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# date content Ex # date content Ex

1 20.04. Introduction 1 14 09.06. Generalized Linear Models
2 21.04. Reasoning under Uncertainty 15 15.06. Exponential Families 8
3 27.04. Continuous Variables 2 16 16.06. Graphical Models
4 28.04. Monte Carlo 17 22.06. Factor Graphs 9
5 04.05. Markov Chain Monte Carlo 3 18 23.06. The Sum-Product Algorithm
6 05.05. Gaussian Distributions 19 29.06. Example: Modelling Topics 10
7 11.05. Parametric Regression 4 20 30.06. Mixture Models
8 12.05. Learning Representations 21 06.07. EM 11
9 18.05. Gaussian Processes 5 22 07.07. Variational Inference

10 19.05. Understanding Kernels 23 13.07. Fast Variational Inference 12
11 26.05. Gauss-Markov Models 24 14.07. Kernel Topic Models
12 25.05. An Example for GP Regression 6 25 20.07. Outlook

13 08.06. GP Classification 7 26 21.07. Revision
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The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ graphical models
▶ Gaussian distributions
▶ (deep) learnt representations
▶ Kernels
▶ Markov Chains
▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:
▶ Monte Carlo
▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations
▶
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the goal for (most of) the rest of the course:
Build a Model of History

Probabilistic ML — P. Hennig, SS 2021 — Lecture 19: The Sum-Product Algorithm — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 3



The State of the Union
1790–2019

[The President] shall from time to time give to the Congress Information of the State
of the Union, and recommend to their Consideration such Measures as he shall judge
necessary and expedient.

Article II, §3 of the US Constitution

▶ Delivered annually since 1790
▶ Summarizes affairs of the US federal

government
▶ historically delivered in writing, generally

spoken since 1982,
▶ on radio since 1923, TV since 1947, in the

evenings since 1965, webcast since 2002
▶ the inaugural SotU of a new president typically

has a different tone
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A Flawed but Useful Summary of (US) History
228 years of history

The SotU Addresses are not a perfect reflection of US history, but they are …
▶ available in their entirety online
▶ available without interruption for over 200 years
▶ topical
▶ given in a reasonably similar setting, annually

Our task: Find topics of US history over time.

This is an unsupervised dimensionality reduction task.
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Disclaimer:
▶ This is not a course in natural language processing!
▶ There is an entire toolbox of models for text analysis that will not be discussed here. Some of

them have probabilistic interpretation, others don’t.
▶ The point of this exercise is to try out the tools developed in this course on a practical problem.

There is no claim that this is the “best” thing to do

However, the model ultimately developed here is likely unusually expressive in its structure, and more
flexible than the standard tools. Key takeaway: It does pay to spend time developing your model!

Our Goal: Build craftware: customized, effective and efficient solution to the learning task.
Use toolboxes where they help, be willing to write our own solution where necessary.
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A Look at the Data
explanatory data analysis note: This is not a NLP course, and certainly not linguistics

▶ D = 231 documents (1790 – 2019; 2 in 1961 (Eisenhower & JFK))
▶ individual documents of length Id ∼ 103 words
▶ V ∼ 10 000 words in vocabulary

A few first simplifications
▶ there are many redundant stop words required for human understanding but carrying only

negligible semantic information
▶ since we are looking to reduce complexity, we necessarily have to throw out a bit of structure
▶ e.g., usage of word is significant, but its position in the text is not crucial. We will model the texts

as Bags of Words
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Bags of Words
A look at the data

0 50 100 150 200 250 300 350 400 450

0

100

200

V

D

Probabilistic ML — P. Hennig, SS 2021 — Lecture 19: The Sum-Product Algorithm — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 8



A Reduced Representation
low-rank decomposition
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Consider a dataset X ∈ RD×V. Dimensionality Reduction aims to find an encoding ϕ : RV _RK and a
decoding ψ : RK _RV with K ≪ V such that the encoded representation

Z := ϕ(X) ∈ RD×K

is a good approximation of X in the sense that some reconstruction loss of X̃ = ψ(Z),

L(X, ψ(Z)) = L(X, ψ ◦ ϕ(X))

is minimized or small. This may be done, e.g., to
▶ save memory
▶ construct a low-dimensional visualization
▶ “find structure”
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Linear dimensionality reduction
The classic derivation of PCA

Data: X ∈ RD×V = [x1; . . . ; xD].

