Probabilistic Machine Learning LECTURE 27 REVISION

Philipp Hennig

27 July 2021

EBERHARD KARLS
 UNIVERSITAT TUBINGEN

Faculty of Science
Department of Computer Science
CHAIR FOR THE METHODS OF MACHINE LEARNiNG

\#	date	content	Ex	\#	date	content	Ex
1	20.04 .	Introduction	1	14	09.06.	Generalized Linear Models	
2	21.04.	Reasoning under Uncertainty		15	15.06.	Exponential Families	8
3	27.04.	Continuous Variables	2	16	16.06.	Graphical Models	
4	28.04.	Monte Carlo		17	22.06.	Factor Graphs	9
5	04.05.	Markov Chain Monte Carlo	3	18	23.06.	The Sum-Product Algorithm	
6	05.05.	Gaussian Distributions		19	29.06	Example: Modelling Topics	10
7	11.05.	Parametric Regression	4	20	30.06.	Mixture Models	
8	12.05.	Learning Representations		21	06.07.	EM	11
9	18.05.	Gaussian Processes	5	22	07.07.	Variational Inference	
10	19.05.	Understanding Kernels		23	13.07.	Tuning Inference Algorithms	12
11	26.05.	Gauss-Markov Models		24	14.07.	Kernel Topic Models	
12	25.05.	An Example for GP Regression	6	25	20.07.	Outlook	
13	08.06.	GP Classification	7	26	21.07.	Revision	

Framework:

$$
\int p\left(x_{1}, x_{2}\right) d x_{2}=p\left(x_{1}\right) \quad p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right) \quad p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Modelling:

Computation:

The Rules of Probability:

- the Sum Rule:

$$
P(A)=P(A, B)+P(A, \neg B)
$$

- the Product Rule:

$$
P(A, B)=P(A \mid B) \cdot P(B)=P(B \mid A) \cdot P(A)
$$

- Bayes' Theorem:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B, A)+P(B, \neg A)}
$$

Bayes' Theorem tells us how to update the belief in a hypothesis X when observing data D.

- $P(D \mid X)$ is the likelihood of X, but the (conditional) probability for D (given X)
- the model is the entire thing - prior and likelihood
- despite the name, the prior is not necessarily what you know before seeing the data, but the marginal distribution $P(X)=\sum_{d \in \mathcal{D}} P(X, d)$ under all possible data.

$A=$ "it will begin to rain by $6 \mathrm{pm} "$
$B=$ "the sky will become cloudy before 6 pm "

$$
A \Rightarrow B
$$

if A is true, the B is true

Assume: if A is true, then B is true $(A \Rightarrow B) \quad$ if A is true, B becomes more plausible $(P(B \mid A)>P(B))$ A is true thus B is true (modus ponens) $\mid A$ is true thus B becomes more plausible B is false thus A is false (modus tollens) B is true thus A becomes more plausible A is false thus B becomes less plausible B is false thus A becomes less plausible B is true thus A becomes more plausible A is false thus B becomes less plausible

Computational Difficulties of Probability Theory

- The joint distribution of $n=26$ propositional variables A, B, \ldots, Z has 2^{n} free parameters

$$
\begin{aligned}
P(A, B, \ldots, Z) & =\ldots \\
P(\neg A, B, \ldots, Z) & =\ldots \\
P(A, \neg B, \ldots, Z) & =\ldots
\end{aligned}
$$

[67 108 863]
[67 108 864]

$$
\begin{aligned}
P(\neg A, \neg B, \ldots, Z) & =\ldots \\
P(\neg A, \neg B, \ldots, \neg Z) & =1-\sum P(\ldots)
\end{aligned}
$$

- requires not just large memory, but computing marginals like $P(A)$ is also very expensive
- nb: just committing to a single guess is much (exponentially in n) cheaper
- can we specify the joint distribution with fewer numbers?

Definition (conditional independence)
Two variables A and B are conditionally independent given variable C, if and only if their conditional distribution factorizes,

$$
P(A, B \mid C)=P(A \mid C) P(B \mid C)
$$

In that case we have $P(A \mid B, C)=P(A \mid C)$, i.e. in light of information C, B provides no (further) information about A. Notation: $A \Perp B \mid C$

$$
A=\text { the alarm was triggered }
$$

$$
E=\text { there was an earthquake }
$$

B $\quad B=$ there was a break-in
$R \quad R=$ an announcement is made on the radio
Joint probability distribution has $2^{4}-1=15=8+4+2+1$ parameters

$$
P(A, E, B, R)=P(A \mid R, E, B) \cdot P(R \mid E, B) \cdot P(E \mid B) \cdot P(B) .
$$

Removing irrelevant conditions (domain knowledge!) reduces to $8=4+2+1+1$ parameters:

$$
P(A, E, B, R)=P(A \mid E, B) \cdot P(R \mid E) \cdot P(E) \cdot P(B)
$$

A Graphical Representation

$$
P(A, E, B, R)=P(A \mid E, B) \cdot P(R \mid E) \cdot P(E) \cdot P(B)
$$

$A=$ the alarm was triggered
$E=$ there was an earthquake
$B=$ there was a break-in
$R=$ an announcement is made on the radio

Framework:

$$
\int p\left(x_{1}, x_{2}\right) d x_{2}=p\left(x_{1}\right) \quad p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right) \quad p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Modelling:

- graphical models

Computation:

Constructing Directed Graphs

Joint probability distribution has
$2^{4}-1=15=8+4+2+1$ parameters

$$
p(A, E, B, R)=p(A \mid R, E, B) \cdot p(R \mid E, B) \cdot p(E \mid B) \cdot p(B)
$$

Removing irrelevant conditions (domain knowledge!) reduces to $8=4+2+1+1$ parameters:

$$
p(A, E, B, R)=p(A \mid E, B) \cdot p(R \mid E) \cdot p(E) \cdot p(B)
$$

Procedural construction of directed

 graphical model1. For each variable in the joint distribution, draw a circle
2. For each term $p\left(x_{1}, \ldots \mid y_{1}, \ldots\right)$ in the factorized joint distribution, draw an arrow from every parent (right side) node y_{i} to every child (left side) node x_{i}.
3. fill in all observed variables (variables on which we want to condition).

By the Product Rule, every joint can be factorized into a (dense) DAG.

$$
p(A, E, B, R)=p(A \mid E, B, R) \cdot p(R \mid E, B) \cdot p(E \mid B) \cdot p(B)
$$

$A=$ the alarm was triggered
$E=$ there was an earthquake
$B=$ there was a break-in
$R=$ an announcement is made on the radio

The direction of the arrows is not a causal statement.

$$
p(A, E, B, R)=p(B \mid A, E, R) \cdot p(E \mid A, R) \cdot p(R \mid A) \cdot p(A)
$$

$A=$ the alarm was triggered
$E=$ there was an earthquake
$B=$ there was a break-in
$R=$ an announcement is made on the radio

But the representation is particularly interesting when it reveals independence.

$$
p(A, E, B, R)=p(A \mid E, B) \cdot p(R \mid E) \cdot p(E) \cdot p(B)
$$

$A=$ the alarm was triggered
$E=$ there was an earthquake
$B=$ there was a break-in
$R=$ an announcement is made on the radio

$$
\begin{array}{lll}
P(A=1)=0.5 & P(C=1 \mid A=1, B=1)=1 & P(C=1 \mid A=1, B=0)=0 \\
P(B=1)=0.5 & P(C=1 \mid A=0, B=1)=0 & P(C=1 \mid A=0, B=0)=1
\end{array}
$$

These CPTs imply $P(A \mid B)=P(A), P(B \mid C)=P(B)$ and $P(C \mid A)=P(C)$ and $P(C \mid B)=P(C)$.

