Probabilistic Inference and Learning Lecture 03
 COntinuous Variables

Philipp Hennig

26 April 2021

EBERHARD KARLS
 UNIVERSITAT TUBINGEN

Faculty of Science

Department of Computer Science
Chair for the methods of Machine Learning

\#	date	content	Ex	\#	date	content	Ex
1	20.04.	Introduction	1	14	09.06.	Logistic Regression	8
2	21.04.	Reasoning under Uncertainty		15	15.06.	Exponential Families	
3	27.04	Continuous Variables	2	16	16.06.	Graphical Models	9
4	28.04.	Monte Carlo		17	22.06.	Factor Graphs	
5	04.05.	Markov Chain Monte Carlo	3	18	23.06.	The Sum-Product Algorithm	10
6	05.05.	Gaussian Distributions		19	29.06	Example: Topic Models	
7	11.05.	Parametric Regression	4	20	30.06	Mixture Models	11
8	12.05.	Understanding Deep Learning		21	06.07.	EM	
9	18.05.	Gaussian Processes	5	22	07.07.	Variational Inference	12
10	19.05.	An Example for GP Regression		23	13.07.	Example: Topic Models	
11	25.05.	Understanding Kernels	6	24	14.07.	Example: Inferring Topics	13
12	26.05.	Gauss-Markov Models		25	20.07.	Example: Kernel Topic Models	
13	08.06.	GP Classification	7	26	21.07.	Revision	

We need to talk about real numbers.

But first, we need to talk about probabilities of derived quantities

Definition (σ-algebra, measurable sets \& spaces)
Let Ω be a space of elementary events. Consider the power set 2^{Ω}, and let $\mathfrak{F} \subset 2^{\Omega}$ be a set of subsets of Ω. Elements of \mathfrak{F} are called random events. If \mathfrak{F} satisfies the following properties, it is called a σ-algebra.

1. $\Omega \in \mathfrak{F}$
2. $(A, B \in \mathfrak{F}) \Rightarrow(A-B \in \mathfrak{F})$
3. $\left(A_{1}, A_{2}, \cdots \in \mathfrak{F}\right) \Rightarrow\left(\bigcup_{i=1}^{\mathbb{N}} A_{i} \in \mathfrak{F} \quad \wedge \quad \bigcap_{i=1}^{\infty} A_{i} \in \mathfrak{F}\right)$
(this implies $\varnothing \in \mathfrak{F}$. If \mathfrak{F} is a σ-algebra, its elements are called measurable sets, and (Ω, \mathfrak{F}) is called a measurable space (or Borel space).

If Ω is countable, then 2^{Ω} is a σ-algebra, and everything is easy.

Definition (Measure \& Probability Measure)

Let (Ω, \mathfrak{F}) be a measurable space (aka. Borel space). A nonnegative real function $P: \mathfrak{F} \rightarrow \mathbb{R}_{0,+}$ (III.) is called a measure if it satisfies the following properties:

1. $P(\varnothing)=0$
2. For any countable sequence $\left\{A_{i} \in \mathfrak{F}\right\}_{i=1, \ldots,}$, of pairwise disjoint sets $\left(A_{i} \cap A_{j}=\varnothing\right.$ if $\left.i \neq j\right), P$ satisfies countable additivity (aka. σ-additivity):

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right) \tag{V.}
\end{equation*}
$$

The measure P is called a probability measure if $P(\Omega)=1$.
(For probability measures, 1 . is unnecessary). Then, $(\Omega, \mathfrak{F}, P)$ is called a probability space.

A hole in our theory?

A bent coin has probability f of coming up heads. The coin is tossed N times. What is the probability distribution of the number of heads r ?

- For $X=\left[X_{1}, \ldots, X_{N}\right]$, we have $\Omega=\{0,1\}^{N}$.
- But what about $R \in[0, \ldots, N] \subset \mathbb{N}$? It's not part of Ω.

