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Directed Graphical Models / Bayesian Networks
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▶ directly encode a facorization of the joint (it can be read off by
parsing the graph from the children to the parents)

▶ however, reading off conditional independence structure is tricky (it
requires considering d-separation)

▶ directed graphs are for encoding generative knowledge (think:
scientific modelling)

Undirected Graphical Models / Markov Random Fields (MRFs)
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▶ directly encode conditional independence structure (by definition)
▶ however, reading off the joint from the graph is tricky (it requires

finding all maximal cliques, normalization constant is intractable)
▶ MRFs are for encoding computational constraints (think: computer

vision)
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From Directed to Undirected Graphs
Example: Markov Chain [from Bishop, PRML, 2006]

x1 x2 . . . xn−1 xn

p(x) = p(x1) · p(x2 | x1) · p(x3 | x2) · · · p(xn | xn−1)

=
1
Z
ψ1,2(x1, x2) · ψ2,3(x2, x3) · · ·ψn−1,n(xn−1, xn)

The MRF for a directed chain graph is aMarkov Chain.
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From Directed to Undirected Graphs
Example: Markov Chain [from Bishop, PRML, 2006]

x1 x2 . . . xn−1 xn

p(x) = p(x1) · p(x2 | x1) · p(x3 | x2) · · · p(xn | xn−1)

=
1
Z
ψ1,2(x1, x2) · ψ2,3(x2, x3) · · ·ψn−1,n(xn−1, xn)

The MRF for a directed chain graph is aMarkov Chain.
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From Directed to Undirected Graphs
Moralization [from Bishop, PRML, 2006]

▶ we need to ensure that each conditional term in the
directed graph are captured in at least one clique of the
undirected graph

▶ for nodes with only one parent, we can thus simply drop
the arrow, and get p(xc | xp) = ϕc,p(xc, xp)

▶ but for nodes with several parents, we have to connect
(“marry”) all the parents. This process is known as
moralization.

▶ moralization frequently leads to densely connected
graphs, losing all value of the graph.

x1

x2

x3

x4

p(x) = p(x1)·p(x2)·p(x3)·p(x4 | x1, x2, x3)
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From Directed to Undirected Graphs
Moralization [from Bishop, PRML, 2006]

▶ we need to ensure that each conditional term in the
directed graph are captured in at least one clique of the
undirected graph

▶ for nodes with only one parent, we can thus simply drop
the arrow, and get p(xc | xp) = ϕc,p(xc, xp)

▶ but for nodes with several parents, we have to connect
(“marry”) all the parents. This process is known as
moralization.

▶ moralization frequently leads to densely connected
graphs, losing all value of the graph.
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Limits of Both Model Families
The Graph for Two Coins and a Bell example by Stefan Harmeling

P(A = 1) = 0.5 P(C = 1 | A = 1, B = 1) = 1 P(C = 1 | A = 1, B = 0) = 0
P(B = 1) = 0.5 P(C = 1 | A = 0, B = 1) = 0 P(C = 1 | A = 0, B = 0) = 1

These CPTs imply P(A|B) = P(A), P(B|C) = P(B) and P(C|A) = P(C) and P(C | B) = P(C).

We thus have three factorizations:
1. P(A, B, C) = P(C|A, B) · P(A|B) · P(B) = P(C|A, B) · P(A) · P(B)
2. P(A, B, C) = P(A|B, C) · P(B|C) · P(C) = P(A|B, C) · P(B) · P(C)
3. P(A, B, C) = P(B|C, A) · P(C|A) · P(A) = P(B|C, A) · P(C) · P(A)

Each corresponds to a graph. Note that each can only express some of the independencies:

C

A B

C

BA A B

C
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Limits of Both Families
undirected case

The MRF for “two coins and a bell”, however, is totally useless.
It does not capture any of the conditional independencies.

