Probabilistic Machine Learning LECTURE 18 The Sum-Product Algorithm

Philipp Hennig

22 June 2021

EBERHARD KARLS
 UNIVERSITAT TUBINGEN

Faculty of Science
Department of Computer Science
Chair for the methods of Machine Learning

$\#$	date	content	Ex	$\#$	date	content	Ex
1	20.04.	Introduction	1	14	09.06.	Generalized Linear Models	
2	21.04.	Reasoning under Uncertainty		15	15.06.	Exponential Families	8
3	27.04.	Continuous Variables	2	16	16.06.	Graphical Models	
4	28.04.	Monte Carlo		17	22.06.	Factor Graphs	9
5	04.05.	Markov Chain Monte Carlo	3	18	23.06.	The Sum-Product Algorithm	
6	05.05.	Gaussian Distributions		19	29.06.	Example: Topic Models	10
7	11.05.	Parametric Regression	4	20	30.06.	Mixture Models	
8	12.05.	Learning Representations		21	06.07.	EM	11
9	18.05.	Gaussian Processes	5	22	07.07.	Variational Inference	
10	19.05.	Understanding Kernels		23	13.07.	Topics	
11	26.05.	Gauss-Markov Models		24	14.07.	Example: Inferring Topics	12
12	25.05.	An Example for GP Regression	6	25	20.07.	Example: Kernel Topic Models	
13	08.06.	GP Classification	7	26	21.07.	Revision	

The Toolbox

Framework:

$$
\int p\left(x_{1}, x_{2}\right) d x_{2}=p\left(x_{1}\right) \quad p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right) \quad p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Modelling:

- graphical models
- Gaussian distributions
- Kernels
- Markov Chains
- Exponential Families / Conjugate Priors
- Factor Graphs \& Message Passing

Computation:

- Monte Carlo
- Linear algebra / Gaussian inference
- maximum likelihood / MAP
- Laplace approximations
∇
 -

Factor Graphs

- are a tool to directly represent an entire computation in a formal language (which also includes the functions in question themselves)
- both directed and undirected graphical models can be mapped onto factor graphs.

 $\psi_{i,(i+1)}$

Inference on Chains

- separates into local messages being sent forwards and backwards along the factor graph
- both the local marginals and the most-probable state can be inferred in this way

Inference on Trees

Definition (Tree)

An undirected graph is a tree if there is one, and only one, path between any pair of nodes (such graphs have no loops). A directed graph is a tree if there is only one node which has no parent (the root), and all other nodes have only one parent. When such graphs are transformed into undirected graphs by moralization, they remain a tree. A directed graph such that every pair of nodes is connected by one and only one path is called a polytree. When transformed into an undirected graph, such graphs, in general, acquire loops. But the corresponding factor graph is still a tree.

Inference on Trees

Definition (Tree)

An undirected graph is a tree if there is one, and only one, path between any pair of nodes (such graphs have no loops). A directed graph is a tree if there is only one node which has no parent (the root), and all other nodes have only one parent. When such graphs are transformed into undirected graphs by moralization, they remain a tree. A directed graph such that every pair of nodes is connected by one and only one path is called a polytree. When transformed into an undirected graph, such graphs, in general, acquire loops. But the corresponding factor graph is still a tree.

- Consider a tree-structured factor graph over
$x=\left[x_{1}, \ldots, x_{n}\right]$ (if instead you have an undirected tree or directed polytree, transform it first).
- Again, w.l.o.g. assume discrete variables for simplicity (for continuous, replace sums by integrals).
- Pick any variable $x \in x$. Because the graph is a tree, we can write

$$
p(x)=\prod_{s \in \operatorname{ne}(x)} F_{S}\left(x, x_{S}\right)
$$

where ne (x) are the neighbors of x, and F_{s} is the sub-graph of nodes x_{s} other than x itself that are connected to neighbor s (which is itself a tree!).

