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Recap from Lecture 1
Conditional Independence Affects Computational Complexity

Joint probability distribution has
24 − 1 = 15 = 8+ 4+ 2+ 1 parameters

p(A, E, B, R) = p(A | R, E, B) · p(R | E, B) · p(E | B) · p(B)

Removing irrelevant conditions (domain knowledge!) reduces
to 8 = 4+ 2+ 1+ 1 parameters:

p(A, E, B, R) = p(A | E, B) · p(R | E) · p(E) · p(B)

R

E

A

B

Procedural construction of directed
graphical model
1. For each variable in the joint

distribution, draw a circle
2. For each term p(x1, . . . | y1, . . . ) in

the factorized joint distribution,
draw an arrow from every parent
(right side) node yi to every child
(left side) node xi.

3. fill in all observed variables
(variables on which we want to
condition).
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Every Probability Distribution is a DAG
It’s just not always a helpful concept

By the Product Rule, every joint can be factorized into a (dense) DAG.

p(A, E, B, R) = p(A | E, B, R)·p(R | E, B)·p(E | B)·p(B)

R

E

A

B
A = the alarm was triggered
E = there was an earthquake
B = there was a break-in
R = an announcement is made on the radio
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Every Probability Distribution is a DAG
It’s just not always a helpful concept

The direction of the arrows is not a causal statement.

p(A, E, B, R) = p(B | A, E, R)·p(E | A, R)·p(R | A)·p(A)

R

E

A

B
A = the alarm was triggered
E = there was an earthquake
B = there was a break-in
R = an announcement is made on the radio

Probabilistic ML — P. Hennig, SS 2021 — Lecture 16: Graphical Models — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 3

https://youtu.be/BosZK5E_q70?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=615


Every Probability Distribution is a DAG
It’s just not always a helpful concept

But the representation is particularly interesting when it reveals independence.

p(A, E, B, R) = p(A | E, B) · p(R | E) · p(E) · p(B)

R

E

A

B
A = the alarm was triggered
E = there was an earthquake
B = there was a break-in
R = an announcement is made on the radio
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Directed Graphs are an Imperfect Representation
The Graph for Two Coins and a Bell example by Stefan Harmeling

P(A = 1) = 0.5 P(C = 1 | A = 1, B = 1) = 1 P(C = 1 | A = 1, B = 0) = 0
P(B = 1) = 0.5 P(C = 1 | A = 0, B = 1) = 0 P(C = 1 | A = 0, B = 0) = 1

These CPTs imply P(A|B) = P(A), P(B|C) = P(B) and P(C|A) = P(C) and P(C | B) = P(C).
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Directed Graphs are an Imperfect Representation
The Graph for Two Coins and a Bell example by Stefan Harmeling

P(A = 1) = 0.5 P(C = 1 | A = 1, B = 1) = 1 P(C = 1 | A = 1, B = 0) = 0
P(B = 1) = 0.5 P(C = 1 | A = 0, B = 1) = 0 P(C = 1 | A = 0, B = 0) = 1

These CPTs imply P(A|B) = P(A), P(B|C) = P(B) and P(C|A) = P(C) and P(C | B) = P(C).

We thus have three factorizations:
1. P(A, B, C) = P(C|A, B) · P(A|B) · P(B) = P(C|A, B) · P(A) · P(B)
2. P(A, B, C) = P(A|B, C) · P(B|C) · P(C) = P(A|B, C) · P(B) · P(C)
3. P(A, B, C) = P(B|C, A) · P(C|A) · P(A) = P(B|C, A) · P(C) · P(A)
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Directed Graphs are an Imperfect Representation
The Graph for Two Coins and a Bell example by Stefan Harmeling

P(A = 1) = 0.5 P(C = 1 | A = 1, B = 1) = 1 P(C = 1 | A = 1, B = 0) = 0
P(B = 1) = 0.5 P(C = 1 | A = 0, B = 1) = 0 P(C = 1 | A = 0, B = 0) = 1

These CPTs imply P(A|B) = P(A), P(B|C) = P(B) and P(C|A) = P(C) and P(C | B) = P(C).