A B

C
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Limits of Both Families
[from Bishop, PRML, 2006]

A B

C

A ⊥⊥ B | ∅ and A ̸⊥⊥ B | C

A B

D

C

x ̸⊥⊥ y | ∅ ∀ x, y and C ⊥⊥ D | A ∪ B and A ⊥⊥ B | C ∪ D

The conditional independence properties of the directed graph on the left can not be represented by any
MRF over the same three variables; and the conditional independence properties of the MRF on the right
can not be represented by any directed graph on the same four variables.
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Directed and Undirected Graphs fit different problems
[cf. Bishop, 2006]

▶ Consider a distribution p(x) and a graph G = (Vx, E).
▶ If every conditional independence statement satisfied by the distribution can be read off from the

graph, then G is called an D-map of p. (The fully disconnected Graph is a trivial D-map for every p)
▶ If every conditional independence statement implied by G is also satisfied by p, then G is called a

I-map of p. (The fully connected graph is a trivial I-map for every p).
▶ A G that is both an I-map and a D-map of p is called a perfect map of p.
▶ The set of distributions p for which there exists a directed graph that is a perfect map is distinct

from the set of p for which there exists a perfect MRF map. (see two examples on previous slide.
Markov Chains are an example where both MRF and directed graph are perfect). And there exist p
for which there exists neither a directed nor an undirected perfect map (e.g. two coins and bell)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 17: Factor Graphs — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 8

https://youtu.be/fXD6KJB1U20?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=994


Summary so far:
▶ directed and undirected graphs offer tools to graphically represent and inspect properties of joint

probability distributions. Both are primarily a design tool
▶ each framework has its strengths and weaknesses. Strong simplification:

Bayes Nets for encoding structured generative knowledge over heterogeneous variable sets,
e.g. in scientific modelling

MRFs for encoding computational constraints over large sets of similar variables, e.g. in
computer vision (pixels)

next goal:
▶ a third type of graphical model, particularly well-suited for automated inference
▶ a general-purpose algorithm for automated inference
▶ a variant for efficient MAP inference
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Factor Graphs
An explicit representation of functional relationships [F. Kschischang, B. Frey, H.A. Loeliger, 1998]

▶ Both directed and undirected graphs provide a
factorization of a distribution into functions over sets of
variables

p(x) =
∏
s

fs(xs)

directed: fs(xs) — conditional distribution
undirected: fs(xs) — potential function (Z = fz(∅))

Definition
A factor graph is a bipartite graph G = (V, F, E) of variables
vi ∈ V, factors fi ∈ F and edges, such that each edge
connects a factor to a variable.

x1 x2 x3

fa fb fc fd

images: Kschischang: U Toronto; Frey: Toronto Star; Loeliger: ETH Zürich
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Example
Parametric Regression

To construct a factor graph from a directed graph

p(x) =
∏
c∈C

pc(xc | xpa(c))

▶ draw a circle for each variable xi
▶ draw a box for each conditional pc
▶ connect each pc to the variables in it

p(y,w) =
n∏

i=1

N (yi;ϕ(xi)⊺w, σ2)N (w;µ,Σ)

w µ,Σ

yi

n
xi

σ
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Example
Parametric Regression

To construct a factor graph from a directed graph

p(x) =
∏
c∈C

pc(xc | xpa(c))

▶ draw a circle for each variable xi
▶ draw a box for each conditional pc
▶ connect each pc to the variables in it
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n∏

i=1
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Example
Parametric Regression

To construct a factor graph from a MRF

p(x) =
1
Z
∏
c∈C

ψc(xc)

▶ draw a circle for each variable xi
▶ draw a box for each factor (potential) ψ
▶ connect each ψ to the variables used in the

factor

p(y,w) =
n∏

i=1

N (yi;ϕ(xi)⊺w, σ2)N (w;µ,Σ)

w
N

µ,Σ

N
yi

n

xiσ
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Explicit Functional Relationships Reveal Structure
Factor Graphs can express structure not visible in Undirected Graphs

p(x1, x2, x3) = fa(x1, x2, x3) · fb(x2, x3)

x1 x2

x3

? ?
! !

