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Abstract

The faculty of place recognition is a central condition for successful navigation. It
involves the comparison of two elements: A set of remembered characteristics of a
place (place code) and a representation of the current surroundings cached in spatial
working memory. Different models of the internal representation of places give rise
to different predicted error patterns of homing, which can be compared to behavioral
data. Previous work on visual homing using this approach had some success in
determining properties of the internal representation used by humans. While in
certain situations models based on features extracted directly from views perform
best, in other situations models based on reconstruction type representations showed
the best performance. Here, we address the question of how depth information is used
in humans for representing places in closed room environments. We discriminate
between a relatively unprocessed depth picture and a more abstract egocentric
reconstruction as possible content of spatial working memory. For this purpose,
we extend two simple maximum likelihood models of place recognition by Mallot
and Lancier (2017) to closed room environments and compare the predicted errors
to experimental data by Halfmann (2015). In the Halfmann experiment, subjects
performed a simple return to cued condition task in a kite-shaped room in immersive
virtual reality. The walls of the room had special properties reducing visual cues
to depth. The experimental error patterns significantly deviate from error patterns
expected for the model with place codes based on visual angles. The present analysis
excludes this model and favors the reconstruction based model. The model is based
on the shortest distance to walls as place code and an egocentric spatial working
memory featuring the current shortest distance to walls.
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1 Introduction

Animals including us humans have no sensing organ for their absolute position in
space. Yet, efficient navigation is an important faculty that a lot of animals have. To
estimate their position in space, humans use visual cues and path integration among
several other sources of information. A self experiment in a completely dark room
easily shows that visual cues are crucial for human navigation.
Due to limited resources, space cannot be processed as the continuous coordinate
frame that it is. If a location is processed in animals, this location probably has a
meaning and it is characterized by this meaning. The context in which the place
was important and properties of the environment probably also characterize places.
In this work we will treat places as previously learned, and therefore meaningful,
locations in space that an agent can navigate to.
The ability to navigate to a previously learned location implies the existence of
spatial memory. Research on simpler organisms like bees was quite successful in
determining the information content of this spatial memory. In experiments with
bees, visible landmarks were moved away from a previously learned location. When
the bees tried to return to that location, their searching behavior indicated that they
find places by minimizing the difference of the sensed image and the image that
would be sensed at the goal location. The distance of the goal to the landmarks
did not seem to play a role [Cartwright and Collett, 1983]. Therefore it is assumed
that bees memorize places in form of panoramic images that have undergone little
processing. In this work the information used to memorize a place will be called a
place code.

The strategy to approach a goal by minimizing the difference of the perceived
surroundings and the memory of those surroundings is also conceivable for more
complex animals like humans [Kuipers, 2000]. Of course, human place codes are
probably very different from the raw panoramic view that bees use. Humans are
different from bees in many ways. They have their eyes on the front, hence they don’t
have access to panoramic views. Place codes and the content of spatial working
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Chapter 1. Introduction

memory must therefore be composed of information from multiple views. Humans
obtain depth information through stereo vision in addition to motion parallax. They
are also known to identify prominent points such as church towers and use them
for navigation and are capable of navigating precisely in small scale environments
like closed rooms and large scale environments like cities. All characteristics of a
place that humans perceive, and cache in spatial working memory could be part of
place codes, including simple unprocessed views, the distance to landmarks, inter
landmark angles and all kinds of other descriptions of the surroundings.

There even could be differences in the representation of places in long term memory
and the representation of places in working memory that is being used while
navigating to a place. This work deals with the properties of spatial working memory
because this can be examined in behavioral experiments. The recognition of a place
will be treated in the sense that it is successful if the agent was able to navigate to that
place. Apart from behavioral approaches also physiological research has contributed
to the understanding of the representations used in spatial working memory. In the
following, I will therefore briefly summarize findings from both types of approaches
with special emphasize on those publications which have some relevance for the
present study.

