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What we’ve seen:
▶ Inference in models involving linear relationships between Gaussian random variables only

requires linear algebra operations
▶ features can be used to learn nonlinear (real-valued) functions on various domains
▶ feature representations can be learned using type-II-maximum likelihood
▶ Gaussian processmodels allow utilizing infinitely many features in finite time

Some questions you may have:
▶ What are kernels? Can I think of them as “infinitely large matrices”?
▶ I’ve heard of kernel machines. What’s the connection to GPs?
▶ If GP’s / kernel machines use infinitely many features, can they learn every function?
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Warning
Results shown here are often simplified.

Some regularity assumptions have been dropped for easier readability.
If you don’t like math, wait for the next lecture.

For deeper introductions, check out
M. Kanagawa, P. Hennig, D. Sejdinovic, and B.K. Sriperumbudur

Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
https://arxiv.org/abs/1807.02582

(still in review)

and

I. Steinwart, A. Christmann
Support Vector Machines

Springer SBM, 2008
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What are kernels? Can I think of them as “infinitely large matrices”?
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Quick Linear-Algebra Refresher
positive definite matrices

Definition (Eigenvalue)

Let A ∈ Rn×n be a matrix. A scalar λ ∈ C and vector v ∈ Cn are called eigenvalue and corresponding
eigenvector if

[Av]i =
n∑

j=1

[A]ij[v]j = λ[v]i.

Theorem (spectral theorem for symmetric positive-definite matrices)

The eigenvectors of symmetric matrices A = A⊺ are real, and form the basis of the image of A. A
symmetric positive definite matrix A can be written as a Gramian (outer product) of the eigenvectors:

[A]ij =
n∑

a=1

λa[va]i[va]j and λa > 0 ∀a = 1, . . . , n.
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Kernels are Inner Products
Mercer’s Theorem image: The Royal Society

Definition (Eigenfunction)

A function ϕ : X_R and scalar λ ∈ C that obeys∫
k(x, x̃)ϕ(x̃) dν(x̃) = λϕ(x)

are called an eigenfunction and eigenvalue of k with respect to ν.

Theorem (Mercer, 1909)

Let (X, ν) be a finite measure space and k : X× X_R a continuous (Mercer)
kernel. Then there exist eigenvalues/functions (λi, ϕi)i∈I w.r.t. ν such that I is
countable, all λi are real and non-negative, the eigenfunctions can be made
orthonormal, and the following series converges absolutely and uniformly
ν2-almost-everywhere:

k(a, b) =
∑
i∈I

λiϕi(a)ϕi(b) ∀ a, b ∈ X.
 (4 i~I _rA-L~LL~~lr~lJ P-~~LeecnJ I r
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This content downloaded from 192.124.26.251 on Mon, 27 Aug 2018 11:11:49 UTC
All use subject to https://about.jstor.org/terms

James Mercer (1883–1932)
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Are Kernels Infinitely Large Positive Definite Matrices?
Kind of …

k(a, b) =
∑
i∈I

λiϕi(a)ϕi(b) =: Φ(a)ΣΦ(b)⊺ ∀ a, b ∈ X.

▶ In the sense of Mercer’s theorem, one may think vaguely of a kernel k : X× X_R evaluated at
k(a, b) for a, b ∈ X as the “element” of an “infinitely large” matrix kab.

▶ However, this interpretation is only relative to the measure ν : X_R.
▶ In general, it is not straightforward to find the eigenfunctions
▶ The better question is: Why do you want to think about infinite matrices?

▶ What are the eigenfunctions?
▶ Do they eigenfunctions span a space like the eigenvectors of a matrix?
▶ What’s that space? Is it the sample space of a GP?
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Bochner’s Theorem
Here’s why operators are tricky image: Rice University, 1970, CC-BY 3.0

A kernel k(a, b) is called stationary if it can be written as

k(a, b) = k(τ) with τ := a− b

Theorem (Bochner’s theorem (simplified))

A complex-valued function k on RD is the covariance function of a weakly
stationary mean square continuous complex-valued random process on
RD if, and only if, its Fourier transform is a probability (i.e. finite positive)
meausure µ:

k(τ) =
∫
RD

e2πis⊺τ dµ(s) =
∫
RD

(
e2πis⊺a

)(
e2πis⊺b

)∗
dµ(s)

Note, though: Mercer’s theorem described a countable representation!
One way to use such insights: linear-time approximations to Gaussian
process regression (Rahimi & Recht, NeurIPS 2008)

Salomon Bochner
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What are kernels? Can I think of them as “infinitely large matrices”?

