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EM for Gaussian Mixtures
re-written in generic form

▶ Want to maximize, as function of θ := (πj, µj,Σj)j=1,...,k

log p(x | π, µ,Σ) =
∑

i

log

∑
j

πjN (xi;µj,Σj)



▶ Instead, maximizing the “complete data” likelihood is easier:

log p(x, z | π, µ,Σ) = log
n∏
i

k∏
j

π
zij
j N (xi;µj,Σj)

zij

=
∑

i

∑
j

znk
(
logπj + logN (xi;µj,Σj)

)
)︸ ︷︷ ︸

easy to optimize (exponential families!)
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EM for Gaussian Mixtures
re-written in generic form

1. Compute p(z | x, θ):

p(zij = 1 | xi, π, µ,Σ) =
p(zij = 1)p(xi | zij = 1)∑k
j′ p(zij′ = 1)p(xi | zij′ = 1)

=
πjN (xi;µj,Σj)∑
j′ πjN (xi;µj,Σj)

=: rij

2. Maximize
Ep(z|x,θ) (log p(x, z | θ)) =

∑
i

∑
j

rij
(
logπj + logN (xi;µj,Σj)

)
(see earlier slides on how to solve this, much easier problem)
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Generic EM Algorithm
Maximize expected log likelihoods

Setting:
▶ Want to find maximum likelihood (or MAP) estimate for a model involving a latent variable

θ∗ = arg max
θ

[log p(x | θ)] = arg max
θ

[
log

(∑
z

p(x, z | θ)

)]

▶ Assume that the summation inside the log makes analytic optimization intractable
▶ but that optimization would be analytic if z were known (i.e. if there were only one term in the sum)

Idea: Initialize θ0, then iterate between
1. Compute p(z | x, θold)
2. Set θnew to theMaximum of the Expectation of the complete-data log likelihood:

θnew = arg max
θ

∑
z

p(z | x, θold) log p( x, z︸︷︷︸
!

| θ) = arg max
θ

Ep(z|x,θold) [log p(x, z | θ)]

3. Check for convergence of either the log likelihood, or θ.
Probabilistic ML — P. Hennig, SS 2021 — Lecture 23: Free Energy — © Philipp Hennig, 2021 CC BY-NC-SA 3.0 3



The EM algorithm
Instead of trying to maximize

log p(x | θ) = log
∑
z

p(x, z | θ) = log
∑
z

p(z | x, θ)p(x | θ),

instead maximize
Ez log p(x, z | θ) =

∑
z

p(z | x, θ) log p(x, z | θ),

then re-compute p(z | x, θ), and repeat.
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An Observation
maximizing a lower bound

▶ We constructed an approximate distribution q(z) = p(z | x, θ) for our latent
quantity

▶ For any such approximation q(z) (if q(z) > 0 wherever p(x, z | θ) > 0):

log p(x | θ) = log
∫

p(x, z | θ) dz = log
∫

q(z)
p(x, z | θ)

q(z)
dz

≥
∫

q(z) log
p(x, z | θ)

q(z)
dz =: L(q)

Theorem (Jensen’s inequality (Jensen,1906))

Let (Ω, A, µ) be a probability space, g be a real-valued, µ-integrable function and ϕ be a convex function
on the real line. Then

ϕ

(∫
Ω

g dµ
)

≤
∫
Ω

ϕ ◦ g dµ.
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p(x, z | θ)

q(z)
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≥
∫

q(z) log
p(x, z | θ)

q(z)
dz =: L(q)

▶ Thus, by maximizing the RHS in θ in the M-step, we increase a lower bound on the LHS (the target
quantity)

▶ But can we be sure that this increases the LHS?
▶ To show that this is the case, we will now establish that the E-step makes the bound tight at the

local θ.
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An Insight
Distance of our bound

L(q) =
∫

q(z) log
p(x, z | θ)

q(z)
dz =

∫
q(z) log

p(z | x, θ) · p(x | θ)
q(z)

dz

=

∫
q(z) log

p(z | x, θ)
q(z)

dz+ log p(x | θ)
∫

q(z) dz

thus log p(x | θ) = L(q)−
∫

q(z) log
p(z | x, θ)

q(z)
= L(q) + DKL(q∥p(z | x, θ))

The Kullback-Leibler divergence satisfies
▶ DKL(q∥p) ≥ 0
▶ DKL(q∥p) = 0 ⇔ q ≡ p
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EM maximizes the ELBO / minimizes Free Energy
a more general view

log p(x | θ) = L(q, θ) + DKL(q∥p(z | x, θ))

L(q, θ) =
∫

q(z) log
(
p(x, z | θ)

q(z)

)
dz

DKL(q∥p(z | x, θ)) = −
∫

q(z) log
(
p(z | x, θ)

q(z)