$$
\begin{array}{lll}
P(A=1)=0.5 & P(C=1 \mid A=1, B=1)=1 & P(C=1 \mid A=1, B=0)=0 \\
P(B=1)=0.5 & P(C=1 \mid A=0, B=1)=0 & P(C=1 \mid A=0, B=0)=1
\end{array}
$$

These CPTs imply $P(A \mid B)=P(A), P(B \mid C)=P(B)$ and $P(C \mid A)=P(C)$ and $P(C \mid B)=P(C)$.
We thus have three factorizations:

1. $P(A, B, C)=P(C \mid A, B) \cdot P(A \mid B) \cdot P(B)=P(C \mid A, B) \cdot P(A) \cdot P(B)$
2. $P(A, B, C)=P(A \mid B, C) \cdot P(B \mid C) \cdot P(C)=P(A \mid B, C) \cdot P(B) \cdot P(C)$
3. $P(A, B, C)=P(B \mid C, A) \cdot P(C \mid A) \cdot P(A)=P(B \mid C, A) \cdot P(C) \cdot P(A)$

$$
\begin{array}{lll}
P(A=1)=0.5 & P(C=1 \mid A=1, B=1)=1 & P(C=1 \mid A=1, B=0)=0 \\
P(B=1)=0.5 & P(C=1 \mid A=0, B=1)=0 & P(C=1 \mid A=0, B=0)=1
\end{array}
$$

These CPTs imply $P(A \mid B)=P(A), P(B \mid C)=P(B)$ and $P(C \mid A)=P(C)$ and $P(C \mid B)=P(C)$.
We thus have three factorizations:

$$
\begin{aligned}
& \text { 1. } P(A, B, C)=P(C \mid A, B) \cdot P(A \mid B) \cdot P(B)=P(C \mid A, B) \cdot P(A) \cdot P(B) \\
& \text { 2. } P(A, B, C)=P(A \mid B, C) \cdot P(B \mid C) \cdot P(C)=P(A \mid B, C) \cdot P(B) \cdot P(C) \\
& \text { 3. } P(A, B, C)=P(B \mid C, A) \cdot P(C \mid A) \cdot P(A)=P(B \mid C, A) \cdot P(C) \cdot P(A)
\end{aligned}
$$

Each corresponds to a graph. Note that each can only express some of the independencies:

Theorem (d-separation, Pearl, 1988. Formulation taken from Bishop, 2006)
Consider a general directed acyclic graph, in which A, B, C are nonintersecting sets of nodes whose union may be smaller than the complete graph. To ascertain whether $A \Perp B \mid C$, consider all possible paths (connections along lines in the graph, regardless of the direction) from any node in A to any node in B. Any such path is considered blocked if it includes a node such that either

- the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in C, or
- the arrows meet head-to-head at the node, and neither the node, nor any of its descendants is in C.

If all paths are blocked, then A is said to be d-separated from B by C, and $A \Perp B \mid C$.

Definition (Markov Random Field)

An undirected Graph $G=(V, E)$ is a set V of nodes and edges E. An undirected graph G and a set of random variables $X=\left\{X_{v}\right\}_{v \in V}$ is a Markov Random Field if, for any subsets $A, B \subset V$ and a separating set S (i.e. a set such that every path from A to B passes through $S), X_{A} \Perp X_{B} \mid X_{S}$.

The above definition is known as the global Markov property. It implies the weaker pairwise Markov property: Any two nodes u, v that do not share an edge are conditionally independent given all other variables: $X_{u} \Perp X_{v} \mid X_{V \backslash\{u, v\}}$.

Definition (Markov Random Field)

An undirected Graph $G=(V, E)$ is a set V of nodes and edges E. An undirected graph G and a set of random variables $X=\left\{X_{v}\right\}_{v \in V}$ is a Markov Random Field if, for any subsets $A, B \subset V$ and a separating set S (i.e. a set such that every path from A to B passes through $S), X_{A} \Perp X_{B} \mid X_{S}$.

The above definition is known as the global Markov property. It implies the weaker pairwise Markov property: Any two nodes u, v that do not share an edge are conditionally independent given all other variables: $X_{u} \Perp X_{v} \mid X_{V \backslash\{u, v\}}$.

Any distribution $p(x)$ that satisfies the conditional independence structures of the graph G can be written as a factorization over all cliques, and thus also just over all maximal cliques (since any clique is part of at least one maximal clique).

$$
p(x)=\frac{1}{Z} \prod_{c \in C} \psi_{c}\left(x_{c}\right)
$$

- in directed graphs, each factor $p\left(x_{\mathrm{ch}} \mid x_{\mathrm{pa}}\right)$ had to be a probability distribution of the children (but not of the parents!). But in MRFs there is no distinction between parents and children. So we only know that each potential function $\psi_{c}\left(x_{c}\right) \geq 0$. For simplicity, we will restrict $\psi_{c}\left(x_{c}\right)>0$.
- The normalization constant Z is the partition function

$$
Z:=\oint_{x} \prod_{c \in C} \psi_{c}\left(x_{c}\right) .
$$

Because of the loss of structure from directed to undirected graphs, we have to explicitly compute Z. This can be NP-hard, and is the primary downside of MRFs. (e.g. consider n discrete variables with k states each, then computing Z may require summing k^{n} terms).

Borrowing Continuity from Topology

Definition (Borel algebra)

Let (Ω, τ) be a topological space. The Borel σ-algebra is the σ-algebra generated by τ. That is by taking τ and completing it to include infinite intersections of elements from τ and all complements in Ω to elements of τ.

Definition (Probability Density Functions (pdf's))

Let \mathfrak{B} be the Borel σ-algebra in \mathbb{R}^{d}. A probability measure P on $\left(\mathbb{R}^{d}, \mathfrak{B}\right)$ has a density p if p is a non-negative (Borel) measurable function on \mathbb{R}^{d} satisfying, for all $B \in \mathfrak{B}$

$$
P(B)=\int_{B} p(x) d x=: \int_{B} p\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d}
$$

- For probability densities p on $\left(\mathbb{R}^{d}, \mathfrak{B}\right)$ we have

$$
P(E) \stackrel{(\mathbb{V})}{=} 1=\int_{\mathbb{R}^{d}} p(x) d x .
$$

Let $X=\left(X_{1}, X_{2}\right) \in \mathbb{R}^{2}$ be a random variable with density p_{x} on \mathbb{R}^{2}. Then the marginal densities of X_{1} and X_{2} are given by the sum rule

$$
p_{x_{1}}\left(x_{1}\right)=\int_{\mathbb{R}} p_{x}\left(x_{1}, x_{2}\right) d x_{2}, \quad p_{x_{2}}\left(x_{2}\right)=\int_{\mathbb{R}} p_{x}\left(x_{1}, x_{2}\right) d x_{1}
$$

- The conditional density $p\left(x_{1} \mid x_{2}\right)\left(\right.$ for $\left.p\left(x_{2}\right)>0\right)$ is given by the product rule

$$
p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)}
$$

- Bayes' Theorem holds:

$$
p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}\right) \cdot p\left(x_{2} \mid x_{1}\right)}{\int p\left(x_{1}\right) \cdot p\left(x_{2} \mid x_{1}\right) d x_{1}}
$$

Theorem (Transformation Law, general)
Let $X=\left(X_{1}, \ldots, X_{d}\right)$ have a joint density p_{X}. Let $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be continously differentiable and injective, with non-vanishing Jacobian J_{g}. Then $Y=g(X)$ has density

$$
p_{Y}(y)= \begin{cases}p_{X}\left(g^{-1}(y)\right) \cdot\left|J_{g^{-1}}(y)\right| & \text { if } y \text { is in the range of } g \\ 0 & \text { otherwise }\end{cases}
$$

The Jacobian J_{g} is the $d \times d$ matrix with

$$
\left[J_{g}(x)\right]_{i j}=\frac{\partial g_{i}(x)}{\partial x_{j}}
$$

Framework:

$$
\int p\left(x_{1}, x_{2}\right) d x_{2}=p\left(x_{1}\right) \quad p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right) \quad p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Modelling:

