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Abstract

The choice of network architecture is one of the key ingredients that has led to significant advances in
machine learning. Architectures often encode available knowledge about the world or the learning process.
A prominent example is convolutional neural networks, whose structure is motivated by the fact that image
classification should remain invariant under small translations.

In many real-world applications, detailed knowledge of the underlying physics or mathematical description
is available and should be incorporated into the network architecture. For instance, dynamical systems
are often characterized by differential equations. This information can be encoded in neural ODEs. These
architectures are often used for scientific applications, so understanding the output of the neural network is
crucial. Uncertainty quantification can help to build confidence in the network’s outputs and indicate cases
of failure. Therefore, the aim is to develop methods for uncertainty quantification alongside the network
architecture.

A core idea of the neural ODE framework is to provide a continuous perspective on deep learning. However, if
a too coarse numerical ODE solver is used for training, the resulting network will no longer fit this paradigm.
Specifically, for a continuous interpretation, a numerically more accurate ODE solver would achieve a similar
performance during test time as the solver used for training. However, there are cases where we observe a
significant drop in performance when testing with a numerically more accurate solver. We investigate this
issue and develop an algorithm to maintain the continuous interpretation of the architecture throughout
training.

In scientific applications, additional information about a task is often available, e.g., in the form of conservation
laws or partially known dynamics. Recent work has incorporated such information into the design of neural
ODEs. These scientific applications require a high degree of confidence in the networks’ outputs, hence we
propose to equip neural ODEs with uncertainty estimates. We find that even small changes in the setup can
lead to drastically different results, a fact that is reflected in the uncertainty estimates.

An often difficult task in both science and machine learning is the numerical computation of integrals. A
plethora of methods exit, but Bayesian quadrature stands out as an uncertainty-aware approach. Bayesian
quadrature provides estimates of numerical uncertainty using Gaussian process regression. However,
Bayesian quadrature does not scale well to higher dimensional settings and large amounts of data, a task
at which neural networks often excel. This motivates the development of a Bayesian numerical integration
method using neural networks. The architecture uses the Langevin-Stein operator and uncertainty estimates
are obtained using the Laplace approximation.

This thesis highlights the understanding and development of more task-specific neural network architectures,
and shows how uncertainty estimates help to understand the outputs of neural networks.





Zusammenfassung

Die Wahl der Netzarchitektur ist eine der wichtigsten Komponenten, die zu bedeutenden Fortschritten im
Bereich maschinellen Lernen geführt haben. Architekturen liegt oft vorhandenes Wissen über die Welt oder
den Lernprozess zugrunde. Ein bekanntes Beispiel sind faltende neuronale Netze, deren Struktur durch die
Tatsache motiviert ist, dass die Bildklassifizierung bei kleinen Verschiebungen unverändert bleiben sollte.

In vielen realen Anwendungen ist detailliertes Wissen über die zugrundeliegende Physik oder mathematische
Beschreibung des Problems vorhanden und sollte in die Netzarchitektur einbezogen werden. Dynamische
Systeme werden beispielsweise häufig durch Differentialgleichungen charakterisiert, was durch neuronale
gewöhnliche Differentialgleichungen (englisch ordinary differential equations, ODEs) abgebildet werden
kann. Diese Architekturen werden häufig für wissenschaftliche Anwendungen verwendet, wobei ein besseres
Verständnis der Ausgabe des neuronalen Netzes ein wichtiger Gesichtspunkt ist. Die Quantifizierung der
Unsicherheit kann dazu beitragen, das Vertrauen in die Ergebnisse des Netzes zu stärken und Fehler zu
erkennen. Ziel ist es daher, Methoden zur Quantifizierung von Unsicherheiten in Verbindung mit der
Netzarchitektur zu entwickeln.

Ein Kerngedanke der neuronalen ODE Architekturen besteht darin, eine kontinuierliche Perspektive für Deep
Learning zu bieten. Wenn jedoch ein zu grober numerischer ODE-Löser für das Training verwendet wird,
passt das resultierende Netz nicht mehr zu diesem Paradigma. Insbesondere gegeben einer kontinuierlichen
Interpretation müsste ein numerisch genauerer ODE-Löser beim Testen ein ähnliches Ergebnis erzielen
wie der für das Training verwendete Löser. Es gibt jedoch Fälle, in denen ein signifikanter Leistungsabfall
beobachtet wird, wenn man mit einem numerisch genaueren Löser testet. Wir untersuchen dieses Problem
und entwickeln einen Algorithmus, der die kontinuierliche Interpretation der Architektur während des
Trainings beibehält.

In wissenschaftlichen Anwendungen sind oft zusätzliche Informationen über das zu lösende Problem
verfügbar, z.B. in Form von Erhaltungsgesetzen oder teilweise bekannter Beschreibung der Dynamik. In
neueren Arbeiten wurden solche Informationen in den Entwurf von neuronalen ODEs einbezogen. Diese
wissenschaftlichen Anwendungen erfordern ein hohes Maß an Vertrauen in die Ergebnisse der Netze, daher
schlagen wir vor, neuronale ODEs mit Unsicherheitsschätzungen auszustatten. Wir stellen fest, dass selbst
kleine Änderungen in der Problemstellung zu drastisch unterschiedlichen Ergebnissen führen können, was
sich in den Unsicherheitsschätzungen widerspiegelt.

Eine oft schwierige Aufgabe sowohl in der Wissenschaft als auch beim maschinellen Lernen ist die numerische
Berechnung von Integralen. Es gibt eine Fülle von Methoden, aber die bayessche Quadratur zeichnet sich
als ein Ansatz aus, der die Unsicherheit der Methode selbst berücksichtigt. Die bayessche Quadratur liefert
Schätzungen der numerischen Unsicherheit unter Verwendung der Gaußprozess-Regression. Die bayessche
Quadratur lässt sich jedoch nicht gut auf höherdimensionale Probleme und große Datenmengen übertragen,
im Gegensatz zu neuronale Netze, die in diesen Bereich oft herausstechen. Die Architektur verwendet den
Langevin-Stein-Operator, und die Unsicherheitsschätzungen werden mit Hilfe der Laplace-Approximation
ermittelt.

Diese Arbeit beleuchtet das Verständnis und die Entwicklung aufgabenspezifischer Architekturen für
neuronaler Netze und zeigt, wie Unsicherheitsschätzungen helfen können, die Ergebnisse neuronaler Netze
besser zu verstehen.
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Notation

Acronyms & Abbreviations

E.g. or e.g. For example (exempli gratia)
I. e. or i. e. That is (id est)
BNN Bayesian neural network
BQ Bayesian quadrature
BSN Bayesian Stein network
CF Control functional
CPU Central processing unit
EOM Equations of motion
ERM Empirical risk minimization
GGN Generalized Gauss-Newton (matrix)
GP Gaussian process
GPU Graphics processing unit
HMC Hamiltonian Monte Carlo
IVP Initial value problem
L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
MALA Metropolis adjusted Langevin algorithm
MAP Maximum a posteriori (estimation)
MC Monte Carlo
MCMC Markov chain Monte Carlo
MLE Maximum likelihood estimation
mRNA Messenger ribonucleic acid
MSE Mean squared error
NFE Number of function evaluations
NUTS No U-turn sampler
ODE Ordinary differential equation
PDE Partial differential equation
PINN Physics informed neural network
PNM Probabilistic numerical method
PSD Positive semi-definite
QMC Quasi-Monte Carlo
RELU Rectified linear unit
ResNet Residual (neural) network
SDE Stochastic differential equations
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1.1 Introduction

Modern neural network architectures excel at a long list of tasks, includ-
ing image classification and generation [67, 117], text translation and
completion [45], and time series analysis (e.g., for weather and climate
modeling [65]), to name just a few. We might think of neural networks
as this all-encompassing black box which does not require adjusting the
network structure to a specific task. And while some modern neural net-
work models seem to be getting closer to this idea [47, 151], the excellent
performance of many models is only made possible by careful design of
their architecture. Historically, the structure of neural networks has been
inspired by the biological structure of neural networks in the human
brain [66]. While some architectures still draw inspiration from biological
neural networks (e.g., spiking neural networks [131]), the influences of
modern architectures are diverse. Improvements in network architecture
are motivated by various goals, such as better performance [117], faster
training [86], better extrapolation [231], increased data and/or memory
efficiency [221], obeying mathematical properties [155, 171], or obeying
physical laws [227]. To improve some of these aspects, researchers incor-
porate knowledge about the data generating process [29], symmetries in
the data [59, 117, 187], or the mathematical representation of the task into
the structure of the neural network [1, 155, 171].