Building new Probability Distributions from old ones

Definition (Measurable Functions, Random Variables)
Let (Ω, \mathfrak{F}) and (Γ, \mathfrak{G}) be two measurable spaces (i.e. spaces with σ-algebras). A function $X: \Omega \rightarrow \Gamma$ is called measurable if $X^{-1}(G) \in \mathfrak{F}$ for all $G \in \mathfrak{G}$. If there is, additionally, a probability measure P on (Ω, \mathfrak{F}), then X is called a random variable.

Definition (Distribution Measure)

Let $X: \Omega \rightarrow \Gamma$ be a random variable. Then the distribution measure (or law) P_{X} of X is defined for any $G \subset \Gamma$ as

$$
P_{X}(G)=P\left(X^{-1}(G)\right)=P(\{\omega \mid X(\omega) \in G\})
$$

Example: the Binomial Distribution

A bent coin has probability f of coming up heads. The coin is tossed N times. What is the probability distribution of the number of heads r ?

$$
\begin{aligned}
& K_{i}:=\left\{\begin{array}{l}
1 \text { if } i \text {-th toss is heads } \\
0 \\
\text { else }
\end{array} P(R=r)=\sum_{\omega \in\{X \mid R=r\}} \prod_{i=1}^{N} P\left(X_{i}\right)=\sum_{\omega \in\{X \mid R=r\}} f^{r} \cdot(1-f)^{N-r}:=P(r \mid f, N)\right.
\end{aligned}
$$

Example: the Binomial Distribution

A bent coin has probability f of coming up heads. The coin is tossed N times. What is the probability distribution of the number of heads r ?

$$
\begin{aligned}
& K_{i}:=\left\{\begin{array}{l}
1 \\
1 \\
0 \\
\text { if } i \text {-th toss is heads }
\end{array}\right. \\
& P(R=r)=\sum_{\omega \in\{X \mid R=r\}} \prod_{i=1}^{N} P\left(X_{i}\right)=\sum_{\omega \in\{X \mid R=r\}} f^{r} \cdot(1-f)^{N-r}:=P(r \mid f, N)
\end{aligned}
$$

- original space: $\Omega=\{0 ; 1\}^{N}$ (countably finite)
- σ-algebra: 2^{Ω} (the power set)
- random variable $R=\sum_{i=1}^{N} X_{i} \in[0, \ldots, N]=: \Gamma \subset \mathbb{N}$.
- distribution (measure) / law of $R:$...

Example: the Binomial Distribution

$$
f=1 / 3, N=10
$$

The distribution measure of R is

$$
\begin{aligned}
P(r \mid f, N) & =(\# \text { ways to choose } r \text { from } N) \cdot f^{r} \cdot(1-f)^{N-r} \\
& =\frac{N!}{(N-r)!\cdot r!} \cdot f^{r} \cdot(1-f)^{N-r} \\
& =\binom{N}{r} \cdot f^{r} \cdot(1-f)^{N-r}
\end{aligned}
$$

Note: In the remainder of the course, will often abuse notation by writing $P(r)$ instead of $P(R=r)$ (recall again that $P(X) \neq P(Y)!)$

- in a countable space Ω, even 2^{Ω} is a σ-algebra.
- But in continous spaces, such as $\Omega=\mathbb{R}^{d}$, not all sets are measurable.
- However, \mathbb{R}^{d} is a topological space

Definition (Topology)

Let Ω be a space and τ be a collection of sets. We say τ is a topology on Ω if

- $\Omega \in \tau$, and $\varnothing \in \tau$
- any union of elements of τ is in τ
- any intersection of finitely many elements of τ is in τ.

The elements of the topology τ are called open sets. In the Euclidean vector space \mathbb{R}^{d}, the canonical topology is that of all sets U that satisfy $x \in U: \Rightarrow \exists \varepsilon>0:((\|y-x\|<\varepsilon) \Rightarrow(y \in U))$.

