Probabilistic Machine Learning LECTURE 25
 Customizing Probabilistic Models

Philipp Hennig
19 July 2021

Faculty of Science
Department of Computer Science
Chair for the methods of Machine Learning

Framework:

$$
\int p\left(x_{1}, x_{2}\right) d x_{2}=p\left(x_{1}\right) \quad p\left(x_{1}, x_{2}\right)=p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right) \quad p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Modelling:

- graphical models
- Gaussian distributions
- (deep) learnt representations
- Kernels
- Markov Chains
- Exponential Families / Conjugate Priors
- Factor Graphs \& Message Passing

Computation:

- Monte Carlo
- Linear algebra / Gaussian inference
- maximum likelihood / MAP
- Laplace approximations
- EM (iterative maximum likelihood)
- variational inference / mean field

Variational Inference

- is a general framework to construct approximating probability distributions $q(z)$ to non-analytic posterior distributions $p(z \mid x)$ by minimizing the functional

$$
q^{*}=\underset{q \in \mathcal{Q}}{\arg \min } D_{K L}(q(z) \| p(z \mid x))=\underset{q \in \mathcal{Q}}{\arg \max } \mathcal{L}(q)
$$

- the beauty is that we get to choose q, so one can nearly always find a tractable approximation.
- If we impose the mean field approximation $q(z)=\prod_{i} q\left(z_{i}\right)$, get

$$
\log q_{j}^{*}\left(z_{j}\right)=\mathbb{E}_{q, i \neq j}(\log p(x, z))+\text { const.. }
$$

- for Exponential Family p things are particularly simple: we only need the expectation under q of the sufficient statistics.
Variational Inference is an extremely flexible and powerful approximation method. Its downside is that constructing the bound and update equations can be tedious. For a quick test, variational inference is often not a good idea. But for a deployed product, it can be the most powerful tool in the box.

To draw I_{d} words $w_{d i} \in[1, \ldots, V]$ of document $d \in[1, \ldots, D]$:

- Draw K topic distributions θ_{k} over V words from $\quad p(\Theta \mid \boldsymbol{\beta})=\prod_{k=1}^{K} \mathcal{D}\left(\theta_{k} ; \beta_{k}\right)$
- Draw D document distributions over K topics from
$p(\Pi \mid \boldsymbol{\alpha})=\prod_{d=1}^{D} \mathcal{D}\left(\pi_{d} ; \alpha_{d}\right)$
- Draw topic assignments $c_{i k}$ of word $w_{d i}$ from

$$
p(C \mid \Pi)=\prod_{i, d, k} \pi_{d k}^{c_{d j k}}
$$

- Draw word $w_{d i}$ from

$$
p\left(w_{d i}=v \mid c_{d i}, \Theta\right)=\prod_{k} \theta_{k v}^{c_{d i k}}
$$

Useful notation: $n_{d k v}=\#\left\{i: w_{d i}=v, c_{i j k}=1\right\}$. Write $n_{d k:}:=\left[n_{d k 1}, \ldots, n_{d k v}\right]$ and $n_{d k .}=\sum_{v} n_{d k v}$, etc.

$$
\begin{array}{ll}
q\left(\boldsymbol{\pi}_{d}\right)=\mathcal{D}\left(\boldsymbol{\pi}_{d} ; \tilde{\alpha}_{d k}:=\left[\alpha_{d k}+\sum_{i=1}^{I_{d}} \tilde{\gamma}_{d i k}\right]_{k=1, \ldots, k}\right) & \forall d=1, \ldots, D \\
q\left(\boldsymbol{\theta}_{k}\right)=\mathcal{D}\left(\boldsymbol{\theta}_{k} ; \tilde{\beta}_{k v}:=\left[\beta_{k v}+\sum_{d}^{D} \sum_{i=1}^{I_{d}} \tilde{\gamma}_{d i k} \mathbb{I}\left(w_{d i}=v\right)\right]_{v=1, \ldots, v}\right) & \forall k=1, \ldots, K \\
q\left(\boldsymbol{c}_{d i}\right)=\prod_{k} \tilde{\gamma}_{d d i k}, & \forall d i=1, \ldots, I_{d}
\end{array}
$$

where $\tilde{\gamma}_{d i k}=\gamma_{d i k} / \sum_{k} \gamma_{d i k}$ and (note that $\sum_{k} \tilde{\alpha}_{d k}=$ const.)