1.1 Physiological Research

Physiological research gives several clues on what is encoded in spatial memory.
Visual information has a retinal reference frame, i.e. a retinotoptic depth map ex-
ists in the parietal cortex [Gardner et al., 2008]. This means that in early stages of
processing, depth is represented, like an additional dimension to the three color
intensities. A more recent study has found evidence for a spatiotopic map sensitive
to movement, in the parietal cortex, specifically in MT [Gardner et al., 2008]. MT is
therefore suspected to be involved in building a representation of space with world
centered coordinates. Unfortunately, it is not yet known how this representation is
built, and how it is used to form spatial memory.
The most direct neural correlate of place memory are cells that encode specific
places on a map. Those cells have been found through extracellular recordings in
the hippocampus of rats [O’Keefe and Dostrovsky, 1971]. Cells that encode head
direction at a certain view point [Taube, 1998] and the proximity to boundaries
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have also been found in the hippocampus and neighboring areas of the rat brain
[Solstad et al., 2008].
This clearly indicates that rats have access to bearing information, and that bound-
aries and their proximity to the rat play a role, but it does not tell us which information
is stimulating the firing of those neurons. The firing of neurons when the rat has a
certain location and head direction could simply be representing a constellation of
visual features in the field of view, or the rat’s position and orientation relative to a
constellation of recognized objects obtained through all senses available to the rat,
just to name two very different possibilities.

When human subjects are presented with visual stimuli relevant for navigation, such
as roads, rooms and landscapes, a stronger fMRI Repetition Suppression is measured
in the Hippocampal Place Area (PPA) and the Retrosplenial Cortex (RSP) compared
to when visual stimuli unsuitable for navigation, such as objects and people, are pre-
sented [Epstein, 2008]. The fMRI Repetition Suppression (fMRI-RS) is a phenomenon
of reduced fMRI response when a Stimulus is presented more than once. It is believed
that when a region of the brain responds to a stimulus with a stronger fMRI-RS than
the rest of the brain, it is involved in processing that stimulus. Consequently, two
different stimuli are considered to be represented in similar ways, if their subsequent
presentation give rise to an fMRI-RS [Epstein, 2008]. For example, two different
photos of the same face will show an fMRI-RS [Larsson and Smith, 2011]. With this
type of experiment, it was shown that the processing of scenes in the PPA is mostly
dependent on the spatial layout of the scene. Individual objects in the scene and
the position of the scene in the field of view seemed to be irrelevant [Epstein, 2008].
No indication of a scene representation independent of the point of view could
be found, which indicates that information encoded in the PPA has an egocentric
reference frame. Similar results were found in the RSP, albeit with stronger responses
to known scenes. Therefore, the RSP is suspected of being involved in the retrieval
of spatial memories [Epstein, 2008].

From physiological research it is not known which aspects of a view are used to form
this "spatial layout" that the PPA reacts to. These could be visual features like color,
texture and depth, but also descriptions like "a barrier to the right and a passage to
the left" and spatial relations between landmarks and between landmarks and the
observer could be used for forming a "spatial layout".

13
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1.2 Behavioral Research

Behavioral research on navigation in space tries to infer information about the
internally used representations from behavioral data. A common limitation of such
type of aproaches is the fact that behavior can often be explained by fundamen-
tally different models. To give a typical example: In rooms, rats confuse the goal
location with geometrically equivalent points. This behavior was first interpreted
as giving evidence for the use of geometric information like distances and angles
[Stürzl et al., 2008]. However, Later work showed that this behavior is in line with
the predictions of a model based on simple panoramic views with edge detec-
tion [Cheng et al., 2007, Cheng, 2008]. In this particular case, more sophisticated
experiments are needed for discriminating between the two explanations or even
coming up with another one. Generally speaking it is hard to show that a certain
representation of the surroundings for one situation is also used in any other case, or
can be used by an agent in any given situation. Nevertheless, behavioral experiments
help to narrow down the properties of the internal representation of the environment.