From topologies to σ-algebras

Note that a topology is almost a σ-algebra:

Definition (σ-algebra, measurable sets \& spaces)
Let Ω be a space of elementary events. Consider the power set 2^{Ω}, and let $\mathfrak{F} \subset 2^{\Omega}$ be a set of subsets of Ω. Elements of \mathfrak{F} are called random events. If \mathfrak{F} satisfies the following properties, it is called a σ-algebra.

1. $\Omega \in \mathfrak{F}$
2. $(A, B \in \mathfrak{F}) \Rightarrow(A-B \in \mathfrak{F})$
3. $\left(A_{1}, A_{2}, \cdots \in \mathfrak{F}\right) \Rightarrow$

$$
\left(\bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{F} \quad \wedge \quad \bigcap_{i=1}^{\infty} A_{i} \in \mathfrak{F}\right)
$$

(this implies $\varnothing \in \mathfrak{F}$. If \mathfrak{F} is a σ-algebra, its elements are called measurable sets, and (Ω, \mathfrak{F}) is called a measurable space (or Borel space).

Definition (Topology)

Let Ω be a space and τ be a collection of sets. We say τ is a topology on Ω if

- $\Omega \in \tau$, and $\varnothing \in \tau$
- any union of elements of τ is in τ
- any intersection of finitely many elements of τ is in τ.
The elements of the topology τ are called open sets. In the Euclidean vector space \mathbb{R}^{d}, the canonical topology is that of all sets U that satisfy $x \in U: \Rightarrow \exists \varepsilon>0:((\|y-x\|<\varepsilon) \Rightarrow(y \in U))$.

Almost done!

Definition (Borel algebra)

Let (Ω, τ) be a topological space. The Borel σ-algebra is the σ-algebra generated by τ. That is by taking τ and completing it to include infinite intersections of elements from τ and all complements in Ω to elements of τ.

- In this lecture, we will almost exclusively consider (random) variables defined on discrete or Euclidean spaces. In the latter case, the σ-algebra will not be mentioned but assumed to be the Borel σ-algebra.
- Consider (Ω, \mathfrak{F}) and (Γ, \mathfrak{G}). If both \mathfrak{F} and \mathfrak{G} are Borel σ-algebras, then any continuous function X is measurable (and can thus be used to define a random variable). This is because, for continuous functions, pre-images of open sets are open sets.

Now that we can define (Borel) σ-algebras on continous spaces, we can define probability distribution measures. They might just be a bit unwieldy.

- Random Variables allow us to define derived quantities from atomic events
- Borel σ-algebras can be defined on all topological spaces, allowing us to define probabilities if the elementary space is continuous.

Definition (Probability Density Functions (pdf's))
Let \mathfrak{B} be the Borel σ-algebra in \mathbb{R}^{d}. A probability measure P on $\left(\mathbb{R}^{d}, \mathfrak{B}\right)$ has a density p if p is a non-negative (Borel) measurable function on \mathbb{R}^{d} satisfying, for all $B \in \mathfrak{B}$

$$
P(B)=\int_{B} p(x) d x=: \int_{B} p\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d}
$$

- In other words: P has a density if $P(B)$ can be written as an integral over B, for all B.
- not all measures have densities (e.g. measures with point masses)

Definition (Cumulative Distribution Function (CDF))