x1 x2

x3

f

x1 x2

x3

fa

fb
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Functional relationships have no direction, but they identify parents
Factor graphs can capture DAGs if we’re careful

x1 x2

x3

p(x1, x2, x3) = p(x3 | x1, x2)p(x1)p(x2)

x1 x2

x3

x1 x2

x3

p(x1, x2, x3) = p(x1 | x3)p(x2 | x3)p(x3)

x1 x2

x3

x1 x2

x3

p? ?
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What do we have to do, in general, to compute amarginal distribution

p(xi) =
∫

p(x1, . . . , xi, . . . , xn) dxj ̸=i

If the joint p(x1, . . . , xn) is given by a factor graph?
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The Sum-Product Algorithm
Automated Inference in Factor Graphs

▶ J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, 1988.

▶ S.L. Lauritzen and D.J. Spiegelhalter. Local
computations with probabilities on graphical
structures and their application to expert
systems. J. R. Stat. Soc., 50:157–224, 1988.

▶ F.R. Kschischang, B.J. Frey, and H.-A. Loeliger.
Factor graphs and the sum- product algorithm.
IEEE Transactions on Information Theory,
47(2):498–519, February 2001.
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The Sum-Product-Algorithm we are about to develop unifies many historically separate ideas
(as listed by H.A. Loeliger, 2008):
Statistical physics:
▶ Markov random fields (Ising 1925)

Signal processing:
▶ linear state-space models and Kalman filtering: Kalman 1960…
▶ recursive least-squares adaptive filters
▶ Hidden Markov models: Baum et al. 1966…
▶ unification: Levy et al. 1996…

Error correcting codes:
▶ Low-density parity check codes: Gallager 1962; Tanner 1981; MacKay 1996; Luby et al. 1998…
▶ Convolutional codes and Viterbi decoding: Forney 1973…
▶ Turbo codes: Berrou et al. 1993…

Machine learning:
▶ Bayesian networks: Pearl 1988; Shachter 1988; Lauritzen and Spiegelhalter 1988; Shafer and

Shenoy 1990…
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Base Case: Markov Chains
Filtering and Smoothing are special cases of the sum-product algorithm [exposition based on Bishop, PRML, 2006]

x0 · · · xi−1 xi xi+1 · · · xn
ψ0,1 ψ(i−1),i ψi,(i+1) ψ(n−1),n

Assume discrete xi ∈ [1, . . . , k] for the moment. What is themarginal p(xi)?

p(x) =
1
Z
ψ0,1(x0, x1) · · ·ψi−1,i(xi−1, xi) · ψi,i+1(xi, xi+1) · ψn−1,n(xn−1, xn)

p(xi) =
∑
x̸=i

p(x) =
1
Z

∑
xi−1

ψi−1,i(xi−1, xi) · · ·

(∑
x1

ψ1,2(x1, x2)

(∑
x0

ψ(x0, x1)

))
︸ ︷︷ ︸

=:µ→(xi)

·

∑
xi+1

ψi,i+1(xi, xi+1) · · ·

(∑
xn

ψn−1,n(xn−1, xn)

)
︸ ︷︷ ︸

=:µ←(xi)

=
1
Z
µ→(xi) · µ←(xi).
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Things to Note
Message Passing on Chains

p(xi) =
1
Z

∑
xi−1

ψi−1,i(xi−1, xi) · · ·

∑
x1

ψ1,2(x1, x2)

∑
x0

ψ(x0, x1)


︸ ︷︷ ︸

=:µ→(xi)

·

∑
xi+1

ψi,i+1(xi, xi+1) · · ·

∑
xn

ψn−1,n(xn−1, xn)


︸ ︷︷ ︸

=:µ←(xi)

.

