 1.5: a: zeroth-order depth, simple distance. An observer can tell if an
object is behind or in front of something. b �rst-order depth, depth-gradient along
the surface. An observer can tell the slant and tilt of the surface. c second-order
depth, change of depth-gradient along a curved structure. An observer can tell if
an object is concave or convex, as well as the grade of curvature. (Figure from:
(Orban, 2011))

Taira et al. (2000) and Tsutsui et al. (2001) showed the caudal intraparietal
area (CIP) to contain neurons, selective to �rst-order depth, whereas Srivas-
tava et al. (2009) showed neurons in the anterior intraparietal area (AIP) to
also be sensitive to disparity-gradient. Thus, the pathway for extraction of
�rst-order depth structure through disparity is proposed by Orban (2011) to
follow V1 → V3A → CIP → AIP.

Summary and Thesis Statement

Light re�ects o� the environment and falls through the pupils of an observer's
both eyes, creating two di�erent half-images, exciting the photoreceptors
in the retinea (1.1). Light information is encoded into an e�cient neural
code(1.2). The di�erent information from each eye is integrated in the visual
cortex: Binocular neurons with slightly shifted receptive �elds are excited
by disparity (1.3). A population of such simple cell neurons then shows
statistical patterns, depending on the depth structure of the environment in
the �eld of view (1.4. Converging information from simple to complex cells
must be held in such a form, that following processing areas, such as CIP
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1.6 Summary and Thesis Statement

and AIP, can infer speci�c, complex disparity patterns, such as disparity
gradients along fronto-parallel axis, evoked by �rst-order depth(1.5).
This work presents a new likelihood approach, loosely resembling complex
cells in CIP and AIP. This does not mean, that either CIP or AIP work in
such a manner. The main emphasis is put on showing, that sparse coding
transforms visual information in such a manner, that basic methods, such as
a naive Bayes Classi�er, could infer di�erent orders of depth - a sparse code
is a useful code in the Barlowian sense.
Stimuli are half-image pairs of textured planes, horizontally and vertically
translated, for zeroth order depth and slanted/tilted at di�erent levels for
�rst order depth. The stimuli are perceived by a binocular observer in a sim-
ulated experiment. Half-image information is encoded via a Sparse Convolu-
tional Arti�cial Neural Network (SCANN) at two di�erent overcompleteness
factors. The neural code is then read out. Arti�cial Neurons from the model
show zeroth and �rst-order depth sensitivity in their tuning maps. A proba-
bilistic interpretation of the tuning maps allows inference of the translation
or tilt/slant parameters, and thus depth information of the input stimulus.
Additionally the number of neurons, used for inference is varied: either the
centered column of 5 × 5 (m = 5) or the centered column of 7 × 7 (m = 7)
from the V1 model, is taken into account.
I hypothesize, that:

1. Neuronal sets at a higher overcompleteness factor allow better infer-
ence. As more kernels are availible, disparity can be encoded more
accurately and unambiguously.

2. Neuronal sets at m = 7 allow better inference. The wider column
contains more excentric neurons, which are exposed to higher disparity
for tilted/slanted surfaces. As will be later explained, the farer a pixel
is from the focus point (center of tilt and slant), the more discernibly
its disparity is, for its level.

This thesis is a parallel work for a yet to-be written publication (Ecke
(n.d.),unpublished), which mainly focuses on zeroth-order depth estimation
with the same approach. While showing in my work, that zeroth-order depth
information can be inferred from a binocular sparse representation, my anal-
ysis will be bound to �rst-order depth estimation.
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Chapter 2

Methods

This work solely employs computational methods. A simulated observer's
retinal preprocessing and early vision, up to higher visual processing areas
are modelled, using the concepts mentioned in the introduction. In general
the path of information processing can be divided into three parts: Stimulus
presentation in form of a simulated experiment, the neural model in form of a
arti�cial neural network and inference in form of a naive Bayes classi�er-like
method.

Experiment and Stimuli

In context of my work, the experiment models the conditions before infor-
mation reaches the retina - what is the observer looking at? Light hitting
an image-textured surface, re�ecting o� it and being perceived by two hori-
zontally separated eyes. The experimental paradigm therefore encompasses
the light source, the surface's texture, re�exional properties and its position
and orientation, as well as the eye's position in respect to the surface. The
resulting stimuli are two half-images: one projection of the surface to the
right eye, one projection to the left eye.

Geometry of the Experiment

For purposes of clarity, geometry will �rst be summarized in the one dimen-
sional case of the experiment, depicted in Figure 2.1. The free parameter α
provides only one possibility (thus, the one-dimensional case) to manipulate
the surface in two-dimensional space. Manipulation will later be extended
to the two-dimensional case: slant and tilt in three-dimensional space. In
addition the geometry and following computations assume linear retinae.
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2.1 Experiment and Stimuli

Figure 2.1: The one-dimensional case of the experimental paradigm. Linear
retinae are assumed. Green color indicates the values under scrutiny: α: slant of
the surface, l: distance of the point, whose disparity is calculated. Purple color
indicates parameters, which summerize the observer: a: distance of the observer
to the focus point, b: distance between the (pupils of the) eyes, fe: depth of the
eyeball. Blue color indicates the focus point F and its projections (Fl, Fr) with
length s. Red color indicates the values, which need to be computed to be able to
compute α and l.

In Figure 2.1 purple lines and characters are �xed parameters: a is the
distance of the observer's head to the surface, b is the distance between the
eyes and fe is the depth of the eyeball (assumed to be the same for both
eyes). From a and b, the distance s (eye's lenses to the focus point F ), as
well as the vergence angle (^FrFFl) can be calculated. Any point P with
distance l from the focus point F , projects to di�erent points on the eyes
retinae: Pl in the left eye and Pr in the right eye. The distance of these
projection points Pl, Pr on the retinae, to the middle of the foveae (and
hence to the projections of the focus point Fl and Fr) is described by xl for
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2.1 Experiment and Stimuli

the left eye and xr for the right eye. The di�erence xr − xl is the disparity
d, evoked by P . The experiment depicts the case mentioned in section 1.1.2,
where absolute disparity is equal to relative disparity.
As either α or l changes, both xl and xr change and thus the disparity.

d(α, l) = xr(α, l)− xl(α, l) (2.1)

Consequently, equation 2.1 shows the dependencies of the disparity terms
and the free parameters.
For a realistic set of �xed parameters, the depiction of the experiment in
Figure 2.1 would be out of scale. Further calculations and derivations of the
formulas needed for the geometry can be found in the appendix A.1.

Non-Linear Behaviour of Disparity in Rotational Paradigms

To be able to evoke standardized disparity change on the retina, it is crucial
to know how a change in α a�ects disparity across the surface. 1. Equation
2.1 can be written out as:

xr(α, l) = fe · l ·
cos(α) + b

2a · sin(α)√
U − V −

(
l · (cos(α) + ( b

2a) sin(α))

)2
(2.2)

xl(α, l) = fe · l ·
cos(α)− b

2a · sin(α)√
U + V −

(
l · (cos(α)− ( b

2a) sin(α))

)2
(2.3)

with

U = s2 + l2 + s2 · ( b
2a

)2 + l2 · ( b
2a

)2

V = 2 · s · l · b
2a
· cos(α) ·

√
1 + (

b

2a
)2 + 2 · s · l · sin(α) ·

√
1 + (

b

2a
)2

The connection of α, l and the disparity turns out to be non-linear, as can
also be seen in Figure 2.2 (for detailed derivation of equation 2.2 and 2.3,
see Appendix A.1).
The focus point (F with l = 0) in contrast, is independent of α: The disparity
is always 0. Because of the experiment's construction, the focus point is the
foremost point of the observer's horopter. A rising α results in a counter-
clockwise rotation of the surface. Because any point with positive distance
l will be farther away (evoking uncrossed disparity) and on the right side of
the focus point, xr is always bigger or equal to xl, as α ∈ [0, π2 ). If α ≥ π

2 ,

1This is also dependent on l, but to be neglected, as explained in section 2.1.1
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2.1 Experiment and Stimuli

Figure 2.2: The function 2.1 in the relevant interval: The surface is 1m long,
therefore one side can maximally be 50cm long. The surface can be slanted no more
than 90◦ (= π

2 in rad).

xl becomes bigger than xr and thus, a negative disparity arises. Similarly, a
negative l (P is before the focus point, evoking crossed disparity) leads to a
sign switch.

Standardized Stimuli

To allow for later classi�cation (see section 2.4), resulting stimuli must be
relatable to clearly discernible subsets, thus the continuous α-rotation must
be discretized. Certain α should be chosen, so that standardized classes
arise. As inference will work by means of disparity, those α are needed,
which result in equally-spaced disparity classes.
If the unit-disparity is du, then a disparity class (later referred to as stimulus
class) Ci should encompass all stimuli, which give rise to disparity

di = i · du. (2.4)

For a proper set of classes, i = 11 and du = 0.004 cm are �xed (see 2.3).
To then �nd the class-associated αi, a reference needs to be created. This
is accomplished by �xing the displacement xl of Pl. This allows to now
calculate which α is needed, to create the desired disparity di in reference to
Pl.
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2.1 Experiment and Stimuli

Figure 2.3: Function of xl(α, l). 0.161 = 100
621 cm corresponds to ten pixels. The

intersection of the blue plane and the function, describes all possible α, l combina-
tions, which give rise to a disparity of 1 pixel for xl

Figure 2.3 shows, that all combinations of α and l on the curve arising from
intersecting the blue plane and the xl-surface (for �xed Pl-displacement)
result in a displacement of xl = 100

621 . Ergo, the intersection could be described
by a function l = fPl

(α) shedding light on the dependency of α and l. By
always taking the same l at all di and rewriting equation 2.1 as equation 2.5,
it is now possible to solve for α at di.

di = xr(α, fPl
(α))− 100

621
(2.5)

The results for α can be seen in Table 2.4.
Because the xl(α, l) is symmetric along the l, xl-axis, negative values of αi for
i = 1, 2, 3, 4, 5 also give rise to equally sized Ci, making a total of 11 classes.
The exact calculations for the corresponding αi were performed with the
Symbolic Math Toolbox from Matlab (Matlab R2017).
In three dimensions rotation can mathematically be expressed in many ways,
spanning from Euler Rotation to Quaternions. I chose the description in
Axis-Angle format: an axis v is speci�ed in form of a three dimensional
vector in space, while the angle α speci�es the rotation around v.
The one-dimensional experiment described above, can be regarded as the
two-dimensional case, with v = [cos(3π2 ), sin(3π2 ), 0]′. Let the tilt φ be the
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2.1 Experiment and Stimuli

i displacement of xr in respect to xl in cm αi in degrees

0 0 0

1 0.004 6.0444

2 0.008 24.2876

3 0.012 38.2489

4 0.016 48.1717

5 0.02 55.1963

Figure 2.4: Di�erent levels, at which the stimulus needs to be slanted, to evoke
certain disparities of one point (at the same distance l) between the half-images. A
clear non-linearity can be seen.

angle between v and the x-Axis. Then the tilt axis for the one-dimensional
case, is at φ = 270◦, describing the negative normal of the xy-plane through
the focus point F in Figure 2.1. By manipulating φ, α now evokes disparity
in a circular fashion on the retina (Figure 2.5). Let α be the slant of the
surface.