Computation:

- Monte Carlo
- Markov Chains

$$
\begin{gathered}
F:=\int f(x) p(x) d x \approx \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)=: \hat{F} \quad \text { if } x_{i} \sim p \\
\mathbb{E}_{p}(\hat{F})=F \quad \operatorname{var}_{p}(\hat{F})=\frac{\operatorname{var}_{p}(f)}{N}
\end{gathered}
$$

- Random numbers can be used to estimate integrals \rightarrow Monte Carlo algorithms
- although the concept of randomness is fundamentally unsound, Monte Carlo algorithms are competitive in high dimensional problems (primarily because the advantages of the alternatives degrade rapidly with dimensionality)
- direct sampling is not possible in general. Practical MC algorithms only use the unnormalized density \tilde{p} in

$$
p(x)=\frac{\tilde{p}(x)}{Z}
$$

- but even this is not easy, because independent sampling requires access to global structure
we want to find representers (samples) of $\tilde{p}(x)$
- given current sample x_{t}
- draw proposal $x^{\prime} \sim q\left(x^{\prime} \mid x_{t}\right)\left(\right.$ for example, $q\left(x^{\prime} \mid x_{t}\right)=\mathcal{N}\left(x^{\prime} ; x_{t}, \sigma^{2}\right)$)
- evaluate

$$
a=\frac{\tilde{p}\left(x^{\prime}\right)}{\tilde{p}\left(x_{t}\right)} \frac{q\left(x_{t} \mid x^{\prime}\right)}{q\left(x^{\prime} \mid x_{t}\right)}
$$

- if a ≥ 1, accept: $x_{t+1} \leftrightarrows x^{\prime}$
- else
- accept with probability a: $x_{t+1} \varangle-x^{\prime}$
- stay with probability $1-a: x_{t+1} \& x_{t}$

Usually, assume symmetry $q\left(x_{t} \mid x^{\prime}\right)=q\left(x^{\prime} \mid x_{t}\right)$ (the Metropolis method)

- no rejection. Every sample counts!
- like optimization, but with a chance to move downhill

Metropolis-Hastings performs a (biased) random walk

Rule of Thumb: [MacKay, (29.32)]

- Metropolis-Hastings, in its basic form, performs a random walk, so that the time (number of steps) to draw an independent sample scales like $(L / \varepsilon)^{2}$, where L is the largest, ε the smallest length-scale of the distribution
- Algorithms that try to correct this behaviour include, for example
- Gibbs-sampling (drawing exact along the axes)
- Hamiltonian MC (higher-order dynamics to create smooth exploration

Framework:

$$
\int p\left(x_{1}, x_{2}\right) d x_{2}=p\left(x_{1}\right) \quad p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right) \quad p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Modelling:

- graphical models
- Gaussian distributions
- (deep) learnt representations
- Kernels
- Markov Chains

Computation:

- Monte Carlo
- Linear algebra / Gaussian inference
- maximum likelihood / MAP
- Laplace approximations

Gaussians provide the linear algebra of inference

- products of Gaussians are Gaussians

$$
\begin{gathered}
\mathcal{N}(x ; a, A) \mathcal{N}(x ; b, B) \\
=\mathcal{N}(x ; c, C) \mathcal{N}(a ; b, A+B) \\
C:=\left(A^{-1}+B^{-1}\right)^{-1} \quad c:=C\left(A^{-1} a+B^{-1} b\right)
\end{gathered}
$$

- linear projections of Gaussians are Gaussians

$$
\begin{aligned}
p(z) & =\mathcal{N}(z ; \mu, \Sigma) \\
\Rightarrow \quad p(A z) & =\mathcal{N}\left(A z, A \mu, A \Sigma A^{\top}\right)
\end{aligned}
$$

- marginals of Gaussians are Gaussians

$$
\int \mathcal{N}\left[\binom{x}{y} ;\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{ll}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{y x} & \Sigma_{y y}
\end{array}\right)\right] d y=\mathcal{N}\left(x ; \mu_{x}, \Sigma_{x x}\right)
$$

- (linear) conditionals of Gaussians are Gaussians

$$
\begin{aligned}
p(x \mid y) & =\frac{p(x, y)}{p(y)} \\
& =\mathcal{N}\left(x ; \mu_{x}+\Sigma_{x y} \Sigma_{y y}^{-1}\left(y-\mu_{y}\right), \Sigma_{x x}-\Sigma_{x y} \Sigma_{y y}^{-1} \Sigma_{y x}\right)
\end{aligned}
$$

Bayesian inference becomes linear algebra

$$
\begin{aligned}
\text { If } p(x) & =\mathcal{N}(x ; \mu, \Sigma) \quad \text { and } \quad p(y \mid x)=\mathcal{N}\left(y ; A^{\top} x+b, \Lambda\right), \text { then } \\
p\left(B^{\top} x+c \mid y\right) & =\mathcal{N}\left[B^{\top} x+c ; B^{\top} \mu+c+B^{\top} \Sigma A\left(A^{\top} \Sigma A+\Lambda\right)^{-1}\left(y-A^{\top} \mu-b\right), B^{\top} \Sigma B-B^{\top} \Sigma A\left(A^{\top} \Sigma A+\Lambda\right)^{-1} A^{\top} \Sigma B\right]
\end{aligned}
$$

$$
f(x)=w_{1}+w_{2} x=\phi_{x}^{\top} w
$$

$$
\phi_{x}:=\left[\begin{array}{l}
1 \\
x
\end{array}\right]
$$

Learning a Function, with Gaussian algebra

$$
\phi(x)=\left[\begin{array}{llll}
e^{-\frac{1}{2}(x-8)^{2}} & e^{-\frac{1}{2}(x-7)^{2}} & e^{-\frac{1}{2}(x-6)^{2}} & \ldots
\end{array}\right]^{\top}
$$

Learning a Function, with Gaussian algebra

$$
\phi(x)=\left[\begin{array}{llll}
e^{-\frac{1}{2}(x-8)^{2}} & e^{-\frac{1}{2}(x-7)^{2}} & e^{-\frac{1}{2}(x-6)^{2}} & \ldots
\end{array}\right]^{\top}
$$

It's all just (painful) linear algebra!

$$
\text { prior } \quad p(w)=\mathcal{N}(w ; \mu, \Sigma) \Rightarrow p(f)=\mathcal{N}\left(f_{x} ; \phi_{x}^{\top} \mu, \phi_{x} \Sigma \phi_{x}\right)
$$

likelihood $\quad p\left(y \mid w, \phi_{X}\right)=\mathcal{N}\left(y ; \phi_{X}^{\top} w, \sigma^{2} l\right)=\mathcal{N}\left(y ; f_{X}, \sigma^{2} l\right)$
posterior on $w \quad p\left(w \mid y, \phi_{x}\right)=\mathcal{N}\left(w ; \mu+\Sigma \phi_{x}\left(\phi_{X}^{\top} \Sigma \phi_{X}+\sigma^{2} /\right)^{-1}\left(y-\phi_{x}^{\top} \mu\right)\right.$,

$$
\begin{aligned}
& \left.\Sigma-\Sigma \phi_{X}\left(\phi_{X}^{\top} \Sigma \phi_{X}+\sigma^{2} l\right)^{-1} \phi_{X}^{\top} \Sigma\right) \\
= & \mathcal{N}\left(w ;\left(\Sigma^{-1}+\sigma^{-2} \phi_{X}^{\top} \phi_{X}\right)^{-1}\left(\Sigma^{-1} \mu+\sigma^{-2} \phi_{X} y\right)\right. \\
& \left.\left(\Sigma^{-1}+\sigma^{-2} \phi_{X}^{\top} \phi_{X}\right)^{-1}\right)
\end{aligned}
$$

