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1 Abstract

In this work, different types of path integration are compared according to
their robustness against errors. Idiothetic as well as allothetic path integra-
tion is considered. During idiothetic path integration, an agent has only access
to proprioceptive information such as kinetic and vestibular perception. For
allothetic path integration, only one landmark is available to the agent at a
time, which severely restricts the information accessible through the environ-
ment.
If the landmark is at a sufficient distance, error robust path integration is pos-
sible without knowing the position of the landmark. If the landmark is close,
the position of the landmark can be estimated by combining idio- and allo-
thetic information with little additional computational effort. Path integration
with known landmark position proves to be the most error robust model of
the ones that are evaluated in this work.
It therefore seems reasonable to consider path integration where both idiothetic
and allothetic information is available in studies about spatial orientation. So
far, this has largely been studied separately. However, this separation seems
rather arbitrary as this work shows that the underlying procedure is very sim-
ilar.
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2 Motivation

Path integration is an important principle of spatial orientation. It describes
the ability to continuously determine one’s own position. In path integration,
each new position of an agent is calculated based on the previous one. This is
done using information about the distance of movement and information about
the direction of movement, which is the current heading. If an agent knows its
position relative to an initial position and knows the current heading, it also
has the necessary information to be able to find its initial position.
From an evolutionary point of view, the ability to return to a certain position
plays a crucial role. With the help of path integration, an agent can, for ex-
ample, return to the nest after foraging. This is possible even if the nest is
out of sight. This ability is possessed by mammals, insects and birds, among
others (Papi, 1992).
Spatial orientation is also an essential ability for mobile robots. Not all en-
vironments can be known in advance and provided to the system as maps.
GPS data for the detection of its own position is also not always available
(Wang et al., 2014). Therefore, it is important to implement spatial orien-
tation procedures (such as path integration) so that the agent can use the
available information to find its way in unknown environments.

Typically, path integration is understood as a purely idiothetic path integra-
tion. In this case, only proprioceptive movement information is available to the
agent. The agent can not use any information from the environment, so-called
allothetic information for its localisation. Allothetic information includes vi-
sual and auditory information, for example. This idiothetic path integration
has been observed in many species, including ants, bees and various mammals
(Etienne et al., 1996). Problematically, errors in localisation estimates accu-
mulate over time if purely idiothetic path integration is used (Etienne et al.,
1996). Errors that already exist can no longer be compensated for, since no
adjustment with the environment takes place.
The study of purely idiothetic path integration, which excludes any allothetic
information, is an artificial problem and not very close to reality. This is be-
cause in most cases an agent has the ability to perceive its environment. This
allothetic information can be used for path integration as well. In reality, path
integration works through an interaction of idiothetic proprioception and al-
lothetic environmental information (Anagnostou et al., 2018). With perfect
perception, idiothetic and allothetic information is redundant. Under the in-
fluence of error factors, however, the additional information could be used to
minimise errors.
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Following this idea, approaches to investigate path integration where allothetic
information is also available to the agent have been developed. In that case,
the agent can match its own movement with the direction of a compass, for
example. There are many vertebrates, including fish, pigeons and even some
mammals, that can use the earth’s magnetic field as a compass (Wiltschko &
Wiltschko, 2005; Gould, 2008).
But compass information is not always available to every agent. If that is the
case, distant landmarks can be used as allothetic information for path integra-
tion instead of a compass. One’s own movement is then estimated relative to
these landmarks. It has been shown that people use distant landmarks for their
navigation (Steck & Mallot, 2000). Landmarks that are closer to the agent can
also be used for localisation. In robotics, a method called SLAM (simultaneous
localisation and mapping) is often applied to mobile robots, which estimate
the position of landmarks and use this estimation to determine the position
of the agent. It is an iterative, probabilistic method that often involves high
computational cost and the trade-off of a lot of sensor information (Urzua et
al., 2017; Bailey & Durrant-Whyte, 2006).

In contrast to that, this work investigates methods that mathematically solve
the path integration problem with only very limited idiothetic and allothetic
information. It is shown which errors occur with the respective types of path
integration and how the combination of idiothetic and allothetic path inte-
gration leads to a more robust localisation. For this, a simplification to very
limited information is made. This has the advantage of providing a parsimo-
nious model which makes it possible to show and investigate the weaknesses
of each type of path integration separately.
In reality, the agent has a wide range of information at its disposal that it
can use for its orientation. The processing of various types of information in
the brain works in a modular way (Velik, 2008). The models discussed here
can describe the individual processes. These individual processes executed in
a parallel fashion then could simulate the overall performance of the agent.
By combining idio- and allothetic path integration, this work furthermore anal-
yses whether the strict separation between the term of idiothetic path integra-
tion and allothetic localisation methods, such as SLAM, spatial updating1,
snapshot homing2 or the use of optic flow3, is useful and necessary.

1Localisation procedure in which a constant updating of the positions of landmarks in
the environment takes place during the agent’s own movement (Wolbers et al., 2008).

2By comparing a stored snapshot of the destination view and the currently perceived
environment, the movement of the agent is calculated with the aim of reducing the existing
differences (Cartwright & Collett, 1983).

3When using optic flow for orientation, the movement patterns of points in the visual
field are used to draw conclusions about one’s own movement (Gibson, 1950).
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In this work, an extended meaning of the term of path integration is used
that includes both, the possibility of idiothetic and allothetic information use.
Essentially, path integration is about calculating the current position from the
previous position using the current heading and the distance travelled. How
the information of heading and distance are obtained can vary. In the follow-
ing, different types of path integration are studied which differ in the type of
information that is used to determine the current heading.
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3 Models of Path Integration

In this chapter, the described types of path integration are mathematically
modelled so that later, they can be compared with each other in a simulation.

In path integration, the current heading η̂t and the length of the step taken ∆̂xt
are needed to determine the current position (x̂1,t|x̂2,t) relative to the previous
position (x̂1,t−1|x̂2,t). The current position can then be calculated as follows:

x̂1,t = x̂1,t−1 + ∆̂xt ∗ cos(η̂t) (3.1)

x̂2,t = x̂2,t−1 + ∆̂xt ∗ sin(η̂t) (3.2)

Values known to the agent are marked with a circumflex. Other values are
unknown to the agent. The positions of the agent are stored as Cartesian
coordinates geocentric with origin at the starting point of the path.

