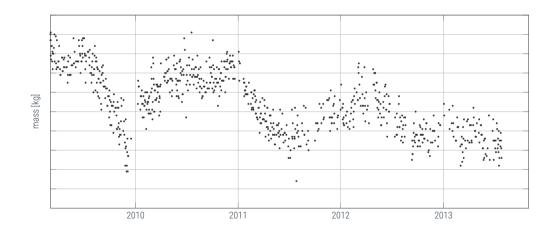
Probabilistic Machine Learning Lecture 11 Gaussian Process Regression: An Extensive Example

Philipp Hennig 25 May 2020

EBERHARD KARLS
UNIVERSITÄT
TÜBINGEN

FACULTY OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
CHAIR FOR THE METHODS OF MACHINE LEARNING

#	date	content	Ex	#	date	content	Ex
1	20.04.	Introduction	1	14	09.06.	Logistic Regression	8
2	21.04.	Reasoning under Uncertainty		15	15.06.	Exponential Families	
3	27.04.	Continuous Variables	2	16	16.06.	Graphical Models	9
4	28.04.	Monte Carlo		17	22.06.	Factor Graphs	
5	04.05.	Markov Chain Monte Carlo	3	18	23.06.	The Sum-Product Algorithm	10
6	05.05.	Gaussian Distributions		19	29.06.	Example: Topic Models	
7	11.05.	Parametric Regression	4	20	30.06.	Mixture Models	11
8	12.05.	Learning Representations		21	06.07.	EM	
9	18.05.	Gaussian Processes	5	22	07.07.	Variational Inference	12
10	19.05.	Understanding Kernels		23	13.07.	Example: Topic Models	
11	25.05.	An Example for GP Regression	6	24	14.07.	Example: Inferring Topics	13
12	26.05.	Gauss-Markov Models		25	20.07.	Example: Kernel Topic Models	
13	08.06.	GP Classification	7	26	21.07.	Revision	



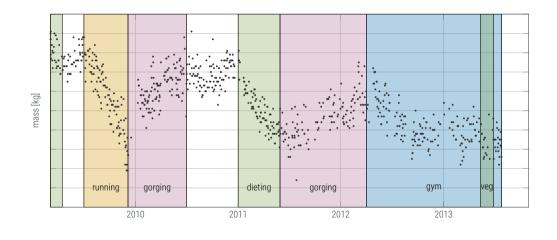


image: P. Henni

Bayesian Intermittent Demand Forecasting for Large Inventories

Matthias Seeger, David Salinas, Valentin Flunkert

Amazon Development Center Germany
Krausenstrasse 38
10115 Berlin
matthis@amazon.de, dsalina@amazon.de, flunkert@amazon.de

Abstract

We present a scalable and robust Bayesian method for demand forecasting in the context of a large e-commerce platform, paying special attention to intermittent and bursty target statistics. Inference is approximated by the Newton-Raphson algorithm, reduced to linear-time Kalman smoothing, which allows us to operate on several orders of magnitude larger problems than previous related work. In a study on large real-world sales datasets, our method outperforms competing approaches on fast and medium moving items.

Matthias Seeger Principal ML Scientist, Amazon MPI Tübingen, 2006–2011

Summary:

- ► An unstructured kernel regression model can only do so much. Extrapolation and extracting structural knowledge require prior knowledge about the causal structure.
- Linear models with elaborate features can be quite expressive, while remaining interpretable (try
 doing this example with a deep network!)
- ▶ Physical processes have units
- ► Complicated processes require complicated (and questionable!) prior assumptions
- analogous process in business environments
 - demand and supply forecasting
 - ▶ financial engineering
 - ▶ ad placement (with minor variations)
 - **>** ...

The ability to build structured predictive models is a **key skill**. Everyone can run a TensorFlow script! Masters of structured probabilistic inference are highly sought after.