)
dz

E -step: q(z) = p(z | x, θold), thus DKL(q∥p(z | x, θi)) = 0
M -step: Maximize ELBO

θnew = arg max
θ

∫
q(z) log p(x, z | θ) dz

= arg max
θ

L(q, θ) +
∫

q(z) log q(z) dz

log p(x | θ)

DKL(q∥p(z | x, θ))

L(q, θ)
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EM Algorithm — General Form
for further generalization

Setting:
▶ Want to find maximum likelihood (or MAP) estimate for a model involving a latent variable

θ∗ = arg max
θ

[log p(x | θ)] = arg max
θ

[
log
(∫

p(x, z | θ) dz
)]

▶ Assume that the summation inside the log makes analytic optimization intractable
▶ but that optimization would be analytic if z was known (i.e. if there were only one term in the sum)

Idea: Initialize θ0, then iterate between
1. Compute q(z) = p(z | x, θold), thereby setting DKL(q∥p(z | x, θ)) = 0
2. Set θnew to theMaximize the Evidence Lower Bound

θnew = arg max
θ

L(q, θ) = arg max
θ

∫
q(z) log

(
p(x, z | θ)

q(z)

)
dz

3. Check for convergence of either the log likelihood, or θ.
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Some Observations
for future reference

▶ If p(x, z | θ) is an exponential family with θ as the natural parameters, then

p(x, z) = exp(ϕ(x, z)⊺θ − log Z(θ))
L(q(z), θ) = Eq(z)(ϕ(x, z)⊺θ − log Z(θ)) = Eq(z)[ϕ(x, z)]⊺θ − log Z(θ)

∇θL(q(z), θ) = 0 ⇒ ∇θ log Z(θ) = Ep(x,z)[ϕ(x, z)] = Eq(z)[ϕ(x, z)]

and optimization may be analytic (example: Gaussian Mixture Models).
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Some Observations
for future reference

▶ It is straightforward to extend EM to maximize a posterior instead of a likelihood. Just add a log
prior for θ:

Initialize θ0, then iterate between
1. Compute q(z) = p(z | x, θold), thereby setting DKL(q∥p(z | x, θ)) = 0
2. Set θnew to theMaximize the Evidence Lower Bound

θnew = arg max
θ

∫
q(z) log

(
p(x, z | θ)p(θ)

q(z)

)
dz = arg max

θ
L(q, θ) + log p(θ)

3. Check for convergence of either the log likelihood, or θ.
This maximizes

log p(x | θ) + log p(θ) ≤ L(q, θ) + log p(θ)

≜ log p(θ | x)
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Some Observations
for future reference

▶ When we set q(z) = p(z | x, θold), we set DKL to its minimum DKL(q∥p(z | x, θ) = 0, thus

∇θ log p(x | θold) = ∇θL(q, θold) +∇θDKL(q∥p(z | x, θold))
= ∇θL(q, θold)

So we could also use an optimizer based on this gradient to numerically optimize L.
This is known as generalized EM
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The EM algorithm:
▶ to find maximum likelihood (or MAP) estimate for a model involving a latent variable

θ∗ = arg max
θ

[log p(x | θ)] = arg max
θ

[
log

(∑
z

p(x, z | θ)

)]

▶ Initialize θ0, then iterate between
E Compute p(z | x, θold), thereby setting DKL(q∥p(z | x, θ) = 0
M Set θnew to theMaximize the Expectation Lower Bound

θnew = arg max
θ

L(q, θ) = arg max
θ

∑
z

q(z) log
(
p(x, z | θ)

q(z)

)
▶ Check for convergence of either the log likelihood, or θ.
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The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ graphical models
▶ Gaussian distributions
▶ (deep) learnt representations
▶ Kernels
▶ Markov Chains
▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:
▶ Monte Carlo
▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations
▶ EM
▶
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log p(x | θ) = L(q, θ) + DKL(q∥p(z | x, θ))

L(q, θ) =
∑
z

q(z) log
(
p(x, z | θ)

q(z)

)
DKL(q∥p(z | x, θ)) = −

∑
z

q(z) log
(
p(z | x, θ)

q(z)

)

▶ For EM, we minimized KL-divergence to find q = p(z | x, θ) (E), then maximized L(q, θ) in θ.
▶ What if we treated the parameters θ as a probabilistic variable for full Bayesian inference?

z^ z ∪ θ

▶ Then we could just maximize L(q(z)) wrt. q (not z!) to implicitly minimize DKL(q∥p(z | x)),
because log p(x) is constant. This is an optimization in the space of distributions q, not
(necessarily) in parameters of such distributions, and thus a very powerful notion.