For probability measures P on $\left(\mathbb{R}^{d}, \mathfrak{B}\right)$, the cumulative distribution function is the function

$$
F(x)=P\left(\prod_{i=1}^{d}\left(x_{i}<x_{i}\right)\right)
$$

(In particular for the univariate case $d=1$, we have $F(x)=P((-\infty, x])$). If F is sufficiently differentiable, then P has a density, given by

$$
p(x)=\left.\frac{\partial^{d} F}{\partial x_{1} \cdots \partial x_{d}}\right|_{x} .
$$

and, for $d=1$,

$$
P(a \leq X<b)=F(b)-F(a)=\int_{a}^{b} f(x) d x .
$$

- For probability densities p on $\left(\mathbb{R}^{d}, \mathfrak{B}\right)$ we have

$$
P(E) \stackrel{(\mathbb{V})}{=} 1=\int_{\mathbb{R}^{d}} p(x) d x .
$$

- Let $X=\left(X_{1}, X_{2}\right) \in \mathbb{R}^{2}$ be a random variable with density p_{x} on \mathbb{R}^{2}. Then the marginal densities of X_{1} and X_{2} are given by the sum rule

$$
p_{x_{1}}\left(x_{1}\right)=\int_{\mathbb{R}} p_{x}\left(x_{1}, x_{2}\right) d x_{2}, \quad p_{x_{2}}\left(x_{2}\right)=\int_{\mathbb{R}} p_{x}\left(x_{1}, x_{2}\right) d x_{1}
$$

- The conditional density $p\left(x_{1} \mid x_{2}\right)\left(\right.$ for $\left.p\left(x_{2}\right)>0\right)$ is given by the product rule

$$
p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)}
$$

- Bayes' Theorem holds:

$$
p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}\right) \cdot p\left(x_{2} \mid x_{1}\right)}{\int p\left(x_{1}\right) \cdot p\left(x_{2} \mid x_{1}\right) d x_{1}} .
$$

A Graphical View

Theorem (Change of Variable for Probability Density Functions)
Let X be a continuous random variable with PDF $p_{X}(x)$ over $c_{1}<x<c_{2}$. And, let $Y=u(X)$ be a monotonic differentiable function with inverse $X=v(Y)$. Then the $P D F$ of Y is

$$
p_{Y}(y)=p_{X}(v(y)) \cdot\left|\frac{d v(y)}{d y}\right|=p_{X}(v(y)) \cdot\left|\frac{d u(x)}{d x}\right|^{-1} .
$$

Proof: for $u^{\prime}(X)>0: \forall d_{1}=u\left(c_{1}\right)<y<u\left(c_{2}\right)=d_{2}$

$$
\begin{aligned}
& F_{Y}(y)=P(Y \leq y)=P(u(X) \leq y)=P(X \leq v(y))=\int_{c_{1}}^{v(y)} p(x) d x \\
& p_{Y}(y)=\frac{d F_{Y}(y)}{d y}=p_{X}(v(y)) \cdot \frac{d v(y)}{d y}=p_{X}(v(y)) \cdot\left|\frac{d v(y)}{d y}\right|
\end{aligned}
$$

Theorem (Change of Variable for Probability Density Functions)
Let X be a continuous random variable with PDF $p_{X}(x)$ over $c_{1}<x<c_{2}$. And, let $Y=u(X)$ be a monotonic differentiable function with inverse $X=v(Y)$. Then the PDF of Y is

$$
p_{Y}(y)=p_{X}(v(y)) \cdot\left|\frac{d v(y)}{d y}\right|=p_{X}(v(y)) \cdot\left|\frac{d u(x)}{d x}\right|^{-1} .
$$

Proof: for $u^{\prime}(X)<0: \forall d_{2}=u\left(c_{2}\right)<y<u\left(c_{1}\right)=d_{1}$

$$
\begin{aligned}
& F_{Y}(y)=P(Y \leq y)=P(u(X) \leq y)=P(X \geq v(y))=1-P(X \leq v(y))=1-\int_{c_{1}}^{v(y)} p(x) d x \\
& p_{Y}(y)=\frac{d F_{Y}(y)}{d y}=-p_{X}(v(y)) \cdot \frac{d v(y)}{d y}=p_{X}(v(y)) \cdot\left|\frac{d v(y)}{d y}\right|
\end{aligned}
$$

Theorem (Transformation Law, general)