We thus have three factorizations:
1. P(A, B, C) = P(C|A, B) · P(A|B) · P(B) = P(C|A, B) · P(A) · P(B)
2. P(A, B, C) = P(A|B, C) · P(B|C) · P(C) = P(A|B, C) · P(B) · P(C)
3. P(A, B, C) = P(B|C, A) · P(C|A) · P(A) = P(B|C, A) · P(C) · P(A)

Each corresponds to a graph. Note that each can only express some of the independencies:

C

A B

C

BA A B

C
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Today: More about graphs
▶ extended syntax for directed graphical models
▶ constructing conditional independence from directed graphs
▶ an alternative framework, in which conditional independence is easy, but the joint is hard
▶ some theory on its representational power

Overarching Goal: Representing probability distributions in a graphical way, to guide and simplify the
design of advanced probabilistic models
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Plates and Hyperparameters
some syntactic sugar for practical uses

▶ A box with sharp edges, drawn around a set of
nodes and labeled with a number n is called a
plate and denotes n copies of the content of
the box.

▶ a small filled circle denots a (hyper-)
parameter that is set or optimized, and which
is not part of the generative model.

p(y,w) =
∏n

i=1 N (yi;ϕ(xi)⊺w, σ2)N (w;µ,Σ)

w

y1 y2 . . . yn

=

w µ,Σ

yi

n
xi

σ
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Atomic Independence Structures
DAGs imply conditional independence, but not dependence!

For uni- and bi-variate graphs, conditional independence is trivial.
For tri-variate sub-graphs, there are three possible structures:

graph factorization implications

(i) A B C p(A, B, C) = p(C | B) · p(B | A) · p(A) A ⊥⊥ C | B
but not, i.g., A ̸⊥⊥ C

(ii)
A

B

C
p(A, B, C) = p(A | B) · p(C | B) · p(B) A ⊥⊥ C | B

but not, i.g., A ̸⊥⊥ C

(iii)
A

B

C
p(A, B, C) = p(B | A, C) · p(C) · p(A) A ⊥⊥ C

but not, i.g., A ̸⊥⊥ C | B
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d-separation
A Generalization of the Atomic Structures above [J. Pearl, Probabilistic Reasoning in Intelligent Systems 1988]

A ⊥⊥ B | CA

C

B A ⊥⊥ B | CA

C

B A ̸⊥⊥ B | CA

C

B

Theorem (d-separation, Pearl, 1988. Formulation taken from Bishop, 2006)

Consider a general directed acyclic graph, in which A, B, C are nonintersecting sets of nodes whose union
may be smaller than the complete graph. To ascertain whether A ⊥⊥ B | C, consider all possible paths
(connections along lines in the graph, regardless of the direction) from any node in A to any node in B.
Any such path is considered blocked if it includes a node such that either
▶ the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in C, or
▶ the arrows meet head-to-head at the node, and neither the node, nor any of its descendants is in C.

If all paths are blocked, then A is said to be d-separated from B by C, and A ⊥⊥ B | C.
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Markov Blankets
Thus, all further considerations about computations on the graph can be made in a local fashion.

p(xi | xj ̸=i)

=
p(x1, . . . , xd)∫
p(x1, . . . , xd) dxi

=

∏
k p(xk | parentsk)∫ ∏
k p(xk | parentsk) dxi

=

∏
k′ /∈blanket p(xk′ | parentsk′)

∏
k∈blanket p(xk | parentsk)∏

k′ /∈blanket p(xk′ | parentsk′)
∫ ∏

k∈blanket p(xk | parentsk) dxi

=

∏
k∈blanket p(xk | parentsk)∫ ∏
k∈blanket p(xk | parentsk) dxi

Definition (Markov Blanket — for directed graphs)

TheMarkov Blanket of node xi is the set of all parents,
children, and co-parents of xi. Conditioned on the blanket, xi is
independent of the rest of the graph.

xi
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Directed Graphical Models
▶ The directed nature of connections in Bayesian belief networks reflects the fact that a conditional

probability has a left- and right-hand side

x

a b
= p(x | a, b) · p(a) · p(b)

▶ This is convenient since it allows writing down the graph directly from the factorization.
▶ But conditional independence statements (d-separation) is tricky. Blocking a path requires notions

of parents and co-parents, and different rules depending on whether arrows meet head-to-head or
head-to-tail.