A more in-depth approach on the visualization of the observer-stimulus re-
lationship, can be found in section 2.3.2.

Implementation

The experiment's geometry was reconstructed in virtual space via Blender
(Version v2.76 run on Kubuntu 16.04). The surface was chosen to be a simple
plane of 1m2, centered around the origin of the virtual coordinate system.
Likewise, rotation occured around the origin. The plane was textured with
one of 1005, 1242 × 1242-pixel images (see 2.1.1). Consequently, one pixel
covers the area of 0.08052cm2, if the surface is not manipulated.

Specular intensity was turned o�, while di�use intensity was set to the max-
imum. No light-induced depth cues were therefore present. Additionally,
atmospheric interaction was also turned o�.

Each eye was simulated by a camera with a �eld of view of 11.77◦. Thus, the
�eld of view exactly encompasses the later render-resolution. The cameras
were 7 cm (b in Figure 2.1) apart - an estimation of the distance between the
eyes. The distance a from the surface to the mid point between the cameras
was set to 1 m. To simulate the eye's �xation on the plane, the cameras were
inwardly rotated by 2.005◦ (vergence angle

2 ). The default Blender Render was
used at a resolution of 256×256-pixel (�eld of view), taking for every camera
one snapshot. This covers a small portion of about 20.6112cm2 from the
original image2. After plane rotation, the camera positions were randomly
initialized, so that distance from the mid point between the cameras and the

2through rotation, a smaller part of the nearer part of the plane is captured, while a

bigger part of the farer part of the plane is captured
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Figure 2.5: xl (green point) is �xed. According to the computed α, the dis-
placement xr is bigger or smaller (purple points). By tilting at an angle of φ
(green arrow), the xl and xr are rotated in respect to the focus point (black dot),
succesively covering the whole retina.

midpoint of the �eld of view constantly remained at 1m. Random camera
initiation was corrected for the surface's edges, so that even at high slants,
only images within surface boundaries were captured.

Automation of the stimulus creation occured via the built-in python library
bpy in Blender.

Image Dataset

Images for texturing were taken from the image dataset of Kevin Reich's
Bachelor Thesis (Reich, 2017). They were shot, using a ZED Stereo Camera
by Stereolabs. Original images were glued-together half-images at a reso-
lution of 4426 × 1242-pixel. For purposes of texturing original images were
cut in half, resulting in a 2213× 1242-pixel monocular images. Because the
plane in Blender was quadratic, the left-most part of 1242× 1242-pixels was
cropped. An examplary sample of the database can be found in the appendix
A.3.
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Tilted/Slanted Stimuli

The full set of stimuli encompassed 10 random snapshots of all 1005 images,
at every parameter combination of 11 α and 18 φ, resulting in a total of
1989900 half-images per eye or, in other words, 10050 images for 198 stim-
ulus classes. The rotational axis v = [sinφ, cosφ, 0]′ was set from φ = 0◦,
resembling slants around the x-Axis, to φ = 170◦ in steps of 10◦. Conse-
quently, sampling only half a circle with the tilt, still leads to stimuli over the
whole retina, as long as negative slants are allowed. Note that this method
is equivalent to sampling a whole circle with the tilt and allowing only for
positive slants - a stimulus at φ = 180◦ and α = 50◦ looks similar to the
stimulus at φ = 0◦ and α = −50◦

Figure 2.6: a: half-images at slant α = 55.2◦ and tilt φ = 170◦, b half-images at
slant α = 38.25◦ and tilt φ = 80◦.
The red circles point out, easy-to-spot di�erences between the half-images
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Shifted Stimuli

In addition, a set of shifted half-images was created to investigate inference
of zeroth-order depth. Free parameters in this case are x-shift from −6px
to 6px and y-shift from −6px to 6px, in half-pixel steps each, resulting in
625 possible parameter combinations. 50 images were shifted through all
parameter combinations, making a total of 31250 half-images per eye.

Figure 2.7: a: half-images at shifts x = −3 px and y = 6 px, b half-images at
shifts x = −5 px and y = 2.5 px.
The red circles point out, easy-to-spot di�erences between the half-images

Note that the tilted/slanted stimuli are also converted to greyscale through
the neural network processing. The processing of the shifted stimuli will not
be specially mentioned: it occurs similar to the tilted/slanted stimuli
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2.2 Neural Models

Neural Models

The neural model depicts the information processing from the retina to V1
- how do neurons from the visual cortex �re, when presented a stimulus?.
This was achieved by employing a Sparse Convolutional Arti�cial Neural
Network (SCANN) by (Lundquist et al., 2016) for binocular images. In
addition, hard thresholding transfer functions for the network were imple-
mented according to Rozell et al. (2008), modelling leaky integration and
lateral inhibition (Schultz et al., 2014). The SCANN was implemented in
the open-source network simulator PetaVision (Petavision, n.d.), which is
optimized for parallel computing.

Structure

For this matter, the model seen in Figure 1.4 was extended, interposing the
preprocessing by retinal cell-layers between image layer and V1 layer (see
Figure 2.8). This mainly models the center-surround properties of receptive
�elds, as well as the overall whitening of the image representations (Abbasi-
Asl et al., 2016; Atick & Redlich, 1992).

After preprocessing through the bipolar and ganglion layer, an edge-enhanced,
decorrelated image representation is used for weight (basis functions) and
feature map learning.

Feature map learning occurs according to Schultz et al. (2014).:

rj = Ij − (Φz)j (2.6)

duk
dt

= −uk + zk + (ΦT r)k (2.7)

zk = C(uk) (2.8)

with

C(uk) =

{
u if u ≥ λ
0 if u < λ

(2.9)

Here rj describes the residual layer, which holds the di�erence between the
to-be-reconstructed and the momentary reconstruction of the image (see
1.8). uk is the internal state of a neuron zk. Equation 2.7 then describes the
change of neuronal activity over time. C(uk) is the L1-Norm (see equation
1.8).

Basis function learning occurs through gradient descent (Yue,2016).

Learning

In a �rst step, the basis functions need to be learned. This abstractly in-
corporates the already settled neural pathways for visual processing of an
observer.
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2.2 Neural Models

Figure 2.8: Information �ow and processing along the neural network. While the
�rst three layers preprocess the the data, in a similar fashion to the retinal layers, the
upper loop-part of the network learns the feature maps, by incorporating equation
2.6.

Basis functions were learned on the virtual vergence database, created ac-
cording to Reich (2017). The database spanned 73991 gray-scaled, 256×256-
pixel images for each eye, at di�erent vergence angles, dependent on image
content. Width of the basis functions was set to 16 pixels, so that 16× 16-
pixel kernels emerged (in form of weights). The stride was set to px = py = 8
pixel. Images were presented in random order to evade bias. Every image
was consecutively presented 150 times, leaving enough time for gradient de-
scend to settle.

Sparsity factor λ was set to 0.1. Initial learning with a learning rate of 0.05,
allowed the weights settle to the awaited Gabor-like shape. After qualitative
validation, the learning rate was succesively reduced, to remove noise from
the kernels.

The neural model did not need to run through all images, weights settled
after approximately 10000 images.

Two neural models were learned at di�erent overcompleteness factors of 1
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and 8, resulting in sets of 128 and 1024 basis functions. The complete sets
of basis functions are depicted in the appendix A.2.

Stimulus Presentation

In the second step, the created stimuli were presented in random order 3

with the set of learned basis functions at both overcompleteness factors. To
reduce the duration of computation, stimulus presentations were parallelized
to 80 batches, while every image was presented only 50 times. To account
for the reduced number of presentations, the momentum parameter τ was
reduced to 0.3. The reconstructions were then qualitatively validated, to
assure good performance.
Activation of the V1 layer model was recorded into a PetaVision-speci�c
pvp-container. The pvp-container holds the activations of the V1-layer at
every 50 image presentions, ergo the last presentation of every image, in form
of a sparse matrix.
Testing resulted in two such pvp-containers: The �rst, with activations from
the V1 layer model of dimensions (32×32)×128, the second with activations
from the V1 layer model of dimensions (32× 32)× 1024.
The procedure was similarly executed for the shifted stimuli, but only at an
overcompleteness factor of 1.

Read-Out

To allow for later inference, every image's activation from the pvp-container
needed to be reassigned to one of the 198 stimulus classes. In addition, only
the assigned area under observation m = 5 or m = 7 is cut out from the V1
layer.

Matching Activations to Stimulus Classes

The read-out and matching algorithm was implemented in Matlab (Matlab
R2017b), according to the following rules:

1. load the sparse activation matrix of image i.

2. reconstruct the sparse matrix to a full matrix of dimensions (32×32)×
J , depending on the overcompleteness factor.

3. truncate the mid column of dimensions (m ×m) × J centered on the
layer's center. Only a window of given size of every feature map zj is
thusly taken into accout.

3this allowed later sub-sampling of the presentations, with approximately the same

stimulus class sizes.
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4. reshape the matrix to a vector xi of m ·m · J elements. Every element
resembles an activation weight and thusly represents a neuron from the
feature map of the former V1 layer.