- Consider the marginal distribution $p(x)=\sum_{x \backslash x} p(x)$

The Sum-Product Algorithm

$$
a_{1} \cdot b_{1}+a_{1} \cdot b_{2}+a_{2} \cdot b_{1}+a_{2} \cdot b_{2}=\left(a_{1}+a_{2}\right) \cdot\left(b_{1}+b_{2}\right)
$$

$$
\sum_{i} \prod_{f_{j}}=\prod_{j} \sum_{i}^{t_{j}}
$$

$$
\begin{aligned}
p(x) & =\sum_{x \backslash x} \prod_{s \in \operatorname{ne}(x)} F_{S}\left(x, x_{S}\right)=\prod_{s \in \operatorname{ne}(x)} \underbrace{\left(\sum_{x_{S}} F\left(x, x_{S}\right)\right)}_{=: \mu_{f_{S} \rightarrow x}(x)} \\
& =\prod_{s \in \operatorname{ne}(x)} \mu_{f_{S} \rightarrow x}(x)
\end{aligned}
$$

The marginal $p(x)$ is a product of incoming messages $\mu_{f_{s} \rightarrow x}$ from the factors connected to x.

- consider the sub-graph $F_{S}\left(x, x_{S}\right)$ and factorize that sub-graph into further (tree-structured) sub-graphs

$$
F_{s}\left(x, x_{s}\right)=f_{s}\left(x, x_{1}, \ldots, x_{m}\right) G_{1}\left(x_{1}, x_{s 1}\right) \cdots G_{m}\left(x_{m}, x_{s m}\right)
$$

- then we can write

$$
\begin{aligned}
\mu_{f_{s} \rightarrow x}(x) & =\sum_{x_{1}, \ldots, x_{m}} f_{s}\left(x, x_{1}, \ldots, x_{m}\right) \prod_{i \in \operatorname{ne}\left(f_{s}\right) \backslash x} \underbrace{\left(\sum_{x_{s i}} G_{i}\left(x_{i}, x_{s i}\right)\right)} \\
& =\sum_{x_{1}, \ldots, x_{m}} f_{s}\left(x, x_{1}, \ldots, x_{m}\right) \prod_{i \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{i} \rightarrow f_{s}\left(x_{i}\right)}
\end{aligned}
$$

To compute the factor-to-variable message $\mu_{f_{s} \rightarrow x}(x)$, sum over the product of the factor and remaining sub-graph-sums. The latter are themselves messages from the variables connected to f_{s}.

$$
\begin{aligned}
G_{i}\left(x_{i}, x_{s i}\right) & =\prod_{\ell \in \operatorname{ne}\left(x_{i}\right) \backslash f_{s}} F_{\ell}\left(x_{i}, x_{i \ell}\right) \\
\mu_{x_{i} \rightarrow f_{s}\left(x_{i}\right)} & =\sum_{x_{s i}} G_{i}\left(x_{i}, x_{s i}\right)=\sum_{x_{s i}}\left(\prod_{\ell \in \operatorname{ne}\left(x_{i}\right) \backslash f_{s}} F_{\ell}\left(x_{i}, x_{i \ell}\right)\right) \\
& =\prod_{\ell \in \operatorname{ne}\left(x_{i}\right) \backslash f_{s}}\left(\sum_{x_{i \ell}} F_{\ell}\left(x_{i}, x_{i \ell}\right)\right) \\
& =\prod_{\ell \in \operatorname{ne}\left(x_{i}\right) \backslash f_{s}} \mu_{f_{\ell} \rightarrow x_{i}}\left(x_{i}\right)
\end{aligned}
$$

To compute the variable-to-factor message $\mu_{x_{i} \rightarrow f_{s}}\left(x_{i}\right)$, take the product of all incoming factor-to-variable messages. Repeat recursively, until reaching a leaf node.

$$
\begin{aligned}
& \mu_{x \rightarrow f}(x)=\prod_{\varnothing} \sum_{\varnothing}:=1 \\
& \mu_{f \rightarrow x}(x)=\sum_{\varnothing} f(x, \varnothing) \prod_{\varnothing}:=f(x)
\end{aligned}
$$

To initiate the messages at leaves of the graph, define them to be unit for variable leaves and identities for factor leaves.

