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The Toolbox

Framework:∫
p(x1, x2) dx2 = p(x1) p(x1, x2) = p(x1 | x2)p(x2) p(x | y) = p(y | x)p(x)

p(y)

Modelling:
▶ graphical models
▶ Gaussian distributions
▶ (deep) learnt representations
▶ Kernels
▶ Markov Chains
▶ Exponential Families / Conjugate Priors
▶ Factor Graphs & Message Passing

Computation:
▶ Monte Carlo
▶ Linear algebra / Gaussian inference
▶ maximum likelihood / MAP
▶ Laplace approximations
▶ EM / variational approximations
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So you’ve got yourself a posterior …now what?
Taking a decision means conditioning on a variable you control
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Decision Theory
The limit of probabilistic reasoning?

▶ probabilistic models can provide predictions p(x | a) for a variable x conditional on an action a
▶ given the choice, which value of a do you prefer?

▶ assign a loss or utility ℓ(x)
▶ choose a such that it minimizes expected loss

a∗ = arg min
a

∫
ℓ(x)p(x | a) dx
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Expected Regret/utility
if you keep having to take the same decision, optimise the sum of its return

▶ consider independent draws xi with xi ∼ p(x | ai)
▶ choose all ai = a∗ to minimize the accumulated loss

L(n) = Ep

[∑
i

xi

]

▶ but what if you don’t know p?
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Motivating (Historical) Example
Experimental Design
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Learning by Doing
Estimating return while taking actions

Perhaps we shouldn’t rule out an option yet if the posteriors over their expected return overlaps with that
of our current guess for the best option?

▶ Assume K choices.
▶ Taking choice k ∈ [1, . . . , K] at time i yields binary (Bernoulli) reward/loss xi with probability

πk ∈ [0, 1], iid.
▶ conjugate priors p(πk) = B(π, a, b) = B(a, b)−1πa−1(1− π)b−1

▶ posteriors from nk trys of choice k with mk successes:
p(πk | nk,mk) = B(πk; a+mk, b+ (nk −mk))

▶ for a, b_ 0, posterior has mean and variance

π̄k := Ep(πk|nk,mk)[π] =
mk

nk
σ2
k := varp(πk|nk,mk)[π] =

mk(nk −mk)

n2k(nk + 1)
= O(n−1

k )

Choose option k that maximizes π̄k + c
√

σ2
k for some c. Which c?
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Learning by Doing
Estimating return while taking actions

Perhaps we shouldn’t rule out an option yet if the posteriors over their expected return overlaps with that
of our current guess for the best option?
Choose option k that maximizes π̄k + c

√
σ2
k for some c. Which c?

▶ A large c ensures uncertain options are preferred. If we make it too large, we will only explore.
▶ A small c largely ignores uncertainty. We will only exploit.
▶ Idea: Let c grow slowly over time, at rate less thanO(n1/2k ). Then variance of chosen options will

drop faster than c grows, so their exploration will stop, unless their mean is good. But unexplored
choices will eventually become dominant, thus always explored eventually.
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Not just for Bernoulli variables!
posterior contraction rates are universal

Theorem (Chernoff-Hoeffding)

Let X1, . . . , Xn be random variables with common range [0, 1] and such that E[Xt | X1, . . . , Xt−1] = µ.
Let Sn = X1 + · · ·+ Xn. Then for all a ≥ 0,

p(Sn − nµ ≤ −a) ≤ e−2a2/n and p(Sn − nµ ≥ a) ≤ e−2a2/n
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The Multi-Armed Bandit Setting
Discrete-Choice Experimental Design [Auer, Cesa-Bianchi, Fischer, Machine Learning 47(2002), 235–256]

Definitions:
▶ A K-armed bandit is a collection Xkn of random variables, 1 ≤ k ≤ K, n ≥ 1 where k is the arm of

the bandit. Successive plays of k yield rewards Xk1, Xk2, . . . which are independent and identically
distributed according to an unknown p with Ep(Xki) = µi.

▶ A policy A chooses the next machine to play at time n, based on past plays and rewards.
▶ Let Tk(n) be number of times machine k was played by A during the first n plays. The regret of A is

RA(n) = µ∗ · n−
∑

j

µj · Ep[Tj(n)] with µ∗ := max
1≤k≤K

µk
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The Multi-Armed Bandit Setting
Discrete-Choice Experimental Design [Auer, Cesa-Bianchi, Fischer, Machine Learning 47(2002), 235–256]

Algorithm: Let x̄j: empirical average of rewards from j, nj: number of plays at j in n plays
1 procedure UCB(K) � Upper Confidence Bound

2 play each machine once
3 while true do
4 play j = arg max

(
x̄j +

√
2 log n

nj

)
5 end while
6 end procedure
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The Multi-Armed Bandit Setting
Discrete-Choice Experimental Design [Auer, Cesa-Bianchi, Fischer, Machine Learning 47(2002), 235–256]

Theorem (Auer, Cesa-Bianchi, Fischer)

Consider K machines (K > 1) having arbitrary reward distributions P1, . . . , PK with support in [0, 1] and
expected values µi = EP(Xi). Let∆i := µ∗ − µi. Then, the expected regret of UCB after any number n
of plays is at most

EP[RA(n)] ≤

8 ∑
i:µi≤µ∗

(
log n
∆i

)+

(
1+

π2

3

)∑
j

∆j


Nb: The sums are over K, not n. So the regret isO(K log n). UCB plays a sub-optimal arm at most
logarithmically often.
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Visualization
K = 3, binary rewards