A key motivation for making changes to the network architecture is that
training neural networks can be difficult, especially with increasing depth.
However, a small change in the architecture makes it possible to train
much deeper networks. The resulting architecture, known as a residual
neural network [86], has led to major advances in image classification. A
residual network consists of neural network blocks 𝑓 𝑖

𝜃𝑖
that transform an

input 𝑥 𝑖 by the following transformation:

𝑥 𝑖+1 = 𝑥 𝑖 + 𝑓 𝑖
𝜃𝑖
(𝑥 𝑖).

This transformation not only allows for easier training of the network
but also has some interesting numerical properties. A residual neural
network is similar to the Euler method used to solve ordinary differential
equations. Viewing residual networks as the numerical solution of an
ordinary differential equation provides an entirely new, continuous view
of the architecture. This continuous perspective suggests combining
several blocks into an ordinary differential equation, called a neural
ODE

𝑥′ = 𝑓𝜃(𝑡 , 𝑥), 𝑥(𝑡 = 𝑡0) = 𝑥0.

The two descriptions do not overlap completely, but the similarity is still
surprising. Since in reality we still rely on numerical methods to solve
neural ODEs, it is crucial to understand the impact of these numerical
solvers on the continuous perspective and the model in general. Chen
et al. [28] has developed this continuous view into a new perspective
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for existing deep learning applications such as image classification,
normalizing flow, and time series analysis. Their goal is to provide a more
memory efficient approach and new insights into existing architectures.
Neural ODEs also lend themselves directly to the modeling of dynamical
systems, which are often already modeled by differential equations (e.g.,
equations of motion, reaction-diffusion equations in chemistry, or fluid
dynamics). In such scientific settings, the goal is to model unknown
dynamics in a data-driven way. Here, we make use of knowledge of the
data generating process and incorporate it into the network structure,
with the aim of obtaining models that extrapolate better and align with
our understanding of the underlying physics.

The structure of a neural network can also be motivated by consider-
ing novel tasks. Integration is a task rarely tackled by deep learning
methods, but it is important throughout machine learning, e.g. for com-
puting normalization constants or posterior means in Bayesian inference
tasks. Despite a number of existing numerical methods, there are still
cases where a neural network approach is useful. In higher-dimensional
integration settings, Monte Carlo methods are the default integration
method. These methods are often numerically cheap if function evalua-
tions are cheap, but since they make no assumptions about the functional
form of the integrand, they often require a large number of function
evaluations. On the other hand, Bayesian quadrature [92, 150], a prob-
abilistic numerical method, encodes assumptions about the functional
class of the integrand, leading to good results in the low-data regime.
However, Bayesian quadrature does not scale well to large numbers of
function evaluations or to higher dimensional settings. Therefore, higher
dimensional settings, where a lot of data is available, but sampling is
not extremely cheap, require the development of novel algorithms. This
thesis introduces a novel neural network architecture where the struc-
ture of the integration problem itself is directly encoded in the network
architecture.

In the previous paragraphs, we motivated two network architectures,
one encoding the structure of ordinary differential equations and the
other encoding the structure of the integration problem. Although
these architectures seem similar to physical models or the mathematical
expressions we want to compute, they are still data-driven approaches
whose neural network output can be difficult to understand. Neural
networks, if chosen large enough, can fit arbitrary data, but this also
means that the neural network can converge to an arbitrarily bad or
complex solution, resulting in inaccurate predictions. This requires some
form of uncertainty quantification on the network outputs.

This thesis aims to develop, apply, and understand neural network
architectures for dynamics modeling and integration. The goal is to
highlight the strengths but also the limitations of the imposed structural
knowledge.
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1.2 Outline

The first part of this thesis introduces the essential ingredients used in
this thesis, providing background on numerical integration, numerical
approximation of ODE solutions and deep learning.

Chapter 2 lays the foundation for later chapters, giving a short intro-
duction to numerical integration. The chapter starts with an overview
of classic numerical quadrature in Section 2.1. These classic algorithm
become relevant in Chapter 3 for the development of numerical methods
for ODEs. Section 2.2 introduces the Laplace approximation, a simple
and extremely cheap technique to obtain approximations of integrals. We
revisit this technique in the context of developing a Bayesian framework
for neural networks in Section 4.3. The remainder of this chapter, Sec-
tion 2.3 and Section 2.4.1, describes how to perform numerical integration
via Monte Carlo methods and Bayesian quadrature.

Chapter 3 treats ordinary differential equations and numerical methods
to approximate ODE solutions. Section 3.1 establishes the formal concept
and provides theoretical background on the existence of ODE solutions.
Since it is often impossible to find analytical solutions, the main objective
of this chapter is to numerically approximate the ODE solution, building
on the foundations from numerical integration. Section 3.2 provides an
overview of numerical ODE solvers, i.e., fixed step and adaptive step size
Runge-Kutta methods. These numerical solvers play an important role
in the construction of neural ODEs in Chapter 4, and severely affect the
behavior of such models, as discussed in Chapter 5.

Chapter 4 presents the basic ingredients to build (Section 4.1) and train
(Section 4.2) neural networks. Since neural network prediction can be
highly inaccurate outside the data domain, Section 4.3 establishes a frame-
work to equip neural networks with uncertainty estimates. Section 4.4
motivates extensions to the basic architectures developed in the previous
part of this chapter. These architectures are inspired by the structure
in the data, the data generating process or by aiming to solve a specific
numerical task. We then take a closer look a one specific neural network
structure—neural ODEs—and its applications.

The second part of this thesis provides novel contributions to under-
standing and developing neural networks with specialized structural
components. First, we take a detailed look at neural ODEs in Chapter 5
and Chapter 6. Chapter 7 develops a novel neural network architecture
for Bayesian numerical integration.

A key appeal of neural ODEs is that they provide a continuous framework
for deep learning. In Chapter 5 we take a closer look at this viewpoint,
and find that it actually breaks down if a too coarse numerical solver
is used for training the neural ODE. In such cases, a numerically more
accurate solver no longer recovers the same result as the solver used
for training, but leads to a significant drop in performance. Chapter 5
investigates this issue in detail, to then develop an algorithm which
automatically adapts the solver precision during training. The aim of
this algorithm is to maintain the continuous interpretation of the model
throughout training.
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Disclaimer 1.1 Chapter 5 is based on the peer-reviewed conference
publication with the following co-author contributions:

K. Ott, P. Katiyar, P. Hennig, and M. Tiemann. “ResNet After All:
Neural {ODE}s and Their Numerical Solution”. International Conference
on Learning Representations. 2021 [153]

Ideas Experiments Analysis Writing

K. Ott 30 % 60 % 30 % 35 %
P. Katiyar 15 % 40 % 15 % 20 %
P. Hennig 25 % 0 % 25 % 25 %
M. Tiemann 30 % 0 % 30 % 20 %

The neural ODE framework can be extended using mechanistic
knowledge—via conservation laws implemented by the Hamiltonian
equations of motion and by augmenting physical models with neural
ODEs. Chapter 6 investigates these extensions by developing uncer-
tainty estimates for neural ODEs. Uncertainty estimates are particularly
interesting for these specialized architectures, as their extrapolation
and interpolation capabilities significantly differ from standard neural
ODEs. For example, additional structure can improve the extrapolation
capabilities of a neural ODE, which can best be assessed using structured
uncertainty estimates. To compute the uncertainty estimates, Chapter 6
proposes to use the Laplace approximation and shows how to adapt this
approach to neural ODEs.