$$
\begin{aligned}
\gamma_{d i k} & =\exp \left(\mathbb{E}_{q\left(\pi_{d k}\right)}\left(\log \pi_{d k}\right)+\mathbb{E}_{q\left(\theta_{d i}\right)}\left(\log \theta_{k w_{d i}}\right)\right) \\
& =\exp \left(\digamma\left(\tilde{\alpha}_{j k}\right)+\digamma\left(\tilde{\beta}_{k w_{d i}}\right)-\digamma\left(\sum_{v} \tilde{\beta}_{k v}\right)\right)
\end{aligned}
$$

```
procedure LDA \((W, \alpha, \beta)\)
        \(\tilde{\gamma}_{d i k} \longleftarrow\) DIRICHLET_RAND \((\alpha)\)
        \(\mathcal{L} \longleftarrow-\infty\)
        while \(\mathcal{L}\) not converged do
            for \(d=1, \ldots, D ; k=1, \ldots, K\) do
            \(\mid \quad \tilde{\alpha}_{d k} \longleftarrow \alpha_{d k}+\sum_{j} \tilde{\gamma}_{d i k}\)
            end for
            for \(k=1, \ldots, K ; v=1, \ldots, V\) do
            \(\mid \quad \tilde{\beta}_{k v} \leftarrow \beta_{k v}+\sum_{d, i} \tilde{\gamma}_{d i k} \mathbb{I}\left(W_{d i}=v\right) \quad / /\) update topic-word distributions
            end for
            for \(d=1, \ldots, D ; k=1, \ldots, K ; i=1, \ldots, I_{d}\) do
                \(\tilde{\gamma}_{d i k} \leftarrow-\exp \left(\digamma\left(\tilde{\alpha}_{d k}\right)+\digamma\left(\tilde{\beta}_{k w_{d i}}\right)-\digamma\left(\sum_{v} \tilde{\beta}_{k v}\right)\right) \quad / /\) update word-topic assignments
                \(\tilde{\gamma}_{d i k} \llbracket \tilde{\gamma}_{d i k} / \tilde{\gamma}_{d i}\).
            end for
                    \(\mathcal{L} \varangle \operatorname{BOUND}(\tilde{\gamma}, w, \tilde{\alpha}, \tilde{\beta}) \quad / /\) update bound
    end while
    end procedure

\section*{Exponential Family Approximations}
- What has happened here? Why the connection to EM?
- Consider an exponential family joint distribution
\[
\begin{aligned}
p(x, z \mid \eta) & =\prod_{n=1}^{N} \exp \left(\eta^{\top} \phi\left(x_{n}, z_{n}\right)-\log Z(\eta)\right) \\
\text { with conjugate prior } p(\eta \mid \nu, v) & =\exp \left(\eta^{\top} v-\nu \log Z(\eta)-\log F(\nu, v)\right)
\end{aligned}
\]
- and assume \(q(z, \eta)=q(z) \cdot q(\eta)\). Then \(q\) is in the same exponential family, with
\[
\begin{aligned}
\log q^{*}(z) & =\mathbb{E}_{q(\eta)}(\log p(x, z \mid \eta))+\text { const. }=\sum_{n=1}^{N} \mathbb{E}_{q(\eta)}(\eta)^{\top} \phi\left(x_{n}, z_{n}\right) \\
q^{*}(z) & =\prod_{n=1} \exp \left(\mathbb{E}(\eta)^{\top} \phi\left(x_{n}, z_{n}\right)-\log Z(\mathbb{E}(\eta))\right) \quad \text { (note induced factorization) }
\end{aligned}
\]

\section*{Exponential Family Approximations}
- What has happened here? Why the connection to EM?
- Consider an exponential family joint distribution
\[
\begin{aligned}
p(x, z \mid \eta) & =\prod_{n=1}^{N} \exp \left(\eta^{\top} \phi\left(x_{n}, z_{n}\right)-\log Z(\eta)\right) \\
\text { with conjugate prior } p(\eta \mid \nu, v) & =\exp \left(\eta^{\top} v-\nu \log Z(\eta)-\log F(\nu, v)\right)
\end{aligned}
\]
- and assume \(q(z, \eta)=q(z) \cdot q(\eta)\). Then \(q\) is in the same exponential family, with
\[
\begin{aligned}
\log q^{*}(\eta) & =\log p(\eta \mid \nu, v)+\mathbb{E}_{z}(\log p(x, z \mid \eta))+\text { const. } \\
& =-\nu \log Z(\eta)+\eta^{\top} v+\sum_{n=1}^{N}-\log Z(\eta)+\eta^{\top} \mathbb{E}_{z}\left(\phi\left(x_{n}, z_{n}\right)\right)+\text { const. } \\
q^{*}(\eta) & =\exp \left(\eta^{\top}\left(v+\sum_{n=1}^{N} \mathbb{E}_{z}\left(\phi\left(x_{n}, z_{n}\right)\right)\right)-(\nu+N) \log Z(\eta)-\text { const. }\right)
\end{aligned}
\]

Even, and especially if, you consider variational approximations, using conjugate exponential family priors can make life much easier.

Recall \(\Gamma(x+1)=x \cdot \Gamma(x) \forall x \in \mathbb{R}_{+}\)
\[
\begin{aligned}
& p(C, \Pi, \Theta, W)=\left(\prod_{d=1}^{D} \frac{\Gamma\left(\sum_{k} \alpha_{d k}\right)}{\prod_{k} \Gamma\left(\alpha_{d k}\right)} \prod_{k=1}^{K} \pi_{d k}^{\alpha_{d k}-1+n_{d k} .}\right) \cdot\left(\prod_{k=1}^{K} \frac{\Gamma\left(\sum_{v} \beta_{k v}\right)}{\prod_{V} \Gamma\left(\beta_{k v}\right)} \prod_{v=1}^{V} \theta_{k v}^{\beta_{k v}-1+n_{. k v}}\right) \\
& =\left(\prod_{d=1}^{D} \frac{B\left(\alpha_{d}+n_{d: \cdot}\right)}{B\left(\alpha_{d}\right)} \mathcal{D}\left(\pi_{d} ; \alpha_{d}+n_{d: \cdot}\right)\right) \cdot\left(\prod_{k=1}^{K} \frac{B\left(\beta_{k}+n_{\cdot k:}\right)}{B\left(\beta_{k}\right)} \mathcal{D}\left(\theta_{k} ; \beta_{k}+n_{\cdot k}\right)\right) \\
& p(C, W)=\left(\prod_{d=1}^{D} \frac{B\left(\alpha_{d}+n_{d: \cdot}\right)}{B\left(\alpha_{d}\right)}\right) \cdot\left(\prod_{k=1}^{k} \frac{B\left(\beta_{k}+n_{\cdot k:}\right)}{B\left(\beta_{k}\right)}\right) \\
& =\left(\prod_{d} \frac{\Gamma\left(\sum_{k^{\prime}} \alpha_{d k^{\prime}}\right)}{\Gamma\left(\sum_{k^{\prime}} \alpha_{d k^{\prime}}+n_{d k^{\prime} .}\right)} \prod_{k} \frac{\Gamma\left(\alpha_{d k}+n_{d k} .\right)}{\Gamma\left(\alpha_{d k}\right)}\right)\left(\prod_{k} \frac{\Gamma\left(\sum_{v} \beta_{k v}\right)}{\Gamma\left(\sum_{v} \beta_{k v}+n_{\cdot k v}\right)} \prod_{v} \frac{\Gamma\left(\beta_{k v}+n_{. k v}\right)}{\Gamma\left(\beta_{k v}\right)}\right) \\
& p\left(c_{d i k}=1 \mid C^{\backslash d i}, W\right)=\frac{\left(\alpha_{d k}+n_{d k}^{\backslash d i}\right)\left(\beta_{k w_{d i}}+n_{\cdot k w_{d i}}^{\backslash d i}\right)\left(\sum_{v} \beta_{k v}+n_{\cdot k v}^{\backslash d i}\right)^{-1}}{\sum_{k^{\prime}}\left(\alpha_{d k^{\prime}}+n_{d k^{\prime} .}^{\backslash d i}\right) \cdot \sum_{W^{\prime}}\left(\beta_{k w^{\prime}}+n_{\cdot k w^{\prime}}^{\backslash d i}\right) \cdot \sum_{v^{\prime}}\left(\beta_{k v^{\prime}}+n_{\cdot k v^{\prime}}^{\backslash d i}\right)^{-1}}
\end{aligned}
\]

\section*{A Collapsed Gibbs Sampler for LDA}
\[
p(C, W)=\left(\prod_{d} \frac{\Gamma\left(\sum_{k} \alpha_{d k}\right)}{\Gamma\left(\sum_{k} \alpha_{d k}+n_{d k} \cdot\right)} \prod_{k} \frac{\Gamma\left(\alpha_{d k}+n_{d k \cdot}\right)}{\Gamma\left(\alpha_{d k}\right)}\right)\left(\prod_{k} \frac{\Gamma\left(\sum_{v} \beta_{k v}\right)}{\Gamma\left(\sum_{v} \beta_{k v}+n_{\cdot k v}\right)} \prod_{v} \frac{\Gamma\left(\beta_{k v}+n_{\cdot k v}\right)}{\Gamma\left(\beta_{k v}\right)}\right)
\]

A collapsed sampling method can converge much faster by eliminating the latent variables that mediate between individual data.
```