▶ Consider an orthonormal basis {ui}i=1,...,V, u⊺i uj = δij. Then

xd =
V∑

i=1

(x⊺d ui)ui =:
V∑

i=1

αdiui X = (XU)U⊺

▶ An approximation in K < D degrees of freedom is given by any set (A, b,U) as

x̃d :=
K∑

k=1

adkuk +
V∑

ℓ=K+1

bℓuℓ

What is the best approximation?
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The best approximation
Empirical Risk Minimization derivation of PCA

Let’s find (A, b,U) to minimize the square empirical risk

J =
1
D

D∑
d=1

∥xd − x̃d∥2 =
1
D

D∑
d=1

V∑
v=1

xd − K∑
k=1

adkuk −
V∑

j=K+1

bjuj

2

v

First, let’s find adk and bj: Recall
∑

j uijukj = δik, use x̄ := 1
D
∑

d xd, to find

∂J
∂adℓ

=
2
D

V∑
v=1

xd − K∑
k=1

adkuk −
V∑

j=K+1

bjuj


v

(−uℓv) =
2
D
(−x⊺d uℓ) +

2
D
adℓ

!
= 0

∂J
∂bℓ

=
2
D

D∑
d=1

V∑
v=1

xd − K∑
k=1

adkuk −
V∑

j=K+1

bjuj


v

(−uℓv) =
2
D

D∑
d=1

(−x⊺d uℓ) + 2bℓ
!
= 0

Thus adk = x⊺d uk, and bj = x̄⊺uj.
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The best approximation
Empirical Risk Minimization derivation of PCA

With adk = x⊺d uk, bj = x̄⊺uj, things simplify:

xd − x̃d = xd −
K∑

k=1

adkuk −
V∑

j=K+1

bjuj =
V∑

ℓ=1

(x⊺d uℓ)uℓ −
K∑

k=1

(x⊺d uk)uk −
V∑

j=K+1

(x̄⊺uj)uj

=

K∑
ℓ=1

(x⊺d uℓ)uℓ −
K∑

k=1

(x⊺d uk)uk +
V∑

ℓ=K+1

(x⊺d uℓ)uℓ −
V∑

j=K+1

(x̄⊺uj)uj

=

V∑
j=K+1

((xd − x̄)⊺uj)uj, so, with the sample covariance matrix S :=
1
D

D∑
d=1

(xd − x̄)(xd − x̄)⊺

J =
1
D

D∑
d=1

∥xd − x̃d∥2 =
1
D

D∑
d=1

V∑
j=K+1

((xd − x̄)⊺uj)2 =
1
D

V∑
j=K+1

D∑
d=1

u⊺j (xd − x̄)(xd − x̄)⊺uj

=

V∑
j=K+1

u⊺j Suj
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Maybe we can get away with linear algebra?
Principal Component Analysis Beltrami, 1873, Jordan, 1874, Pearson, 1901, Schmidt, 1907, Hotelling, 1933, Lanczos, 1950

To find a set of orthonormal vectors ui to minimize the square reconstruction error

J =
1
D

D∑
d=1

∥xd − x̃d∥2 =
V∑

j=K+1

u⊺j Suj

Choose U as the eigenvectors of the sample covariance S :=
1
D

D∑
d=1

(xd − x̄)(xd − x̄)⊺, and get the best

rank K reconstruction x̃d by setting

x̃d :=
K∑

k=1

adkuk +
V∑

j=K+1

bjuj =
M∑
i=1

(x⊺d ui)ui +
D∑

i=M+1

(x̄⊺ui)ui

This yields J =
∑V

j=K+1 λj (where λj are the eigenvalues of S, sorted descendingly). If we first center
the data X̂ = X− 1x̄⊺, so b = 0, the U are the (right) singular vectors of X̂ = QΣU⊺.
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Probabilistic PCA
a maximum-likelihood derivation [Tipping & Bishop, 1997,1999. Sam Roweis, 1998]

Treat the loss, up to scaling, as a non-normalised negative log likelihood:

J = −c · log p(X | X̃) + log Z =
1
D

D∑
d=1

∥xd − x̃d∥2

⇒ p(X | X̃) =
D∏

d=1

N (xd; x̃d, σ2I)

We also need to encode that we want a low-dimensional, linear embedding, and
that the embedding should be in terms of independent (orthogonal) dimensions.