Let $X=\left(X_{1}, \ldots, X_{d}\right)$ have a joint density p_{x}. Let $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be continously differentiable and injective, with non-vanishing Jacobian J_{g}. Then $Y=g(X)$ has density

$$
p_{Y}(y)= \begin{cases}p_{X}\left(g^{-1}(y)\right) \cdot\left|J_{g-1}(y)\right| & \text { if } y \text { is in the range of } g \\ 0 & \text { otherwise }\end{cases}
$$

The Jacobian J_{g} is the $d \times d$ matrix with

$$
\left[J_{g}(x)\right]_{i j}=\frac{\partial g_{i}(x)}{\partial x_{j}}
$$

- Probability Density Functions (pdf's) distribute probability across continuous domains. UNIVERSITAT
- they satisfy "the rules of probability":

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} p(x) d x & =1 & & \\
p_{x_{1}}\left(x_{1}\right) & =\int_{\mathbb{R}} p_{x}\left(x_{1}, x_{2}\right) d x_{2} & & \text { sum rule } \\
p\left(x_{1} \mid x_{2}\right) & =\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)} & & \text { product rule } \\
p\left(x_{1} \mid x_{2}\right) & =\frac{p\left(x_{1}\right) \cdot p\left(x_{2} \mid x_{1}\right)}{\int p\left(x_{1}\right) \cdot p\left(x_{2} \mid x_{1}\right) d x_{1}} & & \text { Bayes' Theorem. }
\end{aligned}
$$

- Not every measure has a density, but all pdfs define measures
- Densities transform under continuously differentiable, injective functions $g: x \mapsto y$ with non-vanishing Jacobian as

$$
p_{Y}(y)= \begin{cases}p_{x}\left(g^{-1}(y)\right) \cdot\left|J_{g^{-1}}(y)\right| & \text { if } y \text { is in the range of } g, \\ 0 & \text { otherwise. }\end{cases}
$$

An example

What is the probability π for a person to be wearing glasses?

What is the probability π for a person to be wearing glasses?

- model probability as random variable π ranging in $[0,1]$
- $X=$ person is wearing glasses

What is the probability π for a person to be wearing glasses?

- model probability as random variable π ranging in $[0,1]$
- $X=$ person is wearing glasses
- Inference? Bayes' theorem!

$$
p(\pi \mid X)=\frac{p(X \mid \pi) p(\pi)}{p(X)}=\frac{p(X \mid \pi) p(\pi)}{\int p(X \mid \pi) p(\pi) d \pi}
$$

What is the probability π for a person to be wearing glasses?

- model probability as random variable π ranging in $[0,1]$
- $X=$ person is wearing glasses
- Inference? Bayes' theorem!

$$
p(\pi \mid X)=\frac{p(X \mid \pi) p(\pi)}{p(X)}=\frac{p(X \mid \pi) p(\pi)}{\int p(X \mid \pi) p(\pi) d \pi}
$$

What is a good prior?

- uniform for $\pi \in[0,1]$, i.e. $p(\pi)=1$, zero elsewhere

What is the probability π for a person to be wearing glasses?

- model probability as random variable π ranging in $[0,1]$
- $X=$ person is wearing glasses
- Inference? Bayes' theorem!

$$
p(\pi \mid X)=\frac{p(X \mid \pi) p(\pi)}{p(X)}=\frac{p(X \mid \pi) p(\pi)}{\int p(X \mid \pi) p(\pi) d \pi}
$$

What is a good prior?

- uniform for $\pi \in[0,1]$, i.e. $p(\pi)=1$, zero elsewhere

If we sample independently, what is the likelihood for a positive or a negative observation?

$$
p(X=1 \mid \pi)=\pi ; \quad p(X=0 \mid \pi)=1-\pi
$$

An example

What is the probability π for a person to be wearing glasses?