▶ kernels have eigenfunctions, like matrices have eigenvectors
▶ eigenfunctions, though, are only defined relative to a base measure
▶ Mercer’s theorem that the eigenfunctions ”generate” the kernel
▶ but finding the eigenfunctions can be tricky

I’ve heard of kernel machines. What’s the connection to GPs?
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Gaussian processes, by any other name
one of the most deeply studied models in history

Equivalent and closely related names for Gaussian process regression
▶ Kriging (in particular in the geosciences)
▶ kernel ridge regression
▶ Wiener–Kolmogorov prediction
▶ linear least-squares regression
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The Gaussian Posterior Mean is a Least-Squares estimate
nonparametric formulation, at explicit locations

p(fx | y) =
p(y | fX)p(f)

p(y)
=

N (y; fX, σ2I)GP(fx,X;m, k)
N (y;mX, kXX + σ2I)

= GP(fx;mx + kxX(kXX + σ2I)−1(y−mX), kxx − kxX(kXX + σ2I)−1kXx)
Ep(fX|y)(fX) = arg max

fX∈R|X|
p(fX | y)

= arg min
fX

−p(fX | y) = arg min
fX

− log p(fX | y)

= arg min
fX

1
2σ2 ∥y− fX∥2 +

1
2
∥fX −mX∥2k where ∥fX∥2k := f⊺X k

−1
XX fX

The posterior mean estimator of Gaussian (process) regression is equal to the regularized least-squares
estimate with the regularizer ∥f∥2k . This is also known as the kernel ridge estimate.
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200 years of data analysis
and counting portrait: Julien-Léopold Boilly, 1820 (all other portraits show a different Legendre!)

Nouvelles méthodes pour la détermination des orbites des comètes, 1805

Adrien-Marie Legendre
1752–1833
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200 years of data analysis
and counting

Theorie der Bewegung der Himmelskörper welche in Kegelschnitten die Sonne
umlaufen, 1877

Carl-Friedrich Gauss
1777 – 1855
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What about all those kernel concepts?
What’s the relationship between GPs and kernel ridge regression? slides: Ulrike v. Luxburg, 2020
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Reproducing Kernel Hilbert Spaces
Two definitions [Schölkopf & Smola, 2002 / Rasmussen & Williams, 2006]

Definition (Reproducing kernel Hilbert space (RKHS))

LetH = (X, ⟨·, ·⟩) be a Hilbert space of functions f : X_R. ThenH is called a reproducing kernel
Hilbert space if there exists a kernel k : X× X_R s.t.
1. ∀x ∈ X : k(·, x) ∈ H
2. ∀f ∈ H : ⟨f(·), k(·, x)⟩H = f(x) k reproducesH

Theorem [Aronszajn, 1950]: For every pos.def. k on X, there exists a unique RKHS.
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What is the RKHS? (1)
The RKHS is the space of possible posterior mean functions [e.g. Rasmussen & Williams, 2006, Eq. 6.5]

Theorem (Reproducing kernel map representation)

Let X, ν, (ϕi, λi)i∈I be defined as before. Let (xi)i∈I ⊂ X be a countable collection of points in X. Then
the RKHS can also be written as the space of linear combinations of kernel functions:

Hk =

{
f(x) :=

∑
i∈I

α̃ik(xi, x)

}
with ⟨f, g⟩Hk :=

∑
i∈I

α̃iβ̃i

k(xi, xi)

Proof: cf. Prof. v. Luxburg’s lecture
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What is the RKHS? (1)
The RKHS is the space of possible posterior mean functions [e.g. Rasmussen & Williams, 2006, Eq. 6.5]