To compute the marginal $p(x)$, treat it as the root of the tree, and do:

- start at leaf nodes.
- if leaf is factor $f(x)$, initialize $\mu_{f \rightarrow x}(x)=f(x)$
- if leaf is variable x, initialize $\mu_{x \rightarrow f}(x)=1$
- pass messages from the leaves towards the root x :

$$
\mu_{f_{\ell} \rightarrow x_{j}}=\sum_{x_{\ell j}} f_{\ell}\left(x_{j}, x_{\ell j}\right) \prod_{i \in\{\ell j\}=\operatorname{ne}\left(f_{\ell}\right) \backslash x_{j}} \mu_{x_{i} \rightarrow f_{\ell}}\left(x_{i}\right) \quad \mu_{x_{j} \rightarrow f_{\ell}}\left(x_{j}\right)=\prod_{i \in \operatorname{ne}\left(x_{j}\right) \backslash f_{\ell}} \mu_{f_{i} \rightarrow x_{j}}\left(x_{j}\right)
$$

- at the root x, take product of all incoming messages (and normalize).

The Sum-Product Algorithm

To compute the marginals $p(x)$ of all variables, choose any x_{i} as the root. Then,

- start at leaf nodes.
- if leaf is factor $f(x)$, initialize $\mu_{f \rightarrow x}(x)=f(x)$
- if leaf is variable x, initialize $\mu_{x \rightarrow f}(x)=1$
- pass messages from leaves towards root:

$$
\mu_{f_{\ell} \rightarrow x_{j}}=\sum_{x_{\ell j}} f_{\ell}\left(x_{j}, x_{\ell j}\right) \prod_{i \in\{\ell j\}=\operatorname{ne}\left(f_{\ell}\right) \backslash x_{i}} \mu_{x_{i} \rightarrow f_{\ell}}\left(x_{i}\right) \quad \mu_{x_{j} \rightarrow f_{\ell}}\left(x_{j}\right)=\prod_{i \in \operatorname{ne}\left(x_{j}\right) \backslash f_{\ell}} \mu_{f_{i} \rightarrow x_{j}}\left(x_{j}\right)
$$

- once root has messages from all neighbors, pass messages from to root towards the leaves.
- once all nodes have received messages from all their neighbors, take product of all incoming messages at all variables (and normalize).
Inference on the marginal of all variables in a tree-structured factor-graph is linear in graph size.
- The two types of messages can be combined, phrasing the algorithm as message passing between factor nodes only:

$$
\begin{aligned}
\mu_{f_{\ell} \rightarrow x_{j}} & =\sum_{x_{\ell j}} f_{\ell}\left(x_{j}, x_{\ell j}\right) \prod_{i \in \operatorname{ne}\left(f_{\ell}\right) \backslash x_{j}} \mu_{x_{i} \rightarrow f_{\ell}}\left(x_{i}\right) \\
\mu_{x_{j} \rightarrow f_{\ell}}\left(x_{j}\right) & =\prod_{i \in \operatorname{ne}\left(x_{j}\right) \backslash f_{\ell}} \mu_{f_{i} \rightarrow x_{j}}\left(x_{j}\right) \\
m_{f_{\ell} \rightarrow f_{j}}\left(x_{j}\right) & =\sum_{x_{\ell} \backslash\left(x_{\ell} \cap x_{j}\right)} f_{\ell}\left(x_{j}, x_{\ell}\right) \prod_{i \in \operatorname{ne}\left(f_{\ell}\right) \backslash \operatorname{ne}\left(f_{j}\right)} m_{f_{i} \rightarrow f_{j}\left(x_{\ell}\right)}
\end{aligned}
$$

