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A Computational Challenge
Integration is the core computation of probabilistic inference

Probabilistic inference requires integrals:
▶ Evidences. Example from Lecture 3:

p(π|x1, . . . , xN) =
∏N

i p(xi | π)p(π)∫ 1
0
∏N

i p(xi | π)p(π) dπ
=

∏N
i π

n(1− π)N−n∫ 1
0
∏N

i π
n(1− π)N−n dπ

▶ Expectations (actually, evidences are expectations, too)

⟨f⟩p := Ep[f] :=
∫

f(x)p(x) dx “Expectation of f under p”

f(x) = x mean

f(x) = (x− Ep(x))2 variance
f(x) = xp p-th moment
f(x) = − log x entropy

...
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The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ Directed Graphical Models
▶
▶
▶
▶
▶

Computation:
▶ Monte Carlo
▶
▶
▶
▶
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Randomized Methods — Monte Carlo
the idea

▶ the “simplest thing to do”: replace integral with sum:∫
f(x)p(x) dx ≈ 1

S

S∑
i=1

f(xi);
∫

p(x, y) dx ≈
∑

i

p(y | xi); if xi ∼ p(x)

▶ this requires being able to sample xi ∼ p(x)

Definition (Monte Carlo method)

Algorithms that compute expectations in the above way, using samples xi ∼ p(x) are called Monte Carlo
methods (Stanisław Ulam, John von Neumann).
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A method from a different age
Monte Carlo Methods and the Manhattan Project images: Los Alamos National Laboratory / wikipedia

Stanisław Ulam
1909–1984

Nicholas Metropolis
1915–1999

John von Neumann
1903–1957
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The FERMIAC
analog Monte Carlo computer images: wikipedia
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Example
a dumb way to compute π

▶ ratio of quarter-circle to square:
π/4
1

▶ π = 4
∫
I(x⊺x < 1)u(x) dx

▶ draw x ∼ u(x), check x⊺x < 1, count

1 from numpy.random import rand
2 S = 100000
3 sum((rand(S,2)**2).sum(axis=1) < 1) / S * 4

> 3.13708

> 3.14276
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Monte Carlo works on every Integrable Function
is this a good thing?

ϕ :=

∫
f(x)p(x) dx = Ep(f)

▶ Let xs ∼ p, s = 1, . . . , S iid. (i.e. p(xs = x) = p(x) and p(xs, xt) = p(xs)p(xt) ∀s, t)

ϕ̂ :=
1
S

S∑
s=1

f(xs) ^ theMonte Carlo estimator is …

E(ϕ̂) =:

∫
1
S

S∑
s=1

f(xs)p(xs) dxs =
1
S

S∑
s=1

∫
f(xs)p(xs) dxs

=
1
S

S∑
s=1

E(f(xs)) = ϕ ^… an unbiased estimator!

▶ the only requirement for this is that
∫
f(x)p(x) dx exists (i.e. f must be Lebesgue-integrable

relative to p). Monte Carlo integration can even work on discontinuous functions.
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Sampling converges slowly
expected square error

▶ The expected square error (variance) drops asO(S−1)

E(ϕ̂− E(ϕ̂))2 = E

[
1
S

S∑
s=1

(f(xs)− ϕ)

]2

=
1
S2

S∑
s=1

S∑
r=1

E(f(xs)f(xr))− ϕE(f(xs))− E(f(xr))ϕ+ ϕ2

=
1
S2

S∑
s=1


∑

r̸=s

ϕ2 − 2ϕ2 + ϕ2︸ ︷︷ ︸
=0

+ E(f2)− ϕ2︸ ︷︷ ︸
=:var(f)


=

1
S
var(f) = O(S−1)

▶ Thus, the expected error (the square-root of the expected square error) drops asO(S−1/2)
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sampling is for rough guesses
recall example computation for π

100 101 102 103 104 105

0

2

4

6

# samples

ϕ̂
MC
π

100 101 102 103 104 105

10−3

10−2

10−1

100

101

# samples

√
var(f)/s

▶ need only∼ 9 samples to get order of magnitude right (std(ϕ)/3)
▶ need 1014 samples for single-precision (∼ 10−7) calculations!
▶ sampling is good for rough estimates, not for precise calculations
▶ Always think of other options before trying to sample!
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▶ samples from a probability distribution can be used to estimate expectations, roughly, without
having to design an elaborate integration algorithm

▶ The error of the estimate is independent of the dimensionality of the input domain!

How do we generate random samples from p(x)?
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Reminder: Change of Measure
The transformation law

Theorem (Change of Variable for Probability Density Functions)

Let X be a continuous random variable with PDF pX(x) over c1 < x < c2. And, let Y = u(X) be a
monotonic differentiable function with inverse X = v(Y). Then the PDF of Y is

pY(y) = pX(v(y)) ·
∣∣∣∣dv(y)dy

∣∣∣∣ = pX(v(y)) ·
∣∣∣∣du(x)dx

∣∣∣∣−1

.

Let X = (X1, . . . , Xd) have a joint density pX. Let g : Rd _Rd be continously differentiable and injective,
with non-vanishing Jacobian Jg. Then Y = g(X) has density

pY(y) =

{
pX(g−1(y)) · |Jg−1(y)| if y is in the range of g,
0 otherwise.