Evidence for a representation of indoor spaces with an intrinsic frame of reference
has been found. In an imagined pointing experiment, subjects had to learn the layout
of objects in a room, and then they were asked to point at objects without them
being visible. Subjects where most accurate when the imagined viewing direction
was parallel to the intrinsic axis of the room [Mou and McNamara, 2002]. This could
mean that the spatial layout of landmarks is perceived and memorized in relation
to an intrinsic axis of the room: A form of representation with a world centered
reference frame. Humans are able to recognize a place in the absence of landmarks,
with the help of simple unprocessed views [Gillner et al., 2008]. This was shown in
virtual reality in a round room with a color gradient on the wall. Even though the
distance to the wall could be obtained through motion parallax and the elevation of
the wall in the field of view, the radial component of the goal position seemed to be
obtained from the color gradient on the wall, as radial accuracy decreased when the
contrast in the color gradient was reduced. The authors concluded that the subjects
used a simple view to remember the goal location. Depth information alone enables
humans to recognize a place [Halfmann, 2015]. This was shown in virtual reality
environment with a kite-shaped room presented through stereoscopic random dots
with limited life time. Instead of colored polygons the walls were composed of
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dynamically generated random dots with an uniform distribution. The number of
visible dots was always the same and their lifetime was randomly chosen between
100ms and 200ms. The dots all had the same size in the field of view. Since the pattern
of dots always changed, it could not be used for navigation. Depth information from
stereo disparity and motion parallax was the only visual cues available. Nevertheless
the participants were able to navigate precisely, and their performance was not
significantly increased when additional texture cues were added to the environment
[Halfmann, 2015]. The authors concluded that humans can build a representation of
a local environment from depth information alone[Halfmann, 2015]. Reconstructions
with world centered reference frame as well as texture and depth information are
probably present in spatial working memory.

All following experimental work deals with situations where subjects have to find
back to a previously learned place. Such tasks are called homing tasks. The systematic
errors in the endpoint locations are informative about the internal representations
that were used to navigate. A common assumption is that subjects recognize a place
by matching the memorized place code of that place with the currently perceived
surroundings, the errors in the endpoint positions depend on the errors that lie
in the place code and the errors that lie in the perception of the surroundings.
This can easily be illustrated with an example in a one dimensional world where
a place was memorized in form of a place code consisting of the distance to one
landmark. It is assumed that the memorized distance and the distance perceived by
the one dimensional agent have the same underlying error distribution because both
measurements where made in the same way. If this error distribution is Gaussian
with standard deviation σ, the predicted error distribution of the endpoint locations
will be Gaussian as well with a standard deviation of 2σ and mean at the true goal
location. Evidence for the use of a particular cue can be obtained by modeling
the errors that occur during perception and how they propagate to the endpoint
locations, and then compare the resulting error distribution to experimental data.
This method can be used to study the representation used to remember locations
when landmarks are available.

In a series of experiments with similar conditions, Pickup et al. tested the predictions
of three different models of visual navigation. In an immersive virtual reality setup,
participants viewed a room with three thin long vertical poles with different colors

15



Chapter 1. Introduction

positioned close to each other, so they could all be seen at once. Participants could
only walk on a straight line of defined length, allowing them to have access to depth
information through motion parallax. They had to remember a certain position on
that line, before being teleported to a new location. The participants had to walk back
to the previously learned place and indicate when they thought that they had reached
the goal position. Different pole configurations were tested. The pole configurations
were chosen in a way that the predicted probability distributions of the different
models differ as much as possible. In an additional experimental condition, several
cues like furniture and objects were placed in the room. Indeed different error
distributions were observed for different pole configurations [Pickup et al., 2013,
Gootjes-Dreesbach et al., 2017]: In the cue rich condition, the errors were very small,
and therefore uninformative with respect to the strategy that the participants used.
The first model had place codes consisting of position estimates of the three poles in
an egocentric coordinate system. The modeled errors were physically plausible for
position estimates through motion parallax [Pickup et al., 2013]. The second model
was an extension of the first. Place codes consisted of the three distances between the
poles. The fact that errors propagate from the egocentric position estimates to the
relative position estimates makes this model a model with a world centered reference
frame [Pickup et al., 2013]. Both the first and the second model can be described
as reconstruction type models, because position estimates are reconstructed from
views. The third model was a view based model. Many different monocular and
binocular features can be extracted from a view. In previous work the authors had
identified the two most predictive ones. The place code consisted of the largest of the
three visual angles spanned between the poles and the disparity gradient between
the two poles standing closest to each other. The disparity gradient describes the
inclination of a plane relative to the viewing direction. This measure of relative depth
is obtained from the change in vergence angle between two poles divided by the
angle between them. The errors of all angular measurements where assumed to be
Gaussian [Gootjes-Dreesbach et al., 2017].