Disclaimer 1.2 Chapter 6 is based on a prepreint with the following
co-author contributions:

K. Ott, M. Tiemann, and P. Hennig. “Uncertainty and Structure in
Neural Ordinary Differential Equations”. arXiv:2305.13290 (2023) [154]

Ideas Experiments Analysis Writing

K. Ott 45 % 85 % 60 % 70 %
M. Tiemann 15 % 5 % 10 % 10 %
P. Hennig 45 % 10 % 30 % 20 %

Chapter 7 considers the task of numerical integration and how to leverage
the interpolation power of neural networks in this context. Bayesian
quadrature tends to struggle in higher dimensions and for large amounts
of data, whereas Monte Carlo methods often require large amounts of
data as they make few assumptions on the integrand. To bridge the
gap between the two methods, when plenty of data is available but
not yet sufficient to obtain good results with Monte Carlo, Chapter 7
proposes a Bayesian neural network for numerical integration. The
network architecture itself is based on the Langevin Stein operator,
and uncertainty estimates are obtained via the Laplace approximation.
This network requires special care in the choice of activation function,
architecture and optimization procedure. The resulting architecture
utilizes the networks capabilities to handle large amounts of data and
scales well to higher dimensional problems.
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Disclaimer 1.3 Chapter 7 is based on a preprint to be published as
peer-reviewed conference publication at UAI 2023 with the following
co-author contributions:

K. Ott, M. Tiemann, P. Hennig, and F.-X. Briol. “Bayesian Numerical
Integration with Neural Networks”. arXiv:2305.13248 (2023) [155]

Ideas Experiments Analysis Writing

K. Ott 35 % 80 % 30 % 35 %
M. Tiemann 10 % 5 % 15 % 10 %
P. Hennig 20 % 10 % 25 % 20 %
F.-X. Briol 35 % 10 % 30 % 35 %

A brief summary is provided in Chapter 8. This chapter also contains
pointers to obstacles when adding complex structure to the architecture
of neural networks and derives ideas for future work.
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Background & Motivation
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2.4 Bayesian Quadrature . . . 15

Integration problems occur throughout science, but is especially promi-
nent in Bayesian probability theory, e.g., for computing normalization
constants or posterior expectations. While it might be possible to ana-
lytically solve the integration task for simple problems, in practice one
often has to resort to some numerical method. In Section 2.1 we introduce
classic numerical integration methods, which essentially work by fitting
integrable functions through evaluations of the integrand. To avoid the
curse of dimensionality of classic methods in high dimensions, one can
instead stochastically approximate the integral via Monte Carlo methods
which are introduced in Section 2.3. Bayesian Quadrature (Section 2.4)
leverages knowledge about the functional form of the integrand and ob-
tains uncertainty estimates for the integral evaluation. The last section of
this chapter discusses how to choose the appropriate integration method
for a given task. Throughout this chapter, we use the terms quadrature
and numerical integration interchangeably.

2.1 Classic Quadrature

We consider the methods presented in this section not only for their
relevance to numerical integration, but later in Section 3.2.1 we will see
that they played an important role in the development of numerical ODE
solvers. For a more exhaustive discussion of classic numerical methods
we refer to [38]. In this section we consider one dimensional integration
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Figure 2.1: Illustration of the Midpoint
method.

problems of a function 𝑓 : X ⊂ ℝ→ ℝ over the domain [𝑎, 𝑏]:

Π[ 𝑓 ] =
∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥.

One simple way to approximate the integral Π[ 𝑓 ] is via a piece-wise
constant function, known as the Midpoint method (illustrated in Figure 2.1).

−4 −2 0 2 4
G

0

2

4

5(G
)

Figure 2.2: Illustration of the Trapezoidal
method.

Definition 2.1 Midpoint method Consider a grid of size 𝑁 , 𝑥0 =
𝑎, 𝑥𝑁 = 𝑏, 𝑥𝑛 = 𝑛 𝑎−𝑏𝑁 . We then approximate the integral via a piece
wise constant

Π[ 𝑓 ] ≈
𝑁−1∑
𝑛=0

𝑓
( 𝑥𝑛+1 − 𝑥𝑛

2

)
(𝑥𝑛+1 − 𝑥𝑛) .

Instead of considering just constant approximations, one can instead use
affine functions known as the Trapezoidal rule (see Figure 2.2) or even
higher order polynomials. Simpson’s rule locally approximates the function
𝑓 with second order polynomials (shown in Figure 2.3).
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Definition 2.2 Simpson’s rule Consider the grid of size 𝑁 , 𝑥0 =
𝑎, 𝑥𝑁 = 𝑏, 𝑥𝑛 = 𝑛 𝑎−𝑏𝑁 . We then approximate the integral via second
order polynomials

Π[ 𝑓 ] ≈
𝑁−1∑
𝑛=0

(
𝑓 (𝑥𝑛) + 4

( 𝑥𝑛+1 − 𝑥𝑛
2

)
− 𝑓 (𝑥𝑛+1)

) 𝑥𝑛+1 − 𝑥𝑛
6

.

−4 −2 0 2 4
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4
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)

Figure 2.3: Illustration of the Simpson’s
method.

2.1.1 Gaussian quadrature
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Figure 2.4: Illustration of Gauss-
Legendre quadrature of degree 𝑛 = 5.
A Legendre polynomial (yellow) is used
to compute the evaluation points 𝑥𝑖 . The
function 𝑓 (red) is then approximated
with a polynomial (black solid line).

Instead of considering a regular grid, the evaluation points 𝑥𝑛 can be
chosen based on orthogonal polynomials. These methods are known as
Gaussian quadrature (see [38]). We can write 𝑓 (𝑥) = 𝑓 (𝑥)𝑤(𝑥), where
𝑤 : X ⊆ ℝ→ ℝ is some weighting function. By approximating 𝑓 with a
polynomial of degree 𝑁 , we can make use of the fact that the integral of
the polynomial can be computed in closed form

∫
X
𝑓 (𝑥)𝑑𝑥 =

∫
X
𝑓 (𝑥)𝑤(𝑥)𝑑𝑥 ≈

𝑁∑
𝑛=1

𝑓 (𝑥𝑛)𝜔𝑛 . (2.1)

The 𝑥𝑛 correspond to the roots for the orthogonal polynomial of degree
𝑁 with the same weighting function 𝑤, e.g., the Legendre polynomials
for 𝑤(𝑥) = 1 (illustrated in Figure 2.4). 𝜔𝑛 are the weights, obtained by
integration. The method fits polynomial 𝑓 up to degree 2𝑁 − 1 exactly
[38]. For many orthogonal polynomials, precomputed tables for the
weights 𝜔𝑛 and the evaluation points 𝑥𝑛 exist.

The methods described in this section can be extended to higher dimen-
sions using Fubini’s theorem (evaluating one integral after the other),
which leads to an exponential increase in function evaluations known
as the curse of dimensionality. Higher dimensional extensions for classic
quadrature methods exist [196], but the next sections discuss alternative
methods which overcome this issue.

2.2 Laplace Approximation for Integration

We consider the task of integrating a function 𝑓 : X ⊆ ℝ𝑑 → ℝ+,

Π[ 𝑓 ] =
∫
X
𝑓 (𝑥)𝑑𝑥.

The Laplace approximation works by approximating 𝑓 with a Gaussian
(Figure 2.5). We consider an integrable function 𝑓 , where 𝑓 (𝑥) = 𝑒𝐶𝑔(𝑥)
and 𝐶 ∈ ℝ+. 𝑔 : X ⊆ ℝ𝑑 → ℝ is a twice differentiable function. Let
𝑥∗ ∈ X be the maximum of both 𝑓 (𝑥) and 𝑔(𝑥). We then expand 𝑔 around
𝑥∗ up to second order

𝑔(𝑥) ≈𝑔(𝑥∗) + ∇𝑥 𝑔 |𝑥=𝑥∗(𝑥 − 𝑥∗)
+ 1

2
(𝑥 − 𝑥∗)⊤∇2

𝑥 𝑔 |𝑥=𝑥∗(𝑥 − 𝑥∗).
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The second term ∇𝑥 𝑔 |𝑥=𝑥∗ is zero by the choice of 𝑥∗. The function 𝑓 can
then be approximated via a Gaussian function

6(�)
6(�MAP)

�

exp(6(�))
@(�)

Figure 2.5: (Top) quadratic approxima-
tion for 𝑔. (Bottom) Approximation of the
function 𝑓 with a Gaussian.