5. read-out from the i-th line in the random presentation �le-list, to which
α, φ-combination xi is related.

6. Let Sα,φ be a 11× 18-Matrix (α-levels × φ-levels), where each element
in itself is a (m ·m · J × 10050)-Matrix Rα,φ (length of x × number of
stimuli in a stimulus class). xi is then a column of Rα,φ.

7. re-iterate for all i .

The resulting matrix Sα,φ then holds all V1-layer activations of all images'
centered m ∗ px + 2 · px × m ∗ py + 2 · py pixel, sorted into the respective
stimulus classes.

For example, at an overcompleteness factor of 1 and m = 5, S−55.2◦,0◦ holds
a 3200 × 10050 matrix R−55.2

◦,0◦ . Hence, each of the 10050 columns repre-
sents neural activation for the presentation of one surface, slanted at α =
−55.1963◦ around the tilt axis at φ = 0, equivalent to v = [cos(0), sin(0), 0]′ =
[1, 0, 0]′, ergo the x-Axis. In a column, every m ·m elements correspond to
one feature map and thus to the same kernel, only at di�erent positions.
The �rst element of the �rst column at S−55.2◦,0◦ , therefore corresponds to
an activation from z1, more precise: it is the result after convoluting the
�rst image from stimulus class (−55.1963◦, 0◦) with with the �rst kernel at
position x = 112 px, y = 112 px.

Tuning Maps

De�nition

With sorted activations, it is now possible to build tuning maps. Tuning
maps are an agglomeration of the data from Sα,φ to visualize, to which form
of stimuli a certain neuron is sensitive. Being sensitive means, that the neu-
ron is active, while stimuli of a certain α, φ-combination are presented and
remains inactive for stimuli of other α, φ-combinations. In light of the sparse
coding approach, being active is modelled as having a non-zero activation
weight in zj . Because every voxel vm,n,j in the V1-layer stands for the ac-
tivation weight of one neuron i, it is su�cient to count all non-zero entries
(denoted as rα,φi,j ) across the ith row of all Rα,φ. In other words, this counts
for how many of the 10500 stimuli per stimulus class, neuron i was active.
A tuning map T i (with elements tiα,φ) for neuron i is de�ned as:

tiα,φ =

|Ck|∑
j

A(rα,φi,j ) (2.10)

24



2.3 Read-Out

with

A(x) =

{
1 if x > λ

0 if x = 0
(2.11)

A(x) is a decision function, which omits the strength of activation of neuron
i and only considers if a neuron is active or not. Hereby λ is set to 0.12,
resembling the hard threshold from equation 2.6 (Rozell et al., 2008).

To obtain the tuning map for neuron number three for example, one has to
count the non-active elements of the third rows of all Rα,φ.

Presupposing, that a neuron is equally-likely to be active for all image-
presentations of a stimulus class Ck, the likelihood of that neuron being
active for one image-presentation of Ck (an elementary event) can be calcu-
lated according to a simple LaPlace experiment:

p(neuron = 1|Ck) =
1

|Ck|
(2.12)

The tuning map condenses many such elementary events to one event for
every Ck. This compound event's likelihood is then:

p(tiα,φ|Ck) =
tiα,φ
|Ck|

(2.13)

By normalizing Ti, every element therefore shows the likelihood of neuron i
to �re at a stimulus class.

Visualization

In section 2.1.1 I described that, to create stimuli, a surface is slanted and
tilted, in respect to an observer. This equivalently can be interpreted, as an
observer looking from a certain position on a �xed surface. Also, negative
slants in the tilt interval [0◦, 180◦), are equivalent to the same positive slant
in the tilt interval [180◦, 360◦). According to these equivalencies, the stimulus
classes are spread around a half-sphere laying above the surface, depicted in
Figure 2.9. This interpretation of stimulus presentation, leads to the tilt-
data, being circularly distributed.

Depicted tuning maps are then the envelope of the half-sphere. Figure 2.10
shows an exemplary tuning map. Note that, while the data is doubled for
α = 0◦ and φ ∈ [180◦, 350◦], to allow a continuous display of the tuning map,
the whole row for slant α = 0◦ is one point on the sphere, ergo one stimulus
class, directly above the stimulus.

This would change the number of stimulus classes from 198 to 181 (as the
eighteen α = 0 stimulus classes, collapse to one). Because of this asymmetry
in stimulus class distribution, stimulus class α = 0 will be omitted for later
inference.
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2.3 Read-Out

Figure 2.9: Similar to moving the stimulus in respect to the observer, one can
interpret a moving of the observer in respect to the stimulus. The small surface
inside the half-sphere depicts the stimulus. The half-sphere covers the observer's
position in respect to the stimulus for all stimulus classes. The three red lines
depict three exemplatory observer positions. The black arrow depict the tilt-axis
at φ = 90◦.

Further Processing

Figure 2.10 also shows, that the likelihood is not continuous across the tuning
map: it seems noisy. Bosking (2008) however, points out that (especially
for orientation) neural selectivity is continuous. To encounter this, the raw
tuning maps are smoothed. For this matter I employed a Savitzky-Golay
Filter (Savitzky & Golay, 1964), implemented in Matlab by (Huang, n.d.).
By �tting a third degree polynomial (by method of least squares) on 7 × 7
subsquares of the tuning map, the signal-to-noise ratio can be increased.
Figure 2.11 shows the same tuning map from Figure 2.10, but smoothed.
The smoothing procedure is applied to all tuning maps.
Again, the number of neurons used for inference m ·m · J , is impacted by
both, area under observation (m = 5, m = 7 and the overcompleteness factor
of 1 or 8). Consequently, for every condition, one set of neurons, with their
tuning maps is computed, with sizes depicted in Table 2.12.
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2.4 Depth Inference using a Naive Bayes-Classi�er

Figure 2.10: A raw tuning map, which incorporates the number of being active
of one neuron, for all stimulus classes.

Figure 2.11: The same tuning map as in Figure 2.10, but smoothed. Transitions
between di�erent stimulus classes are more continuous.

Depth Inference using a Naive Bayes-Classi�er

Through a neuron's tuning map, its activity behaviour in respect to the
stimulus classes is known. If a neuron �res at an image presentation, that
should mean, that image belongs to one of the stimulus classes with high
likelihood in the tuning map. However, single tuning maps are too unspeci�c,
to allow any exact stimulus class inference.

As mentioned in section 1.4, an image is encoded by a linear combination
of binocular basis functions. Every basis function pair thereby stands for
the receptive �elds of one neuron. Taking the tuning maps of those neurons,
that encode one image, should enable an inference of the stimulus class
of the presented image: every tuning map cuts out stimulus classes with
small likelihoods and reinforces stimulus classes with big likelihoods. This
interaction can be implemented by multiplying the tuning maps element-
wise. As soon as one of the encoding neurons contradicts a stimulus class,
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2.4 Depth Inference using a Naive Bayes-Classi�er

Area Under Observation Overcompleteness Factor

1 8

5× 5 3200 6272
7× 7 25600 50176

Figure 2.12: Di�erent number of neurons in the neuronal sets for the four condi-
tions of the experimental paradigm. Choosing m = 7 roughly doubles the number
of neurons taken into account for estimation, in contrast to m = 5.

its low likelihood value enters the multiplication term, strongly weakening
the result. The image belongs to the stimulus class Ck, where the likelihood-
product is the biggest.
This train of thought is perfectly formalized through the naive Bayes-classi�er.
The general classi�er (Murphy et al., 2006) is described by:

ŷ = arg max
k∈{1,...,K}

p(Ck)
n∏
i=1

p(xi|Ck) (2.14)

In light of my work, n stands for the number of neurons, Ck stands for the
stimulus classes, with k = 180 and p(xi|Ck) is the likelihood of a neuron
xi to �re at Ck. As every stimulus class is equally probable at image pre-
sentation, p(Ck) is a uniform distribution and can be omitted. The naive
Bayes-classi�er is then equivalent to a Maximum-Likelihood classi�er.
A tuning map encompasses the likelihoods of a neuron to be active, for all
stimulus classes. T iNeg = 1−T i then describes the likelihoods of a neuron to
remain non-active, for all stimulus classes.
All tuning maps are logarithmized. This not only simpli�es computation, by
allowing to add the tuning maps, it also prevents possible integer over�ow.
If an image is encoded by j neurons, the classi�er can then be rewritten as:

ŷ = arg max
k∈{1,...,K}

∑
active

ln(T i) (2.15)

However, to exactly follow the formalism of the naive Bayes Classi�er, all
neurons must enter the sum:

ŷ = arg max
k∈{1,...,K}

∑
active

ln(T i) +
∑

inactive

ln(T iNeg) (2.16)

= arg max
k∈{1,...,K}

n∑
i

ln(T iNeg)−
∑
active

ln(T iNeg) +
∑
active

ln(T i) (2.17)

By rewriting equation 2.16 into 2.17 a further simpli�cation of computation
can be achieved. Let the term

∑n
i ln(T iNeg) be the bias: the summed log-

likelihoods of all neurons to stay inactive, across all stimulus classes. ŷ is
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2.5 Measures for Goodness of Inference

the position (α, φ) of the maximum log-likelihood in the summed log-tuning
maps.
Stimulus class inference will be once tested according to equation 2.15 and
once according to equation 2.17.

Measures for Goodness of Inference

To evaluate how well stimulus classes are inferred and to allow for compar-
ison between the di�erent conditions of the experiment, some measures of
accuracy and precision of the estimator ŷ are introduced.

Tilt

φ follows a circular distribution and therefore requires special statistical
treatment. If the estimation for one image results in φ = 350◦ and an-
other estimation results in φ = 10◦, then their mean is not 350◦+10◦

2 = 180◦,
but it is 0◦. For this matter I used the circular statistics toolbox for Matlab
(Berens et al., 2009).
According to Fisher (1995), estimations of φ are construed as vectors with a
length Rp and a direction Tp. A whole sample of n estimations then allows
to compute the mean direction Tl of the sample, as well as the resultant
length Rl: by adding all sample vectors, a long, new vector arises. The
mean resultant length R̄l = Rl

n , then also carries information about variance.
If direction among the vectors is diverse, Rl is shorter. Consecutively, the
circular Variance is de�ned by V = 1−R̄l and the circular standard deviation
by v =

√
− 2 ln(R̄l). Note that while V is in the interval [0, 1], v can

(theoretically) get in�nitely big as R̄l converges to 0.
For a measure of precision the circular standard deviation will be used. For a
measure of accuracy, mean signed error (the �rst error momentum)MSD =
Tl − Tground truth will be used.