posterior on $f \quad p\left(f_{x} \mid y, \phi_{x}\right)=\mathcal{N}\left(f_{x} ; \phi_{x}^{\top} \mu+\phi_{x}^{\top} \Sigma \phi_{x}\left(\phi_{x}^{\top} \Sigma \phi_{x}+\sigma^{2} l\right)^{-1}\left(y-\phi_{x}^{\top} \mu\right)\right.$,

$$
\begin{aligned}
& \left.\phi_{x}^{\top} \Sigma \phi_{x}-\phi_{x}^{\top} \Sigma \phi_{x}\left(\phi_{x}^{\top} \Sigma \phi_{x}+\sigma^{2} /\right)^{-1} \phi_{x}^{\top} \Sigma \phi_{x}\right) \\
& \mathcal{N}\left(f_{x} ; \phi_{x}\left(\Sigma^{-1}+\sigma^{-2} \phi_{x}^{\top} \phi_{x}\right)^{-1}\left(\Sigma^{-1} \mu+\sigma^{-2} \phi_{x} y\right)\right. \\
& \left.\phi_{x}\left(\Sigma^{-1}+\sigma^{-2} \phi_{x}^{\top} \phi_{x}\right)^{-1} \phi_{x}^{\top}\right)
\end{aligned}
$$

Hierarchical Bayesian Inference

$$
p(f \mid \boldsymbol{y}, \boldsymbol{x}, \boldsymbol{\theta})=\frac{p(\boldsymbol{y} \mid f, \boldsymbol{x}, \boldsymbol{\theta}) p(f \mid, \boldsymbol{\theta})}{\int p(\boldsymbol{y} \mid f, \boldsymbol{x}, \boldsymbol{\theta}) p(f \mid, \boldsymbol{\theta}) d f}=\frac{p(\boldsymbol{y} \mid f, \boldsymbol{x}, \boldsymbol{\theta}) p(f \mid, \boldsymbol{\theta})}{p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\theta})}
$$

- Model parameters like θ are also known as hyper-parameters.
- This is largely a computational, practical distinction:
data are observed
\rightarrow condition
variables are the things we care about
\rightarrow full probabilistic treatment
parameters are the things we have to deal with to get the model right hyper-parameters are the top-level, too expensive to properly infer
The model evidence in Bayes' Theorem is the (marginal) likelihood for the model. So we would like

$$
p(\boldsymbol{\theta} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{\int p\left(\boldsymbol{y} \mid \boldsymbol{\theta}^{\prime}\right) p\left(\boldsymbol{\theta}^{\prime}\right) d \boldsymbol{\theta}^{\prime}}
$$

$$
p(f \mid \boldsymbol{y}, \boldsymbol{x}, \boldsymbol{\theta})=\frac{p(\boldsymbol{y} \mid f, \boldsymbol{x}, \boldsymbol{\theta}) p(f \mid, \boldsymbol{\theta})}{\int p(\boldsymbol{y} \mid f, \boldsymbol{x}, \boldsymbol{\theta}) p(f \mid, \boldsymbol{\theta}) d f}=\frac{p(\boldsymbol{y} \mid f, \boldsymbol{x}, \boldsymbol{\theta}) p(f \mid, \boldsymbol{\theta})}{p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\theta})}
$$

- For Gaussians, die evidence has analytic form:

$$
\underbrace{\mathcal{N}\left(y ; \phi_{X}^{\theta^{\top}} w, \Lambda\right)}_{p(y \mid f, x, \theta)} \cdot \underbrace{\mathcal{N}(w, \mu, \Sigma)}_{p(f)}=\underbrace{\mathcal{N}\left(w ; m_{\text {post }}^{\theta}, v_{\text {post }}^{\theta}\right)}_{p(f \mid y, x, \theta)} \cdot \underbrace{\mathcal{N}\left(y ; \phi_{x}^{\theta^{\top}} \mu, \phi_{X}^{\theta \top} \Sigma \phi_{X}^{\theta}+\Lambda\right)}_{p(y \mid \theta, x)}
$$

- BUT: It's not a linear function of $\boldsymbol{\theta}$, so analytic Gaussian inference is not available!

Computational complexity is the principal challenge of probabilistic reasoning.

$$
\begin{aligned}
\hat{\boldsymbol{\theta}} & =\underset{\boldsymbol{\theta}}{\arg \max } p(\boldsymbol{y} \mid x, \boldsymbol{\theta})=\underset{\boldsymbol{\theta}}{\arg \max } \int p(y \mid f, x, \boldsymbol{\theta}) p(f \mid, \boldsymbol{\theta}) d f \\
& =\underset{\boldsymbol{\theta}}{\arg \max } \mathcal{N}\left(\boldsymbol{y} ; \quad \phi_{X}^{\theta^{\top}} \mu, \quad \phi_{X}^{\theta^{\top}} \Sigma \phi_{X}^{\boldsymbol{\theta}}+\Lambda\right) \\
& =\underset{\boldsymbol{\theta}}{\arg \max } \log \mathcal{N}\left(\boldsymbol{y} ; \quad \phi_{X}^{\theta^{\top}} \mu, \quad \phi_{X}^{\theta^{\top}} \Sigma \phi_{X}^{\boldsymbol{\theta}}+\Lambda\right) \\
& =\underset{\boldsymbol{\theta}}{\arg \min }-\log \mathcal{N}\left(\boldsymbol{y} ; \quad \phi_{X}^{\theta^{\top}} \mu, \quad \phi_{X}^{\theta^{\top}} \Sigma \phi_{X}^{\boldsymbol{\theta}}+\Lambda\right) \\
& =\underset{\boldsymbol{\theta}}{\arg \min } \frac{1}{2}(\underbrace{\left(y-\phi_{X}^{\theta^{\top}} \mu\right)^{\top}\left(\phi_{X}^{\theta^{\top}} \Sigma \phi_{X}^{\theta}+\Lambda\right)^{-1}\left(\boldsymbol{y}-\phi_{X}^{\theta^{\top}} \mu\right)}_{\text {square error }}+\underbrace{\log \left|\phi_{X}^{\theta^{\top}} \Sigma \phi_{X}^{\theta}+\Lambda\right|}_{\text {model complexity } / \text { Occam factor }})+\frac{N}{2} \log 2 \pi
\end{aligned}
$$

The Connection to Deep Learning

A linear Gaussian regressor is a single hidden layer neural network, with quadratic output loss, and fixed input layer. Hyperparameter-fitting corresponds to training the input layer. The usual way to train such network, however, does not include the Occam factor.

What are we actually doing with those features?

$$
\begin{aligned}
p\left(f_{x} \mid y, \phi_{x}\right)= & \mathcal{N}\left(f_{x} ; \phi_{x}^{\top} \mu+\phi_{x}^{\top} \Sigma \phi_{x}\left(\phi_{x}^{\top} \Sigma \phi_{x}+\sigma^{2} l\right)^{-1}\left(y-\phi_{x}^{\top} \mu\right),\right. \\
& \left.\phi_{x}^{\top} \Sigma \phi_{x}-\phi_{x}^{\top} \Sigma \phi_{x}\left(\phi_{x}^{\top} \Sigma \phi_{x}+\sigma^{2} l\right)^{-1} \phi_{x}^{\top} \Sigma \phi_{x}\right) \\
= & \mathcal{N}\left(f_{x} ; m_{x}+k_{x x}\left(k_{x x}+\sigma^{2} l\right)^{-1}\left(y-m_{x}\right)\right. \\
& \left.k_{x} x-k_{x x}\left(k_{x x}+\sigma^{2} l\right)^{-1} k_{x x}\right)
\end{aligned}
$$

using the abstraction / encapsulation

$$
\begin{array}{lll}
m_{x}:=\phi_{x}^{\top} \mu & m: \mathbb{X} \rightarrow \mathbb{R} & \text { mean function } \\
k_{a b}:=\phi_{a}^{\top} \Sigma \phi_{b} & k: \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{R} & \\
\text { covariance function, aka. kernel }
\end{array}
$$

Definition (kernel)

$k: \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{R}$ is a (Mercer / positive definite) kernel if, for any finite collection $X=\left[x_{1}, \ldots, x_{N}\right]$, the matrix $k_{x x} \in \mathbb{R}^{N \times N}$ with $\left[k_{x x}\right]_{i j}=k\left(x_{i}, x_{j}\right)$ is positive semidefinite.