𝑓 (𝑥) ≈ exp(𝐶𝑔(𝑥∗) + 1
2
(𝑥 − 𝑥∗)⊤𝐶Σ−1(𝑥 − 𝑥∗)) ≕ 𝑞(𝑥),

where Σ−1 = ∇2
𝑥 𝑔 |𝑥=𝑥∗ is a negative definite matrix. The integral over

𝑞 can then be computed in closed form by making use of the fact that
the integral of a Gaussian is known (and precomputed tables for finite
domains exist). One can show that Π[𝑞] → Π[ 𝑓 ] for 𝐶 → ∞ [180].
An advantage of this approach is that it provides a fast and simple
approximation of the integral, but the accuracy is limited especially for
multimodal distributions.

2.3 Monte Carlo Methods

This section considers the task of computing the integral over a func-
tion 𝑓 : X ⊆ ℝ𝑑 → ℝ and a probability density function 𝜋 : X →
ℝ+0 ,

∫
X 𝜋(𝑥)𝑑𝑥 = 1,

Π𝜋[ 𝑓 ] =
∫
X
𝑓 (𝑥)𝜋(𝑥)𝑑𝑥.

The previously introduced quadrature rules do not take into account the
probability density function in the choice of evaluation points. Addition-
ally, these methods often do not scale well to higher dimensions. Monte
Carlo (MC) methods overcome both of these issues. Instead of determin-
istically approximating the function, Monte Carlo methods randomly
sample evaluation points from 𝜋. This section briefly introduces the main
concepts, focusing on methods that remain relevant to later chapters.

2.3.1 Monte Carlo Sampling

We consider the case when it is possible to sample form 𝜋, then

𝔼𝜋[ 𝑓 ] ≔ Π𝜋[ 𝑓 ] ≈ 1
𝑁

𝑁∑
𝑛=1

𝑓 (𝑥𝑛) C �̂�, 𝑥𝑛 ∼ 𝜋. (2.2)

�̂� provides an unbiased estimator for 𝔼𝜋[ 𝑓 ], i.e.,

𝔼𝜋 [�̂�] = 𝔼𝜋

[
1
𝑁

𝑁∑
𝑛=1

𝑓 (𝑥𝑛)
]
=

1
𝑁

𝑁∑
𝑛=1

𝔼𝜋[ 𝑓 ] = 𝔼𝜋[ 𝑓 ].

To analyze the convergence, we compute the variance of �̂�

𝕍𝜋[�̂�] ≔ Π𝜋

[
(�̂� −Π𝜋[ 𝑓 ])2

]
=

𝜎2
𝑓

𝑁
, (2.3)

where 𝜎2
𝑓 is the variance of 𝑓

𝜎2
𝑓 = Π𝜋

[
( 𝑓 −Π𝜋[ 𝑓 ])2

]
.
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From Equation 2.3 we obtain a convergence rate of 1/√𝑁 , and note that
this convergence rate is independent of the dimensionality. The variance
of 𝑓 might, however, be arbitrarily small or large. The use of control
variates can lead to a variance reduction, and works by adding a term
with expectation value of zero [180]. When sampling from 𝜋 directly is
not possible, the expectation value in Equation 2.2 can still be computed
through importance sampling.

Definition 2.3 Importance Sampling We would like to approxi-
mate Π𝜋[ 𝑓 ] using MC sampling, however sampling from 𝜋 is not
possible/infeasible. Instead, we rewrite the integral as

Π𝑝𝑖[ 𝑓 ] =
∫
X
𝑓 (𝑥)𝜋(𝑥)𝑑𝑥 =

∫
X
𝑓 (𝑥)𝜋(𝑥)

𝜌(𝑥)𝜌(𝑥)𝑑𝑥,

where the probability density function 𝜌 is chosen such that it has
greater or equal support than 𝜋 and sampling from 𝜌 is possible. Then
Π𝜋[ 𝑓 ] can be approximated via importance sampling

Π𝜋[ 𝑓 ] ≈ 1
𝑁

𝑁∑
𝑛=1

𝑓 (𝑥𝑛)𝜋(𝑥𝑛)
𝜌(𝑥𝑛) , 𝑥𝑛 ∼ 𝜌.

Quasi-Monte Carlo
Pseudorandom

sequence
Low discrepancy

sequence

Figure 2.6: Sampling 𝑛 = 256 evaluation
points using a pseudorandom sequence
(left) and a low discrepancy sequence
(right) (here the Sobol sequence [193]).

In practice sampling from 𝜋 requires an algorithm which produces
these samples. These algorithms work by deterministically computing
a sequence of samples given a seed where the samples are distributed
according to 𝜋. Such sequences are also known as pseudorandom, as the
underlying algorithm is deterministic.

Instead of using pseudorandom numbers to approximate the integral,
quasi-Monte Carlo proposes to choose the evaluation points based on low
discrepancy sequences, i.e., sequences that cover the integration domain
evenly. Where random sampling can lead to large patches without
samples, this issue is alleviated by a low discrepancy sequence (see
Figure 2.6 for a comparison). Quasi-Monte Carlo methods can lead to a
better convergence rate than standard Monte Carlo sampling.

2.3.2 Markov Chain Monte Carlo

Often, sampling from 𝜋 is not possible, and 𝜋 might only be known
up to a normalization constant. An example is the computation of
posterior expectations, where likelihood and prior are known, but the
normalization constant of the posterior is not. In such cases Markov
Chain Monte Carlo methods (MCMC) are useful. While importance
sampling can deal with the case when sampling from 𝜋 is not possible, it
still requires 𝜋 to be available in normalized form. This is an advantage of
MCMC methods, which do not require knowledge of the normalization
constant of 𝜋.
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Definition 2.4 Markov chain A Markov chain is a set of random
variables {𝑥𝑛}𝑁𝑛=0 ∈ X , with prior 𝑥0 ∼ 𝑝(𝑥0) and transition probability
𝑝 : X × B(X ) → [0, 1]which fulfill the Markov property

𝑝(𝑥𝑛+1 ∈ 𝐴 | 𝑥0 . . . 𝑥𝑛) = 𝑝(𝑥𝑛+1 ∈ 𝐴 | 𝑥𝑛). (2.4)

for any 𝐴 ∈ B(X ), where B(X ) denotes the 𝜎-algebra [183] on X .

To use Markov chains for the integration tasks, they need to be station-
ary, i.e., they need to sample from 𝜋, and they need to be ergodic, i.e.,
exhaustively sample from all of X . To be more precise

Definition 2.5 Stationary distribution 𝜋 is a stationary distribution of
a Markov chain if for all 𝐴 ∈ B(X )

𝜋(𝐴) =
∫
X
𝑝(𝐴 | 𝑥)𝜋(𝑥)𝑑𝑥,

i.e., 𝑥𝑛 ∼ 𝜋 if 𝑥0 ∼ 𝜋.

Definition 2.6 Irreducible Markov chain A Markov chain is called
irreducible if for any 𝑥0 ∈ X , 𝐴 ∈ B(X ) there exists some 𝑛 such that

𝑝(𝑥𝑛 ∈ 𝐴 | 𝑥0) > 0.

Loosely speaking, for an irreducible Markov chain, we can reach any
"state" with finite probability. A Markov chain is ergodic, if it is aperiodic
and irreducible. For such chains the expectation under samples from the
chain is equal to sampling from 𝜋 directly

lim
𝑛→∞

1
𝑛

𝑁∑
𝑛=1

𝑓 (𝑥𝑛) = Π𝜋[ 𝑓 ],

where 𝑥𝑛 are samples from an ergodic Markov chain with stationary 𝜋.
The goal of Markov chain Monte Carlo is to find such Markov chains.