procedure LDA(W, \alpha, \beta)
\gammadkv}\mp@code{\leftarrow 0\foralld,k,v
while true do
for d=1,···,D;i=1,···, ld do
Cdi}\propto\propto(\mp@subsup{\alpha}{dk}{}+\mp@subsup{n}{dk.}{\di})(\mp@subsup{\beta}{k\mp@subsup{w}{di}{}}{}+\mp@subsup{n}{\cdotk\mp@subsup{w}{di}{}}{\di})(\mp@subsup{\sum}{v}{}\mp@subsup{\beta}{kv}{}+\mp@subsup{n}{.kv}{\di})-
n}\leftarrow\mathrm{ UPDATECOUNTS(C}\mp@subsup{C}{di}{})\quad// update counts (check whether first pass or repeat
end for
end while
end procedure

```

\section*{Can we do the same for variational inference?}
- Deriving our variational bound, we previously imposed the factorization
\[
\begin{aligned}
& q(\Pi, \Theta, C)=q(\Pi, \Theta) \cdot \prod_{d i} q\left(c_{d i}\right), \quad \text { but can we get away with less? Like, } \\
& q(\Pi, \Theta, C)=q(\Theta, \Pi \mid C) \cdot \prod_{d i} q\left(c_{d i}\right)
\end{aligned}
\]
- Note \(p(C, \Theta, \Pi \mid W)=p(\Theta, \Pi \mid C, W) p(C \mid W)\). So when we minimize
\[
\begin{aligned}
& D_{\mathrm{KL}}(q(\Pi, \Theta, C) \| p(\Pi, \Theta, C \mid W))=\int q(\Pi, \Theta \mid C) q(C) \log \left(\frac{q(\Pi, \Theta \mid C) q(C)}{p(\Pi, \Theta \mid C, W) p(C \mid W)}\right) d C d \Pi d \Theta \\
&=\int q(\Pi, \Theta \mid C) q(C)[ \left.\log \left(\frac{q(\Pi, \Theta \mid C)}{p(\Pi, \Theta \mid C, W)}\right)+\log \left(\frac{q(C)}{p(C \mid W)}\right)\right] d C d \Pi d \Theta \\
&=D_{\mathrm{KL}}(q(\Pi, \Theta \mid C) \| p(\Pi, \Theta \mid C, W))+D_{\mathrm{KL}}(q(C) \| p(C \mid W))
\end{aligned}
\]
we will just get \(q(\Theta, \Pi)=p(\Theta, \Pi \mid C, W)\) and the bound will be tight in \(\Pi, \Theta\).
\[
p(C, W)=\left(\prod_{d} \frac{\Gamma\left(\sum_{k} \alpha_{d k}\right)}{\Gamma\left(\sum_{k} \alpha_{d k}+n_{d k}\right)} \Pi_{k} \frac{\Gamma\left(\alpha_{d k}+n_{d k}\right)}{\Gamma\left(\alpha_{d k}\right)}\right)\left(\prod_{k} \frac{\Gamma\left(\sum_{v} \beta_{k v}\right)}{\Gamma\left(\sum_{v} \beta_{k v}+n_{. k v}\right)} \Pi_{v} \frac{\Gamma\left(\beta_{k k}+n_{. k v}\right)}{\Gamma\left(\beta_{k v}\right)}\right)
\]
- The remaining collapsed variational bound (ELBO) becomes
\[
\mathcal{L}(q)=\int q(C) \log p(C, W) d C+\mathbb{H}(q(C))
\]
- because we make strictly less assumptions about \(q\) than before, we will get a strictly better approximation to the true posterior!
- The bound is maximized for \(C_{d i}\) if
\[
\log q\left(C_{d i}\right)=\mathbb{E}_{q(C \backslash d i)}(\log p(C, W))+\text { const. }
\]

\section*{Constructing the Algorithm}
- Note that \(c_{d i} \in\{0 ; 1\}^{K}\) and \(\sum_{k} c_{d i k}=1\). So \(q\left(c_{d i}\right)=\prod_{k} \gamma_{d i k}\) with \(\sum_{k} \gamma_{d i k}=1\)
- Also: \(\Gamma(\alpha+n)=\prod_{\ell=0}^{n-1}(\alpha+\ell)\), thus \(\log \Gamma(\alpha+n)=\sum_{\ell=0}^{n-1} \log (\alpha+\ell)\)
\[
\begin{aligned}
& p(C, W)=\left(\prod_{d} \frac{\Gamma\left(\sum_{k} \alpha_{d k}\right)}{\Gamma\left(\sum_{k} \alpha_{d k}+n_{d k} \cdot\right)} \prod_{k} \frac{\Gamma\left(\alpha_{d k}+n_{d k \cdot}\right)}{\Gamma\left(\alpha_{d k}\right)}\right)\left(\prod_{k} \frac{\Gamma\left(\sum_{v} \beta_{k v}\right)}{\Gamma\left(\sum_{v} \beta_{k v}+n_{\cdot k v}\right)} \prod_{v} \frac{\Gamma\left(\beta_{k v}+n_{\cdot k v}\right)}{\Gamma\left(\beta_{k v}\right)}\right) \\
& \log q\left(C_{d i}\right)=\mathbb{E}_{q(C \backslash d i}(\log p(C, W))+\text { const. } \\
& \log \gamma_{d i k}=\log q\left(c_{d i k}=1\right) \\
& =\mathbb{E}_{q(c \backslash d i}\left[\log \Gamma\left(\alpha_{d k}+n_{d k \cdot}\right)+\log \Gamma\left(\beta_{k w_{d i}}+n_{\cdot k w_{d i}}\right)-\log \Gamma\left(\sum_{v} \beta_{k v}+n_{\cdot k v}\right)\right]+\text { const. } \\