Theorem (Reproducing kernel map representation)

Let X, ν, (ϕi, λi)i∈I be defined as before. Let (xi)i∈I ⊂ X be a countable collection of points in X. Then
the RKHS can also be written as the space of linear combinations of kernel functions:

Hk =

{
f(x) :=

∑
i∈I

α̃ik(xi, x)

}
with ⟨f, g⟩Hk :=

∑
i∈I

α̃iβ̃i

k(xi, xi)

Proof: cf. Prof. v. Luxburg’s lecture
Consider the Gaussian process p(f) = GP(0, k) with likelihood p(y | f, X) = N (y; fX, σ2I). The RKHS
is the space of all possible posterior mean functions

µ(x) = kxX (kXX + σ2I)−1y︸ ︷︷ ︸
:=w

=

n∑
i=1

wik(x, xi) for n ∈ N.
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To understand what a GP can learn we have to analyze the RKHS
the connection to the statistical learning theory of RKHSs
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What is the meaning of the GP point estimate?
The posterior mean is the least-squares estimate in the RKHS

Theorem (The Kernel Ridge Estimate)

Consider the model p(f) = GP(f; 0, k), p(y | f) = N (y; fX, σ2I). The posterior mean

m(x) = kxX(kXX + σ2I)−1y

is the element of the RKHSHk that minimizes the regularised ℓ2 loss

L(f) =
1
σ2

∑
i

(f(xi)− yi)2 + ∥f∥2Hk
.

Proof: cf. Prof. v. Luxburg’s lecture
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What is the meaning of uncertainty?
Frequentist interpretation of the posterior variance

How far could the posterior mean be from the truth, assuming noise-free observations?

sup
f∈H,∥f∥≤1

(m(x)− f(x))2 = sup
f∈H,∥f∥≤1

∑
i

f(xi) [K−1
XX k(X, x)]i︸ ︷︷ ︸

wi

−f(x)


2

reproducing property: = sup

〈∑
i

wik(·, xi)− k(·, x), f(·)

〉2

H

Cauchy-Schwartz: (|⟨a, b⟩| ≤ ∥a∥ · ∥b∥) =

∥∥∥∥∥∑
i

wik(·, xi)− k(·, x)

∥∥∥∥∥
2

H

reproducing property: =
∑
ij

wiwjk(xi, xj)− 2
∑

i

wik(x, xi) + k(x, x)

= kxx − kxXK−1
XX kXx = E|y[(fx − µx)

2]
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Bayesians expect the worst
it’s not always true that ”Frequentists are pessimists”

Theorem
Assume p(f) = GP(f; 0, k) and noise-free observations p(y | f) = δ(y− fX). The GP posterior variance
(the expected square error)

v(x) := Ep(f|y)(f(x)−m(x))2 = kxx − kxXK−1
XX kXx

is a worst-case bound on the divergence between m(x) and an RKHS element of bounded norm:

v(x) = sup
f∈Hk,∥f∥≤1

(m(x) = f(x))2

The GP’s expected square error is the RKHS’s worst-case square error for bounded norm.

Nb: v(x) is not, in general, itself an element ofHk.
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What is the RKHS? (2)
Representation in terms of eigenfunctions [I. Steinwart and A. Christmann. Support Vector Machines, 2008, Thm. 4.51]

Theorem (Mercer Representation)

Let X be a compact metric space, k be a continuous kernel on X, ν be a finite Borel measure whose
support is X. Let (ϕi, λi)i∈I be the eigenfunctions and values of k w.r.t. ν. Then the RKHSHk is given by

Hk =

{
f(x) :=

∑
i∈I

αiλ
1/2
i ϕi(x) such that ∥f∥2Hk

:=
∑
i∈I

α2
i < ∞

}
with ⟨f, g⟩Hk :=

∑
i∈I

αiβi

For f =
∑

i∈I αiλ
1/2
i ϕi and g =

∑
i∈I βiλ

1/2
i ϕi.

A compact space, simplified, is a space that is both bounded (all points have finite distance from each other) and closed (it contains all limits). For topological spaces, this is more generally defined by every open
cover (every union C of open sets covering all of X) having a finite subcover (i.e. a finite subset of C that also covers X).