Metropolis Hastings Algorithm

Figure 2.7: Illustration of the Metropo-
lis Hastings Algorithm. Realization of a
Markov chain, using a Gaussian transi-
tion kernel and 𝑁 = 50 steps.

This well known algorithm was already developed in the 50s [138] (and
generalized by Hastings [85]) but became popular in the 90s [61] when
computers where more readily available. To obtain samples from 𝜋 the
algorithm requires that a distribution 𝑞 ∝ 𝜋 is available and that 𝑞 can
be evaluated. Additionally, we need to define a transition probability
distribution 𝑔(𝑥 | 𝑦), which allows sampling, e.g., a Gaussian distribution.
The algorithm then takes a tentative step �̂�𝑛+1 ∼ 𝑔(𝑥𝑛+1 | 𝑥𝑛). The step is
accepted or rejected based on the following acceptance ratio

𝛼 = min
[
1,
𝑞(�̂�𝑛+1)𝑔(𝑥𝑛 | �̂�𝑛+1)
𝑞(𝑥𝑛)𝑔(�̂�𝑛+1 | 𝑥𝑡)

]
.

A step is accepted if a random number 𝑢 ∼ [0, 1] is smaller than 𝛼. The
accept-reject step encourages moving to regions of high probability with
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respect to 𝜋. In case of rejection, the old step is reused. The choice of 𝑔
can be tricky especially in high dimensions where different jump lengths
for different directions might be needed. A sample path of random walk
Metropolis Hastings using a Gaussian distribution for 𝑔(𝑥 | 𝑦) is depicted
in Figure 2.7.

Metropolis Adjusted Langevin Dynamics

Figure 2.8: Illustration of the MALA Al-
gorithm. Realization of a Markov chain
using 𝑁 = 50 steps.

The Metropolis Adjusted Langevin algorithm (MALA) [73, 163, 181]
computes proposal steps based on the Langevin equations.

Here we consider the Langevin diffusion process

𝑥′ = ∇ log𝜋(𝑥) +
√

2𝜂 (2.5)

where𝜂 is a Gaussian-distributed noise term with correlation ⟨𝜂(𝑡), 𝜂(𝑡′)⟩ ∝
𝛿(𝑡 − 𝑡′). From the Fokker Planck equation we know that 𝜋 is an invariant
distribution of the process 𝑥𝑡 . To find sample paths based on Equa-
tion 2.5, numerical stochastic differential equation solvers such as Euler
Maruyama are used. To get a proposal step, MALA works by taking
a single Euler Maruyama step, and then doing a Metropolis-Hastings
accept-reject step to correct for solver errors (a corresponding sample
path is shown in Figure 2.8). Chapter 7 applies this algorithm to finding
posterior expectations for the parameters of an ODE.

Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) algorithm is a Metropolis Hastings
algorithm, which computes steps via the Hamiltonian equations of
motion.

Given a system with energy 𝐸(𝑥) and states 𝑥, then the probability
density function over the states is given via the Boltzmann distribution

𝑝(𝑥) = 1
𝑍

exp
(
−𝐸(𝑥)

𝜏

)
, (2.6)

where 𝜏 is a temperature parameter. In the following we consider the
case where we describe a probability distribution in terms of energy, i.e.,
𝐸(𝑥) = − log 𝑝(𝑥) − log(𝑍), and hence 𝜏 = 1 describes the distribution of
interest.

The Hamiltonian is a conserved quantity of a physical system (which
can often be interpreted as the energy of the system), which describes
the equations of motion (EOM) in terms of the (generalized)* space and
momentum coordinates

𝑞′ =
𝜕𝐻
𝜕𝑝

, 𝑝′ = −𝜕𝐻
𝜕𝑞

. (2.7)

In practice, one often considers separable systems where the Hamiltonian
𝐻 can be expressed as a sum of potential energy𝑈(𝑞) and kinetic energy

* Generalized coordinates are an important concept in theoretical mechanics and allow a
simpler description of the system than using standard Cartesian coordinates.
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𝑇(𝑝) = 𝑝2

2𝑚 , where 𝑚 corresponds to the mass. To solve the Hamiltonian
EOM one requires special solvers, see Section 3.2.1.

Figure 2.9: Illustration of the HMC Al-
gorithm. The red line depicts a solution
to the Hamiltonian equations of motions
to find the next proposal step.

To obtain samples from 𝜋, we start by expressing the potential 𝑈 via
the probability density 𝜋 as 𝑈(𝑞) = −∇𝑞 log𝜋(𝑞). The Boltzmann dis-
tribution Equation 2.6 provides the joint distribution of 𝑞 and 𝑝, i.e.,
𝑝(𝑞, 𝑝) ∝ exp−𝐻(𝑞, 𝑝). To compute proposals the EOM Equation 2.7
are solved for 𝐿 steps with step size ℎ (ℎ and 𝐿 are hyperparameters
of the problem), shown in Figure 2.9. The proposal is then accepted or
rejected as in the Metropolis Hastings algorithm. To marginalize out 𝑝,
the momentum is resampled at each step.

The HMC algorithm requires that the derivatives of log𝜋 can be com-
puted (we note that this means we only need to know 𝜋 up to a normal-
ization constant). HMC samples tend to be less correlated than random
walk Metropolis Hastings. However, for certain settings and sets of hy-
perparameters, HMC chains can potentially be non-ergodic or extremely
slow to sample [140].

No-U-Turn Sampler If 𝐿 is chosen too large, the trajectory can start
oscillating back and forth, effectively wasting computation time and
potentially leading to non-ergodic Markov chains. To avoid this issue,
Hoffman, Gelman, et al. [95] suggest running the dynamics forward and
backwards in time. If the trajectories start turning around, a random
point from the trajectory is sampled and the run is continued from there.
This algorithm is nowadays often the default algorithm, and we will later
see in Chapter 6 that it can be used to compute posterior distributions
for small Bayesian neural networks.

2.4 Bayesian Quadrature

Bayesian quadrature works by placing a Gaussian process (GP) [174] prior
on the integrand, which not only allows the approximation of the integral
but also provides an uncertainty estimate for the computation. First, we
define kernel functions and Gaussian processes. We then show how to
use GPs for regression tasks, and apply GPs to integration.

Definition 2.7 Kernel A kernel is a symmetric function 𝑘 : X ⊆
ℝ𝑑 × X ⊆ ℝ𝑑 → ℝ, where 𝑘(𝑥𝑛 , 𝑥𝑚) = 𝑘(𝑥𝑚 , 𝑥𝑛) for any 𝑥𝑛 , 𝑥𝑚 ∈ X .
In the following we consider positive definite kernel functions, i.e., for
any sequence {𝑥𝑛}𝑁𝑛=1 ⊂ X the𝑁×𝑁 matrix𝐾, with𝐾𝑛,𝑚 = 𝑘(𝑥𝑛 , 𝑥𝑚),
is positive definite.

