Probabilistic Machine Learning LECTURE 17 FACTOR GRAPHS

Philipp Hennig

21 June 2021

EBERHARD KARLS
 UNIVERSITAT TUBINGEN

Faculty of Science
Department of Computer Science
Chair for the methods of Machine Learning

$\#$	date	content	Ex	$\#$	date	content	Ex
1	20.04.	Introduction	1	14	09.06.	Generalized Linear Models	
2	21.04.	Reasoning under Uncertainty		15	15.06.	Exponential Families	8
3	27.04.	Continuous Variables	2	16	16.06.	Graphical Models	
4	28.04.	Monte Carlo		17	22.06.	Factor Graphs	9
5	04.05.	Markov Chain Monte Carlo	3	18	23.06.	The Sum-Product Algorithm	
6	05.05.	Gaussian Distributions		19	29.06.	Example: Topic Models	10
7	11.05.	Parametric Regression	4	20	30.06.	Mixture Models	
8	12.05.	Learning Representations		21	06.07.	EM	11
9	18.05.	Gaussian Processes	5	22	07.07.	Variational Inference	
10	19.05.	Understanding Kernels		23	13.07.	Topics	12
11	26.05.	Gauss-Markov Models		25	14.07.	Example: Inferring Topics	
12	25.05.	An Example for GP Regression	6	24	20.07.	Example: Kernel Topic Models	
13	08.06.	GP Classification	7	26	21.07.	Revision	

- directly encode a facorization of the joint (it can be read off by

Undirected Graphical Models / Markov Random Fields (MRFs)

- directly encode conditional independence structure (by definition)
- however, reading off the joint from the graph is tricky (it requires finding all maximal cliques, normalization constant is intractable)
- MRFs are for encoding computational constraints (think: computer vision)

From Directed to Undirected Graphs

From Directed to Undirected Graphs

The MRF for a directed chain graph is a Markov Chain.

From Directed to Undirected Graphs

- we need to ensure that each conditional term in the directed graph are captured in at least one clique of the undirected graph
- for nodes with only one parent, we can thus simply drop the arrow, and get $p\left(x_{c} \mid x_{p}\right)=\phi_{c, p}\left(x_{c}, x_{p}\right)$
- but for nodes with several parents, we have to connect ("marry") all the parents. This process is known as moralization.
- moralization frequently leads to densely connected graphs, losing all value of the graph.

$$
p(x)=p\left(x_{1}\right) \cdot p\left(x_{2}\right) \cdot p\left(x_{3}\right) \cdot p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)
$$

From Directed to Undirected Graphs

- we need to ensure that each conditional term in the directed graph are captured in at least one clique of the undirected graph
- for nodes with only one parent, we can thus simply drop the arrow, and get $p\left(x_{c} \mid x_{p}\right)=\phi_{c, p}\left(x_{c}, x_{p}\right)$
- but for nodes with several parents, we have to connect ("marry") all the parents. This process is known as moralization.
- moralization frequently leads to densely connected graphs, losing all value of the graph.

$$
p(x)=p\left(x_{1}\right) \cdot p\left(x_{2}\right) \cdot p\left(x_{3}\right) \cdot p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)
$$

$$
\begin{array}{lll}
P(A=1)=0.5 & P(C=1 \mid A=1, B=1)=1 & P(C=1 \mid A=1, B=0)=0 \\
P(B=1)=0.5 & P(C=1 \mid A=0, B=1)=0 & P(C=1 \mid A=0, B=0)=1
\end{array}
$$

These CPTs imply $P(A \mid B)=P(A), P(B \mid C)=P(B)$ and $P(C \mid A)=P(C)$ and $P(C \mid B)=P(C)$.
We thus have three factorizations:

$$
\begin{aligned}
& \text { 1. } P(A, B, C)=P(C \mid A, B) \cdot P(A \mid B) \cdot P(B)=P(C \mid A, B) \cdot P(A) \cdot P(B) \\
& \text { 2. } P(A, B, C)=P(A \mid B, C) \cdot P(B \mid C) \cdot P(C)=P(A \mid B, C) \cdot P(B) \cdot P(C) \\
& \text { 3. } P(A, B, C)=P(B \mid C, A) \cdot P(C \mid A) \cdot P(A)=P(B \mid C, A) \cdot P(C) \cdot P(A)
\end{aligned}
$$

Each corresponds to a graph. Note that each can only express some of the independencies:

The MRF for "two coins and a bell", however, is totally useless. It does not capture any of the conditional independencies.