In reality, locomotion and estimation of the new position are performed con-
tinuously. In this simulation, however, discrete steps with fixed lengths ∆̂xt
are performed. The defined step length is very small (about 1/100 of the to-
tal path) so that the simulation resembles a continuous movement as much
as possible. The length of each step is fixed and known to the agent so that
it only has to calculate the heading η̂t. This restriction to rotation measure-
ments without translation measurements means that errors can only occur in
the heading. This focus on rotation measurement corresponds to the approach
of Klatzky et al. (Klatzky et al., 1998).
In the simulation, a discrete step runs in the following order. First the agent
rotates to change its heading. Then, the translational step is performed, fol-
lowed by the estimation of position.

Under perfect conditions, the formulas always provide the correct heading,
resulting in a perfect path estimate. In reality, however, measurements are
subject to error, which affects path integration. Therefore, a random error
is added to all measurements. The aim is then to test which types of path
integration are more prone to this error and which are more robust.
Error noise can affect the measurement in two different ways: With additive
noise, the error ε+,t is added to the measured value. Therefore, the variation
from the perfect value is absolute. With multiplicative noise, the erroneous
value differs from the perfect value by a certain error percentage. The error
ε∗,t is therefore multiplied by the measurement. The deviation is thus relative
and depends on the size of the measured value.
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Both types of error occur in reality. Additive errors occur when the agent has
a slight jitter in its movement execution. No matter how much the change
in movement, the jitter changes the movement by a certain value. Additive
errors can also occur when external influences such as an air or water flow un-
intentionally change the movement. Multiplicative errors can arise in the case
of direct misestimations of quantities. For example, with an angle estimate of
270 degrees, it is more likely to misestimate by 20 degrees than with an angle
estimate of one degree. Therefore, it makes sense to add a multiplicative error
for such cases, which is relative to the size of the measured value.

In the following, the error is only related to measurements of the agent, no
calculation or rounding errors are assumed during the application and inter-
pretation of the measured values. Due to the parsimony of the model, the
idiothetic and allothetic measurements of the agent are restricted to the fol-
lowing values per step.

ODO: rotational step (∆̂ωt)
COMP: compass bearing (α̂t)
LM COMP: bearing to landmark (β̂t)
LM OF: change of bearing to landmark (∆̂βt)
LM POS: rotational step and bearing to landmark (∆̂ωt, β̂t)

These different measurements and the abbreviations are described in detail
in the following sections.
When deriving the formula, the four-quadrant arc tangent arctan2 is used
because, unlike the normal arc tangent, it provides values in the range from
−π to π instead of −π/2 to π/2 and is therefore necessary for calculating all
possible angular sizes.

3.1 Idiothetic Path Integration

3.1.1 Odometry (ODO)

Pure idiothetic path integration is based on the approach that an agent has
only proprioceptive and no allothetic information available for localisation.
This includes kinaesthetic perceptions, which provide information about mus-
cle and joint movement. They also include vestibular perceptions, which pro-
vide information about angular accelerations, i.e. rotational movements. Anal-
ogously, in vehicle technology and robotics, the use of the system’s movement
sensors for its own orientation is called odometry (Wang et al., 2014). The
term of odometry is used in the following synonymously for purely idiothetic
path integration without restriction to technical agents.
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The actual heading can be calculated from the measured rotational movements
by integrating the individual changes of rotation. It can happen that the pro-
prioception of the rotation changes does not correspond to the actual rotation
movement performed. This occurs with robots, for example, when the wheels
spin on slippery surfaces or sensors are incorrectly calibrated (Kurazume &
Hirose, 2000). These measurement errors are contained in each step. The
integration of the rotation steps therefore leads to an accumulation of errors
(Etienne et al., 1996). The accumulation of errors can not be avoided with
purely idiothetic path integration, since no adjustment with the environment
is possible.

Figure 3.1: Simulation of odometry. The agent walks on a given path and
measures the rotational movement ∆̂ωt that takes place between the steps.
Crosses show positions of the agent, blue dashed lines show the direction of
heading. Measured variables in red.

In figure 3.1 the derivation of the formula for the simulation of odometry is il-
lustrated. The only value the agent measures during each step is the executed
change in rotation ∆̂ωt. The measurement is simulated by subtracting the
true headings of the current ηt and last step ηt−1 and then adding an additive
ε+,t and multiplicative ε∗,t error. The headings themselves can be determined

7



using the arc tangent, since the Cartesian coordinates of the given path and
thus the distances in x1- and x2-direction are available.

ηt = arctan2((x2,t − x2,t−1), (x1,t − x1,t−1)) (3.3)

∆ωt = ηt − ηt−1 (3.4)

∆̂ωt = ∆ωt ∗ ε∗,t + ε+,t (3.5)

Using the estimated rotation step ∆̂ωt, the agent can determine its heading.
This is done by summing up the individual rotation step sizes. With an initial
heading of η̂0 = 0 (in x1-axis direction), the summed rotation steps result in
the current heading.

η̂t = η̂t−1 + ∆̂ωt (3.6)

The summation of the individual ∆̂ωt accumulates the errors contained in ∆̂ωt.
These can not be corrected in this type of path integration.

3.2 Allothetic Path Integration

3.2.1 Compass Usage (COMP)

One way of using allothetic information is to use a compass. The angle be-
tween one’s own heading and the compass direction, the so-called bearing α̂t,
is measured. The bearing changes directly with the change in the direction of
movement. Therefore, the heading can be determined directly from the bear-
ing measurement.
If a compass direction is available, the problem of error accumulation does
not exist. The agent measures the angle α̂t between its current heading and
compass direction. Thus, the measurement is not based on the last turning
steps, but is reoriented to the compass direction after each step.
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Figure 3.2: Simulation of compass usage. The agent walks on a given path
and measures the bearing to the compass direction α̂t, which equals the current
heading η̂t. Crosses show positions of the agent, blue dashed lines show the
direction of heading. Measured variables in red. Compass direction in green.

The following procedure is illustrated in figure 3.2: Without loss of generality,
the compass direction can be set in x1-axis direction. With a starting heading
of η0 = 0 (in x1-axis direction), α0 is zero. The angle of the bearing αt

is the angle between heading ηt and compass direction α0. In the case of
α0 = 0, it therefore corresponds to heading ηt at each step. The angle αt can
be determined using the arc tangent, since the Cartesian coordinates of the
positions and thus the distances travelled in x1- and x2-directions are known.
After adding the additive and multiplicative noise ε+,t and ε∗,t, the simulated
measurement of α̂t is obtained. With α̂0 = 0 the heading η̂t equals to the
compass bearing α̂t.