Definition 2.8 Gaussian Process Given a mean function 𝑚 : X ⊆
ℝ𝑑 → ℝ and a kernel 𝑘 : X × X → ℝ, 𝑔 ∼ GP(𝑚, 𝑘) is a Gaussian
process, if for any choice of 𝑋 = {𝑥𝑛}𝑁𝑛=1 ⊂ X the vector 𝑔𝑋 =
[𝑔(𝑥1), . . . 𝑔(𝑥𝑁 )] is distributed according to a multivariate normal

𝑔𝑋 ∼ N (𝑚𝑋 , 𝑘𝑋𝑋),

where [𝑚𝑋]𝑖 = 𝑚(𝑥𝑛) and [𝑘𝑋𝑋]𝑛𝑛′ = 𝑘(𝑥𝑛 , 𝑥𝑛′), 𝑛, 𝑛′ ∈ 1 . . . 𝑁 .
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We consider the regression problem, where noisy data 𝑦𝑛 given some 𝑥𝑛
is available, but the data generation process is unknown. In such cases
a GP might be a good prior choice for a Bayesian regression approach.
By conditioning the GP on the data D = {𝑥𝑛 , 𝑦𝑛}𝑁𝑛=1, we can obtain a
predictive posterior 𝑔 | D ∼ GP(𝑚, 𝑘) for any new location 𝑥 ∈ X :

𝑚𝑝(𝑥) = 𝑚(𝑥) + 𝑘𝑋(𝑥)⊤(𝑘𝑋𝑋 + 𝜎2𝐼)−1(𝑌 − 𝑚𝑋)
𝑘𝑝(𝑥, 𝑥′) = 𝑘(𝑥, 𝑥′) − 𝑘𝑋(𝑥)⊤(𝑘𝑋𝑋 + 𝜎2𝐼)−1𝑘𝑋(𝑥),

(2.8)

where [𝑘𝑋(𝑥)]𝑛 = 𝑘(𝑥, 𝑥𝑛), [𝑘𝑋𝑋]𝑛𝑛′ = 𝑘(𝑥𝑛 , 𝑥𝑛′),𝑌𝑛 = 𝑦𝑛 , [𝑚𝑋] = 𝑚(𝑥𝑛)
for 𝑛, 𝑛′ ∈ 1 . . . 𝑁 . 𝜎 models the data noise, i.e., 𝑦𝑛 = 𝑓 (𝑥𝑛) + 𝜖, 𝜖 ∼
N (0, 𝜎2), where 𝑓 is the (unknown) data generating process.

2.4.1 Introduction to Bayesian Quadrature
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Figure 2.10: Illustration of Bayesian
quadrature. (Top) Gaussian process re-
gression (red) on evaluations of 𝑓 (black
dots). Gaussian approximation for the
integral (mean indicated by the blue line,
true value indicated by the dashed black
line).

We are interested in approximating the integral

Π𝜋[ 𝑓 ] =
∫
X
𝑓 (𝑥)𝜋(𝑥)𝑑𝑥.

Bayesian quadrature [22, 46, 150, 173] works by placing a prior 𝑔 ∼
GP(𝑚, 𝑘) on 𝑓 . Hence, we define

Λ ≔
∫
X
𝑔(𝑥)𝜋(𝑥)𝑑𝑥,

whereΛ is a random variable. GPs are closed under linear transformations
(such as integrals) and, therefore, Λ is distributed according to a normal
distribution, i.e.,

Λ ∼ N (𝜇, 𝜎)
with

𝜇 = 𝔼𝑔[Λ] =
∫
X
𝑚(𝑥)𝜋(𝑥)𝑑𝑥

𝜎 = 𝕍𝑔[Λ] =
∫
X

∫
X
𝑘(𝑥, 𝑥′)𝜋(𝑥)𝜋(𝑥′)𝑑𝑥𝑑𝑥′.

Conditioning the GP on observations D = {𝑥𝑛 , 𝑓 (𝑥𝑛)}𝑁𝑛=0, we find

Λ | D ∼ N (𝜇D , 𝜎D),

where (using Equation 2.8)

𝜇D = 𝔼𝑔 |D[Λ] =
∫
X

(
𝑚(𝑥) + 𝑘𝑋(𝑥)⊤𝑘−1

𝑋𝑋( 𝑓𝑋 − 𝑚𝑋)
)
𝜋(𝑥)𝑑𝑥

= Π𝜋[𝑚] +Π𝜋[𝑘𝑋]𝑘−1
𝑋𝑋( 𝑓𝑋 − 𝑚𝑋),

and

𝜎D = 𝕍𝑔 |D[Λ] =
∫
X

∫
X

(
𝑘(𝑥, 𝑥′) − 𝑘𝑋(𝑥)⊤𝑘−1

𝑋𝑋 𝑘𝑋(𝑥′)
)
𝜋(𝑥)𝜋(𝑥′)𝑑𝑥𝑑𝑥′

= ΠΠ̄𝜋[𝑘] +Π𝜋[𝑘⊤𝑋]𝑘−1
𝑋𝑋Π𝜋[𝑘𝑋].

Here [ 𝑓𝑋]𝑛 = 𝑓 (𝑥𝑛), andΠΠ̄𝜋[𝑘] =
∫
X

∫
X 𝑘(𝑥, 𝑥′)𝜋(𝑥)𝜋(𝑥′)𝑑𝑥𝑑𝑥′. Above

we assume that we can obtain noiseless samples from, i.e., 𝑦𝑛 = 𝑓 (𝑥𝑛),
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and 𝜎 → 0. Clearly, the expressions above can only be used if Π𝜋[𝑘𝑋],
called the kernel mean embedding, and ΠΠ̄𝜋[𝑘], called the initial error,
are known in closed-form. This is only possible for some combinations
of distribution 𝜋 and covariance function 𝑘. For example, if X = ℝ𝑑, 𝜋
is a Gaussian and 𝑘 is the RBF-kernel, then the expressions above can
be computed analytically. Alternatively, if the kernel mean and variance
with respect 𝜋 is not available, one can compute the integral with respect
to a distribution 𝜌 where kernel mean and variance are known. This
requires replacing the function 𝑓 with 𝑓 (𝑥) = 𝑓 (𝑥)𝜋(𝑥)/𝜌(𝑥), similar to
importance sampling (Definition 2.3). So far we have assumed that we
are given a data set D, but BQ can also be extended to adaptively sample
points [75, 152].

Summary

So with all these integration methods available, which is the right
one to use? The truth is there is no "one-size-fits-all" method, but the
method has to be chosen on a per-task basis. Classic methods based
on polynomials encode the fact that 𝑓 is continuous. Similarly, for
BQ we can encode knowledge about the functional form of 𝑓 via the
choice of GP prior. Actually, a lot of classic algorithms can be encoded
as a BQ method [93]. Hence, both of these methods are attractive if
function evaluations are expensive as they encode additional information
about 𝑓 , but they only work well for lower dimensional problems. BQ
comes with the additional advantage of providing uncertainty estimates
for the computation allowing for a fully Bayesian approach, which is
especially useful if evaluations are expensive and only limited data
points are available. The advantage of MC methods is that their scaling is
independent of dimension. Although that makes them often scale much
worse than BQ and classic quadrature methods for low dimensional
problems, MC methods are often the only choice for higher dimensional
problems. Additionally, MC methods put few restrictions on 𝑓 and
𝜋, i.e., 𝑓 only needs to be integrable and MCMC methods even work
if the distribution is only available in unnormalized form. The above
points are only rough guidelines, but in Chapter 7 we discuss some of
these methods in the context of experiments, and—to make choice even
harder—propose a novel numerical integration method using neural
networks.
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The description of dynamical systems plays an important role through-
out science. From describing the motions of planets or understanding
chemical reactions to simulating fluids, all rely on the mathematical
concept of solving differential equations. This chapter introduces a sub-
class of differential equations, i.e., ordinary differential equations. To
find solutions to these equations, the use of numerical methods is often
necessary, and we provide an overview of the most essential methods.

3.1 Ordinary Differential Equations

A first-order ordinary differential equation (ODE) describes an unknown
function via its derivative.

Definition 3.1 Ordinary differential equation Let 𝑓 : ℝ ×ℝ𝑑 → ℝ𝑑

be a continuous function, then

𝑥′ = 𝑓 (𝑡 , 𝑥) (3.1)

is called an ordinary differential equation, where 𝑥′ denotes the "time"
derivative of 𝑥: 𝑥′ = 𝑑𝑥

𝑑𝑡 . If an initial condition 𝑥(𝑡0) = 𝑥0 is provided,
the problem is called an initial value problem (IVP).

The function 𝑓 is also called the vector field of the ODE. If

𝑥′(𝑡) = 𝑓 (𝑡 , 𝑥(𝑡)) (3.2)

then the function 𝑥(𝑡) is called a solution to the differential equation.
Equation 3.1 can be extended to higher order problems, to describe an
ordinary differential equation of order 𝑘

𝑥(𝑘) = 𝑓 (𝑡 , 𝑥, 𝑥′, . . . , 𝑥(𝑘−1)).