> def kernel (f) : $\lambda(\mathrm{a}, \mathrm{b})$-> [[f(a[i],b[j]) for $\mathrm{j}=1:$ length(b)] for $\mathrm{i}=1:$ length(a)] actually, in python:

```
def kernel (f) : return lambda a,b : np.array([ [np.float64(f(a[i],b[j])) for j in range(b.size) ] for i in range(a.size) ])
```


Definition

Let $\mu: \mathbb{X} \rightarrow \mathbb{R}$ be any function, $k: \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{R}$ be a Mercer kernel. A Gaussian process $p(f)=\mathcal{G P}(f ; \mu, k)$ is a probability distribution over the function $f: \mathbb{X} \rightarrow \mathbb{R}$, such that every finite restriction to function values $f_{X}:=\left[f_{x_{1}}, \ldots, f_{x_{N}}\right]$ is a Gaussian distribution $p\left(f_{x}\right)=\mathcal{N}\left(f_{x} ; \mu_{x}, k_{x x}\right)$.

Gaussian Processes

- Sometimes it is possible to consider infinitely many features at once, by extending from a sum to an integral. This requires some regularity assumption about the features' locations, shape, etc.
- The resulting nonparametric model is known as a Gaussian process
- Inference in GPs is tractable (though at polynomial cost $\mathcal{O}\left(N^{3}\right)$ in the number N of datapoints)
- There is no unique kernel. In fact, there are quite a few! E.g.

$$
\begin{array}{rlrl}
k(a, b)= & \exp \left(-(a-b)^{2}\right) & & \text { Gaussian / Square Exponential / RBF kernel } \\
k(a, b)= & \min \left(a-t_{0}, b-t_{0}\right) & & \text { Wiener process } \\
k(a, b)= & \frac{1}{3} \min ^{3}\left(a-t_{0}, b-t_{0}\right) & & \text { cubic spline kernel } \\
& +\frac{1}{2}|a-b| \cdot \min ^{2}\left(a-t_{0}, b-t_{0}\right) & & \\
k(a, b)= & \frac{2}{\pi} \sin ^{-1}\left(\frac{2 a \tau b}{\sqrt{(1+2 a \tau a)(1+2 b \tau b)}}\right) & \text { Neural Network kernel (Williams, 1998) }
\end{array}
$$

Making New Kernels from Old

Theorem:

Let \mathbb{X}, \mathbb{Y} be index sets and $\phi: \mathbb{Y} \rightarrow \mathbb{X}$. If $k_{1}, k_{2}: \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{R}$ are Mercer kernels, then the following functions are also Mercer kernels (up to minor regularity assumptions)

- $\alpha \cdot k_{1}(a, b)$ for $\alpha \in \mathbb{R}_{+}$
- $k_{1}(\phi(c), \phi(d))$ for $c, d \in \mathbb{Y}$
$\rightarrow k_{1}(a, b)+k_{2}(a, b)$
$-k_{1}(a, b) \cdot k_{2}(a, b)$ (proof: trivial) (proof: by Mercer's theorem, next lecture) (proof: trivial) Schur product theorem (proof involved. E.g. Bapat, 1997. Million, 2007)
- Gaussian process regression is closely related to kernel ridge regression.
- the posterior mean is the kernel ridge / regularized kernel least-squares estimate in the RKHS \mathcal{H}_{k}.

$$
m(x)=k_{x x}\left(k_{x x}+\sigma^{2} I\right)^{-1} y=\underset{f \in \mathcal{H}_{k}}{\arg \min }\left\|y-f_{x}\right\|^{2}+\|f\|_{H_{k}}^{2}
$$

- the posterior variance (expected square error) is the worst-case square error for bounded-norm RKHS elements.

$$
v(x)=k_{x x}-k_{x x}\left(k_{x x}\right)^{-1} k_{x x}=\underset{f \in \mathcal{H}_{k},\|f\|_{H_{k}} \leq 1}{\arg \max }\|f(x)-m(x)\|^{2}
$$

- Similar connections apply for most kernel methods.
- GPs are quite powerful: They can learn any function in the RKHS (a large, generally infinite-dimensional space!)
- GPs are quite limited: If $f \notin \mathcal{H}_{k}$, they may converge very (e.g. exponentially) slowly to the truth.
- But if we are willing to be cautious enough (e.g. with a rough kernel whose RKHS is a Sobolev space of low order), then polynomial rates are achievable. (Unfortunately, exponentially slow in the dimensionality of the input space)

Framework:

$$
\int p\left(x_{1}, x_{2}\right) d x_{2}=p\left(x_{1}\right) \quad p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right) \quad p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Modelling:

- graphical models
- Gaussian distributions
- (deep) learnt representations
- Kernels
- Markov Chains

Computation:

- Monte Carlo
- Linear algebra / Gaussian inference
- maximum likelihood / MAP
- Laplace approximations

Graphical View: Parametric Model

$$
p(f)=\mathcal{G} \mathcal{P}\left(f ; 0, \Phi_{X}^{\top} \Sigma \Phi_{X}\right) \quad p\left(\left.\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right] \right\rvert\, w\right)=\prod_{i} \delta\left(f_{i}-\phi_{i}^{\top} w\right) \quad p(y \mid f)=\prod_{i} \mathcal{N}\left(y_{i} ; f_{i}, \sigma^{2}\right)
$$

$$
p(f)=\mathcal{G} \mathcal{P}(f ; 0, k) \quad p\left(\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right]\right)=\mathcal{N}\left(0,\left[\begin{array}{cccc}
K_{11}^{-1} & K_{12}^{-1} & K_{13}^{-1} & K_{14}^{-1} \\
& K_{22}^{-1} & K_{23}^{-1} & K_{24}^{-1} \\
& & K_{33}^{-1} & K_{34}^{-1} \\
& & & K_{44}^{-1}
\end{array}\right]^{-1}\right) p(\boldsymbol{y} \mid f)=\prod_{i} \mathcal{N}\left(y_{i} ; f_{i}, \sigma^{2}\right)
$$

Markov Chains

$$
p(f)=\mathcal{G} \mathcal{P}(f ; 0, k) \quad p\left(\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right]\right)=\mathcal{N}\left(0,\left[\begin{array}{cccc}
K_{11}^{-1} & K_{12}^{-1} & 0 & 0 \\
K_{12}^{-1} & K_{22}^{-1} & K_{23}^{-1} & 0 \\
0 & K_{23}^{-1} & K_{33}^{-1} & K_{34}^{-1} \\
0 & 0 & K_{34}^{-1} & K_{44}^{-1}
\end{array}\right]^{-1}\right) p(y \mid f)=\prod \mathcal{N}\left(y_{i} ; f_{i}, \sigma^{2}\right)
$$

Time Series:

- Markov Chains formalize the notion of a stochastic process with a local finite memory
- Inference over Markov Chains separates into three operations, that can be performed in linear time:

Filtering: $\mathcal{O}(T)$
predict: $\quad p\left(x_{t} \mid Y_{0: t-1}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid Y_{0: t-1}\right) d x_{t-1} \quad$ (Chapman-Kolmogorov Eq.)
update: $\quad p\left(x_{t} \mid Y_{0: t}\right)=\frac{p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid Y_{0: t-1}\right)}{p\left(y_{t}\right)}$
Smoothing: $\mathcal{O}(T)$
smooth: $\quad p\left(x_{t} \mid Y\right)=p\left(x_{t} \mid Y_{0: t}\right) \int p\left(x_{t+1} \mid x_{t}\right) \frac{p\left(x_{t+1} \mid Y\right)}{p\left(x_{t+1} \mid Y_{0: t}\right)} d x_{t+1}$

Time Series:

- Markov Chains formalize the notion of a stochastic process with a local finite memory
- Inference over Markov Chains separates into three operations, that can be performed in linear time.
- If all relationships are linear and Gaussian,

$$
p\left(x\left(t_{i}\right) \mid x\left(t_{i-1}\right)\right)=\mathcal{N}\left(x_{i} ; A x_{i-1}, Q\right) \quad p\left(y_{t} \mid x_{t}\right)=\mathcal{N}\left(y_{t} ; H x_{t}, R\right)
$$

then inference is analytic and given by the Kalman Filter and the Rauch-Tung-Striebel Smoother:
(Kalman) Filter:

$$
\begin{aligned}
p\left(x_{t}\right) & =\mathcal{N}\left(x_{t} ; m_{t}^{-}, P_{t}^{-}\right) & & \text {with } \\
m_{t}^{-} & =A m_{t-1} & & \text { predictive mean } \\
P_{t}^{-} & =A P_{t-1} A^{\top}+Q & & \text { predictive covariance } \\
p\left(x_{t} \mid y_{t}\right) & =\mathcal{N}\left(x_{t} ; m_{t}, P_{t}\right) & & \text { with } \\
z_{t} & =y_{t}-H m_{t}^{-} & & \text {innovation residual } \\
S_{t} & =H P_{t}^{-} H^{\top}+R & & \text { innovation covariance } \\
K_{t} & =P_{t}^{-} H^{\top} S^{-1} & & \text { Kalman gain } \\
m_{t} & =m_{t}^{-}+K z_{t} & & \text { estimation mean } \\
P_{t} & =(I-K H) P_{t}^{-} & & \text {estimation covariance }
\end{aligned}
$$

(Rauch Tung Striebel) Smoother:

$$
\begin{aligned}
p\left(x_{t} \mid Y\right) & =\mathcal{N}\left(x_{t} ; m_{t}^{s}, P_{t}^{s}\right) & & \text { with } \\
G_{t} & =P_{t} A^{\top}\left(P_{t+1}^{-}\right)^{-1} & & \text { RTS gain } \\
m_{t}^{s} & =m_{t}+G_{t}\left(m_{t+1}^{s}-m_{t+1}^{-}\right) & & \text {smoothed mean } \\
P_{t}^{s} & =P_{t}+G_{t}\left(P_{t+1}^{s}-P_{t+1}^{-}\right) G^{\top} & & \text { smoothed covariance }
\end{aligned}
$$

Regression:
Given supervised data (special case $d=1$: univariate regression)

$$
(X, Y):=\left(x_{i}, y_{i}\right)_{i=1, \ldots, n} \text { with } x_{i} \in \mathbb{X}, y_{i} \in \mathbb{R}^{d}
$$

find function $f: \mathbb{X} \rightarrow \mathbb{R}^{d}$ such that f "models" $Y \approx f(X)$.

Classification:
Given supervised data (special case $d=2$: binary classification)

$$
(X, Y):=\left(x_{i}, c_{i}\right)_{i=1, \ldots, n} \text { with } x_{i} \in \mathbb{X}, c_{i} \in\{1, \ldots, d\}
$$

find probability $\pi: \mathbb{X} \rightarrow U^{d}\left(U^{d}=\left\{p \in[0,1]^{d}: \sum_{i=1}^{d} p_{i}=1\right\}\right)$ such that π "models" $y_{i} \sim \pi_{x_{i}}$.
Regression predicts a function, classification predicts a probability.

$$
\begin{aligned}
p(f) & =\mathcal{G P}(f ; m, k) \\
p\left(y \mid f_{x}\right) & =\sigma\left(y f_{x}\right)=\left\{\begin{array}{ll}
\sigma(f) & \text { if } y=1 \\
1-\sigma(f) & \text { if } y=-1
\end{array} \quad \text { using } \sigma(x)=1-\sigma(-x) .\right.
\end{aligned}
$$

The problem: The posterior is not Gaussian!

$$
\begin{aligned}
p\left(f_{X} \mid Y\right) & =\frac{p\left(Y \mid f_{X}\right) p\left(f_{X}\right)}{p(Y)}=\frac{\mathcal{N}\left(f_{X} ; m, k\right) \prod_{i=1}^{n} \sigma\left(y_{y} f_{x_{i}}\right)}{\int \mathcal{N}\left(f_{X} ; m, k\right) \prod_{i=1}^{n} \sigma\left(y_{i} f_{x_{i}}\right) d f_{X}} \\
\log p\left(f_{X} \mid Y\right) & =-\frac{1}{2} f_{X}^{\top} k_{X X}^{-1} f_{X}+\sum_{i=1}^{n} \log \sigma\left(y_{i} f_{x_{i}}\right)+\text { const. }
\end{aligned}
$$

Logistic Regression is non-analytic

Logistic Regression is non-analytic

Logistic Regression is non-analytic

The Laplace Approximation

The Laplace Approximation

- Consider a probability distribution $p(\theta)$ (may be a posterior $p(\theta \mid D)$ or something else)
- find a (local) maximum of $p(\theta)$ or (equivalently) $\log p(\theta)$

$$
\hat{\theta}=\arg \max \log p(\theta) \quad \Rightarrow \quad \nabla \log p(\hat{\theta})=0
$$

- perform second order Taylor expansion around $\theta=\hat{\theta}+\delta$ in log space

$$
\log p(\delta)=\log p(\hat{\theta})+\frac{1}{2} \delta^{\top}(\underbrace{\nabla \nabla^{\top} \log p(\hat{\theta})}_{=: \Psi}) \delta+\mathcal{O}\left(\delta^{3}\right)
$$

- define the Laplace approximation q to p

$$
q(\theta)=\mathcal{N}\left(\theta ; \hat{\theta},-\Psi^{-1}\right)
$$

- Note that, if $p(\theta)=\mathcal{N}(\theta ; m, \Sigma)$, then $p(\theta)=q(\theta)$

Generalized Linear Models

- extend the idea discussed for classification in the previous lecture to general link functions. That is, non-Gaussian likelihoods of general form.
- a simple (approximate) probabilistic version can be constructed by analogously extending the Laplace approximation from the previous lecture
- note that, for arbitrary link functions, the Laplace approximation may well be quite bad

A recent example

$$
p\left(y \mid f_{T}\right)=\mathcal{N}\left(y ; f_{T}, \sigma^{2} I\right) \quad p(f)=\mathcal{G} \mathcal{P}(f ; 0, k)
$$

A recent example

$$
\begin{aligned}
& p\left(y \mid f_{T}\right)=\mathcal{N}\left(y ; \exp \left(f_{T}\right), \sigma^{2} l\right) \approx q\left(y \mid f_{T}\right)=\mathcal{N}\left(\log y ; f_{T}, \sigma^{2} \operatorname{diag}(1 / y)\right) \text { because } \\
& \left.\frac{\partial \log p\left(y \mid f_{T}\right)}{\partial f_{T}}\right|_{f_{T}=\hat{f}_{P}}=0 \Rightarrow \quad \hat{f}_{T}=\log y \quad \text { and }\left.\quad \frac{\partial^{2} \log p\left(y \mid f_{T}\right)}{\partial^{2} f_{T}}\right|_{f_{i}=\hat{f}_{T}}=\frac{y^{2}}{\sigma^{2}}
\end{aligned}
$$

Be Bayesian, even in Deep Learning!