αt = arctan2((x2,t − x2,t−1), (x1,t − x1,t−1)) (3.7)

α̂t = αt ∗ ε∗,t + ε+,t (3.8)

η̂t = α̂t (3.9)

It can be seen that η̂t is calculated in each step directly from the bearing, with-
out dependence on previous values of η̂. Therefore, there is no accumulation
of errors in this type of path integration. The disadvantage is, however, that
compass directions are not always available to each agent.
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3.2.2 Landmark Usage as Compass (LM COMP)

In comparison to real compass directions, landmarks are available most of the
time. Landmarks are objects in the environment that are used for orientation.
The compass direction corresponds to the direction of a landmark which is at
an infinite distance. As with a compass, the bearing, i.e. the angle between
one’s own heading and the direction of the landmark, can be measured. A
compass bearing always remains constant, regardless of the agent’s position.
But as landmarks are not infinitely far away in reality, the bearing to the
landmark depends on the position of the agent. The bearing changes not only
when the heading changes, but also when the agent’s position changes.
Due to the information constraint in this model, the agent has no information
about the distance of the landmark and only measures the bearing to the
landmark. Therefore, the landmark is assumed to be infinitely far away and
hence the landmark direction is interpreted as compass direction. This leads
to an error in the estimation of the heading. The error increases the closer the
landmark is.

Figure 3.3: Left: Bearing relative to compass direction. The heading of the
agent does not change. Therefore, the measured bearings remain the same.
Right: Bearing relative to landmark at finite distance. The heading of the
agent does not change, but the direction of the landmark relative to the agent,
and therefore the bearing, changes. Crosses show positions of the agent, blue
dashed lines show the direction of heading. Measured variables in red.
Compass and landmark direction in green. Landmark position at (b1|b2)
marked as green star.
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The following fact is illustrated in figure 3.3: If a compass or a landmark with
infinite distance is used, the bearing does not change if the heading remains
the same. However, this is not true if a landmark with finite distance is used.
If the heading is constant, the bearing changes.

Figure 3.4: Simulation of the bearing measurement by the agent. The
bearing to the landmark βt differs from the bearing to the compass direction
αt. The closer the landmark is to the agent, the greater the difference between
βt and αt. Crosses show positions of the agent, blue dashed lines show the
direction of heading. Measured variables in red. Compass and landmark
direction in green. Landmark position at (b1|b2) marked as green star.

In this model, it is assumed that the agent wrongly believes that each landmark
is at infinite distance. The agent therefore uses the landmark as a compass. In
figure 3.4 it is shown, that the bearing βt to the landmark, however, deviates
from the bearing αt to the assumed compass bearing. This deviation is greater
the closer the landmark is to the agent.

βt can be calculated as the sum of two angles. One of them is equal to the
angle αt. The other angle can be calculated using the arc tangent, since the
Cartesian coordinates of the agent (x1,t|x2,t) and those of the landmark (b1|b2)
are known. The measurement of the agent β̂t is then obtained by adding errors
to βt.

βt = αt + arctan2((x2,t − b2), (x1,t − b1)) (3.10)

11



β̂t = βt ∗ ε∗,t + ε+,t (3.11)

The x1-axis is set so that the position of the landmark is on the x1-axis. Thus,
at the starting point t = 0, the agent has a bearing to the landmark of β0 = 0.
Even after leaving the starting point, the agent assumes that the landmark
is still in the x1-axis direction from its perspective. The measured β̂t then
corresponds to the estimated heading, just like α̂t does in the model of real
compass usage.

η̂t = β̂t (3.12)

As a result, a wrong heading and thus a wrong new position is estimated. This
misjudgement of the agent’s position is illustrated in figure 3.5.

Figure 3.5: Left: The bearings relative to landmarks at a finite distance are
measured by the agent. The actual, fixed path on which the agent is walking is
shown. Right: In this figure, the erroneous, estimated path of the agent can
be seen. Since the agent assumes that the bearings were measured relative to
the compass direction, it estimates its own heading change to be greater than
it actually is. The resulting position estimate therefore deviates from the
actual position. Crosses show positions of the agent, blue dashed lines show
the direction of heading. Measured variables in red. Compass and landmark
direction in green. Landmark position at (b1|b2) marked as green star.
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3.2.3 Optic Flow (LM OF)

Optic flow describes the shift of image points in the visual field when the agent
moves. Through this perception, direct conclusions can be drawn about one’s
own movement.
The perceived bearing of a landmark in the agent’s visual field changes during
movement. As in the previous model, due to missing distance information, it
is assumed that the landmark is at an infinite distance. Therefore, this bearing
change is directly interpreted as a rotation, i.e. as a change in heading. The
agent obtains the current heading by integrating the bearing changes at each
step. As with odometry, it is to be expected that this integration also leads to
an accumulation of errors.

Figure 3.6: Left: The actual, fixed path on which the agent is walking is
shown. ∆βt corresponds to the change in bearing, i.e. the change in landmark
direction in the visual field that the agent perceives. The bearings themselves
are unknown to the agent, it only measures the change in bearing during a
step. Right: Resulting erroneous position estimate by the agent. Since the
agent uses the landmark as a compass, the change in bearing ∆̂βt, i.e. the
displacement of the landmark in the visual field, corresponds directly to the
change in heading. This erroneous assumption leads to an estimated position
deviating from the true one. Crosses show positions of the agent, blue dashed
lines show the direction of heading. Measured variables in red. Compass and
landmark direction in green. Landmark position at (b1|b2) marked as green
star.

With this type of path integration, the existing landmark is again assumed to
be infinitely far away. Compared to LM COMP, however, it is not the bearing

13



itself that is measured here, but the change in bearing ∆βt, as can be seen on
the left in figure 3.6.

∆βt = βt − βt−1 (3.13)

∆̂βt = ∆βt ∗ ε∗,t + ε+,t (3.14)

The changes in bearing ∆̂βt are interpreted as a change in the agent’s own
orientation (see figure 3.6 right). Therefore, the sum of all bearing changes
gives the current heading with a start heading of η0 = 0 (in x1-axis direction).

η̂t = η̂t−1 + ∆̂βt (3.15)

As with the model of ODO, the error contained in ∆̂βt accumulates.

3.3 Idiothetic and Allothetic Path Integration

3.3.1 Knowledge of Landmark Position (LM POS)

In this model, the combination of idio- and allothetic information is used to
compensate for the respective errors and problems. On the one hand, the
problem of error accumulation does not occur. Since the agent measures the
bearing, the current heading can be determined directly. It does not have to
be determined by integrating the rotational steps as in the models of ODO and
LM OF. On the other hand, the error is avoided which arises when landmarks
are wrongly assumed to be infinitely far away. In this model, the landmark
is not assumed to be infinitely far away. For this, the agent must determine
the position of the landmark during the first steps. This is possible when the
own position is determined with the help of odometry. Using the bearing to
the landmark at two different positions, the landmark position can then be
calculated based on the agent’s own positions. Once the position of the land-
mark is known, bearing measurements can provide correct information about
the current heading.