▶ There are joint distributions whose set of conditional independences can not be represented by a
single directed graph.

Is there another notation, in which conditional independence can be more simply stated as “two nodes
are independent if all paths connecting them are blocked?”
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Undirected Graphical Models
aka. Markov Random Fields [example from Bishop, PRML, 2006]

x1

x2

x3

x4

x5

x6

x7

x8

A S B

Definition (Markov Random Field)

An undirected Graph G = (V, E) is a set V of nodes
and edges E. An undirected graph G and a set of
random variables X = {Xv}v∈V is aMarkov
Random Field if, for any subsets A, B ⊂ V and a
separating set S (i.e. a set such that every path
from A to B passes through S), XA ⊥⊥ XB | XS.

The above definition is known as the global Markov
property. It implies the weaker pairwise Markov
property: Any two nodes u, v that do not share an
edge are conditionally independent given all other
variables: Xu ⊥⊥ Xv | XV\{u,v}.
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Undirected Graphical Models
aka. Markov Random Fields [example from Bishop, PRML, 2006]

x1

x2

x3

x4

x5

x6

x7

x8

A S B

Definition (Markov Random Field)

An undirected Graph G = (V, E) is a set V of nodes
and edges E. An undirected graph G and a set of
random variables X = {Xv}v∈V is aMarkov
Random Field if, for any subsets A, B ⊂ V and a
separating set S (i.e. a set such that every path
from A to B passes through S), XA ⊥⊥ XB | XS.

The above definition is known as the global Markov
property. It implies the weaker pairwise Markov
property: Any two nodes u, v that do not share an
edge are conditionally independent given all other
variables: Xu ⊥⊥ Xv | XV\{u,v}.
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Markov Blankets, again
The strength of undirected graphs

Definition (Markov Blanket — for undirected graphs)

For a Markov Random Field, theMarkov Blanket of node xi is
the set of all direct neighbors of xi (the set of all nodes that
share an edge with xi). Conditioned on the blanket, xi is
independent of the rest of the graph.

xi

Probabilistic ML — P. Hennig, SS 2021 — Lecture 16: Graphical Models — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 12

https://youtu.be/BosZK5E_q70?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=3019


Essentially by definition,
MRFs allow a more compact definition of conditional independence than directed graphs.

But what is the associated joint probability distribution?
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Cliques
[example and definition from Bishop, PRML, 2006]

By the pairwise Markov property, any two nodes not connected by an edge have to be conditionally
independent given the rest of the graph. Thus, the joint has to factorize as

p(xi, xj | x\{i,j}) = p(xi | x\{i,j}) · p(xj | x\{i,j})

Hence, for the factorization to hold, nodes that do not share an edge must not be in the same factor.
What kind of factors does this leave us with?

Definition (Cliques)

Given a graph G = (V, E), a clique is a subset c ⊂ V such that
there exists an edge between all pairs of nodes in c. A
maximal clique is a clique such that it is impossible to include
any other nodes from V without it ceasing to be a clique.

In the following slides, the set of all maximal cliques of a
graph will be denoted C.

x1 x2

x3 x4
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Cliques
[example and definition from Bishop, PRML, 2006]

By the pairwise Markov property, any two nodes not connected by an edge have to be conditionally
independent given the rest of the graph. Thus, the joint has to factorize as

p(xi, xj | x\{i,j}) = p(xi | x\{i,j}) · p(xj | x\{i,j})

Hence, for the factorization to hold, nodes that do not share an edge must not be in the same factor.
What kind of factors does this leave us with?

Definition (Cliques)

Given a graph G = (V, E), a clique is a subset c ⊂ V such that
there exists an edge between all pairs of nodes in c. A
maximal clique is a clique such that it is impossible to include
any other nodes from V without it ceasing to be a clique.