Simplified proof: First, show that this space matches the RKHS definition
1. ∀x ∈ X : k(·, x) =

∑
i∈I λ

1/2
i ϕi(·) · λ1/2

i ϕi(x)︸ ︷︷ ︸
αi

and ∥k(·, x)∥2 =
∑

i λiϕi(x)2 = k(x, x) < ∞

2. ⟨f(·), k(·, x)⟩ =
∑

i∈I αiλ
1/2
i ϕ(x) = f(x). Then use Aronszajn’s uniqueness result. □
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What about the samples?
Draws from a Gaussian process [for non-simplified version, cf. Kanagawa et al., 2018 (op.cit.), Thms. 4.3 and 4.9]

Theorem (Karhunen-Loève Expansion)

Let X be a compact metric space, k : X× X, k be a continuous kernel, ν a finite Borel measure whose
support is X, and (ϕi, λi)i∈I as above. Let (zi)i∈I be a collection of iid. standard Gaussian random
variables:

zi ∼ N (0, 1) and E[zi, zj] = δij, for i, j ∈ I.

Then (simplified!):
f(x) =

∑
i∈I

ziλ
1/2
i ϕi(x) ∼ GP(0, k).
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What about the samples?
Draws from a Gaussian process [for non-simplified version, cf. Kanagawa et al., 2018 (op.cit.), Thms. 4.3 and 4.9]

Theorem (Karhunen-Loève Expansion)

Let X be a compact metric space, k : X× X, k be a continuous kernel, ν a finite Borel measure whose
support is X, and (ϕi, λi)i∈I as above. Let (zi)i∈I be a collection of iid. standard Gaussian random
variables:

zi ∼ N (0, 1) and E[zi, zj] = δij, for i, j ∈ I.

Then (simplified!):
f(x) =

∑
i∈I

ziλ
1/2
i ϕi(x) ∼ GP(0, k).

Corollary (Wahba, 1990. Proper proof in Kanagawa et al., Thm. 4.9)

If I is infinite, f ∼ GP(0, k) implies almost surely f ̸∈ Hk. To see this, note

E(∥f∥2Hk
) = E

(∑
i∈I

z2i

)
=
∑
i∈I

E[z2i ] =
∑
i∈I

1 ̸< ∞
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GP samples are not in the RKHS!
But almost …

Theorem (Kanagawa, 2018. Restricted from Steinwart, 2017, itself generalized from Driscoll, 1973)

LetHk be a RKHS and 0 < θ ≤ 1. Consider the θ-power ofHk given by

Hθ
k =

{
f(x) :=

∑
i∈I

αiλ
θ/2
i ϕi(x) such that ∥f∥2Hk

:=
∑
i∈I

α2
i < ∞

}
with ⟨f, g⟩Hk :=

∑
i∈I

αiβi.

Then, ∑
i∈I

λ1−θ
i < ∞ ⇒ f ∼ GP(0, k) ∈ Hθ

k with prob. 1

Non-representative Example: Let kλ(a, b) = exp(−(a− b)2/(2λ2)). Then f ∼ GP(0, kλ) is inHkθλ
with prob. 1 for all 0 < θ < 1. The situation is more complicated for other kernels.
GP samples are not in the RKHS. They belong to a kind of “completion” of the RKHS (but that completion
can be strictly larger than the RKHS).
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▶ GP and Kernel Methods are very closely related
▶ the RKHS is the space of all possible posterior mean functions
▶ the posterior mean is the ℓ2-least-squares estimate in the RKHS
▶ the posterior variance (expected square error) is the worst-case error of bounded norm in the RKHS
▶ GP samples are not in the RKHS

If GP’s / kernel machines use infinitely many features, can they learn every function?
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How powerful are kernel/GP models?
first, the hope [Micchelli, Xu, Zhang, JMLR 7 (2006) 2651–2667]

▶ For some kernels, the RKHS “lies dense” in the space of all continuous functions (such kernels are
known as “universal”). An example is the square-exponential / Gaussian / RBF kernel

k(a, b) = exp(−1/2(a− b)2)

(in fact, there are many universal kernels. E.g. all stationary kernels with power spectrum of full support.)