- If one or more nodes x^{0} in the graph are observed $\left(x^{0}=\hat{x}^{0}\right)$, just introduce factors $f\left(x_{i}^{0}\right)=\delta\left(x_{i}^{0}-\hat{x}_{i}^{0}\right)$ into the graph.
- This amounts to "clamping" the variables to their observed value
- Say $x:=\left[x^{0}, x^{h}\right]$. Because $p\left(x^{0}, x^{h}\right) \propto p\left(x^{h} \mid x^{0}\right)$, the sum-product algorithm can thus be used to compute posterior marginal distributions over the hidden variables x^{h}.
- There is a generalization from trees to general graphs, known as the junction tree algorithm. The principal idea is to join sets of variables in the graph into larger maximal cliques until the resulting graph is a tree. The exact process, however, requires care to ensure that every clique that is a sub-set of another clique ends up in that clique. The resulting algorithm (like the sum-product algorithm) has complexity exponential in the dimensionality of the largest variable in the graph, and linear in the size of tree.

The computational cost of probabilistic inference on the marginal of a variable in a joint distribution is exponential in the dimensionality of the maximal clique of the juntion tree, and linear in the size of the junction tree. The junction tree algorithm is exact for any graph (it produces correct martginals), and efficient in the sense that, given a graph, there does not in general (i.e. without using properties of the functions instead of the graph) exist a more efficient algorithm.

What if we don't care about the marginal posteriors, but about the joint distribution?

In general, it's shape can be very complex, and exponentially hard to track (in the number of variables). But remember from lecture 1 that storing the maximum of the distribution has linear complexity (just write it down!).

How about computing that maximum?

- What if, instead of marginals $p\left(x_{i}\right)$ we want the jointly most probable state $x^{\max }=\arg \max _{x} p(x)$?
\rightarrow note that $\arg \max _{x} p(x) \neq \prod \arg \max _{x_{i}} p\left(x_{i}\right)$:

		0.6	0.4
		$x_{2}=0$	$x_{2}=1$
0.7	$x_{1}=0$	0.3	0.4
0.3	$x_{1}=1$	0.3	0.0

- but $\max (a b, a c)=\operatorname{amax}(b, c)$ and $\max (a+b, a+c)=a+\max (b, c)!$ Also (cf. earlier lectures)

$$
\log \left(\max _{x} p(x)\right)=\max _{x} \log p(x)
$$

Thus, we can compute the most probable state $x^{\max }$ by taking the sum-product algorithm and replacing all summations with maximizations (the max-product algorithm). We can further replace all products of p with sums of $\log p$ (the max-sum algorithm). The only complication is that, if we also want to know the arg max, we have to track it separately, using an additional data structure.

The Max-Product Algorithm

To compute $x^{\max }$, choose any x_{i} as the root. Then,

- start at leaf nodes.
- if leaf is factor $f(x)$, initialize $\mu_{f \rightarrow x}(x)=f(x)$
- if leaf is variable x, initialize $\mu_{x \rightarrow f}(x)=1$
- pass messages from leaves towards root:

$$
\mu_{f_{\ell} \rightarrow x_{j}}\left(x_{j}\right)=\max _{x_{\ell j}} f_{\ell}\left(x_{j}, x_{\ell j}\right) \prod_{i \in\{\ell j\}=\operatorname{ne}\left(f_{\ell}\right) \backslash x_{j}} \mu_{x_{i} \rightarrow f_{\ell}}\left(x_{i}\right) \quad \mu_{x_{j} \rightarrow f_{\ell}}\left(x_{j}\right)=\prod_{i \in \operatorname{ne}\left(x_{j}\right) \backslash f_{\ell}} \mu_{f_{i} \rightarrow x_{j}}\left(x_{j}\right)
$$

- additionally track indicator for identity of maximum (nb: This is a function of $x_{j}!$)

$$
\phi\left(x_{j}\right)=\underset{x_{\ell j}}{\arg \max } f_{\ell}\left(x_{j}, x_{\ell j}\right) \prod_{i \in \operatorname{ne}\left(f_{\ell}\right) \backslash x_{j}} \mu_{x_{i} \rightarrow f_{\ell}}\left(x_{i}\right)
$$

- once root has messages from all neighbors, pass messages from to root towards the leaves. At each factor node, set $x_{\ell j}^{\max }=\phi\left(x_{j}\right)$ (this is known as backtracking).