& =\mathbb{E}_{q(C \backslash d i}\left[\log \left(\alpha_{d k}+n_{d k .}^{\backslash d i}\right)+\log \left(\beta_{k w_{d i}}+n_{\cdot k w_{d i}}^{\backslash d i}\right)-\log \left(\sum_{v} \beta_{k v}+n_{\cdot k v}^{\backslash d i}\right)\right]+\text { const. }
\end{aligned}
\]
(note all terms in \(p(C, W)\) that don't involve \(C_{d i k}\) can be moved into the constant, as can all sums over \(k\).
We can also add terms to const., such as \(\sum_{\ell=0}^{n{ }^{n d i}-1} \log (\alpha+\ell)\), effectively cancelling terms in \(\log \Gamma\) )
\[
\gamma_{d i k} \propto \exp \left(\mathbb{E}_{q(C \backslash d i)}\left[\log \left(\alpha_{d k}+n_{d k .}^{\backslash d i}\right)+\log \left(\beta_{k w_{d i}}+n_{\cdot k W_{d i}}^{\backslash d i}\right)-\log \left(\sum_{v} \beta_{k v}+n_{\cdot k v}^{\backslash d i}\right)\right]\right)
\]
- Under \(q(C)=\prod_{d i} C_{d i}\), the counts \(n_{d k}\). are sums of independent Bernoulli variables (i.e. they have a multinomial distribution). Computing their expected logarithm is tricky \(\left(\mathcal{O}\left(n_{d .}^{2}\right)\right)\) :
\[
\mathbb{H}\left(q\left(n_{d k} \cdot\right)\right)=\mathbb{E}\left[\log n_{d k} \cdot\right]=-\log \left(I_{d}!\right)-I_{d} \sum_{k}^{K} \gamma_{d k} \cdot \log \left(\gamma_{d k} \cdot\right)+\sum_{k=1}^{K} \sum_{n_{d k} \cdot=1}^{I_{d}}\binom{I_{d}}{n_{d k} \cdot} \gamma_{d k \cdot}^{n_{d k} \cdot\left(1-\gamma_{d k \cdot} \cdot\right)^{I_{d}-n_{d k}} \cdot \log \left(n_{d k} \cdot!\right), ~(1)}
\]
- That's likely why the original paper (and scikit-learn) don't do this.


Yee Whye Teh
image: Oxford \(U\)


Max Welling
image: U v Amsterdam
\[
\gamma_{d i k} \propto \exp \left(\mathbb{E}_{q(C \backslash d i)}\left[\log \left(\alpha_{d k}+n_{d k .}^{\backslash d i}\right)+\log \left(\beta_{k w_{d i}}+n_{\cdot k w_{d i}}^{\backslash d i}\right)-\log \left(\sum_{v} \beta_{k v}+n_{\cdot k v}^{\backslash d i}\right)\right]\right)
\]
\[
f=1 / 3, N=10
\]

The probability measure of \(R=\sum_{i}^{N} x_{i}\) with discrete \(x_{i}\) of probablity \(f\) is
\[
\begin{aligned}
P(R=r \mid f, N) & =\frac{N!}{(N-r)!\cdot r!} \cdot f^{r} \cdot(1-f)^{N-r} \\
& =\binom{N}{r} \cdot f^{r} \cdot(1-f)^{N-r} \\
& \approx \mathcal{N}(r ; N r, \operatorname{Nr}(1-r))
\end{aligned}
\]


Yee Whye Teh
image: Oxford U


Max Welling image: U v Amsterdam
but the CLT applies! So a Gaussian approximation should be good:
\[
p\left(n_{d k}^{\backslash d i}\right) \approx \mathcal{N}\left(n_{d k}^{\backslash d i} ; \mathbb{E}_{q}\left[n_{d k}^{\backslash d i}\right], \operatorname{var}_{q}\left[n_{d k}^{\backslash d i}\right]\right) \quad \text { with } \quad \mathbb{E}_{q}\left[n_{d k}^{\backslash d i}\right]=\sum_{j \neq i} \gamma_{d k j}, \quad \operatorname{var}_{q}\left[n_{d k}^{\backslash d i}\right]=\sum_{j \neq i} \gamma_{d k j}\left(1-\gamma_{d k j}\right)
\]


Yee Whye Teh
image: Oxford \(U\)


Max Welling
image: U v Amsterdam
\[
\begin{aligned}
\log (\alpha+n) & \approx \log (\alpha+\mathbb{E}(n))+(n-\mathbb{E}(n)) \cdot \frac{1}{\alpha+\mathbb{E}(n)}-\frac{1}{2}(n-\mathbb{E}(n))^{2} \cdot \frac{1}{(\alpha+\mathbb{E}(n))^{2}} \\
\mathbb{E}_{q}\left[\log \left(\alpha_{d k}+n_{d k}^{\backslash d i}\right)\right] & \approx \log \left(\alpha_{d k}+\mathbb{E}_{q}\left[n_{d k}^{\backslash d i}\right]\right)-\frac{\operatorname{var}_{q}\left[n_{d k}^{\backslash d i}\right]}{2\left(\alpha_{d k}+\mathbb{E}_{q}\left[n_{d k}^{\backslash d i}\right]\right)^{2}}
\end{aligned}
\]

\section*{Approximate Approximate Inference}
\[
\gamma_{d i k} \propto \exp \left(\mathbb{E}_{q(C \backslash d i)}\left[\log \left(\alpha_{d k}+n_{d k}^{\backslash d i}\right)+\log \left(\beta_{k w_{d i}}+n_{\cdot k w_{d i} \backslash d i}^{d}\right)-\log \left(\sum_{v} \beta_{k v}+n_{\cdot k v}^{n d i}\right)\right]\right)
\]
\[
\begin{aligned}