To turn this into an IVP the following initial conditions are required
𝑥(𝑡1) = 𝑥0 , 𝑥′(𝑡0) = 𝑥1 , . . . , 𝑥(𝑘−1)(𝑡0) = 𝑥𝑘−1.

3.1.1 Existence of Solution

We just introduced the concept of a solution to an ODE, but the question
remains whether such a solution exists. There are several theoretical
statements about the existence (and uniqueness) of solutions. Here we
state the well known Picard-Lindelöf theorem [164] which covers both
existence and uniqueness of a solution, and is therefore more restrictive
than theorems that just proof existence (e.g., the Peano existence theorem
[80, Theorem 7.6]).
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Theorem 3.1 Picard-Lindelöf Let D ⊂ ℝ×ℝ𝑑 , be a closed set, contain-
ing the point (𝑡0 , 𝑥0) in its interior. Let 𝑓 : D → ℝ𝑑 be a continuous
function which is Lipschitz-continuous in its second variable on D,
i.e., there exists an 𝐿 ≥ 0 such that for any (𝑡 , 𝑥1), (𝑡 , 𝑥2) ∈ D

| | 𝑓 (𝑡 , 𝑥1) − 𝑓 (𝑡 , 𝑥2)| | ≤ 𝐿| |𝑥1 − 𝑥2 | |.

Then there exists some 𝜖 > 0 such that the initial value problem

𝑥′ = 𝑓 (𝑡 , 𝑥), 𝑥(𝑡0) = 𝑥0

has a unique solution on [𝑡0 − 𝜖, 𝑡0 + 𝜖].

For a proof see [80, Theorem 7.3]. An extension of this local result is
available for continuously differentiable functions.

Theorem 3.2 Picard-Lindelöf - Extension Let 𝑓 be continuously
differentiable on an open set E ⊆ ℝ×ℝ𝑑 , then for all (𝑡0 , 𝑥0) ∈ E , there
exists a unique solution to the IVP that continues to the boundary of
E in both directions.

3.2 Numerical Approximation of ODE Solutions

ODEs are often hard or impossible to solve analytically. But there exist
certain classes of functions and some analytical tricks to find analytical
solutions (for an overview of these methods see, e.g., [23]). In this thesis,
though, the focus is not on finding analytical solutions to ODEs but on
approximating the solutions numerically.

3.2.1 Fixed Step Runge-Kutta Methods

For now, we consider scalar first order ordinary differential equations.
The solution to the ODE in Equation 3.1 on the interval at time 𝑡 + ℎ,
where 𝑥(𝑡) is known, can be written as

𝑥(𝑡 + ℎ) = 𝑥(𝑡) +
∫ 𝑡+ℎ

𝑡
𝑓 (𝑠, 𝑥(𝑠))𝑑𝑠. (3.3)

Doing a zeroth-order Taylor series expansion of 𝑓 (𝑠, 𝑥(𝑠)) around 𝑡, gives
us

𝑓 (𝑠, 𝑥(𝑠)) ≈ 𝑓 (𝑡 , 𝑥(𝑡)).
Plugging this expression into the integral in Equation 3.3, we arrive at
what is known as (explicit) Euler method.

Definition 3.2 Euler method We consider an initial value problem
with 𝑥(𝑡0) = 𝑥0. Then, given a step size ℎ > 0 and 𝑡𝑛 = 𝑡0 + 𝑛ℎ where
𝑛 = 0, 1, 2, . . . the solution to the ODE can be approximated via

𝑥𝑛+1 = 𝑥𝑛 + ℎ 𝑓 (𝑡𝑛 , 𝑥𝑛). (3.4)
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Alternatively, doing a zeroth-order expansion of 𝑓 (𝑠, 𝑥(𝑠)) around 𝑡 + ℎ,
leads to the implicit Euler method.

Definition 3.3 Implict Euler method The solution to an ODE can be
approximated via the implicit Euler method, i.e.,

𝑥𝑛+1 = 𝑥𝑛 + ℎ 𝑓 (𝑡𝑛+1 , 𝑥𝑛+1). (3.5)

We note that Equation 3.5 requires solving a non-linear equation. Gener-
ally, methods where the update step not only contains the current state of
the system but also future states, are known as implicit. If implicit solvers
are significantly more efficient than explicit solvers on an ODE system,
this system is known as stiff.

Instead of approximating the integral with a constant, one can use more
advanced integration schemes. In the previous chapter we introduced
the Midpoint rule 2.1 for numerical integration. Applying this rule to
Equation 3.3 we arrive at

𝑥(𝑡 + ℎ) ≈ 𝑥(𝑡) + ℎ 𝑓 (𝑡 + ℎ
2
, 𝑥(𝑡 + ℎ

2
)).

The only term left to compute is 𝑥(𝑡 + ℎ
2 ), which again is computed

with another Euler step. We arrive at the (explicit) Midpoint method for
ODEs.

Definition 3.4 Midpoint method The solution to an ODE can be
approximated via the Midpoint method, which is given by

𝑘1 = 𝑓 (𝑡𝑛 , 𝑥𝑛),
𝑘2 = 𝑓 (𝑡𝑛 + ℎ2 , 𝑥𝑛 +

ℎ
2
𝑘1),

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑘2.

0.0 2.5 5.0 7.5 10.0
C

0.0

0.5

1.0
Euler
Euler ℎ/4
RK4

Figure 3.1: Numerical solutions (in red
and blue) to the logistic ODE (details in
Appendix A.1.1).

To describe the convergence of numerical ODE integration methods, we
introduce the order of a Runge-Kutta method.

Definition 3.5 A Runge-Kutta method is of order 𝑝 if for sufficiently
smooth solutions 𝑥

∥𝑥(𝑡0 + ℎ) − 𝑥1∥ ≤ 𝐾ℎ𝑝+1

for some problem specific constant 𝐾.

Additionally, for methods of order 𝑝 the global truncation error (the error
accumulated over several steps ∥𝑥(𝑡𝑛)− 𝑥𝑛 ∥) is O(ℎ𝑝). The Euler method,
following from the Taylor series expansion, is a first order method.
The midpoint method is a second order method (see [80, Ch. II.3] for
exact statements and proofs). One can use even higher order quadrature
methods to derive higher order (ODE) integration methods. Runge [185]
derives a 4th order scheme based on Simpson’s rule (Definition 2.2). To
illustrate the better convergence of higher order methods, we compute
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solutions to an ODE using the Euler method and a 4th order Runge-Kutta
method (RK4) (see Figure 3.1).

In general all these schemes can be summarized quite conveniently using
the following notation for a general Runge-Kutta scheme.

Definition 3.6 Explicit Runge-Kutta method An s-stage explicit Runge-
Kutta method is given by

𝑥𝑛+1 = 𝑥𝑛 + ℎ
𝑠∑
𝑖=1

𝑏𝑖 𝑘𝑖

where

𝑘1 = 𝑓 (𝑡𝑛 , 𝑥𝑛),
𝑘2 = 𝑓 (𝑡𝑛 + 𝑐2ℎ, 𝑦𝑛 + (𝑎21𝑘1)ℎ)
𝑘3 = 𝑓 (𝑡𝑛 + 𝑐3ℎ, 𝑦𝑛 + (𝑎31𝑘2 + 𝑎32𝑘2)ℎ),
...

𝑘𝑠 = 𝑓 (𝑡𝑛 + 𝑐𝑠 ℎ, 𝑦𝑛 + (𝑎𝑠1𝑘1 + 𝑎𝑠2𝑘2 + . . . 𝑎𝑠,𝑠−1𝑘𝑠−1)ℎ).

The coefficients are given by a Butcher tableau

0
𝑐2 𝑎21
...

...
. . .

𝑐𝑠 𝑎𝑠1 . . . 𝑎𝑠,𝑠−1
𝑏1 . . . 𝑏𝑠−1 𝑏𝑠

.

We can clearly see that the methods (Euler and Midpoint) we developed
above fit in the definition of an explicit Runge-Kutta method. By Taylor
expansion and comparing coefficients, certain rules for finding Butcher
tableaux can be established and many Runge-Kutta schemes have been
proposed over the years. The Runge-Kutta coefficients for a method of
stage 𝑠 and order 𝑝 are not necessarily unique, numerical implementation
and stability can play a role in the choice. A prominent example were at
least two common implementations exist are 4-stage 4th order Runge-
Kutta methods:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

.