The two reconstruction based models were each better than the other model under
conditions with different pole configurations [Pickup et al., 2013]. The view based
model outperformed the egocentric reconstruction model under all conditions. The
world centered reconstruction based model and the view based model are not directly
compared in this study. The authors concluded that a view based representation of
visual and depth information is more likely to be present in spatial working memory,
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than an egocentric one, and that it is possible to construct experiments that can
differentiate between view based and egocentric reconstruction based models of
visual homing [Gootjes-Dreesbach et al., 2017].

Mallot and Lancier found evidence for the presence of egocentric distance estimates
in spatial working memory [Mallot et al., 2017]. In an immersive virtual reality setup,
participants had to navigate with the help of four distant sphere shaped landmarks.
The most important difference of the situation in this experiment compared to the
situation in the three pole experiments by Pickup et al. was that the place the partici-
pants had to navigate to, was located within the square formed by the four landmarks.
The participants therefore could only see two out of the four landmarks at a time.
The navigation errors where recorded for different landmark configurations, and
compared to the predictions of a model with place codes based on egocentric distance
estimates and the predictions of a model with place codes based on visual angles.
The recorded error distributions had two characteristic properties: An elongation
toward the most distant landmarks and a systematic bias away from the most distant
landmarks. The view based model failed to predict both properties of the recorded
error distributions. The distance based model predicted the elongation towards the
most distant landmark [Mallot et al., 2017]. A systematic bias suggests that either
the place code or the perception of the surroundings is biased. If both the place code
and the perception of the surroundings were biased, this bias would cancel out and
no systematic bias would be observed in the navigation errors [Mallot et al., 2017].
As the place code is constructed from information gathered over a longer period of
time than the momentary perception of the surroundings, one may assume that place
codes are unbiased but the content of spatial working memory is [Mallot et al., 2017].
By adding a parabolic compression to the perceived distance estimates, the distance
based model was able to predict both the shape of the error distributions and the
systematic bias [Mallot et al., 2017]. A parabolic compression of perceived depth
is plausible as it was already observed by Gilinski [Gilinsky, 1951]. A common
explanation why egocentric reconstruction based strategies (as opposed to view
based strategies) seem to be used in situations where landmarks can’t be seen at
once, is that visual angels between landmarks have to be estimated from multiple
views cashed in spatial working memory. Therefore, they are less precise and less
useful for navigation than distance estimates [Gootjes-Dreesbach et al., 2017]. An
additional reason why depth through parallax is more informative than visual angles
is sensitivity. The sensitivity of visual angles and parallax to distance decreases
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with the inverse square of the distance. While the sensitivity of visual angles stays
the same, the sensitivity of parallax can be increased by increasing the distance
between the two observation points. This advantage especially kicks in for situa-
tions with small and distant landmarks, like in this experiment by Mallot and Lancier.

While in some situations world centered representations may be important, in
other situations there is more evidence for the use of views or egocentric re-
constructions of the surroundings [Mou and McNamara, 2002, Gillner et al., 2008,
Gootjes-Dreesbach et al., 2017, Mallot et al., 2017]. Pickup et al. showed that a view
based model including depth information outperforms an egocentric reconstruction
based model in situations where all landmarks can be seen at once. As described
above Mallot and Lancier showed that a egocentric reconstruction based model
outperforms a view based model not including depth information in situations with
distant landmarks that can’t be seen at once.

The results of Mallot and Lancier suggest that representations in spatial working
memory have an egocentric reference frame and the results of Pickup et al. suggest
that image and depth information in spatial working memory has a view centered
reference frame. In both experiments image and depth information was available to
the subjects. In order to investigate if depth information is used as a feature of a view
or if it is used to build a reconstruction of the environment, a situation is needed
where only depth information is available. This is the case for the experimental
environment presented by Halfmann [Halfmann, 2015]. In the present thesis, we
have used the Halfmann data for comparing the performance of the two models
presented by Mallot and Lancier.

For two reasons, we hypothesize the egocentric reconstruction based model based
on distances performing better than the view-based model based on visual angles:

i) In the present experiment, visual angles can only be obtained from multiple
views which is a complication leading subjects preferring the use of distances
for navigation in similar experiments [Waller et al., 2000, Mallot et al., 2017].

ii) In addition, there is indication that corners of a room (the only cues defining
visual angles) are poorly useful for navigation in this particular experimental
setup [Halfmann, 2015].