Slant

At �rst glance α also seems to follow a circular distribution. However what
is taken into account at estimation is only a small interval of [0◦, 55.2◦], with
underlying unit-disparities, following linear sampling. Therefore the normal
statistical approach su�ces: as for a measure of precision standard deviation
will be employed and for accuracy the mean signed error.

Testsets

To be able to assess the goodness of measurement, furthermore test-data is
needed. For this matter, at tilt/slant stimulus creation (2.1.1), additional
1000 images for every of the 180 stimulus classes, were created. The test
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2.5 Measures for Goodness of Inference

stimuli too, were fed to the SCANN, so that the activations from the neu-
ral model could be recorded. From the activations, the stimulus-encoding
neurons can be read out, so that the Bayes Classi�er could be employed.
Similarly an additional set of 50 shifted stimuli for all 625 stimulus classes
were created, presented and recorded.
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Chapter 3

Results

Stimulus class inference is solely based on which neurons encode a stimulus
and on the quality and behaviour of the neurons' tuning maps. Therefore
�rst, di�erences and similarities across the four sets of neurons (according
to 2.12) in respect to all stimuli will be evaluated.

Next, the interaction between a neuron's position in the feature map and its
receptive �eld will be assessed.

Finally, the performance of stimulus class inference will be evaluated in re-
spect to tilt and slant. A short section will point out, how the likelihood
approach performs for zeroth order depth. For matters of simplicity over-
completeness factor 1 and overcompleteness factor 8 will be referred to as
O1 and O8.

Neuronal Activity across all Stimuli

Every stimulus is encoded by a few neurons (see equation 1.1). Through
sparsity, the number of encoding neurons is kept low. Figure 3.1 shows
the mean number of encoding neurons at all stimulus classes for all four
conditions.

The mean number of encoding neurons is doubled for the m = 5 conditions,
to be able to display all conditions on the same scale. This does not distort
the results, since the m = 5 conditions have roughly half the neurons of the
m = 7 conditions (respectively for O1 and O8).

For low slants (α = 0◦, α = 6.04◦, α = 24.29◦), stimuli are consistently
encoded by around the same number of neurons for every condition, respec-
tively. Stimuli around φ = 60◦ and φ = 240◦, especially at the highest slant
of α = 55.2◦ are encoded by the most neurons and seem to systematically
deviate from the mean.

The mean number of encoding neurons of low slants (α = 0◦, α = 6.04◦, α =
24.29◦), is signi�cantly di�erent from the mean number of encoding neurons
of high slants (α = 38.25◦, α = 48.17◦, α = 55.2◦), for all four conditions
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3.1 Neuronal Activity across all Stimuli

(one-tailed, two-sampled t-test with unequal variance). The exact statistical
procedure can be found in the appendix (A.4.1).
Figure 3.2 shows how many stimuli per stimulus class remained unencoded.
This means, that no neuron was active (within the area under observation)
at stimulus presentation. Note, that no doubling occured for the conditions
m = 5.
For the lower four slant levels, around 1000 images could not be encoded
(corresponding to about 10% of stimuli of a stimulus class). For slants of
α = 48.17◦ and α = 55.2◦, especially around tilt φ = 60◦ and φ = 240◦,
up to 2500 stimuli (25 % of the stimuli from a stimulus class) remained
unencoded. At the highest slant level and φ = 150◦ or φ = 320◦ a smaller
rise of unencoded images can be observed.
The stimulus classes with the most unencoded images, coincide with the
stimulus classes, where stimuli were encoded by the most neurons.

Figure 3.1: Mean number of encoding neurons per image, per stimulus class.
Depicted are all four neuronal sets: left, top: O1, m = 5; right, top: O1, m = 7;
left, bottom: O8,m = 5; right, bottom: O8,m = 7.
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3.1 Neuronal Activity across all Stimuli

Figure 3.2: Number of images, that evoked no neuronal activation, per stimulus
class. Depicted are all four neuronal sets: left, top: O1, m = 5; right, top: O1,
m = 7; left, bottom: O8,m = 5; right, bottom: O8,m = 7.
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3.2 Tuning Maps

Tuning Maps

O1, m=5

The underlying V1 model for this condition spanned 128 feature maps z1...z128.
From this V1 layer only a centered column of 5 × 5 neurons is cut out. Al-
though every neuron, associated with one zi, acts individually, all 25 neurons
from the same zi have the same receptive �eld, by de�nition. Di�erences in
tuning maps only emerge from the position within their feature map.

In total this set contains 3200 neurons. Figure 3.3 shows two tuning maps.

Figure 3.3: Two exemplary tuning maps from the neuronal set O1,m = 5. Color
shows % likelihood to �re at a stimulus class.

Clear selectivity for certain stimulus classes can be seen. To be able to further
assess this set of neurons, every neuron is associated with the stimulus class,
where it has the highest probability, to be active to.

Figure 3.4 (upper row, blue) depicts the distributions of the favored stimulus
class for all neurons, across slant α and tilt φ.

By far the most kernels favor α = 55.2◦, whereas almost no kernels are
selective for the three small slant levels. Even α = 38.25◦ and α = 48.17◦

are seldomly preferred.
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3.2 Tuning Maps

Figure 3.4: Histograms of the distributions of favored stimulus classes in tuning
maps. Depicted are two neuronal sets: top: O1,m = 5; bottom: O1,m = 7; left :
favored slant α; right : favored tilt φ.

Selectivity for tilt is more uniformly distributed. Still, a clear favor for φ = 0◦

and φ = 180◦ is visible. Orthogonal tilts thereto, at φ = 90◦ and φ = 270◦

also show peaks. φ = 220◦ breaks this scheme. Tilts around φ = 70◦,
φ = 150◦, φ = 230◦ and φ = 350◦ almost completely lack selective neurons.
Especially the contrast between φ = 0◦ and φ = 350◦ or φ = 220◦ and
φ = 230◦, substantiates the discontinuity of the distribution of maximum
likelihood across tilts.
The mean tuning map (Figure 3.5, at the top) mirrors the strong selectivity
for the tilts in cardinal directions (φ = 0◦, φ = 90◦, φ = 180◦ and φ = 270◦).
Additionally, nearly no neurons are availible, that encode tilts around φ =
50◦ and φ = 230◦ at the highest slant level. The lack of neuronal selectivity
for small slants is also mirrored.
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3.2 Tuning Maps

O1, m=7

This condition takes into account the centered column of 7×7 neurons from
the V1 model with 128 feature maps: 3200 neurons are similar to the m = 5
condition, while 3072 new, more excentric neurons are added, totalling in
6272 neurons. In this case, every 49 neurons share the same receptive �eld,
being from the same zi.

The additional neurons don't have an impact on the distributions of favored
tilts and slants, as can be seen in Figure 3.4 (bottom row, orange). In total
however, more neurons are on-hand for low slant levels. Some discontinuities
for tilts are less steep, for example at φ = 20◦ or φ = 230◦.

Consequently, the mean tuning map remains nearly unchanged (Figure 3.5,
at the bottom).

Figure 3.5: Mean tuning maps of two neuronal sets. Color shows % likelihood
to �re at a stimulus class. top: O1,m = 5; bottom: O1,m = 7

Figure 3.6 shows the distributions of the maximum likelihood value (strength
of activation at the favored stimulus class) across the two neuronal sets. The
additional neurons from the m = 7 set, follow the same bimodal distribution
as the neurons from the m = 5 set.
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3.2 Tuning Maps

Figure 3.6: Histogram of the distribution of the magnitude of maximum likelihood
for two neuronal sets. Bin size is set to 0.05.

O8

The underlying V1 model for these conditions spanned 1024 feature maps.
The resulting neuronal sets again, stem from the centered 5 × 5 column
(25600 neurons) and the 7× 7 column (50176 neurons).
Figure 3.7 shows four exemplary tuning maps from both conditions, which
are almost indiscernible from one another. In fact many tuning maps from
both conditions look nearly identical: a general high selectivity for the two
lowest slant levels. The higher the slant level, the more selective the neurons
become for the tilt at φ = 0◦ and φ = 180◦.
This is further corroborated by the mean tuning maps (Figure 3.8, m = 5
at the top, m = 7 at the bottom). Similar to the O1 conditions, no neurons
are selective for tilts around φ = 50◦ and φ = 230◦ at the highest slant level.
Figure 3.9 (on the right side) depicts, that for many tilt levels there are no
selective neurons at all. Almost all tuning maps favor φ = 0◦, φ = 180◦ and
φ = 350◦. The shape of the distributions of tuning map preference looks
alike between the two O8 conditions, although O8, m = 7 has more tuning
maps favoring φ = 180◦ in respect to φ = 0◦ and φ = 350◦. The high peak
for α = 38.25◦ on the left two histograms is also visible in the mean tuning
maps.
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3.2 Tuning Maps

Figure 3.7: Four exemplary tuning maps from two neuronal sets. Color shows %
likelihood to �re at a stimulus class. top two: O8,m = 5; bottom two: O8,m = 7.
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3.2 Tuning Maps

Figure 3.8: Mean tuning maps of two neuronal sets. Color shows % likelihood
to �re at a stimulus class. top: O8,m = 5; bottom: O8,m = 7

Figure 3.9: Histograms of the distributions of favored stimulus classes in tuning
maps. Depicted are two neuronal sets: top: O8,m = 5; bottom: O8,m = 7; left :
favored slant α; right : favored tilt φ.
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3.2 Tuning Maps

Diversity of Tuning Maps

Figure 3.10 shows the Frobenius Norm

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

|aij |2 (3.1)

of every tuning map in respect to its mean tuning map: A = T i − Tmean.
The Frobenius norm is a suitable measure for di�erence between twoM×N -
Matrices. In the Figure tuning maps are thereby only divided after their
overcompleteness factor.