The Jacobian Jg is the d × d matrix with [Jg(x)]ij =
∂gi(x)
∂xj

.
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Some special cases
sampling from an exponential distribution is analytic

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

p(x) =
1
λ
e−x/λ

∫
p(x) dx = 1− e−x/λ

1− u = 1− e−x/λ x = −λ log(u)
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Example: Sampling from a Beta Distribution

uniform variables
Consider u ∼ U[0, 1] (i.e. u ∈ [0, 1], and p(u) = 1). The variable x = u1/α has the Beta density

px(x) = pu(u(x)) ·
∣∣∣∣∂u(x)∂x

∣∣∣∣ = α · xα−1 = B(x;α, 1).

Homework:
Consider two independent variables

X ∼ G(α, θ) Y ∼ G(β, θ)

where Γ(ξ;α, θ) = 1
Γ(α)θk ξ

α−1e−ξ/θ is the Gamma distribution. Show that the random variable
Z = X

X+Y is Beta distributed, with the density

p(Z = z) = B(z;α, β) = Γ(α+ β)

Γ(α)Γ(β)
zα−1(1− z)β−1.
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▶ samples from a probability distribution can be used to estimate expectations, roughly
▶ ‘random numbers’ don’t really need to be unpredictable, as long as they have as little structure as

possible
▶ uniformly distributed random numbers can be transformed into other distributions. This can be

done numerically efficiently in some cases, and it is worth thinking about doing so

What do we do if we don’t know a good transformation?
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Why is sampling hard?
Sampling is harder than global optimization

To produce exact samples:
▶ need to know cumulative density everywhere
▶ need to know regions of high density (not just local maxima!)
▶ a global description of the entire function

Practical Monte Carlo Methods aim to construct samples from

p(x) =
p̃(x)
Z

assuming that it is possible to evaluate the unnormalized density p̃ (but not p) at arbitrary points.
Typical example: Compute moments of a posterior

p(x | D) = p(D | x)p(x)∫
p(D, x) dx

as Ep(x|D)(xn) ≈
1
S
∑
s

xni with xi ∼ p(x | D)
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Rejection Sampling
a simple method [Georges-Louis Leclerc, Comte de Buffon, 1707–1788]

−4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

▶ for any p(x) = p̃(x)/Z (normalizer Z not required)
▶ choose q(x) s.t. cq(x) ≥ p̃(x)
▶ draw s ∼ q(x), u ∼ Uniform[0, cq(s)]
▶ reject if u > p̃(s)
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The Problem with Rejection Sampling
the curse of dimensionality [MacKay, §29.3]

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

x

p(
x)

p(x)
cq(x)

Example:
▶ p(x) = N (x; 0, σ2

p)

▶ q(x) = N (x; 0, σ2
q)

▶ σq > σp

▶ optimal c is given by

c =
(2πσ2

q)
D/2

(2πσ2
p)D/2

=

(
σq

σp

)D

= exp
(
D ln

σq

σp

)
▶ acceptance rate is ratio of volumes: 1/c
▶ rejection rate rises exponentially in D
▶ for σq/σp = 1.1, D = 100, 1/c < 10−4
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Importance Sampling
a slightly less simple method

▶ computing p̃(x), q(x), then throwing them away seems wasteful
▶ instead, rewrite (assume q(x) > 0 if p(x) > 0)

ϕ =

∫
f(x)p(x) dx =

∫
f(x)

p(x)
q(x)

q(x) dx

≈ 1
S
∑
s

f(xs)
p(xs)
q(xs)

=:
1
S
∑
s

f(xs)ws if xs ∼ q(x)

▶ this is just using a new function g(x) = f(x)p(x)/q(x), so it is an unbiased estimator
▶ ws is known as the importance (weight) of sample s
▶ if normalization unknown, can also use p̃(x) = Zp(x)∫

f(x)p(x) dx =
1
Z
1
S
∑
s

f(xs)
p̃(xs)
q(xs)

=
1
S
∑
s

f(xs)
p̃(xs)/q(xs)

1
S
∑

t 1p̃(xt)/q(xt)
=:

∑
s

f(xs)w̃s

▶ this is consistent, but biased
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What’s wrong with Importance Sampling?
the curse of dimensionality, revisited

▶ recall that var ϕ̂ = var(f)/S — importance sampling replaces var(f) with var(g) = var
(
f pq
)

▶ var
(
f pq
)
can be very large if q ≪ p somewhere. In many dimensions, usually all but everywhere!

▶ if p has “undiscovered islands”, some samples have p(x)/q(x)_∞
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Sampling (Monte Carlo) Methods
Sampling is a way of performing rough probabilistic computations, in particular for expectations
(including marginalization).
▶ samples from a probability distribution can be used to estimate expectations, roughly
▶ uniformly distributed random numbers can be transformed into other distributions. This can be

done numerically efficiently in some cases, and it is worth thinking about doing so
▶ Rejection sampling is a primitive but exact method that works with intractable models
▶ Importance sampling makes more efficient use of samples, but can have high variance (and this

may not be obvious)
Next Lecture:
▶ Markov Chain Monte Carlo methods are more elaborate ways of getting approximate answers to

intractable problems.
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