Hence, if the view-based model still performed better under the given conditions,
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this would be a strong argument for processing of depth in a view centered reference
frame.
Unfortunately, distances in the present experimental setup are too small and goal
positions too close to walls for any systematic bias to occur because of compression of
long distances. Therefore, there is virtually no information from the bias of endpoint
distributions. Apart from the shape of endpoint distributions, bias information
actually provided strong evidence in favor of the reconstruction-based model in
the work of Mallot and Lancier. In the present work, however, the only source of
information used for discriminating between the two models is the shape of endpoint
distributions.

19





2 Methods

2.1 Subjects and Procedure

Before starting with the experiment, the 40 subjects had to do a preliminary test,
in order to verify that they were able to perceive stereoscopic depth. In the main
experiment, the subjects were asked to perform a "return to cued condition task"
[Gillner et al., 2008] in a kite-shaped room. During the first phase of the experiment,
the participants were placed at one of the three goal positions where they could look
around and perform small translational movements. The second phase commenced
by setting the subjects back to a start position from where they returned back to the
goal position by using a joystick. They indicated recognition of the goal position
by pressing a button and were then teleported to the true goal position. The next
trial started from there with the goal being one out of the two remaining goals. Each
subject completed a total of twelve trials i.e. two trials for each possible transition
between the three goal locations.

2.2 Virtual Environment

In the results reported here, the virtual environment was presented to the sub-
jects via an Oculus-Rift stereoscopic head-mounted display. The environment was
specially designed to allow for depth perception but exclude all other visual cues
[Sperling et al., 1989]. The walls of the kite-shaped room were defined by dynamic
random dots distributed uniformly in the field of view. The dots had a lifespan that
was randomly chosen between 100 and 200ms. After this time, the dots disappeared,
and they were instantaneously replaced by other dots keeping the total number of
dots constant. Because the position of the dots always changed, they could not be
used for pattern recognition. The only cue available to the subjects was depth through
stereo disparity and motion parallax [Sperling et al., 1989]. As a consequence, the
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Figure 2.1: a) Layout of the virtual environment with the three goal points. The goal
points are also used as starting points. b) Exaple view on the virtual
environment [Halfmann, 2015].

structure of the room was barely visible without moving or turning the head. When
moving/turning however, the structure of the room suddenly became visible with
depth information stemming from parallax only.

2.3 Models

The models used in this work are kept as close as possible to the models pre-
sented by Mallot and Lancier (2017) and were only modified for closed rooms. The
distance-based model assumes that depth information is used to build an egocentric
reconstruction of the surroundings. One of the simplest variants of egocentric rep-
resentation was chosen: Places are represented by the shortest distance to each of
the four walls. This model is related to the reconstruction based model proposed by
Pickup et al. (2013). The view-based model assumes that places are represented by
views, and that depth is processed in a view-centered reference frame. Views are
described by four visual angles, one for each of the four walls. This representation is
similar to the representation used in models based on panoramic views with edge
detection [Cheung et al., 2008] and to the view-based model proposed by Pickup et
al. (2013).
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2.3.1 Distance Based Model

In the original reconstruction based model by Mallot and Lancier (2017), the place
code was composed of an egocentric distance measurement and an allocentric
bearing measurement for each landmark. It was assumed that the agent had access
to the identity of the landmarks and its own allocentric bearing. Because there is
not one distance and bearing of a wall in a closed room, we have chosen to use just
the shortest distance to each of the four walls. This set of four egocentric distance
measurements formed the referential place code ci. At position x = (x, y) the agent
will take four measurements mi on the representation of their surroundings in
spatial working memory. Those measurements are subjected to errors and therefore
considered random variables drawn from a Gaussian distribution with expected
value mi and variance σ2

i . The likelihood that the agent recognizes the goal at a given
location is the likelihood that it takes a measurement equal to the remembered place
code. This probability is described by the following equation:

L(x) =

4∏
i=1

N(mi|ci,σ
2
i )