14



3.3.1.1 Determination of Landmark Position using Odometry and
Bearing

Figure 3.7: Left: The agent measures the bearings βt and βt−1 and the
heading change ∆ωt. Using these measurements, the landmark distance
| ˆ∆bt−1| can be calculated. The own position is determined by ∆ωt as in ODO.
Right: With the previous heading η̂t−1 and calculated landmark distance
| ˆ∆bt−1|, the landmark position can then be calculated starting from the
agent’s own previous position (x1,t−1|x2,t−1). Crosses show positions of the
agent, blue dashed lines show the direction of heading. Measured variables in
red. Compass and landmark direction in green. Landmark position at (b1|b2)
marked as green star.

The following procedure for calculating the landmark position is shown in
figure 3.7. This happens at the beginning of the path, during the first steps
of the agent. Using the bearings βt and βt−1 and the heading change ∆ωt, the
distance of the landmark to the agent’s position |∆bt−1| at time t − 1 can be
calculated. For this, the angular quantities of the auxiliary angles ψ and φ
need to be calculated first.

ψ̂ = π − β̂t (3.16)

As the sum of the angles in a triangle equals to 180 degrees, φ̂ can be obtained:

φ̂ = π − ((β̂t−1 + ∆̂ωt) + ψ̂) (3.17)

Now the interior angles of the left triangle in figure 3.7 are known. Since the
step size |∆x| is fixed and known to the agent, the distance to the landmark
|∆bt−1| can now be calculated using the law of sines. The law of sines states:

| ˆ∆bt−1|
sin(ψ̂)

=
|∆̂x|
sin(φ̂)

(3.18)
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From this the distance to the landmark at time t− 1 follows:

| ˆ∆bt−1| =
|∆̂x| ∗ sin(ψ̂)

sin(φ̂)
(3.19)

At any time, the agent has an estimate of its own heading η̂t−1 from the
previous step and can measure the bearing β̂t−1. The auxiliary angle γ is then
calculated as:

γ̂ = β̂t−1 − η̂t−1 (3.20)

Using γ, the landmark position (b1|b2) can now be estimated relative to the
agent’s position at time t− 1 with:

b̂1 = x̂1,t−1 + cos(γ̂) ∗ | ˆ∆bt−1| (3.21)

b̂2 = x̂2,t−1 + sin(γ̂) ∗ | ˆ∆bt−1| (3.22)

The values β̂t, β̂t−1 and ∆̂ωt, which are used to calculate the landmark position,
are not exact but include an additive and multiplicative error. Therefore, the
estimation of the landmark position is not exact either. The estimate can be
improved if the landmark position is estimated again in further steps and then
all estimates are averaged to narrow down the exact landmark position.

3.3.1.2 Determination of Agent’s Position using Bearing and Land-
mark Position

Figure 3.8: Left: The true trajectory of the agent can be seen. The agent
measures the current bearing and can determine θ with known values. Right:
With θ and known landmark position, the required heading η̂t can then be
calculated, with which the own position is estimated. Crosses show positions
of the agent, blue dashed lines show the direction of heading. Measured
variables in red. Landmark direction in green. Landmark position at (b1|b2)
marked as green star.
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Once the landmark position is known, the agent can use it to determine its
heading at each step. In order to do this, θ must be determined first. For this
ψ and φ are needed. The respective quantities are shown in figure 3.8. ψ̂ is
calculated the same way as in the last section:

ψ̂ = π − β̂t (3.23)

| ˆ∆bt−1| is obtained with the Phytagorean theorem:

| ˆ∆bt−1| =
√

(x̂1,t−1 − b̂1)2 + (x̂2,t−1 − b̂2)2 (3.24)

Using the law of sines from equation 3.18, φ̂ can be calculated:

φ̂ = asin

(
|∆̂x| ∗ sin(ψ̂)

| ˆ∆bt−1|

)
(3.25)

As the sum of the angles in a triangle equals to 180 degrees, θ̂ can be ob-
tained:

θ̂ = π − (φ̂+ ψ̂) (3.26)

As seen in figure 3.8, the current heading η̂t can be calculated from the differ-
ence of θ̂ and an arc tangent:

η̂t = θ̂ − arctan2(x̂2,i−1 − b̂2, x̂1,i−1 − b̂1) (3.27)

By determining η̂t independently of ˆηt−n from other time steps, error accumu-
lation is avoided here. The quality of the heading estimate depends especially
on the landmark position estimate. If the position of the landmark is estimated
incorrectly, this will lead to a miscalculation of the heading. This miscalcula-
tion of the heading happens the same way as it does in the model of LM COMP
and the model of LM OF, as in all cases an erroneous estimation of landmark
distance is used.

17



4 Analysis of Results

In this chapter, the performance of the different path integration methods
ODO, LM COMP, LM OF and LM POS is compared under the influence of
errors. COMP is not included in the comparison because this method is hardly
influenced by errors and infinitely distant landmarks or compass directions are
not always available in reality.

For the comparison, a fixed trajectory is specified on which the agent moves.
The agent then calculates its estimated trajectory for this movement. As seen
in figure 4.1, a circular path with radius 1 and slight jitter and a Lissajous
curve (called ”loop” in the following) are used as fixed paths. These paths are
chosen as they vary in curvature. With this, specifics in the estimations that
are due to the curvature characteristics of the path can be distinguished from
general effects. Starting and final points are both at the origin. The circular
path runs counterclockwise. The loop path starts from the origin in the first
quadrant and ends in the origin coming from the third quadrant.
The fixed true trajectory, which is shown in black in the figures, is then com-
pared with the agent-estimated trajectories shown in colour. For the com-
parison, the difference between the estimated final position and the true final
position is measured. By limiting the comparison to the final positions, in-
formation about deviations of the estimates during the course of the path is
disregarded. However, it can happen that the estimated path differs greatly
from the true path and still approaches the correct final position towards the
end. In the way of comparison used here, the estimate would be considered
relatively correct, although the overall correctness of the path would not be
very high.
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Figure 4.1: The true, fixed trajectory is shown in black as well as the
estimated trajectories in different colours. The following parameters were
used: Trajectory: circle, additive error: 0.1, multiplicative error: 0, landmark
distance: 1 (left)/5 (right)

Different landmark distances and different additive and multiplicative error
sizes are tested. The additive error size of 0.1 means, for example, that an
equally distributed random absolute error out of [-0.1,0.1] is added to the mea-
surement. The multiplicative error size of 0.1 means that the measurement is
multiplied by a random value out of [0.9,1.1]. Thus a maximum relative devi-
ation of 10% can occur.