& \mathbb{E}_{q}\left[\log \left(\alpha_{d k}+n_{d k}^{\backslash d i}\right)\right] \approx \log \left(\alpha_{d k}+\mathbb{E}_{q}\left[n_{d k}^{\backslash d i}\right]\right)-\frac{\operatorname{var}_{q}\left[n_{d k}^{\backslash d i}\right]}{2\left(\alpha_{d k}+\mathbb{E}_{q}\left[n_{d k}^{\backslash d i}\right]\right)^{2}} \\
& \gamma_{d i k} \propto\left(\alpha_{d k}+\mathbb{E}\left[n_{d k}^{\backslash d i}\right]\right)\left(\beta_{k w_{d i}}+\mathbb{E}\left[n_{\cdot k w_{d i}}^{\backslash d i}\right]\right)\left(\sum_{v} \beta_{k v}+\mathbb{E}\left[n_{\cdot k v}^{\backslash d i}\right]\right)^{-1} \\
& \cdot \exp \left(-\frac{\operatorname{var}_{q}\left[n_{d k}^{\backslash d i}\right]}{2\left(\alpha_{d k}+\mathbb{E}_{q}\left[n_{d k}^{\ d i}\right]\right)^{2}}-\frac{\operatorname{var}_{q}\left[n_{\cdot k w_{d i}}^{\backslash d i}\right]}{2\left(\beta_{k w_{d i}}+\mathbb{E}_{q}\left[n_{\cdot k w_{d i}}^{\backslash d i}\right)^{2}\right.}+\frac{\operatorname{var}_{q}\left[n_{\cdot k}^{\backslash d i}\right]}{\left.2\left(\sum_{v} \beta_{k v}+\mathbb{E}_{q}[n \cdot \cdot k v)^{\backslash d i}\right]\right)^{2}}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \gamma_{d i k} \propto\left(\alpha_{d k}+\mathbb{E}\left[n_{d k}^{\ d i}\right]\right)\left(\beta_{k w_{d i}}+\mathbb{E}\left[n_{\cdot k w_{d i}}^{\backslash d i}\right)\left(\sum_{v} \beta_{k v}+\mathbb{E}\left[n_{\cdot k v}^{\ d i}\right]\right)^{-1}\right. \\
& \cdot \exp \left(-\frac{\operatorname{var}_{q}\left[n_{d k}^{\backslash d i}\right]}{2\left(\alpha_{d k}+\mathbb{E}_{q}\left[n_{d k} \_{d i}\right]\right)^{2}}-\frac{\operatorname{var}_{q}\left[n_{\cdot k w_{d i}}^{\backslash d i}\right]}{2\left(\beta_{k w_{d i}}+\mathbb{E}_{q}\left[n_{\cdot k w_{d i}}^{\backslash d i}\right]\right)^{2}}+\frac{\operatorname{var}_{q}\left[n_{\cdot k \cdot}^{\backslash d i}\right]}{2\left(\sum_{v} \beta_{k v}+\mathbb{E}_{q}\left[n_{\cdot k v}^{\ d i}\right]\right)^{2}}\right)
\end{aligned}
\]

Note that \(\gamma_{d i k}\) doesn't depend on \(i \in 1, \ldots, l_{d}\), it's the same for all \(w_{d i}\) in \(d\) with \(w_{d i}=v\) !
- memory requirement: \(\mathcal{O}(D K V)\), since we have to store \(\gamma_{d i k}\) for each value of \(i \in 1, \ldots, V\) and
- \(\mathbb{E}\left[n_{d k}.\right], \operatorname{var}\left[n_{d k}.\right] \in \mathbb{R}^{D \times K}\)
- \(\mathbb{E}\left[n_{\text {.kv }}\right], \operatorname{var}\left[n_{\text {.kv }}\right] \in \mathbb{R}^{K \times V}\)
- \(\mathbb{E}\left[n_{. k}\right], \operatorname{var}\left[n_{. k}.\right] \in \mathbb{R}^{K}\)
- computational complexity: \(\mathcal{O}(D K V)\) We can loop over \(V\) rather than \(I_{d}\) (good for long documents!) Often, a document will be sparse in \(V\), so iteration cost can be much lower.

Because machine learning involves real-world data, every problem is unique.
Thinking hard about both your model and your algorithm can make a big difference in predictive and numerical performance.

Eberhard karis


\section*{Can we be happy with this model?}

\[
p(C, \Pi, \Theta, W)=\underbrace{\left(\prod_{d=1}^{D} \mathcal{D}\left(\boldsymbol{\pi}_{d} ; \boldsymbol{\alpha}_{d}\right)\right)}_{p(\Pi \mid \boldsymbol{\alpha})} \cdot \underbrace{\left(\prod_{d=1}^{D} \prod_{i=1}^{I_{d}}\left(\prod_{k=1}^{K}\left(\pi_{d k} \theta_{k w_{d i}}\right)^{c_{d i k}}\right)\right)}_{p(W, C \mid \Theta, \Pi)} \cdot \underbrace{\left(\prod_{k=1}^{K} \mathcal{D}\left(\boldsymbol{\theta}_{k} ; \boldsymbol{\beta}_{k}\right)\right)}_{p(\Theta \mid \boldsymbol{\beta})}
\]

\section*{Meta-Data}

Adams_1797.txt Adams_1798.txt Adams_1799.txt Adams_1800.txt Adams_1825.txt Adams_1826.txt Adams_1827.txt Adams_1828.txt Arthur_1881.txt Arthur_1882.txt Arthur_1883.txt Arthur_1884.txt Buchanan_1857.txt Buchanan_1858.txt Buchanan_1859.txt Buchanan_1860.txt Buren_1837.txt Buren_1838.txt Buren_1839.txt Buren_1840.txt Bush_1989.txt Bush_1990.txt Bush_1991.txt Bush_1992.txt Bush_2001.txt