0 500 1,000 1,500 2,000 2,500 3,000
0

500

1,000

1,500

2,000

2,500

N

∑ tn
it p = 50%

p = 55%
p = 45%

100 101 102 103 10410−2

10−1

100

101

102

103

104

N

re
gr
et

regret bound
expected regret
sampled regret

Probabilistic ML — P. Hennig, SS 2020 — Lecture 26: Making Decisions — © Philipp Hennig, 2020 CC BY-NC-SA 3.0 13

https://youtu.be/NhIoQGpvYtA?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd&t=3584


Multi-Armed Bandit Algorithms
▶ apply to independent, discrete choice problems with stochastic pay-off
▶ algorithms based on upper confidence bounds incur regret bounded byO(log n)
▶ this even applies for the adversarial setting (Auer, Cesa-Bianchi, Freund, Schapire, 1995)

Unfortunately…
▶ No problem is ever discrete, finite and independent
▶ in a continuous problem, no “arm” can and should ever be played twice
▶ in many prototyping settings, early exploration is free
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Continuous-Armed Bandits
example application: parameter optimization
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p(y | x) = N (y; fx, σ2) x∗ = arg min
x∈D

f(x) = ? R(T) :=
T∑

t=1

f(xt)− f(x∗)
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Continuous-Armed Bandits
example application: parameter optimization
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p(y | x) = N (y; fx, σ2) p(f) = GP(f;µ, k) ⇒ pmin(x∗ = x) =
∫
R

∫
D
I(f(x) < f(x̃)) dx̃ dp(f | y)
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GP Upper Confidence Bound
Evaluate optimistally, where the function may be low Srinivas, Krause, Kakade, Seeger, ICML 2009
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▶ utility under p(f | y) = GP(f;µt−1, σ
2
t−1)

ui(x) = µi−1(x)−
√

βtσt−1(x)

▶ choose xt as xt = arg minx∈D u(x)

Theorem (Srinivas et al., 2009)

Let δ ∈ (0, 1) and βt = 2 log(|D|t2π2/6δ).
Running GP-UCB with βt for a sample f ∼ GP(µ, k),

p
(
RT ≤

√
8TβTγT/ log(1+ σ2) ∀T ≥ 1

)
≥ 1−δ

thus limT _∞ RT/T = 0 (“no regret”).
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GP Upper Confidence Bound
Evaluate optimistally, where the function may be low Srinivas, Krause, Kakade, Seeger, ICML 2009
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▶ utility under p(f | y) = GP(f;µt−1, σ
2
t−1)

ui(x) = µi−1(x)−
√

βtσt−1(x)

▶ choose xt as xt = arg minx∈D u(x)

Theorem (Srinivas et al., 2009)

Assume that f ∈ Hk with ∥f∥2k ≤ B, and the noise is
zero-mean and σ-bounded almost surely. Let
δ ∈ (0, 1) and βt = 2B+ 300γt log3(t/δ). Running
GP-UCB with βt and p(f) = GP(f; 0, k),

p
(
RT ≤

√
8TβTγT/ log(1+ σ2) ∀T ≥ 1

)
≥ 1−δ

thus limT _∞ RT/T = 0 (“no regret”).
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What if you have budget for several experiments?
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Entropy Search
evaluate where you expect to learn most about the minimum [Villemonteix et al., 2009; Hennig & Schuler, 2012]

xn
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▶ p(f) = GP(f;m, k) and
p(y | f) = N (y; fx, σ2) gives
p(f | y) = N (f;µ, k), and

µ̄a = µa + κa∗κ
−1
∗∗ (y∗ − µ∗)

= µa + κa∗κ
−1/2
∗∗︸ ︷︷ ︸

=:La∗

·κ−1/2
∗∗ (y∗ − µ∗)︸ ︷︷ ︸

u∼N (0,I)

κ̄ab = κab − κa∗κ
−1
∗∗ κ∗b

= κab − La∗L∗b

▶ use this to predict p̂min(x) under p(f | y, yt+1)
(requires nontrivial numerics)
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Entropy Search
evaluate where you expect to learn most about the minimum [Villemonteix et al., 2009; Hennig & Schuler, 2012]
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▶ don’t evaluate where you think the minium lies!
▶ instead, evaluate where you expect to learn

most about the minimum!

H(p) := −
∫

p(x) log
p(x)
b(x)

dx

with base measure b. Use utility

u(x) = Ht(pmin)− Eyt+1 [Ht+1(pmin)]
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Information vs. Regret
Entropy Search is qualitatively different from regret-based formulations

Settings in which information-based search is preferrable
▶ “prototyping-phase” followed by “product release”
▶ structured uncertainty with variable signal-to-noise ratio
▶ “multi-fidelity”: Several experimental channels of different cost and quality, e.g.

▶ simulations vs. physical experiments
▶ training a learning model for a variable time
▶ using variable-size datasets

Regret-based optimization is easy to implement and works well on standard problems. But it is a strong
simplification of reality, in which many pratical complications can not be phrased.
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Bayesian Optimization in Practice
recent (and not so recent) libraries

▶ https://amzn.github.io/emukit/

▶ https://github.com/HIPS/Spearmint

▶ https://github.com/hyperopt

▶ https://hpolib.readthedocs.io/en/development/

▶ https://github.com/automl

▶ https://sigopt.com/product/
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Summary — Experimental Design
▶ the bandit setting formalizes iid. sequential decision making under uncertainty
▶ bandit algorithms can achieve “no regret” performance, even without explicit probabilistic priors
▶ Bayesian optimization extends to continuous domain
▶ it lies right at the intersection of computational and physical learning
▶ requires significant computational resources to run a numerical optimizer inside the loop
▶ allows rich formulation of global, stochastic, continuous, structured, multi-channel design

problems
▶ is currently the state of the art in the solution of challenging optimization problems
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