▶ Marginal can be computed locally

p(xi) =
1
Z
µ→(xi) · µ←(xi) with Z =

∑
xi

µ→(xi) · µ←(xi)
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Things to Note
Message Passing on Chains

p(xi) =
1
Z

∑
xi−1

ψi−1,i(xi−1, xi) · · ·

∑
x1

ψ1,2(x1, x2)

∑
x0

ψ(x0, x1)


︸ ︷︷ ︸

=:µ→(xi)

·

∑
xi+1

ψi,i+1(xi, xi+1) · · ·

∑
xn

ψn−1,n(xn−1, xn)


︸ ︷︷ ︸

=:µ←(xi)

.

▶ Messages are recursive, thus computational complexity isO(n · k2)

µ→(xi) =
∑
i−1

ψi−1,i(xi−1, xi)µ→(xi−1) µ←(xi) =
∑
xi+1

ψi,i+1(xi, xi+1)µ←(xi+1).

▶ By storing local messages, all marginals can be computed inO(n · k2) (cf. filtering and smoothing)
▶ To compute one message from the preceding one, take the sum over the preceding variable in (the

product of) the local factors incoming message(s). To compute a local marginal, take the sum of
the product of the incoming messages.
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How about the most probable State?
The Viterbi Algorithm

x0 · · · xi−1 xi xi+1 · · · xn
ψ0,1 ψ(i−1),i ψi,(i+1) ψ(n−1),n

Assume discrete xi ∈ [1, . . . , k] for the moment. Where is themaximummax p(x)?

p(x) =
1
Z
ψ0,1(x0, x1) · · ·ψi−1,i(xi−1, xi) · ψi,i+1(xi, xi+1) · ψn−1,n(xn−1, xn)

max
x

p(x) =
1
Z
max
x0

· · ·max
xN

ψ0,1(x0, x1) · · ·ψn−1,n(xn−1, xn)

=
1
Z
max
x0,x1

(
ψ0,1(x0, x1)

(
· · ·max

xn
ψn−1,n(xn−1, xn)

))
logmax

x
p(x) = max

x0,x1

(
logψ0,1(x0, x1) +

(
· · ·max

xn
logψn−1,n(xn−1, xn)

))
− log Z

arg max
x

p(x) = arg max
x0,x1

(
logψ0,1(x0, x1) +

(
· · ·+ arg max

xn
logψn−1,n(xn−1, xn)

))
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The Viterbi Algorith
On a trellis (=“Spalier”) [based on Fig.8.53 in Bishop, PRML, 2006]

x0 x1 x2 x3
f0,1 f1,2 f2,3

x10

x20

x30

x11

x21

x31

x12

x22

x32

x13

x23

x33

µx0 _ f01 = 0

µfi−1,i _ xi(xi) = max
xi−1

(
log fi−1,i(xi−1, xi) + µxi−1 _ fi−1,i(xi−1)

)
ϕ(xi) = arg max

xi−1

(
log fi−1,i(xi−1, xi) + µxi−1 _ fi−1,i(xi)

)
µxi _ fi,i+1(xi) = µfi−1,i _ xi(xi)

xmax
i−1 = ϕ(xmax

i )
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Factor Graphs
▶ are a tool to directly represent an entire computation in a formal language (which also includes the

functions in question themselves)
▶ both directed and undirected graphical models can be mapped onto factor graphs.

Inference on Chains
▶ separates into local messages being sent forwards and backwards along the factor graph
▶ both the local marginals and the most-probable state can be inferred in this way. For the most

probable state, we need to additionally keep track of its identity, which requires an additional data
structure (a trellis).

▶ more fundamentally, both algorithms utilize the distributive property of sum and max:

+(ab, ac) = ab+ ac = a(b+ c) = a ·+(b, c)
max(ab, ac) = a ·max(b, c)

max(a+ b, a+ c) = a+max(b, c)

Probabilistic ML — P. Hennig, SS 2021 — Lecture 17: Factor Graphs — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 21

https://youtu.be/fXD6KJB1U20?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=4848
https://youtu.be/fXD6KJB1U20?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=4601