Besides the path selection and error sizes, the landmark distance parame-
ter affects the agent’s path estimates. On the left-hand side of figure 4.1 a
landmark distance of 1 can be seen, on the right-hand side the landmark is at
a distance of 5 from the origin.

4.1 Distance from Estimated to True Final Po-

sition

To compare the robustness of the path integration types, the distance from the
estimated final point to the true final point, which equals the starting point,
is measured. If the estimation is correct, this distance is zero. In figure 4.2 to
figure 4.4 below, this distance is shown depending on the landmark distance
and for different parameter values for path selection and error sizes. The result
values were averaged over 100 runs, vertical bars show the standard deviation
of the mean values. Further figures with other parameter values can be found
in chapter 6.
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Figure 4.2: The distance error relative to the landmark position is shown
with the following parameters: Trajectory: circle (left)/loop (right), additive
error: 0, multiplicative error: 0 (curves for ODO and LM POS and curves for
LM COMP and LM OF overlap each other)

Figure 4.3: The distance error relative to the landmark position is shown
with the following parameters: Trajectory: circle, additive error: 0.1 (left)/0
(right), multiplicative error: 0 (left)/0.1 (right)
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Figure 4.4: The distance error relative to the landmark position is shown
with the following parameters: Trajectory: loop, additive error: 0.1 (left)/0
(right), multiplicative error: 0 (left)/0.1 (right)

4.1.1 Odometry (ODO)

Without any error, the path integration through odometry works perfectly (see
figure 4.2). However, since errors are accumulated in this type of path integra-
tion, it is not very error robust once errors are added. The distance of the final
position to the origin is slightly larger with the circular path (figure 4.3) than
with the loop path (figure 4.4). Responsible for this are the curvature proper-
ties of the respective paths. Both the circular path and the loop path results
show that an additive error of 0.1 has a greater impact than a multiplicative
error of 0.1. This is because the size of the rotation steps is very small (about
0.063 rad per step for the circle path). An additive error of 0.1 therefore is
greater than a multiplicative error of 0.1. The standard deviation of the mean
values is also greater for an additive error of 0.1 than for a multiplicative error
of 0.1.

4.1.2 Landmark Usage as Compass (LM COMP)

Without adding an error, the quality of the estimate depends only on the
distance of the landmark (see figure 4.2). The further away the landmark is,
the better the estimate. For the loop, this error is generally smaller than for
the circular path, even when errors are added. This is because the curvature
in the loop changes during the path. Misestimates can be compensated later
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on the path when the opposite curvature occurs. For additive compared to
multiplicative error (compare figure 4.3 and figure 4.4 left vs. right), the
estimation accuracy hardly differs. Since the error is not accumulated, the
procedure is very robust. The standard deviations of the mean are thus always
very small. Therefore, the accuracy mainly depends on the landmark distance.

4.1.3 Optic Flow (LM OF)

In an error-free simulation (see figure 4.2), this type of path integration behaves
exactly like LM COMP. The accuracy of the estimate depends solely on the
landmark distance.
This changes when adding an error (see figure 4.3 and figure 4.4). In this model,
as in ODO, the errors accumulate and can no longer be compensated for later.
Therefore, this method shows two weaknesses at the same time and is thus the
least error-robust. The first weakness is the following: If the landmark is very
close, the error due to the wrong assumption of the infinitely distant landmark
is more significant. Due to this, for close landmarks, the graph of LM OF
is very similar to the graph of LM COMP. The other weakness ist that the
further away the landmark, the larger the relative impact of the accumulated
error. Therefore, for more distant landmarks, the graph of LM OF resembles
the graph of ODO.

4.1.4 Knowledge of Landmark Position (LM POS)

In this model, accurate estimates are achieved when there is no error influ-
encing the estimates (see figure 4.2). However, once multiplicative or additive
errors are added (figure 4.3 and figure 4.4), errors in landmark position esti-
mation occur during the first steps. That leads to an error during the rest of
the path estimation.
This type of path integration does not accumulate errors and also depends very
little on the distance of the landmark. For close landmarks, there is sometimes
a slightly larger error, as misestimates of the landmark position have a larger
effect on the path estimation than for very distant landmarks. For example,
if the landmark position is misestimated by one unit, this will make a bigger
difference at a landmark distance of 1 to the origin than at a distance of 30
or greater. This is because the angular deviation of measured bearing and
theoretical bearing to a landmark at the estimated position depends on the
landmark distance. For close landmarks this angular deviation is larger than
for distant landmarks even if the distance between true and estimated land-
mark position is the same. Overall, however, the estimation is very accurate
with both additive error and multiplicative error and only shows small stan-
dard deviations of the mean values. It shows the best results compared to the
other methods.
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4.2 Final Positions: Statistical or Systematic

Errors

Figure 4.5: The final position error is shown with the following parameters:
Trajectory: circle, additive error: 0.1, multiplicative error: 0, landmark
distance: 1 (left), 5 (right)

Figure 4.6: The final position error is shown with the following parameters:
Trajectory: circle, additive error: 0, multiplicative error: 0.1, landmark
distance: 1 (left), 5 (right)
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Figure 4.7: The final position error is shown with the following parameters:
Trajectory: loop, additive error: 0.1, multiplicative error: 0, landmark
distance: 1 (left), 5 (right)

Figure 4.8: The final position error is shown with the following parameters:
Trajectory: loop, additive error: 0, multiplicative error: 0.1, landmark
distance: 1 (left), 5 (right)

In figure 4.5 to figure 4.8 the estimated final positions are shown, i.e. the
positions where the agent believes to be after the path has been completed.
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The true final position is always at the origin at (0|0). For each type of
path integration, 100 final positions are estimated depending on error sizes,
path selection and landmark distance. The size of the error ellipses shows
the statistical error, i.e. the scattering of the values. The systematic error is
the mean deviation of the values from the origin in a certain direction. It is
represented by the centre of the error ellipses compared to the origin. Further
figures with other parameter values can be found in chapter 6. There, examples
for the estimated trajectories are shown on the left sides of the error ellipse
figures to show how the complete courses of the estimated trajectories look
like.