Cleveland_1887.txt Cleveland_1888.txt Cleveland_1893.txt Cleveland_1894.txt Cleveland_1895.txt Cleveland_1896.txt Clinton_1993.txt Clinton_1994.txt Clinton_1995.txt Clinton_1996.txt Clinton_1997.txt Clinton_1998.txt Clinton_1999.txt Clinton_2000.txt Coolidge_1923.txt Coolidge_1924.txt Coolidge_1925.txt Coolidge_1926.txt Coolidge_1927.txt Coolidge_1928.txt Eisenhower_1954.txt Eisenhower_1955.txt Eisenhower_1956.txt Eisenhower_1957.txt Eisenhower_1958.txt

Grant_1873.txt Grant_1874.txt Grant_1875.txt Grant_1876.txt Harding_1921.txt Harding_1922.txt Harrison_1889.txt Harrison_1890.txt Harrison_1891.txt Harrison_1892.txt Hayes_1877.txt Hayes_1878.txt Hayes_1879.txt Hayes_1880.txt Hoover_1929.txt Hoover_1930.txt Hoover_1931.txt Hoover_1932.txt Jackson_1829.txt Jackson_1830.txt Jackson_1831.txt Jackson_1832.txt Jackson_1833.txt Jackson_1834.txt Jackson_1835.txt
 Jefferson 1801 txt Fisenhower 1960 txt

Johnson_1964.txt Johnson_1965.txt Johnson_1966.txt Johnson_1967.txt Johnson_1968.txt Johnson_1969.txt Kennedy_1962.txt Kennedy_1963.txt Lincoln_1861.txt Lincoln_1862.txt Lincoln_1863.txt Lincoln_1864.txt Madison_1809.txt Madison_1810.txt Madison_1811.txt Madison_1812.txt Madison_1813.txt Madison_1814.txt Madison_1815.txt Madison_1816.txt McKinley_1897.txt McKinley_1898.txt McKinley_1899.txt McKinley_1900.txt Monroe_1817.txt
 Bush 2003 txt

Obama_2010.txt Obama_2011.txt Obama_2012.txt Obama_2013.txt Obama_2014.txt Obama_2015.txt Obama_2016.txt Pierce_1853.txt Pierce_1854.txt Pierce_1855.txt Pierce_1856.txt Polk_1845.txt Polk_1846.txt Polk_1847.txt Polk_1848.txt Reagan_1982.txt Reagan_1983.txt Reagan_1984.txt Reagan_1985.txt Reagan_1986.txt Reagan_1987.txt Reagan_1988.txt Roosevelt_1901.txt Roosevelt_1902.txt Roosevel__1903.txt Roosevelt_1904.txt Rooseyelt 1005 txt

Roosevel__1942.txt Roosevelt_1943.txt Roosevelt_1944.txt Roosevelt_1945.txt Taft_1909.txt Taft_1910.txt Taft_1911.txt Taft_1912.txt Taylor_1849.txt Truman_1946.txt Truman_1947.txt Truman_1948.txt Truman_1949.txt Truman_1950.txt Truman_1951.txt Truman_1952.txt Truman_1953.txt Trump_2017.txt Trump_2018.txt Tyler_1841.txt Tyler_1842.txt Tyler_1843.txt Tyler_1844.txt Washington_1790.txt Washington_1791.txt Washington_1792.txt Washinaton 1793 txt

\section*{What about the hyperparameters?}

\[
\begin{aligned}
\log p(W \mid \alpha, \beta) & =\mathcal{L}(q, \alpha, \beta)+D_{\mathrm{KL}}(q \| p(C \mid W, \alpha, \beta)) \\
\mathcal{L}(q, \alpha, \beta) & =\int q(C, \Theta, \Pi) \log \left(\frac{p(W, \Pi, \Theta, C \mid \alpha, \beta)}{q(C, \Theta, \Pi)}\right) \\
\log p(\alpha, \beta \mid W) & \geq \mathcal{L}(q, \alpha, \beta)+\log p(\alpha, \beta) \\
\nabla_{\alpha, \beta} \log p(\alpha, \beta \mid W) & =\nabla_{\alpha, \beta} \mathcal{L}(q, \alpha, \beta)+\nabla_{\alpha, \beta} \log p(\alpha, \beta)+\underbrace{\nabla_{\alpha, \beta} D_{k L}(q \| p(C \mid W, \alpha, \beta))}_{\approx 0}
\end{aligned}
\]
\[
p(C, \Pi, \Theta, W)=\left(\prod_{d=1}^{D} \frac{\Gamma\left(\sum_{k} \alpha_{d k}\right)}{\prod_{k} \Gamma\left(\alpha_{d k}\right)} \prod_{k=1}^{K} \pi_{d k}^{\alpha_{d k}-1+n_{d k}}\right) \cdot\left(\prod_{k=1}^{K} \frac{\Gamma\left(\sum_{v} \beta_{k v}\right)}{\prod_{v} \Gamma\left(\beta_{k v}\right)} \prod_{v=1}^{v} \theta_{k v}^{\beta_{k v}-1+n_{\cdot k v}}\right)
\]

We need
\[
\begin{aligned}
\mathcal{L}(q, W) & =\mathbb{E}_{q}(\log p(W, C, \Theta, \Pi))+\mathbb{H}(q) \\
& =\int q(C, \Theta, \Pi) \log p(W, C, \Theta, \Pi) d C d \Theta d \Pi-\int q(C, \Theta, \Pi) \log q(C, \Theta, \Pi) d C d \Theta d \Pi \\