- A strong point estimate doesn't matter if it's uncertain
- replace $p(y=1 \mid x)=\sigma\left(f_{w}(x)\right)$ with the marginal

$$
p(y=1 \mid x)=\int \sigma\left(f_{W}(x)\right) p(W \mid y) d W
$$

- approximate posterior on W by Laplace as

$$
p(W \mid y) \approx \mathcal{N}\left(W ; W^{*},-\left(\nabla \nabla^{\top} J(W)\right)^{-1}\right)=: \mathcal{N}\left(W ; W^{*}, \Psi\right)
$$

- and on f by linearizing with $G(x)=\frac{d f_{W^{*}}(x)}{d W}$ as $f_{W}(x) \approx f_{W^{*}}(x)+G(x)\left(W-W^{*}\right)$, thus

$$
p\left(f_{W}(x)\right)=\int p(f \mid W) p(W) d W \approx \mathcal{N}\left(f(x) ; f_{W^{*}}(x), G(x) \Psi G(x)^{\top}\right)=: \mathcal{N}(f(x) ; m(x), v(x))
$$

- and approximate the marginal (MacKay, 1992) as

$$
p(y=1 \mid x) \approx \sigma\left(\frac{m(x)}{\sqrt{1+\pi / 8 v(x)}}\right) .
$$

Theorem (Kristiadi et al., 2020)

Let $f_{W}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a binary ReLU classification network parametrized by $W \in \mathbb{R}^{p}$ with $p \geq n$, and let $\mathcal{N}\left(W \mid W^{*}, \Psi\right)$ be the approximate posterior. Then for any input $x \in \mathbb{R}^{n}$, there exists an $\alpha>0$ such that for any $\delta \geq \alpha$, the confidence $\sigma(|z(\delta \mathbf{x})|)$ is bounded from above by the limit $\lim _{\delta \rightarrow \infty} \sigma(|z(\delta x)|)$. Furthermore,

$$
\lim _{\delta \rightarrow \infty} \sigma(|z(\delta x)|) \leq \sigma\left(\frac{|u|}{s_{\min }(J) \sqrt{\pi / 8 \lambda_{\min }(\Psi)}}\right)
$$

where $u \in \mathbb{R}^{n}$ is a vector depending only on W and the $n \times p$ matrix $J:=\left.\frac{\partial u}{\partial W}\right|_{W^{*}}$ is the Jacobian of u w.r.t. W at W^{*}.

Framework:

$$
\int p\left(x_{1}, x_{2}\right) d x_{2}=p\left(x_{1}\right) \quad p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right) \quad p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Modelling:

- graphical models
- Gaussian distributions
- (deep) learnt representations
- Kernels
- Markov Chains
- Exponential Families / Conjugate Priors
- Factor Graphs \& Message Passing

Computation:

- Monte Carlo
- Linear algebra / Gaussian inference
- maximum likelihood / MAP
- Laplace approximations

Conjugate Priors and Exponential Families

Definition (Conjugate Prior)

Let D and x be a data-set and a variable to be inferred, respectively, connected by the likelihood $p(D \mid x)=\ell(D ; x)$. A conjugate prior to ℓ for x is a probability measure with pdf $p(x)=\pi(x ; \theta)$ of functional form π, such that

$$
p(x \mid D)=\frac{\ell(D ; x) \pi(x ; \theta)}{\int \ell(D ; x) \pi(x ; \theta) d x}=\pi\left(x ; \theta^{\prime}\right) .
$$

That is, such that the posterior arising from ℓ is of the same functional form as the prior, with updated parameters.

Conjugate Priors and Exponential Families

Definition (Exponential Family, simplified form)

Consider a random variable X taking values $x \in \mathbb{X} \subset \mathbb{R}^{n}$. A probability distribution for X with pdf of the functional form

$$
p_{w}(x)=h(x) \exp \left[\phi(x)^{\top} w-\log Z(w)\right]=\frac{h(x)}{Z(w)} e^{\phi(x)^{\top} w}=p(x \mid w)
$$

is called an exponential family of probability measures. The function $\phi: \mathbb{X} \rightarrow \mathbb{R}^{d}$ is called the sufficient statistics. The parameters $w \in \mathbb{R}^{d}$ are the natural parameters of p_{w}. The normalization constant $Z(w): \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the partition function. The function $h(x): \mathbb{X} \rightarrow \mathbb{R}_{+}$is the base measure.

Name	sufficient stats	domain	use case
Bernoulli	$\phi(x)=[x]$	$\mathbb{X}=\{0 ; 1\}$	coin toss
Poisson	$\phi(x)=[x]$	$\mathbb{X}=\mathbb{R}_{+}$	emails per day
Laplace	$\phi(x)=[1, x]^{\top}$	$\mathbb{X}=\mathbb{R}$	floods
Helmert $\left(\chi^{2}\right)$	$\phi(x)=[x,-\log x]$	$\mathbb{X}=\mathbb{R}$	variances
Dirichlet	$\phi(x)=[\log]$	$\mathbb{X}=\mathbb{R}_{+}$	class probabilities
Euler (Γ)	$\phi(x)=[x, \log x]$	$\mathbb{X}=\mathbb{R}_{+}$	variances
Wishart	$\phi(X)=[X, \log \|X\|]$	$\mathbb{X}=\left\{X \in \mathbb{R}^{N \times N} \mid v^{\top} X v \geq 0 \forall v \in \mathbb{R}^{N}\right\}$	covariances
Gauss	$\phi(X)=\left[X, X X^{\top}\right]$	$\left.\mathbb{X}=\mathbb{R}^{N}\right]$	functions
Boltzmann	$\phi(X)=\left[X\right.$, rriag $\left.\left(X X^{\top}\right)\right]$	$\mathbb{X}=\{0 ; 1\}^{N}$	thermodynamics

Full Bayesian Regression on Distributions!

- Given $\left[x_{i}\right]_{i=1, \ldots, n}$ with $x_{i} \sim p(x)$, assume

$$
p(x) \approx p_{w}(x \mid w)=\exp \left(\phi(x)^{\top} w-\log Z(w)\right) \quad \text { and } \quad p_{F}(w \mid \alpha, \nu)=\exp \left(w^{\top} \alpha-\nu \log Z(w)-\log F(\alpha, \nu)\right)
$$

- compute the posterior on w, using the conjugate prior

$$
p(w \mid x, \alpha, \nu)=\frac{\prod_{i=1}^{n} p_{w}\left(x_{i} \mid w\right) p_{F}(w \mid \alpha, \nu)}{\int p(x \mid w) p(w \mid \alpha, \nu) d x}=p_{F}\left(w \mid \alpha+\sum_{i} \phi\left(x_{i}\right), \nu+n\right)
$$

- note that $\left.\nabla \nabla p_{F}(W \mid \alpha, \nu)\right|_{w_{*}=\arg \operatorname{maxp}(w \mid \alpha, \nu)}=-\nu p\left(W_{*} \mid \alpha, \nu\right) \nabla_{W} \nabla_{W}^{\top} \log Z\left(W_{*}\right)$
- In the limit $n \rightarrow \infty$, posterior concentrates at w_{*} with

$$
\nabla_{w} \log Z\left(w_{*}\right)=\frac{\alpha}{n}+\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)=\mathbb{E}_{p}(\phi(x)) \quad \text { thus } \quad p_{w}\left(x \mid w_{*}\right)=\underset{w}{\arg \min } D_{\mathrm{KL}}\left(p(x) \| p_{w}(x \mid w)\right)
$$

Framework:

$$
\int p\left(x_{1}, x_{2}\right) d x_{2}=p\left(x_{1}\right) \quad p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right) \quad p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Modelling:

- graphical models
- Gaussian distributions
- (deep) learnt representations
- Kernels
- Markov Chains
- Exponential Families / Conjugate Priors
- Factor Graphs \& Message Passing