▶ When using such kernels for GP / kernel-ridge regression, for any continuous functions f, for any
ϵ > 0 there is an RKHS element f̂ ∈ Hk such that ∥f− f̂∥ < ϵ (where ∥ · ∥ is the maximum norm
on a compact subset of X).

▶ that is: Given enough data, the GP posterior mean can approximate any function arbitrarily well!
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The bad news
if f is not in the RKHS – prior
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The bad news
if f is not in the RKHS – 1 evaluation
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The bad news
if f is not in the RKHS – 2 evaluations
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The bad news
if f is not in the RKHS – 5 evaluations
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The bad news
if f is not in the RKHS – 10 evaluations
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The bad news
if f is not in the RKHS – 20 evaluations
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The bad news
if f is not in the RKHS – 50 evaluations
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The bad news
if f is not in the RKHS – 100 evaluations
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The bad news
if f is not in the RKHS – 500 evaluations
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Convergence Rates are Important
non-obvious aspects of f can ruin convergence v.d.Vaart & v.Zanten. Information Rates of Nonparametric GP models. JMLR 12 (2011)

100 101 102 103

10−2

100

# function evaluations

∫ ∥f
−
m
∥2

If f is “not well covered” by the RKHS, the number of datapoints required to achieve ϵ error can be
exponential in ϵ. Outside of the observation range, there are no guarantees at all.
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An Analogy
representing π inQ

▶ Q is dense in R
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But if you’re patient, you can learn anything!
The good news. [wording from Kanagawa et al., 2018]

Theorem (v.d. Vaart & v. Zanten, 2011)

Let f0 be an element of the Sobolev space Wβ
2 [0, 1]

d with β > d/2. Let ks be a kernel on [0, 1]d whose
RKHS is norm-equivalent to the Sobolev space Ws

2([0, 1]
d) of order s := α+ d/2 with α > 0. If

f0 ∈ Cβ([0, 1]d) ∩Wβ
2 ([0, 1]

d) andmin(α, β) > d/2, then we have

EDn|f0

[∫
∥f− f0∥2L2(PX)dΠn(f|Dn)

]
= O(n−2 min(α,β)/(2α+d)) (n_∞), (1)

where EX,Y|f0 denotes expectation with respect toDn = (xi, yi)ni=1 with the model xi ∼ PX and
p(y | f0) = N (y; f0(X), σ2I), andΠn(f|Dn) the posterior given by GP-regression with kernel ks.
The Sobolev space Ws

2(X) is the vector space of real-valued functions overX whose derivatives up to s-th order have bounded L2 norm. L2(PX) is the

Hilbert space of square-integrable functions with respect to PX .

If f0 is from a sufficiently smooth space, and Hk is “covering” that space well, then the entire GP posterior
(including the mean!) can contract around the true function at a linear rate.
GPs are “infinitely flexible”: They can learn infinite-dimensional functions arbitrarily well!
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▶ Gaussian process regression is closely related to kernel ridge regression.
▶ the posterior mean is the kernel ridge / regularized kernel least-squares estimate in the RKHSHk.

m(x) = kxX(kXX + σ2I)−1y = arg min
f∈Hk

∥y− fX∥2 + ∥f∥2
Hk

▶ the posterior variance (expected square error) is the worst-case square error for bounded-norm RKHS
elements.

v(x) = kxx − kxX(kXX)−1kXx = arg max
f∈Hk,∥f∥Hk

≤1
∥f(x)− m(x)∥2

▶ Similar connections apply for most kernel methods.
▶ GPs are quite powerful: They can learn any function in the RKHS (a large, generally

infinite-dimensional space!)
▶ GPs are quite limited: If f ̸∈ Hk, they may converge very (e.g. exponentially) slowly to the truth.
▶ But if we are willing to be cautious enough (e.g. with a rough kernel whose RKHS is a Sobolev

space of low order), then polynomial rates are achievable. (Unfortunately, exponentially slow in the
dimensionality of the input space)
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