ad

xd
Vµ

σ2

D
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Probabilistic PCA
a maximum-likelihood derivation [Tipping & Bishop, 1997,1999. Sam Roweis, 1998]

Thus, consider

xd = Vad + µ+ ε with p(ad) = N (0; IK), V ∈ RV×K and p(ε) = N (0;σ2)

with marginal likelihood (where C := VV⊺ + σ2I)

p(X) =
∫ D∏

d=1

p(xd | ad)p(ad) dad =
∏
d

N (xd;µ, C)

log p(X) = −DV
2

log(2π)− D
2
log |C| − 1

2

D∑
d=1

(xd − µ)⊺C−1(xd − µ)

x̄ = arg max
µ

log p(X), thus the max. lik. can be written as

log p(X) = −D
2
(
V log(2π) + log |C|+ tr(C−1S)

)

ad

xd
Vµ

σ2

D
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Probabilistic PCA
a maximum-likelihood derivation [Tipping & Bishop, 1997,1999. Sam Roweis, 1998]

log p(X) = −D
2
(
V log(2π)− log |C|+ tr(C−1S)

)
yields max. lik. for V, σ2 at [Tipping & Bishop, 1999], with RR⊺ = IK and S = UΛU⊺

VML = U1:K(ΛK − σ2I)1/2R and σ2
ML =

1
V− K

V∑
j=K+1

λj

setting σ2,µ,U this way, and R = I w.l.o.g., gives posterior

p(ad | xd) = N (ad; (V⊺V+ σ2I)−1V⊺(xd − x̄), σ2(V⊺V+ σ2I)−1)

= N (ad; Λ−1
K (ΛK − σ2IK)1/2U1:K(xd − x̄), σ2Λ−1)

ad

xd
Vµ

σ2

D
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So, does it work?

1 count_vect_lsa = CountVectorizer(max_features=VOCAB_SIZE, stop_words=[’000’])
2 X_count = count_vect_lsa.fit_transform(preprocessed).toarray()
3
4 U_, S_, V_T_ = np.linalg.svd(X_count, full_matrices=False)
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Latent Semantic Indexing / Principal Component Analysis
a first result on our dataset
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Linear Algebra alone won’t cut it
SVDs are not enough

▶ The singular value decomposition (SVD) minimizes ∥X− QΣU′∥2F for orthonormal matrices
Q ∈ RD×K and U ∈ RV×K, and a diagonal Σ ∈ RK×K with positive diagonal entries (the singular
values).

▶ We might naïvely think of Q as a mapping from documents to topics, U′ from topics to words, and
Σ as the relative strength of topics.

▶ However, there are several problems:
▶ the matrices Q, U returned by the SVD are in general dense: Every document contains contributions

from every topic, and every topic involves all words.
▶ the entries in Q, U,Σ are hard to interpret: They do not correspond to probabilities
▶ the entries of Q, U can be negative! What does it mean to have a negative topic?
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We need Sparsity
How about one topic per document?

D
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V words

X ∼

D
do
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K topics

Z ×

K
to
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cs

U⊺

V words

For PCA, we allowed Z ∈ RD×K. Maybe we need Z ∈ {0; 1}D×K and Z1K = 1D?
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Mixture Models
generative modelling with discrete classes

a supervised problem that can be solved discriminatively in a linear fashion
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Mixture Models
generative modelling with discrete classes

a supervised problem that can be solved discriminatively in a nonlinear fashion
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Mixture Models
generative modelling with discrete classes

a supervised problem that can be solved generatively (in a Gaussian fashion?)
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Mixture Models
generative modelling with discrete classes

an unsupervised problem https://www.stat.cmu.edu/ larry/all-of-statistics/=data/faithful.dat

Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser. Applied Statistics 39, 357-365.
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Mixture Models
generative modelling with discrete classes

a Gaussian mixture

p(xd, Z) =
D∏

d=1

p(zd | π)p(xd | zd,µ,Σ) =
D∏

d=1

K∏
k=1

πzdk
k N (wd;µk,Σk)

zdk
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A Gaussian Mixture isn’t quite right yet
word counts aren’t real-valued
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A Mixture of Probabilities?
Desiderata
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V words
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Π ×

K
to
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Θ

V words

▶ topics should be probabilities: p(xd | k) =
∏V

v=1 θ
xdv
kv

▶ but documents should have several topics! Let πdk be the probability to draw a word from topic k
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