4.2.1 Odometry (ODO)

Since the final positions are equally distributed in all directions around the
origin, this is mainly a statistical error, while hardly any systematic error can
be seen.
However, it can be observed that the final position varies more in x1-direction
than in x2-direction (see e.g. figure 4.6). This is because of the chosen paths
and their curvature properties. The error is more pronounced with an additive
error than with a multiplicative error. In this case, the scatter is more than
twice as large (compare figure 4.5 and figure 4.6). In addition, the statistical
error is greater for the circular path than for the loop path (compare, for
example, figure 4.6 and figure 4.8), which is due to the curvature properties of
the paths. Since both right and left curvatures occur in the loop, errors can
be partially compensated for in the course of the path. This is not the case
with the circular path, where there is only a left-hand curvature.
Here, the estimate does not depend on the landmark position.

4.2.2 Landmark Usage as Compass (LM COMP)

A strong systematic error can be seen here, while the statistical error is very
small. The systematic error becomes smaller with increasing landmark dis-
tance. In general, the estimated final positions for the circular path are at
around x1 = 0 with a negative x2-value (see e.g. figure 4.5). This is because
the landmark is assumed to be a compass. It causes the rotation step sizes
to be overestimated in the first half of the circular path and underestimated
in the second half. As a result, the agent first estimates a stronger curvature
and later a weaker one. This leads to an estimated path of a spiral whose
final point is in the negative x2-range. The described shape can be seen in
figure 4.1 on the left-hand side. The effect is not as strong with the loop path,
as the curvatures vary more at each step and therefore the effect is partially
compensated for.
The systematic error in the loop path is very small even for close landmarks,
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as can be seen in figure 4.7. Here the estimated final position is on average in
the slightly positive x2- and slightly negative x1-range.
Since LM COMP is very robust against both multiplicative and additive errors,
the different errors hardly show any difference in the final position estimate
(compare e.g. figure 4.5 and figure 4.6).

4.2.3 Optic Flow (LM OF)

Since LM OF combines the errors of ODO and LM COMP, this type of path
integration shows both a systematic and a statistical error (see e.g. figure 4.5).
These are both stronger for the circular path than for the loop path (compare
e.g. figure 4.5 and figure 4.7). This is, as described in subsection 4.2.1 and
subsection 4.2.2, due to the curvature properties of the chosen paths. Similar to
LM COMP, in LM OF the systematic error decreases with increasing landmark
distance. (see figure 4.5). As also seen in ODO, LM OF is more sensitive to
the additive error than the multiplicative error, hence the statistical error is
larger with additive error (compare e.g. figure 4.5 and figure 4.6).

4.2.4 Knowledge of Landmark Position (LM POS)

With this type of path integration, independent of the parameter values, there
is hardly any systematic error and only a very small statistical error (see fig-
ure 4.5 to figure 4.8). It is noticeable that the final positions for the circular
path with close landmark and additive error (figure 4.5) deviate very strongly
in x2-direction. This is due to the misestimation of the landmark position. The
landmark position estimation is more prone to the additive error. Therefore,
an additive error amplifies the effects as described below:
If the landmark is estimated too far away, the estimated final position for the
circular path tends to be in the negative x2-range. This is because, as with
LM COMP, the curvature is overestimated during the first half of the path
and underestimated during the second half. This results in a spiral path sim-
ilar to LM COMP. If the landmark is estimated too close, it has the opposite
effect. The resulting spiral path has a weak curvature at first, which becomes
increasingly stronger.
The misestimation of the landmark position also has a greater effect on the
estimated angles if the landmark is estimated too close. The error of angle
estimation is larger if a landmark located at position (10|0), for example, is
estimated at (1|0) than if it is estimated at (19|0) (see figure 4.9).
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Figure 4.9: The angle from the agent between the landmark positions at
(1|0) and (10|0) is greater than that between the landmark positions at (10|0)
and (19|0). Therefore, the misestimation of the landmark position has a
greater impact on the use of the measured angle when the landmark is
estimated too close. Crosses show positions of the agent, landmark direction in
green. Landmark position at (b1|b2) marked as green stars. Left landmark
estimate is too close, right landmark estimate is too far away.

Therefore, the deviation of the final positions seen in the circular path with
close landmark and additive error in figure 4.5 is stronger in positive x2-
direction than in negative x2-direction. For the same reason, this error be-
comes less relevant with increasing landmark distance.
Since the curvatures vary for the loop path, the effect is not as pronounced for
this path (see figure 4.7).

4.3 Overall Analysis

LM OF contains larger statistical and systematic errors and therefore shows
the worst error robustness. This is because both the accumulation of error
and the misestimation of landmark distance worsen the estimate here. The
accumulation of error directly affects the statistical error. The misestimation
of the landmark distance leads to a systematic error. It should be noted here
that the poor performance relates to the highly simplified model and not the
general use of optic flow. In reality with optic flow, there are many more image
points available in the visual field.

ODO and LM COMP are mainly affected by only one of these two sources of
error that occur in LM OF. Which of these two types of path integration works
better depends on landmark distance. Above a certain distance, a landmark
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is a good enough compass to give better estimates than the path integration
with ODO. From which landmark distance this applies depends on the error
sizes used. This is because ODO is affected by error accumulation and shows
relatively constant errors regardless of the landmark distance. In addition,
it is important to note which types of errors occur. Whether LM COMP or
ODO gives better results depends on the prioritisation of good precision (small
statistical error) or high accuracy (small systematic error). Since LM COMP
mainly leads to a systematic error due to the misestimation of the landmark
distance and shows hardly any statistical error, this type of path integration
shows high precision. The precision of LM COMP can be very useful. This is
because when the path is run repeatedly, the agent always arrives at approx-
imately the same position. This error can be learned by the agent and thus
predicted. This is not possible with ODO with large statistical error.

LM POS does not accumulate error. Furthermore, if the distance of the land-
mark is estimated correctly, it does not contain the systematic error that occurs
in LM COMP. Overall, LM POS therefore shows the best error robustness.
Even though it differs only slightly from LM COMP for very distant land-
marks, LM POS consistently shows a better estimate. It can thus be seen
that the combination of idio- and allothetic information leads to better path
integration than when only one type of information is considered at a time.
It should be noted, however, that LM POS involves additional computational
effort. This is particularly worthwhile for close landmarks, as LM POS is by
far the most error-resistant method in these cases. For more distant land-
marks, the performance of LM COMP is good enough, so that the additional
computational effort only brings a very small improvement in the estimate.
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5 Discussion and Outlook

5.1 Assessment of Results

5.1.1 Separation of the Term of Path Integration

The analysis of the path integration models shows that path integration using
idiothetic and allothetic information gives the best results. This indicates that
it makes sense to study idio- and allothetic path integration together. Often,
studies on path integration only consider purely idiothetic path integration.
The concept of idiothetic path integration is clearly separated from other spa-
tial orientation methods that use allothetic information, such as optic flow,
SLAM and spatial updating.