Computation:

- Monte Carlo
- Linear algebra / Gaussian inference
- maximum likelihood / MAP
- Laplace approximations
- EM / variational approximations

$$
\begin{aligned}
& p(C, \Pi, \Theta, W)=\underbrace{\left(\prod_{d=1}^{D} \mathcal{D}\left(\boldsymbol{\pi}_{d} ; \boldsymbol{\alpha}_{d}\right)\right)}_{p(\Pi \mid \boldsymbol{\alpha})} \cdot \underbrace{\left(\prod_{d=1}^{D} \prod_{i=1}^{I_{d}}\left(\prod_{k=1}^{K} \pi_{d k}^{c_{d i k}}\right)\right)}_{p(C \mid \Pi)} \cdot \underbrace{\left(\prod_{d=1}^{D} \prod_{i=1}^{I_{d}}\left(\prod_{k=1}^{K} \theta_{k W_{d i}}^{C_{d i k}}\right)\right)}_{p(W \mid C, \Theta)} \cdot \underbrace{\left(\prod_{k=1}^{K} \mathcal{D}\left(\boldsymbol{\theta}_{k} ; \boldsymbol{\beta}_{k}\right)\right)}_{p(\Theta \mid \boldsymbol{\beta})} \\
& p(W \mid \Pi, \Theta)=\sum_{d, i, k}\left(\prod_{d=1}^{D} \prod_{i=1}^{I_{d}} \prod_{k=1}^{K} \pi_{d k} \theta_{k w_{d i}}\right) \quad \log p(W \mid \Pi, \Theta)=\log \sum(\ldots) \neq \sum \log (\ldots)
\end{aligned}
$$

Maximizing the likelihood for Θ, Π is difficult because it does not factorize along documents or words.

The EM algorithm:

- to find maximum likelihood (or MAP) estimate for a model involving a latent variable

$$
\theta_{*}=\underset{\theta}{\arg \max }[\log p(x \mid \theta)]=\underset{\theta}{\arg \max }\left[\log \left(\int p(x, z \mid \theta) d z\right)\right]
$$

- Initialize θ_{0}, then iterate between

E Compute $p\left(z \mid x, \theta_{\text {old }}\right)$, thereby setting $D_{\text {KL }}(q \| p(z \mid x, \theta)=0$
M Set $\theta_{\text {new }}$ to the Maximize the Expectation Lower Bound

$$
\theta_{\text {new }}=\arg \max \mathcal{L}(q, \theta)=\underset{\theta}{\arg \max } \int q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)}\right) d z
$$

- Check for convergence of either the log likelihood, or θ.

The EM algorithm:

- to find maximum likelihood (or MAP) estimate for a model involving a latent variable

$$
\theta_{*}=\arg \max _{\theta}[\log p(x \mid \theta)]=\underset{\theta}{\arg \max }\left[\log \left(\int p(x, z \mid \theta) d z\right)\right]
$$

- Initialize θ_{0}, then iterate between

E Compute $p\left(z \mid x, \theta_{\text {old }}\right)$, thereby setting $D_{\text {KL }}(q \| p(z \mid x, \theta)=0$
M Set $\theta_{\text {new }}$ to the Maximize the Expectation Lower Bound / minimize the Variational Free Energy

$$
\theta_{\text {new }}=\arg \max \mathcal{L}(q, \theta)=\underset{\theta}{\arg \max } \int q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)}\right) d z
$$

- Check for convergence of either the log likelihood, or θ.

$$
\begin{aligned}
\log p(x \mid \theta) & =\mathcal{L}(q, \theta)+D_{\mathrm{KL}}(q \| p(z \mid x, \theta)) \\
\mathcal{L}(q, \theta) & =\int q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)}\right) d z \\
D_{\mathrm{KL}}(q \| p(z \mid x, \theta)) & =-\int q(z) \log \left(\frac{p(z \mid x, \theta)}{q(z)}\right) d z
\end{aligned}
$$

$$
\begin{aligned}
\log p(x \mid \theta) & =\mathcal{L}(q, \theta)+D_{\mathrm{KL}}(q \| p(z \mid x, \theta)) \\
\mathcal{L}(q, \theta) & =\int q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)}\right) d z \\
D_{\mathrm{KL}}(q \| p(z \mid x, \theta)) & =-\int q(z) \log \left(\frac{p(z \mid x, \theta)}{q(z)}\right) d z
\end{aligned}
$$

E -step: $q(z)=p\left(z \mid x, \theta_{\text {old }}\right)$, thus $D_{K L}\left(q \| p\left(z \mid x, \theta_{i}\right)\right)=0$

$$
\begin{aligned}
\log p(x \mid \theta) & =\mathcal{L}(q, \theta)+D_{\mathrm{KL}}(q \| p(z \mid x, \theta)) \\
\mathcal{L}(q, \theta) & =\int q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)}\right) d z \\
D_{\mathrm{KL}}(q \| p(z \mid x, \theta)) & =-\int q(z) \log \left(\frac{p(z \mid x, \theta)}{q(z)}\right) d z
\end{aligned}
$$

E -step: $q(z)=p\left(z \mid x, \theta_{\text {old }}\right)$, thus $D_{\text {KL }}\left(q \| p\left(z \mid x, \theta_{i}\right)\right)=0$
M -step: Maximize ELBO

$$
\begin{aligned}
\theta_{\text {new }} & =\underset{\theta}{\arg \max } \int q(z) \log p(x, z \mid \theta) d z \\
& =\underset{\theta}{\arg \max } \mathcal{L}(q, \theta)+\int q(z) \log q(z) d z
\end{aligned}
$$

Variational Inference

- is a general framework to construct approximating probability distributions $q(z)$ to non-analytic posterior distributions $p(z \mid x)$ by minimizing the functional

$$
q^{*}=\underset{q \in \mathcal{Q}}{\arg \min } D_{K L}(q(z) \| p(z \mid x))=\underset{q \in \mathcal{Q}}{\arg \max } \mathcal{L}(q)
$$

- the beauty is that we get to choose q, so one can nearly always find a tractable approximation.
- If we impose the mean field approximation $q(z)=\prod_{i} q\left(z_{i}\right)$, get

$$
\log q_{j}^{*}\left(z_{j}\right)=\mathbb{E}_{q, i \neq j}(\log p(x, z))+\text { const.. }
$$

- for Exponential Family p things are particularly simple: we only need the expectation under q of the sufficient statistics.
Variational Inference is an extremely flexible and powerful approximation method. Its downside is that constructing the bound and update equations can be tedious. For a quick test, variational inference is often not a good idea. But for a deployed product, it can be the most powerful tool in the box.

Framework:

$$
\int p\left(x_{1}, x_{2}\right) d x_{2}=p\left(x_{1}\right) \quad p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right) \quad p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Modelling:

- graphical models
- Gaussian distributions
- (deep) learnt representations
- Kernels
- Markov Chains
- Exponential Families / Conjugate Priors
- Factor Graphs \& Message Passing

Computation:

- Monte Carlo
- Linear algebra / Gaussian inference
- maximum likelihood / MAP
- Laplace approximations
- EM / variational approximations

Designing a probabilistic machine learning method:

1. get the data
1.1 try to collect as much meta-data as possible
2. build the model
2.1 identify quantities and datastructures; assign names
2.2 design a generative process (graphical model)
2.3 assign (conditional) distributions to factors/arrows (use exponential families!)
3. design the algorithm
3.1 consider conditional independence
3.2 try standard methods for early experiments
3.3 run unit-tests and sanity-checks
3.4 identify bottlenecks, find customized approximations and refinements

Packaged solutions can give great first solutions, fast.
Building a tailormade solution requires creativity and mathematical stamina.

Life's most important problems are, for the most part, problems of probability.

Pierre-Simon, marquis de Laplace (1749-1827)