In the following slides, the set of all maximal cliques of a
graph will be denoted C.

x1 x2

x3 x4
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Potentials
the price of dropping direction from edges [derivation adapted from Bishop, PRML, 2016]

By the above, any distribution p(x) that satisfies the conditional independence structures of the graph G
can be written as a factorization over all cliques, and thus also just over all maximal cliques (since any
clique is part of at least one maximal clique).

p(x) =
1
Z
∏
c∈C

ψc(xc) (⋆)

▶ in directed graphs, each factor p(xch | xpa) had to be a probability distribution of the children (but
not of the parents!). But in MRFs there is no distinction between parents and children. So we only
know that each potential function ψc(xc) ≥ 0. For simplicity, we will restrict ψc(xc) > 0.

▶ The normalization constant Z is the partition function

Z :=

∫∑
x

∏
c∈C

ψc(xc).

Because of the loss of structure from directed to undirected graphs, we have to explicitly compute
Z. This can be NP-hard, and is the primary downside of MRFs. (e.g. consider n discrete variables
with k states each, then computing Z may require summing kn terms).
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The Boltzmann distribution
Markov Random Fields with Positive Potentials are Exponential Families (but not necessarily of the helpful kind)

Because ψc(xc) > 0, we can write

ψc(xc) > 0 = exp(−Ec(xc))

and introduce scaling factors wc to get

p(x) = exp

(
−
∑
c∈C

wcEc(xc)− log Z

)

Definition (Boltzmann distribution / Gibbs measure)

A probability distribution with pdf of the form

p(x) = e−E(x)

is called a Boltzmann or Gibbs distribution. E(x) is
known as the energy function.

Ludwig E. Boltzmann
(1844–1906)

Josiah W. Gibbs
(1839–1903)
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The Boltzmann distribution
Markov Random Fields with Positive Potentials are Exponential Families (but not necessarily of the helpful kind)

Because ψc(xc) > 0, we can write

ψc(xc) > 0 = exp(−Ec(xc))

and introduce scaling factors wc to get

p(x) = exp

(
−
∑
c∈C

wcEc(xc)− log Z

)

Definition (Boltzmann distribution / Gibbs measure)

A probability distribution with pdf of the form

p(x) = e−E(x)

is called a Boltzmann or Gibbs distribution. E(x) is
known as the energy function.

Ludwig E. Boltzmann
(1844–1906)

Josiah W. Gibbs
(1839–1903)

Any Gibbs measure (any MRF!)
is an exponential family!

It’s just not necessarily the helpful kind
because Z(wc) is intractable!
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The Hammersley-Clifford Theorem
formal statement of the rough derivation to here

Theorem (Hammersley-Clifford (unpublished, 1971. Clifford, 1990))

Consider the set of all possible strictly positive distributions p(Xv) defined over a set V of variables
corresponding to the nodes in the undirected graph G = (V, E). Let UI be the subset of such distributions
that are consistent with the conditional independences that can be read off from G using graph
separation. And let UF be the set of such distributions that can be expressed as a Gibbs measure with the
factorization (⋆). Then UI = UF.

Informally: “Any strictly positive MRF is a Gibbs measure, and every Gibbs measure is an MRF.”
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The Gaussian Case
For Gaussians, the MRF can be read off directly from the precision matrix

recap from Lecture 3

Consider a set of variables x that are jointly Gaussian distributed:

p(x) = N (x;µ,Σ)

If the inverse covariance (aka. precision) matrix contains a zero at element [Σ−1]ij, then xi ⊥⊥ xj | x\i,j.

Thus, for joint Gaussian models, the MRF can be constructed directly from the inverse covariance
matrix:
1. draw a variable xi for every element of x
2. if [Σ−1]ij ̸= 0, draw an edge between xi and xj.
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Directed Graphical Models / Bayesian Networks
▶ directly encode a facorization of the joint (it can be read off by parsing the graph from the children

to the parents)
▶ however, reading off conditional independence structure is tricky (it requires considering

d-separation)
▶ directed graphs are for encoding generative knowledge (think: scientific modelling)

Undirected Graphical Models / Markov Random Fields (MRFs)
▶ directly encode conditional independence structure (by definition)
▶ however, reading off the joint from the graph is tricky (it requires finding all maximal cliques,

normalization constant is intractable)
▶ MRFs are for encoding computational constraints (think: computer vision)
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