This work however shows how closely related, for example, conventional id-
iothetic path integration by odometry and the determination of self-rotation
by using optic flow are. The only difference is in the way the information
about the rotation step is obtained, idio- or allothetically. The remaining path
calculation works identically for ODO and LM OF. Also with the other types
of path integration the calculation of the path works the same, the only dif-
ference in each case is how the heading is determined.

Depending on whether more idiothetic or allothetic information is used for
this calculation, the type of path integration can be arranged on a spectrum
ranging from pure idiothetic path integration to pure allothetic path integra-
tion.
Other types of localisation can then be placed on this spectrum: SLAM can
be compared to LM POS as in both cases odometric information as well as
information from landmarks with unknown positions are available. This infor-
mation can then be used to determine one’s own position and the landmark
positions. SLAM should therefore be placed in the middle of the spectrum, as
both idio- and allothetic information is used.

The method of spatial updating also has great similarities with the path in-
tegration methods described here. Spatial updating describes the ability to
continuously locate points in the environment that are no longer visible while
moving. With this information, the position of the points in the environment is
updated relative to one’s own position (Wolbers et al., 2008). Since with path
integration the own position is continuously calculated relative to the origin,
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or with LM POS the own position is determined starting from the landmark
position, the procedures are very similar to spatial updating. The difference is
mainly the reference point, which can be either the own position or a position
in the environment. This only changes the way the information is represented
(see subsection 5.1.4), but not the process of the method.
The two methods are even more similar if one assumes that spatial updating is
used to predict expectation values for the bearing to the landmark for possible
positions of the agent. These predicted values could then be compared with
the perceived landmark bearing. The prediction that is closest to the actual
perception is then used to deduce the agent’s own position. Since expected
values can not be calculated for all possible positions, an estimate could be
made in advance of which positions are most likely. This prediction can be
made with the help of odometry, for example.
Matching actual measurements with stored scenarios is also similar to snap-
shot homing. With this method, an agent can return to a known position by
matching the current environment with the stored snapshot of the environment
at the destination (Cartwright & Collett, 1983).

This shows, that other methods of localisation are very closely related to the
concept of path integration used here, and can even be placed directly on a
spectrum that ranges from idiothetic to allothetic path integration. That find-
ing suggests that too much attention is given to the distinction and conceptual
separation of the different types of orientation. It shows that a collective term
represents the similarities of these concepts better.
In their study on self-localisation, Klatzky et al. already used such an collec-
tive term for idiothetic path integration and allothetic localisation (Klatzky
et al., 1998). There, the term spatial updating of self-position is used syn-
onymously with the term path integration used in this work. Both times it is
about updating one’s own position step by step.
It becomes evident that a joint investigation of idiothetic and allothetic ori-
entation procedures makes sense. On the one hand because of overlaps in
content and on the other hand because it could be shown in this work that
this combination leads to better performance.

5.1.2 Classification of Landmarks: Global or Local

Yesiltepe et al. classify landmarks as global and local landmarks depending on
their visibility. Global landmarks are visible from a large amount of positions
and therefore also from a greater distance. Local landmarks are only visible in
the immediate surrounding area and are therefore usually close to the agent.
Global landmarks can be more helpful for agents who are unfamiliar with the
environment. Whereas local landmarks can be more useful for agents who are
familiar with the environment (Yesiltepe et al., 2020).
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In this work, landmarks are not distinguished by visibility but by distance.
However, the visibility of a landmark correlates with distance. Global land-
marks are mostly landmarks that are still visible from far away. While local
landmarks, i.e. landmarks that are only visible from a few places, are usually
located close to the agent.

It has been shown in this work that distant landmarks provide error robust
path integration even without a known position. The use of nearby landmarks,
however, is only useful if their position is known. This could be related to the
result of Yesiltepe et al. mentioned above. In unfamiliar environments, the
agent has less knowledge about the environment. Global landmarks, can how-
ever, be used for path integration just like in LM COMP, even if no knowledge
about their position is available. The accuracy of the landmark position es-
timate is less important here. Reliable path integration is possible even with
inaccurate position estimation. In a known environment, the agent may have
more knowledge about the position of a landmark or can estimate it with a
higher accuracy. This estimation accuracy is particularly important for close,
local landmarks, as these can then be used for path integration as in LM POS.
The presented results for LM COMP and LM POS could therefore be classified
as follows. For global landmarks LM COMP can be used, for local landmarks
the additional computational effort of LM POS to determine the landmark
position is worthwhile and comes with better accuracy.

5.1.3 Optic Flow

When analysing the different types of path integration, LM OF is found to
be the least error robust. This contradicts studies that find evidence that the
information of the optic flow alone is sufficient for self-localisation (Warren &
Hannon, 1988).
It should be noted that the LM OF model does not adequately capture the
real-world use of optic flow. In LM OF the actual landmark position is ignored.
Even if the landmark position was known, the problem of error accumulation
would still remain. This could be compensated if the optic flow provides in-
formation from several landmarks. With the additional information, the error
could be extracted and more correct positions could be estimated. In reality,
this is the case because there are usually many more points in the visual field
whose displacement provide information about the movement of the agent.

5.1.4 Information Representation

During path integration, the agent stores its own position and the heading
for each step. The form in which this information is represented in the agent
depends on the reference point relative to which the positions are determined.
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The coordinate system can be anchored either allocentrically (for example, the
starting point of the path is the origin) or egocentrically (the agent’s position
is the origin). Moreover, it is possible to store coordinates in Cartesian or
polar form. Cheung and Vickerstaff looked into the question of which of these
systems is least prone to errors. They came to the conclusion that a Cartesian
allocentric representation gives the best results (Cheung & Vickerstaff, 2010).
Therefore, in this work, the position and heading information was represented
in Cartesian allocentric form.

It is debatable, however, whether a polar egocentric representation is more
likely to be used by biological agents for some localisation methods. For the
landmark position in LM POS, for example, it seems plausible that the infor-
mation is represented in polar egocentric form. This is because the position
of the landmark is determined starting from one’s own position. For the same
reason, it also makes sense for spatial updating to represent the landmark
positions in polar egocentric form. Whether this difference in information rep-
resentation has a direct effect on the error robustness of the path integration
types discussed here is unclear and can be further investigated.