Figure 3.10: Magnitude of Frobenius Norm of all tuning maps in respect to their
mean tuning map. Color shows membership in O1 or O8. Horizontal lines depict
the mean norm of the tuning maps of the respective overcompleteness factor.

Indeed, the O8 conditions are throughout similar to one another, with a
mean distantance of under 2. The O1 conditions, on the contrary, show
bigger di�erences in respect to their mean, having a mean norm around 8.

Intermission

For the O8 conditions it is already possible to mention, that inference is
impossible. With such similar tuning maps, the whole train of thought,
that every tuning map cuts out stimulus classes, which are unlikely, fails.
Irrespecive of which neurons encode an image, the resulting estimation would
be the same. For further analysis I will omit the O8 cases, as their results
can be summarized in one sentence: they all estimate the same.
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3.2 Tuning Maps

Selectivity Dynamic of Neurons in the same Feature Map

Depending on where a neuron is positioned in a feature map, its receptive
�elds observe di�erent patches of the stimulus. Neurons in the middle of a
feature map, for example, cannot tell anything about slant, due to the fact,
that their receptive �elds lay above the focus point. By de�nition, the only
information, they might encode, stems solely from tilt. Neurons from the
excentric parts of the feature maps, on the other hand, receive input of high
disparity: they should be able to give information about slant.
Figure 3.11, Figure 3.12 and Figure 3.13 show the dynamic of selectivity
with the aid of �ve exemplary neurons from the same feature map.
The neuron at the left-most, bottom position (Figure 3.11,upper image) is
strongly selective around φ = 110◦ and α = 48.17◦. A weaker selectivity
(in green) describes an arc-like structure, along α = 24.29◦, up to φ = 330◦.
Remind the circular structure of the depiction: the left border of tuning
map is connected to the right border. The core of the arc shows almost no
selectivity. The structure is reminiscent of ON-OFF structures of ganglion-
receptive �elds from V1.
Looking at the right-most, bottom neuron (Figure 3.11, image below), the
strong selectivity wandered along the arc-structure to φ = 270◦ and α =
55.2◦. In addition the whole arc-structure is shifted anti-clockwise for about
60◦.
The left-most, upper neuron (Figure 3.12, upper image) shows strong selec-
tivity around the same stimulus classes, like the neuron on the left-most,
bottom position. The arc of weaker selectivity however, has �ipped, extend-
ing along α = 38.25◦ to φ = 180◦.
The right-most, upper neuron (Figure 3.12, image below) similarly shares
its selectivity with the right-most, bottom neuron, while the weaker arc
selectivity is shared with its left counterpart.
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3.2 Tuning Maps

Figure 3.11: Two tuning maps from di�erent corner positions of the same feature
map with the depicted underlying basis function.
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3.2 Tuning Maps

Figure 3.12: Two tuning maps from di�erent corner positions of the same feature
map with the depicted underlying basis function.
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3.2 Tuning Maps

Figure 3.13: A tuning map from the middle position of a feature map with the
depicted underlying basis function.

Looking at the middle neuron (Figure 3.13) of the feature map, a strong
selectivity around the highest slant level, at φ = 90◦ is visible. The arc
structure disappeared, only a weak selectivity for φ = 290◦ is left.

Strinking is, that the selectivity of the exemplatory neurons across the whole
feature map, seems to bimodally agglomerate around φ = 90◦ and φ = 270◦:
the two orthogonal directions, to the ON-OFF border of the underlying basis
function.

Figure 3.14 shows the relationship of the middle neuron of all feature maps
(which carries only information of tilt) and the rotation of their underlying
basis function. Thereby, the selectivity of opposing directions were collapsed
to the intervall of [0◦, 180◦]1, to encounter the bimodality. The middle neu-
rons are strongly, negatively correlated with the rotation of the Gabor �t
of their underlying basis functions (ρ = −0.9761). Note that the rotation
parameter of the Gabor �t is in the intervall [−90◦, 90◦], but due to the
circular structure of the data, this doesn't have an impact: the correlation
stays informative.

1A method called angle doubling, which is common for circular data.
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3.2 Tuning Maps

Figure 3.14: Relationship of the favored tilts of the tuning map, associated with
the mid neuron of every feature map from the O1 neuronal set and the Gabor
rotation parameter φ of the Gabor �ts of the basis functions.
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3.3 Estimations

Estimations

To get an intuition on how exactly an estimation looks like, Figure 3.15
and Figure 3.16 depict four exemplary estimations. One has to imagine the
stimulus being in the middle of the half-sphere (according to Figure 2.9).
The dark-blue belt on the lower side of the half-sphere is unsampled space,
due to a maximal slant of α = 55.2◦. The magnitude of the log-likelihood-
sum is visualized by the topography of the half-sphere. The bigger a ridge is,
the more probable the observer looked at the stimulus from that perspective.
In addition, high probabilities are color-coded.
For the tilt dimension, one step in the grid, corresponds to 10◦. For the slant
dimension the grid is upsampled, resulting in four grid-steps corresponding
to one slant level. Ground truth of the stimulus is depicted by a red circle.
The assesment of the goodness of estimation is based on 1000 such estima-
tions - per stimulus class. As for visualization: all estimations are congre-
gated into one chart. The data is divided into �ve big columns along the
x-axis, each standing for one slant level (note, that slant level α = 0◦ is
left out). Every big column is divided into the 35 sub-columns, indicating
the tilt level at every slant level. The sub-columns start at φ = 0◦ up to
φ = 350◦ and are color-coded for better discrimination. Note, that, due to
the circularity of the tilt-classes, the right-most sub-column is connected to
the left-most sub-column.
In addition, every big column has a horizontal red line, depicting the mean
of the estimations over all tilts. The y-axis shows the respective dimension.
Every Figure is devided into two charts. While the upper chart shows es-
timations, employing the bias: the with-bias approach (see equation 2.17),
the lower chart depicts estimations employing only encoding neurons: the
without-bias approach (see equation 2.15). Due to the fact that the slant
level of α = 0 is left out, the lowest slant level, is slant level 2.
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3.3 Estimations

Figure 3.15: Two exemplary estimations, visualized on the half-sphere of per-
spective. Log-likelihood-sum magnitude is color and topology coded. The red circle
depicts the ground truth of the underlying stimulus parameters.
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3.3 Estimations

Figure 3.16: Another two exemplary estimations, from another perspective. Log-
likelihood-sum magnitude is color and topology coded. The red circle depicts the
ground truth of the underlying stimulus parameters.
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3.3 Estimations

Slant

Accuracy

Figure 3.17 shows the mean estimations for the O1, m = 5 set.
Although a rise of estimation in respect to slant level can be seen, both
conditions fail for the three lowest slant levels, by constantly overestimating.
The upper two slant levels are more on point: they rudimentarily estimate
the correct slant.
Figure 3.18 depicts the with-bias/ without-bias conditions at O1, m = 7.
The three lowest slant levels still are inaccurate, while the upper two match
at least the right order. These conditions however, better estimate than the
m = 5 condition: the rise along the slant levels is steeper and the upper two
slant estimations are more accurate.
There seems to be a systematic interaction between slant estimation and tilt.
Tilts at the cardinal directions of φ = 0◦,φ = 90◦,φ = 180◦ and φ = 270◦

constantly estimate lower slants, while at tilts in between at 45◦ rotation
from the cardinal directions, estimate higher.
UEmploying the with-bias approach, enhances this regularity, as does a
higher slant level.

Precision

Figure 3.19 shows the standard deviation of slant-estimations for the neu-
ronal set O1, m = 5.
Both approaches show a stepwise decline of standard deviation: as the slant
level gets bigger, the estimations become more precise. The with-bias ap-
proach has thereby a steeper secession: while having a mean standard de-
viation of 2.1557 for the lowest slant level, it falls to 0.7267 for the highest
slant level, whereas the without-bias approach starts at a mean standard
deviation of 1.77057, to then fall to 0.8581 for the highest slant level.
Figure 3.20 depicts the standard deviation for the m = 7 set. Similarly,
standard deviation declines steeper for the without-bias approach. In com-
parision with the m = 5 set, standard deviation is smaller - the estimations
are more precise.
The standard deviations at the three lowest slant levels support, that in fact
no informative estimations are executed, but that inference occurs randomly.
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3.3 Estimations

Figure 3.17: Mean estimations of two conditions for the neuronal set O1,m = 5.
Big bars show slant level, sub-bars show mean estimations at tilt levels at the
respective slant level. Red horizontal lines indicate the mean of all estimation-
means at a slant level. top: with-bias condition; bottom: without-bias condition.
Slant level is encoded for estimation: 6.04◦: 2, 24.29◦: 3, 38.25◦: 4, 48.17◦: 5,
55.02◦: 6
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Figure 3.18: Mean estimations of two conditions for the neuronal set O1,m = 7.
Big bars show slant level, sub-bars show mean estimations at tilt levels at the
respective slant level. Red horizontal lines indicate the mean of all estimation-
means at a slant level. top: with-bias condition; bottom: without-bias condition.
Slant level is encoded for estimation: 6.04◦: 2, 24.29◦: 3, 38.25◦: 4, 48.17◦: 5,
55.02◦: 6
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Figure 3.19: Standard deviation of two conditions for the neuronal set O1,m =
5. Big bars show slant level, sub-bars show standard deviations at tilt levels at
the respective slant level. Red horizontal lines indicate the mean of all standard
deviations at a slant level. top: with-bias condition; bottom: without-bias condition.
Slant level is encoded for estimation: 6.04◦: 2, 24.29◦: 3, 38.25◦: 4, 48.17◦: 5,
55.02◦: 6
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Figure 3.20: Standard deviation of two conditions for the neuronal set O1,m =
7. Big bars show slant level, sub-bars show standard deviations at tilt levels at
the respective slant level. Red horizontal lines indicate the mean of all standard
deviations at a slant level. top: with-bias condition; bottom: without-bias condition.
Slant level is encoded for estimation: 6.04◦: 2, 24.29◦: 3, 38.25◦: 4, 48.17◦: 5,
55.02◦: 6
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3.3 Estimations