▶ In general, this will be intractable, because the optimal choice for q is exactly p(z | x). But maybe
we can help out a bit with approximations. Amazingly, we often don’t need to impose strong
approximations. Sometimes we can get away with just imposing restrictions on the factorization
of q, not its analytic form.
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∫
q(z) log

(
p(z | x)
q(z)

)
dz
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A Historical Connection
free energy / expectation lower bounds

Lemma
Consider the probability distribution p(x, z) and an arbitrary probability distribution q(z) such that
q(z) > 0 whenever p(z) =

∑
x p(x, z) > 0. Then the following equality holds:

log p(x) = L(q(z)) + DKL(q(z)∥p(z | x))

where L(q) :=
∫

q(z) log
(
p(x, z)
q(z)

)
dz and DKL(q∥p) := −

∫
q(z) log

(
p(z | x)
q(z)

)
dz.

▶ −L(q) is known as the Variational Free Energy in physics, because

−L(q) = −Eq(log p(x, z))−H(q) cf. F = U− TS
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Free Energy
Machine Learning is the application of scientific modelling to everything

Hermann v. Helmholtz
1821–1894
image:L. Meder

“Energy”

F = U− TS

Josia W. Gibbs
1839–1903
image:unknown

“Enthalpy”

H = U+ pV

Ludwig Boltzmann
1844–1906
image:wikipedia

“Entropy”

G = H− TS

David M. Blei

image:Denise Applewhite

“Evidence”

L = Eq(log p(x, z))+H(q)
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Variational Inference
▶ is a general framework to construct approximating probability distributions q(z) to non-analytic

posterior distributions p(z | x) by minimizing the functional

q∗ = arg min
q∈Q

DKL(q(z)∥p(z | x)) = arg max
q∈Q

L(q)
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The Calculus of Variations
One of the big ideas they don’t teach you in school

Leonhard Euler
1707–1783

Joseph-Louis Lagrange
1736–1813

Richard P. Feynman
1918–1988 (Nobel Prize 1965)

L(q) =
∫

q(z) log
(
p(x, z)
q(z)

)
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Factorizing Approximations
A surprisingly subtle approximation with strong implications

▶ in general, maximizing L(q) wrt. q(z) is hard, because the extremum is exactly at q(z) = p(z | x)
▶ but let’s assume that q(z) factorizes

q(z) =
∏
i

qi(zi) =
n∏
i

qi

▶ then the bound simplifies. Let’s focus on one particular variable zj:

L(q) =
∫ n∏

i

qi

(
log p(x, z)−

∑
i

log qi

)
dz

=

∫
qj

∫ log p(x, z)
∏
i ̸=j

qi dzi

 dzj −
∫

qj log qjdzj + const.

=

∫
qj log p̃(x, zj) dzj −

∫
qj log qj dzj + const.

where log p̃(x, zj) = Eq,i̸=j[log p(x, z)] + const.
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Mean Field Theory
Factorizing variational approximations

Consider a joint distribution p(x, z) with z ∈ Rn

▶ to find a “good” but tractable approximation q(z), assume that it factorizes q(z) =
∏

i qi(zi).
▶ Initialize all qi to some initial distribution
▶ Iteratively compute

L(q) =
∫

qj log p̃(x, zj) dzj −
∫

qj log qj dzj + const.

= −DKL(qj(z)∥p̃(x, zj)) + const.

and maximize wrt. qj. Doing so minimizes DKL(q(zj)∥p̃(x, zj)), thus the minimum is at q∗j with

log q∗j (zj) = log p̃(x, zj) = Eq,i̸=j(log p(x, z)) + const. (⋆)

▶ note that this expression identifies a function qj, not some parametric form.
▶ the optimization converges, because−L(q) can be shown to be convex wrt. q.
In physics, this trick is known as mean field theory (because an n-body problem is separated into n sep-
arate problems of individual particles who are affected by the “mean field” p̃ summarizing the expected
effect of all other particles).
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Variational Inference
▶ is a general framework to construct approximating probability distributions q(z) to non-analytic

posterior distributions p(z | x) by minimizing the functional

q∗ = arg min
q∈Q

DKL(q(z)∥p(z | x)) = arg max
q∈Q

L(q)

▶ the beauty is that we get to choose q, so one can nearly always find a tractable approximation.
▶ If we impose the mean field approximation q(z) =

∏
i q(zi), get

log q∗j (zj) = Eq,i ̸=j(log p(x, z)) + const..

▶ for Exponential Family p things are particularly simple: we only need the expectation under q of
the sufficient statistics.

Variational Inference is an extremely flexible and powerful approximation method. Its downside is that
constructing the bound and update equations can be tedious. For a quick test, variational inference is
often not a good idea. But for a deployed product, it can be the most powerful tool in the box.
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