5.2 Outlook

5.2.1 Distance Estimation of a Landmark with Width
or Height

Since path integration with LM POS provides the most reliable results, the
simulation of this method could be further extended. The errors that occur
in LM POS are largely due to the fact that the estimation of the landmark
position is erroneous. Therefore, future work could develop methods to make
the landmark estimation more accurate.
For example, another way to estimate the landmark distance is to consider
landmarks that are not only point-shaped but have a certain height or width.
Then not only one bearing but several bearings to the outer edges of the
landmark can be measured.

Figure 5.1: Change of the angle between the outer edges of the landmark for
close (left) and distant (right) landmarks. This change can be used to infer
landmark distance. Crosses show positions of the agent, blue dashed lines
show the direction of heading. Measured variables in red. Landmarks in green.
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When the agent walks towards a landmark, the angle between the outer edges
changes more when the landmark is close to the agent (see figure 5.1). The
change of the angle between the outer edges can therefore be used to infer the
distance of the landmark.

5.2.2 Selection of Landmarks

In a real environment there are usually more landmarks than just one. The
additional information provided by multiple landmarks can be used to com-
pensate for measurement errors. It therefore makes sense to extend the present
work to enable path integration with multiple landmarks distributed in the en-
vironment.
In order to combine the multiple measurement results, it must be decided
how the respective values are weighted. One possible weighting could be the
distance of the landmark. It has been shown that landmarks with a greater
distance provide more reliable values. Tinbergen and Kruyt found out as early
as 1938 that bee wolves select landmarks on the basis of this distance criterion
(Tinbergen & Kruyt, 1938).

It is also possible that landmarks that are visible in front of the agent in
direction of heading give better results than landmarks that the agent passes.
This is because if the heading does not change, the bearing will remain the
same when the agent walks directly towards the landmark. Small changes in
heading could maybe be more accurately represented by the change in bearing,
despite the unknown landmark position. The concentration on visible land-
marks in the direction of the agent’s heading also makes sense insofar as these
are landmarks that are represented on the visual field. To get information
about landmarks outside of the visual field, the agent has to turn its head or
adjust the camera direction.
In addition, other criteria can be included that influence the trustworthiness
of a landmark. For example, if a landmark is in motion, it may produce re-
sults that are very different from the other landmarks and should be weighted
weakly or removed from the calculation.

An additional difficulty arises when using multiple landmarks. It must be
possible to distinguish these landmarks from each. In order to be able to esti-
mate the bearing change, the bearings of the same landmark must be assigned
to each other. This has to be implemented in the simulation.
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5.2.3 Enhanced Combination of Idio- and Allothetic Path
Integration

Another possible extension of this work is to simulate types of path integra-
tion that combine idiothetic and allothetic information even more strongly. In
LM POS, idiothetic information has so far only been used to determine the
landmark position. However, it is possible to combine idio- and allothetic in-
formation also during the calculation of the path. If conflicting information is
provided, it must be decided which information will determine the path cal-
culation. How the information is weighted depends on the reliability of the
measurements.
The analysis of this work can be consulted in the weighting decision. For
example, it has been shown that LM COMP does not provide reliable infor-
mation for close landmarks. Therefore, the weighting should be weaker in this
case. The more information available, the more computational effort is needed
to weigh and merge it. A stronger combination of idio- and allothetic path
integration therefore leads to more complex path integration models.
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6 Collection of Figures

Figure 6.1: The estimated trajectories (left) are shown as well as the final
position error (right) with the following parameters: Trajectory: circle,
additive error: 0.1, multiplicative error: 0, landmark distance: 1

Figure 6.2: The estimated trajectories (left) are shown as well as the final
position error (right) with the following parameters: Trajectory: circle,
additive error: 0.1, multiplicative error: 0, landmark distance: 5
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Figure 6.3: The estimated trajectories (left) are shown as well as the final
position error (right) with the following parameters: Trajectory: circle,
additive error: 0.025, multiplicative error: 0.025, landmark distance: 1

Figure 6.4: The estimated trajectories (left) are shown as well as the final
position error (right) with the following parameters: Trajectory: circle,
additive error: 0.025, multiplicative error: 0.025, landmark distance: 5

Figure 6.5: The estimated trajectories (left) are shown as well as the final
position error (right) with the following parameters: Trajectory: circle,
additive error: 0, multiplicative error: 0.1, landmark distance: 1
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Figure 6.6: The estimated trajectories (left) are shown as well as the final
position error (right) with the following parameters: Trajectory: circle,
additive error: 0, multiplicative error: 0.1, landmark distance: 5

Figure 6.7: The estimated trajectories (left) are shown as well as the final
position error (right) with the following parameters: Trajectory: loop, additive
error: 0.1, multiplicative error: 0, landmark distance: 1

Figure 6.8: The estimated trajectories (left) are shown as well as the final
position error (right) with the following parameters: Trajectory: loop, additive
error: 0.1, multiplicative error: 0, landmark distance: 5
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Figure 6.9: The estimated trajectories (left) are shown as well as the final
position error (right) with the following parameters: Trajectory: loop, additive
error: 0.025, multiplicative error: 0.025, landmark distance: 1

Figure 6.10: The estimated trajectories (left) are shown as well as the final
position error (right) with the following parameters: Trajectory: loop, additive
error: 0.025, multiplicative error: 0.025, landmark distance: 5

Figure 6.11: The estimated trajectories (left) are shown as well as the final
position error (right) with the following parameters: Trajectory: loop, additive
error: 0, multiplicative error: 0.1, landmark distance: 1
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Figure 6.12: The estimated trajectories (left) are shown as well as the final
position error (right) with the following parameters: Trajectory: loop, additive
error: 0, multiplicative error: 0.1, landmark distance: 5

Figure 6.13: The distance error relative to the landmark position is shown
with the following parameters: Trajectory: circle, additive error: 0 (left)/0.1
(right), multiplicative error: 0

Figure 6.14: The distance error relative to the landmark position is shown
with the following parameters: Trajectory: circle, additive error: 0.025 (left)/0
(right), multiplicative error: 0.025 (left)/0.1 (right)
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Figure 6.15: The distance error relative to the landmark position is shown
with the following parameters: Trajectory: loop, additive error: 0 (left)/0.1
(right), multiplicative error: 0

Figure 6.16: The distance error relative to the landmark position is shown
with the following parameters: Trajectory: loop, additive error: 0.025 (left)/0
(right), multiplicative error: 0.025 (left)/0.1 (right)
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