The perceived distance mi was compressed as proposed by Gilinsky (1951):

mi =
||li−xi|| ∗60
||li−xi||+ 60

li is the closest point on the wall. The distance of "infinity" at 60m was taken from
Mallot and Lancier (2017). Under the conditions of small distances investigated
here, compression has only a minor effect on the results. But for the purpose of
comparison, we still have adopted compression. The error distribution of a distance
measurement through parallax is not Gaussian, but has a tail on the side away from
the observer [Bailer-Jones, 2015]. The error modeled here is the resulting error from
depth perception and the processing of egocentric reconstruction of the surroundings.
Here the resulting error is approximated by a Gaussian distribution with variance
dependent on the distance that is measured. The dependence of variance and distance
is described by this quadratic equation:

σ2
i = s ∗ ||li−xi||

2 + a
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As the sensitivity of parallax decreases with the inverse square of the distance, the
variance should increase with the square of the distance. The original model by
Mallot and Lancier (2017) had no y-intercept a. This additional free parameter was
included because errors are not expected to approach zero for small distances. When
the measurement error is small, other sources of error become important. Errors
could for example arise from the retrieval from memory, the process of comparison
with the remembered place code or even from the limited precision of movement by
the subject.
The free parameters s and a were fitted using the standard simplex algorithm,
in order to maximize the likelihood to observe the experimental data under the
predicted distribution. If an endpoint was better explained by the distance-based
model with rotated wall identities, it was considered a rotation error and excluded
from the optimization process (see figure 2.4). The optimal parameters were:

s = 0.1092

a = 0.3483

2.3.2 View Based Model

The view-based model proposed by Mallot and Lancier has place codes composed of
eight visual angles, two for each side of the four landmarks. The agent was assumed
to have access to the identity of the landmarks and thus access to its own allocentric
bearing. In the model presented here, the place code ci is composed of the four visual
angles that the four walls take up. We decided against using the bearings of the four
corners, because results by Halfmann (2015) suggest that corners are not used for
place recognition in this experimental setup. At position x = (x, y) the agent will take
four angle measurements mi on the panoramic view-based representation of the
surroundings in spatial working memory. The likelihood of place recognition L(x) is
described by the following formula:

L(x) =

4∏
i=1

N(mi|ci,σ
2)

The angle measurements were modeled with a Gaussian error and a fixed variance
σ2. Visual angle estimates are independent of the distance to objects. The main
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Figure 2.2: Contour plot of the likelihood L(x) of place recognition when at position
x = (x, y) as predicted by the distance-based model. The maximum point
of L(x) does not coincide with the true goal position marked by the
star (red). This systematic bias arises from the parabolic compression of
distance estimates.

component of the errors modeled here is the error that arises from building a
panoramic view from multiple views. The retrieval of the place code from memory,
and the comparison process also contribute to the error. In this experiment visual
angles are retrieved from depth information which is subject to errors and bias from
depth perception. It can be shown that the compression of depth estimates and the
errors that arise from depth perception do not affect the angles at which the corners
of the room appear in the visual field (for explanation see supplementary material).
The free parameter σ2 was fitted using a simplex algorithm, in order to maximize the
likelihood to observe the experimental data under the predicted distribution. If an
endpoint was better explained by the view-based model with rotated wall identities,
it was considered a rotation error and excluded from the optimization process (see
figure 2.4). The optimal parameter was:

σ2 = 20.48
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Figure 2.3: Contour plot of the likelihood L(x) of place recognition when at position
x = (x, y) as predicted by the view-based model. The goal position is
marked by the star (red).

2.4 Description of Experimental Data

The subjects showed a performance way above chance level [Halfmann, 2015] i.e.
the endpoint locations only varied moderately around the true goal location. The
distribution of the endpoint locations has a distinct shape for each of the three goal
locations. In some trials the subjects seem to have confused the goal with completely
different positions. Those qualitative errors occurred especially in trials with goal
position A and C. Halfmann (2015) suggested that those errors are "rotational errors"
meaning that the identity of the walls were confused while their order remained
the same. Unfortunately, the low number of this type of error occurring in this
experiment does not allow for deciding whether or not this claim corresponds to the
predictions made by the models presented here. We considered the maximum point
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of the likelihood functions with permutated place code as the points of confusion.

x∗ = argmaxx(L(x))

We included the points equivalent to the goal location as predicted by the respective
model with rotated wall identities to figure 2.4.