A Closer Look at Slant Estimations

Mean and standard deviation do not catch the whole behaviour of slant
estimation. A more in-depth look is provided by Figure 3.21: All estimations
for the second slant level from the two neuronal sets, with-bias and without-
bias respectively, are put next to each other. The O1,m = 5, with-bias
set correctly estimates in some cases, but is overshadowed by many wrong
estimations of the sixth slant level. In the without-bias approach, estimations
of the correct slant level are nearly inexistent, while estimations of slant level
6 remain frequent. In contrast, the neuronal set of O1, m = 7, with-bias
correctly estimates more often. In some cases estimations of the correct
slant level are more common, than any other estimations. The without-bias
condition on the other hand, seldomly estimates correctly, but constantly
estimates slant level three. While the with-bias approaches show nearly no
other estimations, than slant level two and slant level six, the without-bias
approaches estimate more uniformly.
Figure 3.22 depicts all estimations for slant level three. The O1,m = 5
set never estimates correctly in the with-bias approach and seldomly in the
without-bias approach. However, estimation distribution for the without-
bias approach looks similar to the estimation distribution for slant level two.
The O1,m = 7 set in the with-bias approach, estimates slant level two and
slant level six at the same rate. Still, some correct estimations are done, as
the distribution seems to be pulled towards slant level two. The without-bias
approach correctly estimates for the most time across all tilt levels.
Figure 3.23 and Figure 3.24 reveal that both conditions with both approaches
continue this trend - O1,m = 5 with both approaches and O1,m = 7, with-
bias mostly estimate the highest slant level. Slight shifts in the remaining
distribution can be however seen. Only the without-bias approach from
O1,m = 7 has a stronger shift in its estimation-distribution.
At the highest slant level, all conditions with both approaches estimate most
oftenly correct, as can be seen in Figure 3.25.
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3.3 Estimations

Figure 3.21: Histograms of slant estimations at all tilts for slant level 2 blue:
O1,m = 5, with-bias; green: O1,m = 5, without-bias; orange: O1,m = 7, with-bias;
yellow : O1,m = 7, without-bias
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3.3 Estimations

Figure 3.22: Histograms of slant estimations at all tilts for slant level 3 blue:
O1,m = 5, with-bias; green: O1,m = 5, without-bias; orange: O1,m = 7, with-bias;
yellow : O1,m = 7, without-bias
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3.3 Estimations

Figure 3.23: Histograms of slant estimations at all tilts for slant level 4 blue:
O1,m = 5, with-bias; green: O1,m = 5, without-bias; orange: O1,m = 7, with-bias;
yellow : O1,m = 7, without-bias
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3.3 Estimations

Figure 3.24: Histograms of slant estimations at all tilts for slant level 5 blue:
O1,m = 5, with-bias; green: O1,m = 5, without-bias; orange: O1,m = 7, with-bias;
yellow : O1,m = 7, without-bias
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3.3 Estimations

Figure 3.25: Histograms of slant estimations at all tilts for slant level 6 blue:
O1,m = 5, with-bias; green: O1,m = 5, without-bias; orange: O1,m = 7, with-bias;
yellow : O1,m = 7, without-bias
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3.3 Estimations

Tilt

Accuracy

As the mean signed error in Figure 3.26 shows, tilt estimation fails for the
two lowest slant levels for both conditions of O1, m = 5. For the bias
condition, estimations at the lowest slant level are constantly φ = 120◦: the
farer a tilt level is from φ = 120◦ the bigger its estimation error, up to the
diretly opposing tilt level of φ = 300◦, where estimation error is ±180◦.
This regularity also stands for the tilt estimations at slant level α = 24.29◦.
As for the three higher slant levels, tilt estimation is more accurate. There
seem to be a kind of pivot points, where estimation matches ground truth.
Estimations from neighbouring tilt levels are gravitating to the nearest pivot
point. As slant level is higher, the number and thus density of such pivot
points seems to rise.
The same scheme holds for the no bias condition. Nevertheless, estimations
at some tilt levels, even at the high slant levels, are completely inaccurate.
Figure 3.27 shows tilt estimations for the O1, m = 7 set. For the with-bias
approach, estimations at the two lowest slant levels are again throughout the
same : φ = 140◦. Remarkably, the no bias condition developed three pivot
points.
Starting with the slant level α = 38.25◦, tilt estimations start to be fairly
accurate: they never exceed ±50◦ deviation. For the highest slant level,
estimations even are under ±20◦ deviation.

Precision

Figure 3.28 depicts the rotational standard deviation of tilt estimation for
O1, m = 5. Both conditions show, that with higher slant level, estimation
becomes more precise. At di�erent slant levels, the variability of dispersion
within the tilt levels coincides with the measures from the mean signed error:
estimations at the so-called pivot points are more precise. The farer a tilt
level is from such a pivot point, the more unprecise its estimation is. This
behaviour is more smoothly observable for the with-bias approach.
In Figure 3.29, circular standard deviation for the O1, m = 7 can be seen.
Behaviour is similar to the m = 5 case, only that m = 7 is constantly more
precise.
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3.3 Estimations

Figure 3.26: Mean signed errors of two conditions for the neuronal set O1,m = 5.
Big bars show slant level, sub-bars show mean signed errors at tilt levels at the
respective slant level. Red horizontal lines indicate the mean of all mean signed
errors at a slant level. top: with-bias condition; bottom: without-bias condition.
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3.3 Estimations

Figure 3.27: Mean signed errors of two conditions for the neuronal set O1,m = 7.
Big bars show slant level, sub-bars show mean signed errors at tilt levels at the
respective slant level. Red horizontal lines indicate the mean of all mean signed
errors at a slant level. top: with-bias condition; bottom: without-bias condition.

62



3.3 Estimations

Figure 3.28: Circular standard deviations of two conditions for the neuronal set
O1,m = 5. Big bars show slant level, sub-bars show circular standard deviations
at tilt levels at the respective slant level. Red horizontal lines indicate the mean of
all circular standard deviations at a slant level. top: with-bias condition; bottom:
without-bias condition.
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3.3 Estimations

Figure 3.29: Circular standard deviations of two conditions for the neuronal set
O1,m = 7. Big bars show slant level, sub-bars show circular standard deviations
at tilt levels at the respective slant level. Red horizontal lines indicate the mean of
all circular standard deviations at a slant level. top: with-bias condition; bottom:
without-bias condition.
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3.3 Estimations

A Closer Look at Tilt Estimations

The two lowest slant levels did not allow any tilt-estimation, as could be
already seen in the previous section. Figures can be found in the Appendix
A.4.2. Slant level four, �ve and six can be seen in Figures 3.30 to 3.32.
Following the development of the �rst condition (O1,m = 5, with-bias)
through the slant levels, one can see that starting at slant level 4 no sharp
on-point estimations occur, at level 5 a clearer structure of estimation dis-
tribution emerges, which at level 6 �nds its peak: rotating with the ground
truth.
O1,m = 7, with-bias starts already at slant level 4 to roughly estimate the
correct tilt. With rising slant level, the estimation-distribution becomes
clearer and sharper, so that the estimation performs well at slant level 6.
Both without-bias conditions throughout all slant levels, estimate correctly
for some tilt levels (for example α = 90◦), while other tilt levels are never
correctly estimated.
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3.3 Estimations

Figure 3.30: Histograms of tilt estimations at all tilt levels at slant level 4 blue:
O1,m = 5, with-bias; green: O1,m = 5, without-bias; orange: O1,m = 7, with-bias;
yellow : O1,m = 7, without-bias 66



3.3 Estimations

Figure 3.31: Histograms of tilt estimations at all tilt levels at slant level 5 blue:
O1,m = 5, with-bias; green: O1,m = 5, without-bias; orange: O1,m = 7, with-bias;
yellow : O1,m = 7, without-bias 67



3.3 Estimations

Figure 3.32: Histograms of tilt estimations at all tilt levels at slant level 6 blue:
O1,m = 5, with-bias; green: O1,m = 5, without-bias; orange: O1,m = 7, with-bias;
yellow : O1,m = 7, without-bias 68



3.4 Zeroth-Order Depth

Zeroth-Order Depth

Using tuning maps of neurons that emerged from stimuli with only zeroth
order depth manipulation, the following analyses were conducted. Tuning
maps were generated from only 50 stimuli per stimulus class (whereas tuning
maps for the �rst-order depth estimation relied on 10500 stimuli per stimulus
class). Exemplatory inference is based on a O1, m = 7, neuronal set with
the with-bias approach.

Following �gures all show the magnitude of the respective measure (mean
signed error, standard deviation and mode) at every stimulus class.

Accuracy

The upper chart from Figure 3.33 shows the mean signed error for estima-
tion of x-shift. Horizontal shift-estimation does not depend on y-shift: the
estimation performs constantly across all y-shift stimulus classes.

X-shift however does have an impact on estimation. For negative shifts, the
Bayes Classi�er tends to slightly overestimate, while for strong positive shifts,
x-shift is strongly underestimated. Estimation in the interval of [−2.5, 2.5]
pixel x-shift is very accurate.

The same behaviour stands for y-shift estimation, in the lower chart. X-shift,
does not impact y-shift estimation, strong negative shifts are slightly over-
estimated, strong positive shifts are strongly underestimated. The interval
of [−2.5, 2.5] pixel y-shift seems well estimated.

Precision

Figure 3.34 shows the standard deviation for x-shift estimation (upper chart)
and y-shift estimation (lower chart).

For x-shift estimation, the standard deviation seems to be constantly low
for the well estimated interval. For strong negative x-shifts, the dispersion
is more variable: some stimulus classes have a standard deviation of 0 (the
classes, where estimation was perfect), some stimulus classes have a standard
deviation of up to 6.

Stimulus classes of strong positive x-shifts show a high standard deviation.

Again, the same pattern can be seen for estimation of y-shifts, although the
interval of strong variability at strong y-shifts is slightly narrower, than for
x-shift estimation.