- model probability as random variable π ranging in $[0,1]$
- $X=$ person is wearing glasses
- Inference? Bayes' theorem!

$$
p(\pi \mid X)=\frac{p(X \mid \pi) p(\pi)}{p(X)}=\frac{p(X \mid \pi) p(\pi)}{\int p(X \mid \pi) p(\pi) d \pi}
$$

What is a good prior?

- uniform for $\pi \in[0,1]$, i.e. $p(\pi)=1$, zero elsewhere

If we sample independently, what is the likelihood for a positive or a negative observation?

$$
p(X=1 \mid \pi)=\pi ; \quad p(X=0 \mid \pi)=1-\pi
$$

What is the posterior after n positive, m negative observations?

$$
p(\pi \mid n, m)=\frac{\pi^{n}(1-\pi)^{m} \cdot 1}{\int \pi^{n}(1-\pi)^{m} \cdot 1 d \pi}=\frac{\pi^{n}(1-\pi)^{m}}{B(n+1, m+1)}
$$

DEMO

La probabilité de la plupart des événemens simples, est inconnue; en la considérant à priori, elle nous paraît susceptible de toutes les valeurs comprises entre zéro et l'unité; mais sie l'on a observé un résultat composé de plusieurs de ces événemens, la manière dont ils y entrent, rend quelques-unes de ces valeurs plus probables que les autres. Ainsi à mesure que les résultat observé se compose par le développement des événemens simples, leur vraie possibilité se fait de plus en plus connaître, et il devient de plus en plus probable qu'elle tombe dans des limites qui se reserrant sans cesse, finiraient par coïncider, si le nombre des événemens simples devenait infini.

The probability of most simple events is unknown. Considering it a priori, it seems susceptible to all values between zero and unity. But if one has observed a result composed of several of these events, the way they enter them makes some of these values more probable than the others. Thus, as the observed results are composed by the development of simple events, their real possibility becomes more and more known, and it becomes more and more probable that it falls within limits that constantly tighten, would end up coinciding if the number of simple events became infinite.

Pierre-Simon, marquis de Laplace (1749-1827).
Theorie Analytique des Probabilités, 1814, p. 363
Translated by a Deep Network, assisted by a human

Let's be more careful with notation!

(but only once more, then we'll be sloppy)

Example - inferring probability of wearing glasses (2)

Represent all unknowns as random variables (RVs)

- probability to wear glasses is represented by RV Y
- five observations are represented by RVs $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$

Example - inferring probability of wearing glasses (2)

Represent all unknowns as random variables (RVs)

- probability to wear glasses is represented by RV Y
- five observations are represented by RVs $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$

Possible values of the RVs

- Y takes values $\pi \in[0,1]$
- $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ are binary, i.e. values 0 and 1

Example - inferring probability of wearing glasses (2)

Represent all unknowns as random variables (RVs)

- probability to wear glasses is represented by RV Y
- five observations are represented by RVs $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$

Possible values of the RVs

- Y takes values $\pi \in[0,1]$
- $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ are binary, i.e. values 0 and 1

Graphical representation

Example - inferring probability of wearing glasses (2)

Represent all unknowns as random variables (RVs)

- probability to wear glasses is represented by RV Y
- five observations are represented by RVs $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$

Possible values of the RVs

- Y takes values $\pi \in[0,1]$
- $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ are binary, i.e. values 0 and 1

Graphical representation

Generative model and joint probability

- we abbreviate $Y=\pi$ as $\pi, X_{i}=x_{i}$ as X_{i}
- $p(\pi)$ is the prior of Y, written fully $p(Y=\pi)$
- $p\left(x_{i} \mid \pi\right)$ is the likelihood of observation x_{i}
- note that the likelihood is a function of π

Example - inferring probability of wearing glasses (3)

Probability of wearing glasses without observations

$$
p(\pi \mid \text { "nothing" })=p(\pi)
$$

Example - inferring probability of wearing glasses (3)