2.5 Statistical Testing

A bivariate goodness-of-fit test is needed to quantitatively determine which of the
two models better predicts the data. Due to boundary effects caused by the walls,
the use of statistical procedures with normality assumption are excluded from
the outset. We therefore decided for the multivariate Kolmogorov-Smirnov test.
This test essentially applies the Kolmogorov-Smirnov statistic to every conditional
distribution of the empirical distribution function and corrects the global significance
level through Bonferrony-Correction [Justel et al., 1997]. The Kolmogorov-Smirnov
test can reject the null-hypothesis that two samples are derived from the same
distribution at a certain significance level.

For each condition (goal location A, B, C) a random sample of N = 2000 was drawn
from the two distributions predicted by the two models [Ursel, 2020]. A multivariate
Kolmogorov-Smirnov test was then performed to test whether the sample and the
experimental data were derived from the same distribution. Data from trials that
were considered rotation errors by the respective model were not included in the
test. After removal of those trials the cardinality of the set was NA = 85, NB = 90
and NC = 62 for the distance-based model and NA = 79, NB = 90 and NC = 55 for the
view-based model.
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Figure 2.4: Decision points (blue) for the three goal positions (red). The decision
points marked in magenta were better explained by the respective model
with rotated place code, and were not used during the optimization of
the model and statistical testing. The locations marked in green are the
points of confusion predicted by the respective model.
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3 Results and Discussion

The results of the bivariate Kolmogorov-Smirnov tests for both models and all three
goal positions (A, B, C), as summarized in table 3.1 and figure 3.1, provide some
support for our hypothesis that the distance-based model performs better than the
view-based model. Especially for goal position B (close to one of the short walls), the
p-value for the view-based model falls short of the significance level of α = .05, and
it is only slightly above this level for position A (close to one corner). On the other
hand, for the distance-based model, the p-value for all three goal positions remain
well above this level. As the bivariate Kolmogorov-Smirnov test is a conservative
test, this in itself is a strong case against the view-based model presented here.

To be more specific: the view-based model predicts by far too much variance for
goal position B (figure 3.1.). For goal position A and C one can clearly see that the
classification of endpoints as rotation errors has an influence on the shape of their
distribution. This weakness of the experiment presented here can be resolved by
designing the environment in such a way that the points of confusion as predicted
by both models do not lie too close to the true goal location.

Generally speaking, goodness of fit tests like the bivariate Kolmogorov-Smirnov
test cannot prove that experimental data are the result of an underlying theoretical
distribution. This type of tests can only exclude (disprove) a hypothetical model
at a certain significance level. In order to get more certainty about whether or not
a model of behavior is accurate, it is necessary to study whether it can predict
multiple properties of behavior. In the open field, e.g., bias away from the landmarks
that are further away was used as additional property [Mallot et al., 2017] (see also
end of Introduction). This bias could be predicted by the distance-based model
with compressed distance estimates in spatial working memory and a place code
composed of accurate distance estimates. The view-based model was not able to
predict this bias. Like on the open field, in closed rooms and with perception limited
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Goal position view-based model distance-based model

A D = .5220, p = .0799 D = .4150, p = .2606
B D = .5783, p = .0492 D = .3961, p = .3661
C D = .4566, p = .2039 D = .9466, p = .1396

Table 3.1: The bivariate Kolmogorov-Smirnov statistic D and the corresponding
p-value for the thee experimental conditions. With a significance level of
α = .05 the null hypothesis was rejected for the view-based model and
goal position B e.g. it is unlikely that the endpoints presented here are
the result of the distribution predicted by the view based model. It can be
stated that the distance-based model outperforms the view-based model
for goal position A and B.

to depth, a view-based model does not predict a systematic bias in the endpoint
locations (see supplementary material). For making use of systematic bias as an
argument for the distance-based model in a closed room environment, the room
needs to be scaled up as to increase the effect of parabolic compression and to reduce
boundary effects caused by walls.