Estimating correctly, for the most Time

Figure 3.35 shows the mode of the 50 estimations per stimulus class. Clearly,
at all stimulus classes, for x-shift estimation, as well as for y-shift estimation,
the estimations were correct in most cases.
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3.4 Zeroth-Order Depth

Figure 3.33: top: Mean signed errors of x-shift estimation at all stimulus classes.
Color encodes the magnitude of the mean signed error; bottom: Mean signed errors
of y-shift estimation at all stimulus classes. Color encodes the magnitude of the
mean signed error.
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3.4 Zeroth-Order Depth

Figure 3.34: top: Standard deviations of x-shift estimation at all stimulus classes.
Color encodes the magnitude of the standard deviation; bottom: Standard devia-
tions of y-shift estimation at all stimulus classes. Color encodes the magnitude of
the Standard deviation.
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3.4 Zeroth-Order Depth

Figure 3.35: top: Modes of x-shift estimation at all stimulus classes. Color
encodes the x-index of the most frequent estimation; bottom: Modes of y-shift
estimation at all stimulus classes. Color encodes the y-index of the most frquent
estimation.
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Chapter 4

Discussion

Unencoded Stimuli and Signi�cant Di�erences in Mean

Encoding Neurons

A neuron is only active, if a feature on the stimulus matches the feature its
receptive �eld is selective for. Featureless stimuli, as would be images of the
clear blue sky or very smooth house facades, therefore remain unencoded.
Since the neuronal sets take into account only features from a relatively small
portion of an already small portion of a 256 × 256 pixel image, the chance
of �nding no feature at all, rises. This at least accounts for the 10% overall
unencoded images across all stimulus classes.

Unexplained remain the abnormally many unencoded images around φ = 60◦

and φ = 240◦ for the highest slant. The fact, that these are directly opposing
directions enforces, that there is some underlying regularity. As could be seen
(in the mean tuning maps), the tilts at exactly those stimulus classes, were
especially unfavored.

Looking at the distribution of the rotational parameter of the Gabor �tted
the basis functions (Figure 4.1) may shed some light on the problem.

There are no basis functions, which encode features, which are rotated at
around 75◦. That however, is not exactly the range, where there are many
unencoded images. In addition to that, encoding seems to have worked for
lower slant levels.

Besides, it raises the question, why no such basis functions were learned in
the learning phase of the neural network (see section 2.2.2 in the �rst place.
At least the many basis functions for 90◦ and 180◦ could be explained, by the
image dataset, containing many images of man-made objects, which usually
agglomerate features around those rotations.

Considering, that encoded images from the same stimulus classes, were then
encoded by especially many neurons, is furthermore curious. A more exten-
sive analysis of the image statistics of the 1989900 stimuli is needed.
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4.2 Problems with Overcompleteness Factor 8

Figure 4.1: Histogram of the distribution of Gabor rotation parameter φ for the
Gabor-�tted basis functions, underlying the feature maps of the O1 model.

Problems with Overcompleteness Factor 8

Tuning maps that stem from the neurons of the V1 model of overcomplete-
ness factor 8, made any kind of inference impossible. It was anticipated,
that neurons from O8 are more specialized, encoding more exotic features.
The results pointed out the contrary: It seems, as if the neurons were too
unspeci�c, being active all the time, for (almost) all stimulus classes. This
makes an inconsistency at feature map learning highly probable.
A viable alternative for the future, would be to raise the hard threshold of
activation λ at feature map learning. Consequently, neurons would be more
picky in their activation, leading to more speci�c tuning maps. However,
there are many parameters, and interaction is complex at the learning phase.
A more in-depth analysis of the binocular SCANN would be useful.
Hence, my �rst hypothesis: An overcompleteness factor of 8 leads to better
inference, is contradicted, as far as neuronal sets for O1 and O8 are learned
with the same SCANN-parameters.
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4.3 Estimations

Estimations

Slant

All in all slant estimation performance was underwhelming. Quantitatively,
no condition could satisfy any requirements. Admittedly, with bigger slant
level, a more precise and more accurate estimation seems to be possible.
However, it remains unclear if the fact, that estimations of slant level 6 are
so overrepresented, does not distort the results: slant level 6 is not correctly
estimated, if all slant levels are estimated as level 6. Still, besides slant level
6, small shifts in estimation-distributions could be observed.

One possible source of constantly estimating the highest slant level, is the
overrepresentation of tuning maps, highly selective for slant level 6: the
chance of a stimulus to be encoded by many slant level 6 selective neurons
is simply higher.

Still it is possible to say, that the bigger neuronal set of m = 7 qualitatively
outperformed the smaller set of m = 5 in terms of accuracy and precision.
Hereby, the without-bias approach of estimation proved itself the most ac-
curate. It had the smallest distortion of always-estimating slant level 6.

This outcome might be due to the fact, that more excentric neurons carry
more information, especially at small slants. There, disparity is stronger and
more distinct.

Another possible reason is the small area under observation: For the slant
level of α = 6.04◦, neurons near the center of the stimulus only perceive
disparity in the sub-pixel domain.

Tilt

Inference of the tilt parameter performed quantitatively adequate - beginning
from a slant level of α = 38.25◦. From there on, up to higher slant levels,
estimations became more accurate and more precise. Especially the m = 7,
with-bias condition was sharp in its estimations. At the slant level of α =
55.2◦, even only (mean) deviations of 10◦ were present.

One of the reasons for the good performance might be, that tuning map
selectivity was more uniformly distributed across tilt stimulus classes. So,
the chances of stimuli, being encoded by meaningful tuning maps, was higher.

Another reason might be, that the tilt parameter is closely related to the
rotational parameter of the basis functions - in fact they are highly correlated.

The earlier called pivot points seem to emerge at tilt levels, where there are
many selective tuning maps for. This is coherent with the high number of
tuning maps, selective for slant level 6, leading to always estimating slant
level 6.
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4.4 Summary

Summary

The big neuronal set of O1,m = 7 (irrespective of with-bias or without-bias
approach) performed better, than both approaches for O1,m = 5. Hence,
my second hypothesis, namely that a bigger area under observation, leads to
better inference, could not be contradicted.

Depth Information is in the model

The mediocre performance for slant estimations, might lead to wrong con-
clusions. Remembering the selectivity behaviour of neurons across the same
feature map: much of that information remains unused. The manner in
which selectivity changes with position, might allow to compute the gradient
and thusly directly infer �rst-order depth. At least the selectivity-dynamic
holds some kind of information, simply because of the spacial organization.
Another source of yet unused information, is the fact that neuronal activity
strength is completely ignored. For building tuning maps, it is only counted
if a neuron is active. Having more nuanced neuronal activation, possibly
leads to more potent tuning maps.
A last possibility to gain more information, would be to use a more elabo-
rated method of inference. By employing the knowledge of how the model
is construed or adding a neuronal layer with complex wiring, surely better
results could be obtained, than by simple log-likelihood-summation.

Zeroth Order Depth and First Order Depth

While a whole experiment was simulated, stimuli were created and models
were learned, only to show that inference of �rst order depth information
is possible, at the heart of this work stands the claim, that a sparse stereo-
representation is a useful and powerful format to hold sensory data in.
And indeed, while estimation of (at least) the slant parameter was not sat-
isfactory, tilt could be acceptibly inferred - especially in the O1,m = 7 con-
dition - leading to at least, a proximate estimation of �rst order depth.
The crucial point is that in parallel, zeroth order depth could also be inferred
with fairly better results. However, no model alterations were rendered, no
extra parameters were set. Just by observing stimuli of di�erent nature
(with even the same underlying basis functions), neurons showed di�erent
selectivities, enabling inference of both orders of depth.
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4.7 Limitations

Limitations

The sparse representation also brings methodological problems. Due to
the sparseness, the amount of stimuli needed, to obtain su�ciently dense-
sampled tuning maps, is very high. In a �rst try of the method employed
in this work, the stimulus database comprised about 200000 stimuli, what
turned out to be too few: no selectivity patterns emerged on the tuning
maps.

Is the Experiment too Abstract?

Many simpli�cations were undertaken, beginning with a linear retina, up to
the scarce stimulus presentation. Through texturing of a �at surface, depth
manipulation then led to structures, and deformations, which seldomly ap-
pear in reality. Depth was only mediated through disparity. No other infor-
mation, from any of the many depth cues, entered the sparse representation.
That could of course be interpreted as a well controlled experiment, but
on the other hand it is not surprising that depth inference did not work
perfectly, with such withered stimuli.
No one would expect a human, to correctly tell the rotation of a square-
centimeter surface in space, after looking from one meter, disregarding the
edges. So maybe a little more proximity to literal natural images, would
boost the performance of inference.

Outlook

This work made a �rst assessment of the role of a sparse stereo-representation
for depth estimation. First order depth was inferred with mediocre results,
but all in all, it could be shown, that information needed for such an inference
is availible.
For the future I propose to change the SCANN parameters in such a form,
that useful, more speci�c neurons emerge for high overcompleteness factors.
Selectivity on tuning maps should thereby be uniformly distributed across
all stimulus classes.
Creating a stimulus data base, with constant mean encoding neurons across
all stimulus classes, could further minimize bias and optimize tuning maps.
Another option would be, to reconstruct a 3D environment, so that some
more natural cues are present in the stimuli.
In addition the model's sparsity factor could have a strong impact on the
information representation and is worth investigating.
With such enhancements of the method, �nally, second order depth stimuli
- convex and concave shapes could be created. Showing that a sparse stereo-
representation, also allows inference of such stimulus parameters, would be
thrilling.

77



References

Abbasi-Asl, R., Pehlevan, C., Yu, B., & Chklovskii, D. (2016). Do retinal
ganglion cells project natural scenes to their principal subspace and whiten
them? In Signals, systems and computers, 2016 50th asilomar conference

on (pp. 1641�1645).

Anzai, A., & DeAngelis, G. C. (2010). Neural computations underlying
depth perception. Current opinion in neurobiology , 20 (3), 367�375.

Atick, J. J., & Redlich, A. N. (1992). What does the retina know about
natural scenes? Neural computation, 4 (2), 196�210.

Barlow, H. B. (1961). Possible principles underlying the transformations of
sensory messages.

Berens, P., et al. (2009). Circstat: a matlab toolbox for circular statistics.
J Stat Softw , 31 (10), 1�21.

Bosking, W. H. (2008). V1 neurons: in tune with the neighbors. Neuron,
57 (5), 627�628.

Ecke, G. (n.d.). not yet availible. (unpublished)

Ferris, S. H. (1972). Motion parallax and absolute distance. Journal of

experimental psychology , 95 (2), 258.