& =\int q(C, \Theta, \Pi) \log p(W, C, \Theta, \Pi) d C d \Theta d \Pi+\sum_{k} \mathbb{H}\left(\mathcal{D}\left(\theta_{k} \tilde{\beta}_{k}\right)\right)+\sum_{d} \mathbb{H}\left(\mathcal{D}\left(\pi_{d} \tilde{\alpha}_{d}\right)\right)+\sum_{d i} \mathbb{H}\left(\tilde{\gamma}_{d i}\right)
\end{aligned}
\]


\author{
Toolboxes speed up development, but also make it brittle
}
https://github.com/scikit-learn/scikit-learn/blob/fd237278e/sklearn/decomposition/_Ida.py\#L134
- toolboxes are extremely valuable for quick early development. Use them to your advantage!
- but their interface often enforces and restricts model design decisions
- to really solve a probabilistic modelling task, build your own craftware

\section*{A Generalized Linear Model}


To generate the words \(W\) of documents \(d=1, \ldots, D\) with features \(\phi_{d} \in \mathbb{F}\) :
- draw function \(f: \mathbb{F} \rightarrow \mathbb{R}^{K}\) from \(p(f \mid h)=\mathcal{G} \mathcal{P}(f ; 0, h)\)
- draw document topic distribution \(\pi_{d}\) from \(\mathcal{D}\left(\alpha_{d}=\exp \left(f\left(\phi_{d}\right)\right)\right)\)

\section*{A Generalized Linear Model}


To generate the words \(W\) of documents \(d=1, \ldots, D\) with features \(\phi_{d} \in \mathbb{F}\) :
- draw topic-word distributions \(p(\Theta \mid \beta)=\prod_{k=1}^{K} \mathcal{D}\left(\theta_{k}, \beta_{k}\right)\)
- draw each word's topic \(p\left(C_{d::} \mid \Pi\right)=\prod_{d=1}^{D} \prod_{i=1}^{l_{d}} \prod_{k} \pi_{d k}^{c_{d k}}\)
- draw the word \(w_{d i}\) with probability \(\theta_{k w_{d i}}^{d_{d i}}\).

\[
\begin{aligned}
\log p(\alpha, \beta \mid W) & \geq \mathcal{L}(q, \alpha, \beta)+\log p(\alpha, \beta) \\
\nabla_{\alpha, \beta} \log p(\alpha, \beta \mid W) & =\nabla_{\alpha, \beta} \mathcal{L}(q, \alpha, \beta)+\nabla_{\alpha, \beta} \log p(\alpha, \beta)+\underbrace{\nabla_{\alpha L} D_{\mathrm{KL}}(q \| p(C \mid W, \alpha, \beta))}_{\alpha, \beta} \\
\log p(f=\log \alpha) & =-\frac{1}{2}\left\|f_{d}\right\|_{k}^{2}=-\frac{1}{2} f_{d}^{\top} k_{D D}^{-1} f_{d}
\end{aligned}
\]

\section*{A GP prior on topics}

\[
\begin{gathered}
k\left(x_{a}, x_{b}\right)=\theta^{2}\left(1+\frac{\left(x_{a}-x_{b}\right)^{2}}{2 \alpha \ell^{2}}\right)^{-\alpha} \cdot \begin{cases}1.00 & \text { if president }\left(x_{a}\right)=\operatorname{president}\left(x_{b}\right) \\
\gamma & \text { otherwise }\end{cases} \\
\theta=5 \quad \ell=10 \text { years } \quad \alpha=0.5 \quad \gamma=0.9
\end{gathered}
\]


The most important problem with which this Government is now called upon to deal pertaining to its foreign relations concerns its duty toward Spain and the Cuban insurrection.
(William McKinley, 1897)


\section*{The Topics of American History}

Three basic developments have helped to shape our challenges: the steady growth and increased projection of Soviet military power beyond its own borders; the overwhelming dependence of the Western democracies on oil supplies from the Middle East; and the press of social and religious and economic and political change in the many nations of the developing world, exemplified by the revolution in Iran. (Jimmy Carter, 1980)


\section*{1979 oil crisis}

From Wikipedia, the free encyclopedia
Further information: 1979 world oil market chronology
The 1979 (or second) oil crisis or oil shock occurred in the world due to decreased oil outpu months, and long lines once again appeared at gas stations, as they had in the 1973 oil crisis.! In 1980, following the outbreak of the Iran-Iraq War, oil production in Iran nearly stopped, and After 1980, oil prices began a 20 -year decline, except for a brief rebound during the Gulf War, the top world producer; North Sea and Alaskan oil flooded the market. It seemed that the Unite

\section*{Can we do even better?}
```