Probability of wearing glasses without observations

$$
p(\pi \mid \text { "nothing" })=p(\pi)
$$

Probability of wearing glasses after one observation

$$
p\left(\pi \mid x_{1}\right)=\frac{p\left(x_{1} \mid \pi\right) p(\pi)}{\int p\left(x_{1} \mid \pi\right) p(\pi) d \pi}=Z_{1}^{-1} p\left(x_{1} \mid \pi\right) p(\pi)
$$

Example - inferring probability of wearing glasses (3)

Probability of wearing glasses without observations

$$
p(\pi \mid \text { "nothing" })=p(\pi)
$$

Probability of wearing glasses after one observation

$$
p\left(\pi \mid x_{1}\right)=\frac{p\left(x_{1} \mid \pi\right) p(\pi)}{\int p\left(x_{1} \mid \pi\right) p(\pi) d \pi}=z_{1}^{-1} p\left(x_{1} \mid \pi\right) p(\pi)
$$

Probability of wearing glasses after two observations

$$
p\left(\pi \mid x_{1}, x_{2}\right)=Z_{2}^{-1} p\left(x_{2} \mid x_{1}, \pi\right) p\left(x_{1} \mid \pi\right) p(\pi)=Z_{2}^{-1} p\left(x_{2} \mid \pi\right) p\left(x_{1} \mid \pi\right) p(\pi)
$$

Example - inferring probability of wearing glasses (3)

Probability of wearing glasses without observations

$$
p(\pi \mid \text { "nothing" })=p(\pi)
$$

Probability of wearing glasses after one observation

$$
p\left(\pi \mid x_{1}\right)=\frac{p\left(x_{1} \mid \pi\right) p(\pi)}{\int p\left(x_{1} \mid \pi\right) p(\pi) d \pi}=Z_{1}^{-1} p\left(x_{1} \mid \pi\right) p(\pi)
$$

Probability of wearing glasses after two observations

$$
p\left(\pi \mid x_{1}, x_{2}\right)=Z_{2}^{-1} p\left(x_{2} \mid x_{1}, \pi\right) p\left(x_{1} \mid \pi\right) p(\pi)=Z_{2}^{-1} p\left(x_{2} \mid \pi\right) p\left(x_{1} \mid \pi\right) p(\pi)
$$

Probability of wearing glasses after five observations

$$
p\left(\pi \mid x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=Z_{5}^{-1}\left(\prod_{i=1}^{5} p\left(x_{i} \mid \pi\right)\right) p(\pi)
$$

Example - inferring probability of wearing glasses (4)

What is the likelihood?

$$
p\left(x_{1} \mid \pi\right)=\left\{\begin{array}{cc}
\pi & \text { for } x_{1}=1 \\
1-\pi & \text { for } x_{1}=0
\end{array}\right.
$$

Example - inferring probability of wearing glasses (4)

What is the likelihood?

$$
p\left(x_{1} \mid \pi\right)=\left\{\begin{array}{cc}
\pi & \text { for } x_{1}=1 \\
1-\pi & \text { for } x_{1}=0
\end{array}\right.
$$

More helpful RVs:

- RV N for the number of observations being 1 (with values n)
- RV M for the number of observations being 0 (with values m)

Example - inferring probability of wearing glasses (4)

What is the likelihood?

$$
p\left(x_{1} \mid \pi\right)=\left\{\begin{array}{cc}
\pi & \text { for } x_{1}=1 \\
1-\pi & \text { for } x_{1}=0
\end{array}\right.
$$

More helpful RVs:

- RV N for the number of observations being 1 (with values n)
- RV M for the number of observations being 0 (with values m)

Probability of wearing glasses after five observations

$$
\begin{aligned}
p\left(\pi \mid x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =Z_{5}^{-1}\left(\prod_{i=1}^{5} p\left(x_{i} \mid \pi\right)\right) p(\pi) \\
& =Z_{5}^{-1} \pi^{n}(1-\pi)^{m} p(\pi) \\
& =p(\pi \mid n, m)
\end{aligned}
$$

Posterior after seeing five observations:

$$
p(\pi \mid n, m)=Z_{5}^{-1} \pi^{n}(1-\pi)^{m} p(\pi)
$$

Posterior after seeing five observations:

$$
p(\pi \mid n, m)=Z_{5}^{-1} \pi^{n}(1-\pi)^{m} p(\pi)
$$

What prior $p(\pi)$ would make the calculations easy?