Fisher, N. I. (1995). Statistical analysis of circular data. Cambridge Univer-
sity Press.

Heil, C. (2010). A basis theory primer: expanded edition. Springer Science
& Business Media.

Huang, S. Y. (n.d.). Savitzkygolay2d in matlab.

Hubel, D. H., & Wiesel, T. N. (1968). Receptive �elds and functional
architecture of monkey striate cortex. The Journal of physiology , 195 (1),
215�243.

78



REFERENCES

Janssen, P., Vogels, R., Liu, Y., & Orban, G. A. (2003). At least at the level
of inferior temporal cortex, the stereo correspondence problem is solved.
Neuron, 37 (4), 693�701.

Jones, J. P., & Palmer, L. A. (1987). An evaluation of the two-dimensional
gabor �lter model of simple receptive �elds in cat striate cortex. Journal
of neurophysiology , 58 (6), 1233�1258.

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hud-
speth, A. J. (2000). Principles of neural science (Vol. 4). McGraw-hill
New York.

Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., . . .
Wiskott, L. (2013). Deep hierarchies in the primate visual cortex: What
can we learn for computer vision? IEEE transactions on pattern analysis

and machine intelligence, 35 (8), 1847�1871.

Lipton, L. (1982). Foundations of the stereoscopic cinema: a study in depth.
Van Nostrand Reinhold.

Lundquist, S. Y., Paiton, D. M., Schultz, P. F., & Kenyon, G. T. (2016).
Sparse encoding of binocular images for depth inference. In Image analysis

and interpretation (ssiai), 2016 ieee southwest symposium on (pp. 121�
124).

Mallot, H. A. (2000). Computational vision: information processing in

perception and visual behaviour. MIT Press.

Murphy, K. P., et al. (2006). Naive bayes classi�ers. University of British

Columbia, 18 .

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive
�eld properties by learning a sparse code for natural images. Nature,
381 (6583), 607.

Orban, G. A. (2011). The extraction of 3d shape in the visual system
of human and nonhuman primates. Annual review of neuroscience, 34 ,
361�388.

Pack, C. C., Livingstone, M. S., Du�y, K. R., & Born, R. T. (2003). End-
stopping and the aperture problem: two-dimensional motion signals in
macaque v1. Neuron, 39 (4), 671�680.

Parker, A. J. (2007). Binocular depth perception and the cerebral cortex.
Nature Reviews Neuroscience, 8 (5), 379.

Petavision. (n.d.). http://sourceforge.net/p/petavision/code/HEAD/tree/.

79



REFERENCES

Pierrot-Deseilligny, C., Milea, D., & Müri, R. M. (2004). Eye movement
control by the cerebral cortex. Current opinion in neurology , 17 (1), 17�
25.

Reich, K. (2017). Binokulare bildstatistik mit virtueller vergenz (Unpublished
master's thesis). Eberhard Karls Universit"at T"uebingen.

Rozell, C. J., Johnson, D. H., Baraniuk, R. G., & Olshausen, B. A. (2008).
Sparse coding via thresholding and local competition in neural circuits.
Neural computation, 20 (10), 2526�2563.

Ruderman, D. L., & Bialek, W. (1994). Statistics of natural images: Scaling
in the woods. In Advances in neural information processing systems (pp.
551�558).

Savitzky, A., & Golay, M. J. (1964). Smoothing and di�erentiation of data
by simpli�ed least squares procedures. Analytical chemistry , 36 (8), 1627�
1639.

Schultz, P. F., Paiton, D. M., Lu, W., & Kenyon, G. T. (2014). Replicat-
ing kernels with a short stride allows sparse reconstructions with fewer
independent kernels. arXiv preprint arXiv:1406.4205 .

Simoncelli, E. P. (2003). Vision and the statistics of the visual environment.
Current opinion in neurobiology , 13 (2), 144�149.

Srivastava, S., Orban, G. A., De Mazière, P. A., & Janssen, P. (2009). A
distinct representation of three-dimensional shape in macaque anterior in-
traparietal area: fast, metric, and coarse. Journal of Neuroscience, 29 (34),
10613�10626.

Taira, M., Tsutsui, K.-I., Jiang, M., Yara, K., & Sakata, H. (2000). Pari-
etal neurons represent surface orientation from the gradient of binocular
disparity. Journal of neurophysiology , 83 (5), 3140�3146.

Tsutsui, K.-I., Jiang, M., Yara, K., Sakata, H., & Taira, M. (2001). Inte-
gration of perspective and disparity cues in surface-orientation�selective
neurons of area cip. Journal of Neurophysiology , 86 (6), 2856�2867.

Verhoef, B.-E., Vogels, R., & Janssen, P. (2010). Contribution of inferior
temporal and posterior parietal activity to three-dimensional shape per-
ception. Current Biology , 20 (10), 909�913.

Zeiler, M. D., Krishnan, D., Taylor, G. W., & Fergus, R. (2010). Deconvolu-
tional networks. In Computer vision and pattern recognition (cvpr), 2010

ieee conference on (pp. 2528�2535).

80



REFERENCES

Zhaoping, L. (2006). Theoretical understanding of the early visual processes
by data compression and data selection. Network: computation in neural

systems, 17 (4), 301�334.

81



Appendix A

My Additional Information

Derivation of Geometric Formulas

This section describes how the geometry from Figure 2.1 was derived, up to
the mentioned formula 2.2.

With a and b given, angle γ can be calculated:

γ = arctan
b

2a
(A.1)

With γ one can calculate δ

δ =
π

2
− γ (A.2)

With a, b given s can be calculated with pythagoras:

s =

√
a2 +

b2

4
(A.3)

The distances of xr and xl are sought. The simple equations stand:

xr = fe · tanβr (A.4)

xl = fe · tanβl (A.5)

On the other side of the lense one can again �nd βr and βl (opposite angles
of the inner β). Because a dependence of α is sought to compute the β, one
needs cr, respectively cl. For now, I write out the calculation of cr.

Through the law of cosines one gets:

c2r = s2 + l2 − 2 · s · l · cos

(
α+

π

2
− arctan

b

2s

)
(A.6)

cr =

√
s2 + l2 − 2 · s · l · cos

(
α+

π

2
− arctan

b

2s

)
(A.7)
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A.1 Derivation of Geometric Formulas

Because of the law of sines one then gets:

sinβr
l

=

sin

(
π
2 − arctan

(
b
2a

)
+ α

)
√
s2 + l2 − 2 · s · l · cos

(
α+ π

2 − arctan b
2s

) (A.8)

with
sin

π

2
− x = cosx

this makes

sinβr
l

=

cos

(
arctan

(
b
2a

)
− α

)
√
s2 + l2 − 2 · s · l · sin

(
arctan

(
b
2s

)
− α

) (A.9)

the trigonometric addition formulas state that:

sin(α+ β) = sinα · cosβ + sinβ · cosα (A.10)

sin(α− β) = sinα · cosβ − sinβ · cosα (A.11)

cos(α+ β) = cosα · cosβ − sinα · sinβ (A.12)

cos(α− β) = cosα · cosβ + sinα · sinβ (A.13)

(A.14)

Therefore I can resolve the sums in the trigonometric functions:

sin (βr) =

l ·
[
cos

(
arctan

(
b
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))
· cos (α) + sin

(
arctan

(
b
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· sin(α)
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b
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)
· cos(α)− sin(α) · cos

(
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(
b
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))]
(A.15)

In addition to that, the following stands:

tan(x) =
sin(x)√

1− sin2(x)

⇒ tan2(x) =
sin2(x)

1− sin2(x)

⇒ tan2(x)− tan2(x) · sin2(x) = sin2(x)

⇒ tan2(x) = sin2(x) · (1 + tan2(x))

⇒ sin(x) =
tan(x)√

1 + tan(x)
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A.1 Derivation of Geometric Formulas

The same can be done with the cosine:

tan(x) =

√
1− cos2(x)

cos(x)

...

cos(x) =
1√

1 + tan2(x)
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A.1 Derivation of Geometric Formulas
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A.1 Derivation of Geometric Formulas
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A.2 Basis Functions at Di�erent Overcompleteness levels

Basis Functions at Di�erent Overcompleteness levels

Figure A.1: The binocular basis functions, learned with the virtual vergence
database after (Reich, 2017). The basis functions are sorted after their usage in
reconstruction, the �rst being used most frequent. Through the overcompleteness
level of 1 for stride s = 8 in both spacial directions, 128 basis function pairs emerge.
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A.3 Exemplatory ZED Stereo Camera Images
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A.4 Additional Results

Additional Results

To test the signi�cance of di�erence between the two groups of mean encod-
ing neurons, �rst, the samples were z-transformed. The following Figures
show the z-transformed data for all four conditions.

Mean Kernel Activity

Figure A.4

The z-transformed data were tested on their normality with help of a Kolmogorov-
Smirnov Test. Due to the fact, that all samples followed a normal distribu-
tion, a conventional two-sampled, one tailed t-test was carried out. Details
can be found in the following two tables.
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A.4 Additional Results

Figure A.5
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A.4 Additional Results

Figure A.6
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A.4 Additional Results

Figure A.7
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A.4 Additional Results

Additional Tilt Estimations

Tilt estimations at the lowest two slant levels can be seen in the following
two Figures. The slant is too small to allow any inference.
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A.4 Additional Results

Figure A.8: Histograms of tilt estimations at all tilt levels at slant level 2 blue:
O1,m = 5, with-bias; green: O1,m = 5, without-bias; orange: O1,m = 7, with-bias;
yellow : O1,m = 7, without-bias
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A.4 Additional Results

Figure A.9: Histograms of tilt estimations at all tilt levels at slant level 3 blue:
O1,m = 5, with-bias; green: O1,m = 5, without-bias; orange: O1,m = 7, with-bias;
yellow : O1,m = 7, without-bias
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Appendix B

Contents of CD

1. A digital version of this work

2. A folder with all Matlab Scripts used for processing

3. A template .lua-script for SCANN learning

4. The Blender �le with the reconstructed experiment

5. The python scripts used for stimulus creation automatisation

6. The basis functions for O1 and O8
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