$A \Perp B \mid \varnothing$ and $A \not \Perp B \mid C$

$x \not \Perp y \mid \varnothing \forall x, y$ and $C \Perp D \mid A \cup B$ and $A \Perp B \mid C \cup D$

The conditional independence properties of the directed graph on the left can not be represented by any MRF over the same three variables; and the conditional independence properties of the MRF on the right can not be represented by any directed graph on the same four variables.

Directed and Undirected Graphs fit different problems

- Consider a distribution $p(x)$ and a graph $G=\left(V_{x}, E\right)$.
- If every conditional independence statement satisfied by the distribution can be read off from the graph, then G is called an D-map of p. (The fully disconnected Graph is a trivial D-map for every p)
- If every conditional independence statement implied by G is also satisfied by p, then G is called a I-map of p. (The fully connected graph is a trivial l-map for every p).
- A G that is both an I-map and a D-map of p is called a perfect map of p.
- The set of distributions p for which there exists a directed graph that is a perfect map is distinct from the set of p for which there exists a perfect MRF map. (see two examples on previous slide. Markov Chains are an example where both MRF and directed graph are perfect). And there exist p for which there exists neither a directed nor an undirected perfect map (e.g. two coins and bell)

Summary so far:

- directed and undirected graphs offer tools to graphically represent and inspect properties of joint probability distributions. Both are primarily a design tool
- each framework has its strengths and weaknesses. Strong simplification:

Bayes Nets for encoding structured generative knowledge over heterogeneous variable sets, e.g. in scientific modelling

MRFs for encoding computational constraints over large sets of similar variables, e.g. in computer vision (pixels)
next goal:

- a third type of graphical model, particularly well-suited for automated inference
- a general-purpose algorithm for automated inference
- a variant for efficient MAP inference

Factor Graphs

- Both directed and undirected graphs provide a factorization of a distribution into functions over sets of variables

$$
p(\boldsymbol{x})=\prod_{s} f_{s}\left(\boldsymbol{x}_{S}\right)
$$

directed: $f_{s}\left(x_{s}\right)$ - conditional distribution undirected: $f_{s}\left(x_{s}\right)$ - potential function $\left(Z=f_{z}(\varnothing)\right)$

Definition

A factor graph is a bipartite graph $G=(V, F, E)$ of variables $v_{i} \in V$, factors $f_{i} \in F$ and edges, such that each edge connects a factor to a variable.

[^0]
Example

$$
p(y, w)=\prod_{i=1}^{n} \mathcal{N}\left(y_{i} ; \phi\left(x_{i}\right)^{\top} w, \sigma^{2}\right) \mathcal{N}(w ; \mu, \Sigma)
$$

To construct a factor graph from a directed graph

$$
p(x)=\prod_{c \in C} p_{C}\left(x_{C} \mid x_{\mathrm{pa}(\mathrm{c})}\right)
$$

- draw a circle for each variable x_{i}
- draw a box for each conditional p_{c}
- connect each p_{c} to the variables in it

Example

$$
p(y, w)=\prod_{i=1}^{n} \mathcal{N}\left(y_{i} ; \phi\left(x_{i}\right)^{\top} w, \sigma^{2}\right) \mathcal{N}(w ; \mu, \Sigma)
$$

To construct a factor graph from a directed graph

$$
p(x)=\prod_{c \in C} p_{c}\left(x_{C} \mid x_{\mathrm{pa}(\mathrm{c})}\right)
$$

- draw a circle for each variable x_{i}
- draw a box for each conditional p_{c}
- connect each p_{c} to the variables in it