The broader context of the present work actually is to learn more about the reference
frame in which depth information is processed in spatial working memory when
performing a homing task. In this study, we considered an egocentric and a view
centered reference frame. In particular, we compared the ability of two simple
models based on the comparison of a remembered place code and the content of
spatial working memory for predicting the endpoint distribution in a visual homing
task with visual perception reduced to depth. We showed that, under the given
conditions, the model with place codes based on egocentric estimates of the distance
to landmarks performs better than a model with place codes based on visual angles.

Since only those trials were considered in which the subjects successfully performed
the homing task and only data close to the true goal location were used for the
statistical tests, above conclusion only hold for the final approach of the goal.

Successful homing requires the correct identification of landmarks (here walls)
which, in a closed room, is equivalent to knowing the bearing of the view that
is currently perceived. In the models presented here the wall identities were as-
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Figure 3.1: Endpoint locations that were not considered a rotation error by the
respective model (blue). Contour plot of the likelihood L(x) of place
recognition at position x = (x, y) as predicted by the respective model.
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sumed to be known to the agent. Homing involves identifying the own position
an bearing in some kind of reference frame, and a process of relating that position
to the goal position [Pickup et al., 2013] e.g. the approach of the goal is preceded
by the recognition of the own position. Confusion of landmarks (walls) during
comparing the remembered place code to the content of spatial working memory
lead to rotational errors. The identification of the own relation to the remembered
representation of the surroundings at the goal (place code) may happen several
times during the navigation as subjects sometimes changed their heading completely
[Halfmann, 2015]. The work presented here has provided evidence that place codes
contain egocentric distance estimates to identified landmarks, however our results
do not exclude that the process of identifying the own orientation relative to the
remembered place code happens with the help of depth information processed in a
view centered reference frame. It still has to be clarified how the orientation of the
world is deduced from depth pictures and egomotion during the first moments of a
homing task. A more comprehensive model of place recognition in closed rooms
should also be able to predict the errors that occur during the entire process of
homing e.g. the directions in which subjects erroneously walk, the rotational errors
they make as well as the precision errors around the true goal location.

Broader models of spatial working memory that can explain the whole process
of homing have been developed already. They range from graphs putting views
into their allocentric relation [Röhrich et al., 2014] to egocentric reconstructions of
the world with identified landmarks [Loomis et al., 2014]. But those models are not
suitable for the type of quantitative predictions like the models we presented in this
work.
Both an allocentric graph of views and an egocentric reconstruction of the surround-
ings could be present in spatial working memory (simultaneously). The results
presented here only provide evidence for the availability and use of the latter during
the final approach of the goal in homing tasks in closed rooms where depth is the
only visual cue available.
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4 Supplementary Material

In the following, we will explain why errors of depth perception do not affect the
angles at which the corners of the room appear in the visual field.
When depth is processed in a view-based reference-frame, each depth estimate
corresponds to a certain pixel of a panoramic view. In turn, each pixel corresponds
to a certain angle in the visual field, and corners of the room appear as kinks in
the panoramic depth picture. Any Gaussian noise in the depth estimates then blurs
the corners, i.e. kinks indicating corners are smeared out to both sides of the corner
leaving the corner position unchanged.
This is even true for systematic errors stemming from parabolic compression of
depth estimates:

dcompressed =
d ∗A
d + A

; 0 < A

which is the systematic underestimation of distances, which increases with increasing
distance. The equation above describes how the true distance d is compressed with
A as the “distance of infinity”. Here, the important point is that this compression
does not change the order of the distance estimates, and hence the positions of the
kinks in the picture do not change. Fig. 4.1. clearly slows that parabolic compression
of depth estimates changes the perceived shape of the room but not the position of
corners and with that angles defined by these corners and the position of the subject.
We, therefore, conclude that models based on the perceived bearing of corners are
not affected by statistical (Gaussian) and systematic errors (parabolic compression)
of depth perception. Such errors reduce the contrast in the depth picture and lessen
the difference between views, but they do not create a biased perception of visual
angles. Models based on the smallest distance to the walls, however, are affected by
the bias arising from parabolic compression.
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Figure 4.1: Shape of the room as perceived from position x = (7,10). With no compres-
sion (blue), compressed with A = 60m like in the simulation presented in
this work (red) and compressed with A = 20m (magenta). The black lines
are straight lines through (7,10) and the corners of the room.
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