The Max-Sum Algorithm

To compute $x^{\max }$, choose any x_{i} as the root. Then,

- start at leaf nodes.
- if leaf is factor $f(x)$, initialize $\mu_{f \rightarrow x}(x)=\log f(x)$
- if leaf is variable x, initialize $\mu_{x \rightarrow f}(x)=0$
- pass messages from leaves towards root:

$$
\mu_{f_{\ell} \rightarrow x_{j}}\left(x_{j}\right)=\max _{x_{\ell j}} \log f_{\ell}\left(x_{j}, x_{\ell j}\right)+\sum_{i \in\{\ell j\}=\operatorname{ne}\left(f_{\ell}\right) \backslash x_{j}} \mu_{x_{i} \rightarrow f_{\ell}}\left(x_{i}\right) \quad \mu_{x_{j} \rightarrow f_{\ell}}\left(x_{j}\right)=\sum_{i \in \operatorname{ne}\left(x_{j}\right) \backslash f_{\ell}} \mu_{f_{i} \rightarrow x_{j}}\left(x_{j}\right)
$$

- additionally track indicator for identity of maximum (nb : This is a function of $x_{j}!$)

$$
\phi\left(x_{j}\right)=\underset{x_{\ell j}}{\arg \max } \log f_{\ell}\left(x_{j}, x_{\ell j}\right)+\sum_{i \in \operatorname{ne}\left(f_{\ell}\right) \backslash x_{j}} \mu_{x_{i} \rightarrow f_{\ell}}\left(x_{i}\right)
$$

\rightarrow once root has messages from all neighbors, pass messages from to root towards the leaves. At each factor node, set $x_{\ell j}^{\max }=\phi\left(x_{j}\right)$ (this is known as backtracking).

Connection to Control / Reinforcement Learning

- Max-Sum is a case of dynamic programming (recursive simplification of optimization using problem structure). The equation

$$
\mu_{f_{\ell} \rightarrow f_{j}}=\max _{x_{\ell} \backslash\left(x_{\ell} \cap x_{j}\right)}\left(\log f_{\ell}\left(x_{\ell}\right)+\sum_{i \in \operatorname{ne}\left(f_{\ell}\right) \backslash \operatorname{ne}\left(f_{j}\right)} \mu_{f_{i} \rightarrow f_{j}}\left(x_{j}\right)\right)
$$

defines a Hamilton-Jacobi-Bellman equation

- Factor graphs provide graphical representation of joint probability distributions that is partebr ime conducive to automated inference
- In factor graphs that are trees, all marginals can be computed in time linear in the graph size by passing messages along the edges of the graph using the sum-product algorithm.
- Computation of each local marginal is exponential in the dimensionality of the node. Thus, in general, the cost of inference is exponential in clique-size, linear in clique-number.
- An analogous algorithm, the max-sum algorithm, can be used to find the joint most probable state, also in linear time.
- Both algorithms fundamentally rest on the distributive properties

$$
a(b+c)=a b+a c \quad \max (a b, a c)=a \cdot \max (b, c)
$$

Message passing provides the general framework for managing computational complexity in probabilistic generative models as far as it is caused by conditional independence. It does not, however, address complexity arising from the algebraic form of continous probability distributions. We already saw that exponential families address this latter issue. But not every distribution is an exponential family. A main theme for the remainder will be how to project complicated joint distributions onto factor graphs of exponential families.