Example

$$
p(y, w)=\prod_{i=1}^{n} \mathcal{N}\left(y_{i} ; \phi\left(x_{i}\right)^{\top} w, \sigma^{2}\right) \mathcal{N}(w ; \mu, \Sigma)
$$

$$
p(x)=\frac{1}{Z} \prod_{c \in C} \psi_{c}\left(x_{c}\right)
$$

- draw a circle for each variable x_{i}
- draw a box for each factor (potential) ψ

- connect each ψ to the variables used in the factor

Explicit Functional Relationships Reveal Structure

$$
p\left(x_{1}, x_{2}, x_{3}\right)=f_{a}\left(x_{1}, x_{2}, x_{3}\right) \cdot f_{b}\left(x_{2}, x_{3}\right)
$$

Functional relationshins have no direction but they identify parents uwnw wio

$$
p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right)
$$

$$
p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1} \mid x_{3}\right) p\left(x_{2} \mid x_{3}\right) p\left(x_{3}\right)
$$

What do we have to do, in general, to compute a marginal distribution

$$
p\left(x_{i}\right)=\int p\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) d x_{j \neq i}
$$

If the joint $p\left(x_{1}, \ldots, x_{n}\right)$ is given by a factor graph?

The Sum-Product Algorithm

- J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
- S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc., 50:157-224, 1988.

- F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum- product algorithm. IEEE Transactions on Information Theory, 47(2):498-519, February 2001.

The Sum-Product-Algorithm we are about to develop unifies many historically separate ideas (as listed by H.A. Loeliger, 2008):

- Markov random fields (Ising 1925)

Signal processing:

- linear state-space models and Kalman filtering: Kalman 1960...
- recursive least-squares adaptive filters
- Hidden Markov models: Baum et al. 1966...
- unification: Levy et al. 1996...

Error correcting codes:

- Low-density parity check codes: Gallager 1962; Tanner 1981; MacKay 1996; Luby et al. 1998...
- Convolutional codes and Viterbi decoding: Forney 1973...
- Turbo codes: Berrou et al. 1993...

Machine learning:

- Bayesian networks: Pearl 1988; Shachter 1988; Lauritzen and Spiegelhalter 1988; Shafer and Shenoy 1990...

Base Case: Markov Chains

Assume discrete $x_{i} \in[1, \ldots, k]$ for the moment. What is the marginal $p\left(x_{i}\right)$?

$$
\begin{aligned}
p(x)= & \frac{1}{Z} \psi_{0,1}\left(x_{0}, x_{1}\right) \cdots \psi_{i-1, i}\left(x_{i-1}, x_{i}\right) \cdot \psi_{i, i+1}\left(x_{i}, x_{i+1}\right) \cdot \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \\
p\left(x_{i}\right)= & \sum_{x_{\neq i}} p(x)=\frac{1}{Z} \underbrace{\left(\sum_{x_{i-1}} \psi_{i-1, i}\left(x_{i-1}, x_{i}\right) \cdots\left(\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\left(\sum_{x_{0}} \psi\left(x_{0}, x_{1}\right)\right)\right)\right)}_{=: \mu_{\rightarrow \rightarrow}\left(x_{i}\right)} \\
& \cdot \underbrace{\left(\sum_{x_{i+1}} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right) \cdots\left(\sum_{x_{n}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)\right)\right)}_{=: \mu_{\leftarrow}\left(x_{i}\right)}=\frac{1}{Z} \mu_{\rightarrow}\left(x_{i}\right) \cdot \mu_{\leftarrow}\left(x_{i}\right) .
\end{aligned}
$$

$$
p\left(x_{i}\right)=\frac{1}{\bar{z}} \underbrace{\left(\sum_{x_{i-1}} \psi_{i-1, i}\left(x_{i-1}, x_{i}\right) \cdots\left(\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\left(\sum_{x_{0}} \psi\left(x_{0}, x_{1}\right)\right)\right)\right)}_{=: \mu \rightarrow\left(x_{i}\right)} \cdot \underbrace{\left(\sum_{x_{i+1}} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right) \cdots\left(\sum_{x_{n}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)\right)\right)}_{=: \mu \leftarrow\left(x_{i}\right)} .
$$