Mr. Speaker, Mr. Vice President, Members of Congress, my fellow Americans:
We are 15 years into this new century. Fifteen years that dawned with terror touching our shores, that unfolded with a new generation
fighting two long and costly wars, that saw a vicious recession spread across our Nation and the world. It has been and still is a hard
time for many.
But tonight we turn the page. Tonight, after a breakthrough year for America, our economy is growing and creating jobs at the fastest
pace since 1999. Our unemployment rate is now lower than it was before the financial crisis. More of our kids are graduating than ever
before. More of our people are insured than ever before. And we are as free from the grip of foreign oil as we've been in almost 30
years.
Tonight, for the first time since 9/11, our combat mission in Afghanistan is over. Six years ago, nearly 180,000 American troops served in Iraq and Afghanistan. Today, fewer than 15,000 remain. And we salute the courage and sacrifice of every man and woman in this $9 / 11$ generation who has served to keep us safe. We are humbled and grateful for your service.
America, for all that we have endured, for all the grit and hard work required to come back, for all the tasks that lie ahead, know this: The shadow of crisis has passed, and the State of the Union is strong.

```

Each document is actually pre-structured into sequential sub-documents, typically of one topic each.

\section*{Designing a probabilistic machine learning method:}
1. get the data
1.1 try to collect as much meta-data as possible
2. build the model
2.1 identify quantities and datastructures; assign names
2.2 design a generative process (graphical model)
2.3 assign (conditional) distributions to factors/arrows (use exponential families!)
3. design the algorithm
3.1 consider conditional independence
3.2 try standard methods for early experiments
3.3 run unit-tests and sanity-checks
3.4 identify bottlenecks, find customized approximations and refinements

Packaged solutions can give great first solutions, fast.
Building a tailormade solution requires creativity and mathematical stamina.```