Example - inferring probability of wearing glasses (5)

Posterior after seeing five observations:

$$
p(\pi \mid n, m)=Z_{5}^{-1} \pi^{n}(1-\pi)^{m} p(\pi)
$$

What prior $p(\pi)$ would make the calculations easy?

$$
p(\pi)=Z^{-1} \pi^{a-1}(1-\pi)^{b-1} \quad \text { with parameters } a>0, b>0
$$

the Beta distribution with parameter a and b

Example - inferring probability of wearing glasses (5)

Posterior after seeing five observations:

$$
p(\pi \mid n, m)=Z_{5}^{-1} \pi^{n}(1-\pi)^{m} p(\pi)
$$

What prior $p(\pi)$ would make the calculations easy?

$$
p(\pi)=Z^{-1} \pi^{a-1}(1-\pi)^{b-1} \quad \text { with parameters } a>0, b>0
$$

the Beta distribution with parameter a and b
Let's give the normalization factor Z of the beta distribution a name!

$$
B(a, b)=\int_{0}^{1} \pi^{a-1}(1-\pi)^{b-1} d \pi
$$

the Beta function with parameters a and b

Quand les valeurs de x, considérées indépendamment du résultat observé, ne sont pas également possibles; en nommant z la fonction de \times qui exprime leur probabilité; il est facile de voir, par ce qui a été dit dans le premier chaptire de ce Livre, qu'en changeant dans la formule (1), y dans $y \cdot z$, on aura la probabilité que la valeur de x est comprise dans les limites $x=\theta$ and $x=\theta^{\prime}$. Cela revient à supposer toutes les valeurs de x également possible à priori, et à considérer le résultat observé, comme étant formé de deux résultats indépendans, dont les probabilités sont y et z. On peut donc ramener ainsi tous les case à celui ou l'on suppose à priori, avant l'événement, une égal possibilité aux différentes yaleurs de x, et par cette raison, nous adopterons cette hypothèse dans ce qui va suivre.

Pierre-Simon, marquis de Laplace (1749-1827). Theorie Analytique des Probabilités, 1814, p. 364 Translated by a Deep Network, assisted by a human

When the values of x, considered independently of the observed result, are not equally possible; if we name Z the function of x which expresses their probability; it is easy to see, by what has been said in the first chapter of this Book, that by changing in formula (1), y in $y \cdot z$, we will have the probability that the value of x is within the limits $x=\theta$ and $x=\theta^{\prime}$. This amounts to assuming all the values of x equally possible a priori, and to considering the observed result as being formed by two independent results, whose probabilities are y and z. We can thus reduce all the cases to the one where we assume a priori, before the event, an equal possibility to the different values of x, and by this reason, we will adopt this hypothesis in what follows.

Pierre-Simon, marquis de Laplace (1749-1827). Theorie Analytique des Probabilités, 1814, p. 364 Translated by a Deep Network, assisted by a human

- Random Variables allow us to define derived quantities from atomic events
- Borel σ-algebras can be defined on all topological spaces, allowing us to define probabilities if the elementary space is continuous.
- Probability Density Functions (pdf's) distribute probability across continuous domains.
- they satisfy "the rules of probability" (integrate to one, sum rule, product rule, hence Bayes' Theorem)
- Not every measure has a density, but all pdfs define measures
- Densities transform under continuously transformations
- Probabilistic inference can even be used to infer probabilities!