- Marginal can be computed locally

$$
p\left(x_{i}\right)=\frac{1}{Z} \mu_{\rightarrow}\left(x_{i}\right) \cdot \mu_{\leftarrow}\left(x_{i}\right) \quad \text { with } \quad Z=\sum_{x_{i}} \mu_{\rightarrow}\left(x_{i}\right) \cdot \mu_{\leftarrow}\left(x_{i}\right)
$$

$$
p\left(x_{i}\right)=\frac{1}{\bar{z}} \underbrace{\left(\sum_{x_{i-1}} \psi_{i-1, i}\left(x_{i-1}, x_{i}\right) \cdots\left(\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\left(\sum_{x_{0}} \psi\left(x_{0}, x_{1}\right)\right)\right)\right)}_{=: \mu \rightarrow\left(x_{i}\right)} \cdot \underbrace{\left(\sum_{x_{i+1}} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right) \cdots\left(\sum_{x_{n}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)\right)\right)}_{\left.=: \mu_{\leftarrow}\right)\left(x_{i}\right)} .
$$

- Messages are recursive, thus computational complexity is $\mathcal{O}\left(n \cdot k^{2}\right)$

$$
\mu_{\rightarrow}\left(x_{i}\right)=\sum_{i-1} \psi_{i-1, i}\left(x_{i-1}, x_{i}\right) \mu_{\rightarrow(}\left(x_{i-1}\right) \quad \mu_{\leftarrow}\left(x_{i}\right)=\sum_{x_{i+1}} \psi_{i, i+1}\left(x_{i}, x_{i+1}\right) \mu_{\leftarrow}\left(x_{i+1}\right)
$$

- By storing local messages, all marginals can be computed in $\mathcal{O}\left(n \cdot k^{2}\right)$ (cf. filtering and smoothing)
- To compute one message from the preceding one, take the sum over the preceding variable in (the product of) the local factors incoming message(s). To compute a local marginal, take the sum of the product of the incoming messages.

How about the most probable State?

Assume discrete $x_{i} \in[1, \ldots, k]$ for the moment. Where is the maximum $\max p(\mathrm{x})$?

$$
\begin{aligned}
p(x) & =\frac{1}{Z} \psi_{0,1}\left(x_{0}, x_{1}\right) \cdots \psi_{i-1, i}\left(x_{i-1}, x_{i}\right) \cdot \psi_{i, i+1}\left(x_{i}, x_{i+1}\right) \cdot \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \\
\max _{x} p(x) & =\frac{1}{Z} \max _{x_{0}} \cdots \max _{x_{N}} \psi_{0,1}\left(x_{0}, x_{1}\right) \cdots \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \\
& =\frac{1}{Z} \max _{x_{0}, x_{1}}\left(\psi_{0,1}\left(x_{0}, x_{1}\right)\left(\cdots \max _{x_{n}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)\right)\right) \\
\log \max _{x} p(x) & =\max _{x_{0}, x_{1}}\left(\log \psi_{0,1}\left(x_{0}, x_{1}\right)+\left(\cdots \max _{x_{n}} \log \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)\right)\right)-\log Z \\
\arg \max ^{x}(x) & =\arg _{x_{0}, x_{0} x}\left(\log \psi_{0,1}\left(x_{0}, x_{1}\right)+\left(\cdots+\underset{x_{n}}{\left.\left.\arg \max \log \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)\right)\right)}\right.\right.
\end{aligned}
$$

The Viterbi Algorith

Factor Graphs

- are a tool to directly represent an entire computation in a formal language (which also includes the functions in question themselves)
- both directed and undirected graphical models can be mapped onto factor graphs.

Inference on Chains

- separates into local messages being sent forwards and backwards along the factor graph
- both the local marginals and the most-probable state can be inferred in this way. For the most probable state, we need to additionally keep track of its identity, which requires an additional data structure (a trellis).
- more fundamentally, both algorithms utilize the distributive property of sum and max:

$$
\begin{aligned}
+(a b, a c)=a b+a c & =a(b+c)=a \cdot+(b, c) \\
\max (a b, a c) & =a \cdot \max (b, c) \\
\max (a+b, a+c) & =a+\max (b, c)
\end{aligned}
$$

[^0]: images: Kschischang: U Toronto; Frey: Toronto Star; Loeliger: ETH Zürich