An alternative implementation is the 3/8-rule which leads to smaller
computational error but is computationally slightly more expensive

0
1/3 1/3
2/3 −1/3 1
1 1 −1 1

1/8 3/8 3/8 1/8

.

Only certain combinations of 𝑠 and 𝑝 exist, e.g., to represent a method of
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order 𝑝 it requires at least 𝑠 ≥ 𝑝 stages but 𝑝 = 5, for example, requires
𝑠 ≥ 6 [80, Ch. II.4, 5].

Solving Higher Order ODEs

The algorithms derived above only apply to first order ODEs. They can
be extended to second order ODEs (and respectively any higher order)
by writing 𝑥2 = 𝑥′ and 𝑥1 = 𝑥. Then we can write the one-dimensional
second order system

𝑥′1 = 𝑥2

𝑥′2 = 𝑓 (𝑡 , 𝑥1 , 𝑥2)

as a first order two-dimensional system. To this we can directly apply
any of the solvers derived above. For some of those systems even more
specialized solvers exist [80, Ch. II.14].

Symplectic Runge-Kutta Methods

−2

−1

0

1

2

?

−2 −1 0 1 2
@

−2

−1

0

1

2

?

Figure 3.2: Numerical solutions (in red)
to the harmonic oscillator (details in Ap-
pendix A.1.2) using the explicit Euler
method (top) and the symplectic Euler
method (bottom). A set of initial condi-
tions which describe a volume (brown
area) are used for each solver. The area
is evolved with the same step size as the
red trajectory, but only plotted for every
7th step.

A special ODE system are the Hamiltonian equations of motion (Equa-
tion 2.7). An important property of such systems is that the corresponding
flow is volume preserving. Hence, numerical solvers designed specifically
for Hamiltonian systems are designed to maintain volume conservation
for each step. Solvers which fulfill this property are called symplectic.
Two well-known and rather simple symplectic solvers are the symplectic
Euler method and the Leapfrog method.

Definition 3.7 Symplectic Euler method The solution to the Hamilto-
nian equations of motion can be approximated via the implicit Euler
method, i.e.,

𝑝𝑛+1 = 𝑝𝑛 − ℎ𝜕𝑞𝐻(𝑞𝑛 , 𝑝𝑛+1)
𝑞𝑛+1 = 𝑞𝑛 + ℎ𝜕𝑝𝐻(𝑞𝑛 , 𝑝𝑛+1)

or

𝑞𝑛+1 = 𝑞𝑛 + ℎ𝜕𝑝𝐻(𝑞𝑛+1 , 𝑝𝑛)
𝑝𝑛+1 = 𝑝𝑛 − ℎ𝜕𝑞𝐻(𝑞𝑛+1 , 𝑝𝑛).

The method is an implicit method. However, for separable Hamiltonians
(𝐻(𝑞, 𝑝) = 𝑉(𝑞) + 𝑇(𝑝)) the symplectic Euler method becomes explicit
as 𝜕𝑞𝐻 = 𝜕𝑞𝑉 and 𝜕𝑝𝐻 = 𝜕𝑝𝑇. We will not proof that these methods
indeed fulfill the symplectic property, but Figure 3.2 illustrates the volume
preservation (we refer to [81, Ch. VI] for details).

3.2.2 Adaptive Step Size Solvers

What, if the difficulty of the problem varies along the integration path, i.e.,
different regions require different step sizes to reach similar numerical
accuracy? So far we are forced to choose the smallest necessary step
size along the entire integration path to reach our desired numerical
accuracy. Adaptive step size Runge-Kutta methods overcome this issue
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by changing the step size along the integration path. These methods
work by comparing the output of a higher and a lower order method. If
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Figure 3.3: (Top) Numerical solution
to the Van der Pol oscillator (for de-
tails Appendix A.1.3) using the Dopri5(4)
method. (Bottom) Step size chosen by the
adaptive step size solver.

the difference is above or below a certain tolerance level, the step size
is decreased or increased [80, Ch. II.4]. As the choice of coefficients of
a Runge-Kutta method is not unique, it is possible to find Runge-Kutta
schemes where the method of order 𝑝 and the method of order 𝑝 + 1
share the computation of the 𝑘𝑖 . An example is the Felberg2(1) method
[55], where the first row provides the coefficients for a second order
method and the second row the coefficients for a first order method, as
shown in the following Butter tableau

0
1/2 1/2
1 1/256 255/256

1/512 255/256 1/512
1/256 255/256 0

.

A well-known method is the Dopri5(4) scheme [168], using a method
of order 5 to compute the steps and a method of order 4 to compute an
error estimate (see Figure 3.3).

Illustrative Example

To illustrate the effect of the numerical error different Runge-Kutta
methods make, we consider an example based on the Arenstorf-orbits
[4] (the example is adapted from [80, Ch. II]). One considers the orbit of
a spaceship around the earth and the moon. We assume the mass of the
spaceship to be negligible relative to the other bodies and that the moon
orbits the earth on a plane.

−1 0 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

Dopri54
Euler
RK4

Figure 3.4: Solutions to the Arenstorf-
orbit differential equations. Example
adapted from [80] (details are found in
Appendix A.1.4).

To show the behavior of different solvers, we consider the Euler method
with ℎ = 𝑇/24000, RK4 with ℎ = 𝑇/6000 and Dopri5 with 𝑡𝑜𝑙 = 10−3.
Figure 3.4 shows the resulting trajectories, and one can observe that
the Euler method, despite the small step size, results in an inaccurate
approximation of the solution. This is due to the error accumulation
over time, the approximation gets worse and worse. By using higher
order solvers (here the RK4 method) this issues becomes already less
pronounced, but we obtain the best result by using adaptive step size
methods.

Differential equations like the Arenstorf-orbits can be used to describe
swing-bys used in aerospace engineering to change the direction and
speed of, e.g., a spaceship by flying past a larger object such as the moon.
The Apollo 13 mission used such a maneuver* to rescue its astronauts,
after a failure in an oxygen tank.

* possibly based on rescue orbits mapped out by Arenstorf
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The goal of machine learning is to make predictions from data and prior
information. One way to formulate this is as empirical risk minimiza-
tion problem which is expressed mathematically as minimizing a cost
function given a data set D = {𝑥𝑛 , 𝑦𝑛}𝑁𝑛=1, by adjusting the parameters
𝜃 of a function 𝑓𝜃. In the context of deep learning the function 𝑓𝜃 is a
neural network. At the basis of any complex neural network architecture
are fundamental operations which are often by themselves quite simple.
Section 4.1 introduces the basic building blocks of a neural network, and
Section 4.2 then explains how to fit a neural network to data. As neural
networks are data driven models, insufficient data can lead to bad results.
To detect inaccurate predictions good uncertainty quantification is neces-
sary. Section 4.3 introduces uncertainty quantification via the Laplace
approximation, and provides a short general overview of Bayesian neural
networks. Finally, Section 4.4 concludes with an overview of how modern
architectures use structure to improve performance. For an in-depth
introduction to deep learning and neural network architectures we refer
to Goodfellow et al. [66].

4.1 Neural Network Components

In this thesis we consider regression and classification tasks. Regression
tasks aim to estimate the relationships between two (or more) variables
based on data, where one variable is assumed to depend on the other. In
classification, the goal is to estimate the category of a given observation,
given previous data. Neural networks are a good choice for such tasks
when the data set under consideration is high-dimensional and large
(e.g. for image classification). Their good performance is achieved by
their special structure and a way to find appropriate parameters. In this
section we will focus on the structure of neural networks and in the next
section we will discuss how to train neural networks.

Neural networks are functions 𝑓𝜃 : X ⊆ ℝ𝑑𝑥 → ℝ𝑑𝑦 , where 𝑑𝑥 is
dimensionality of some input data 𝑥𝑛 ∈ X . We consider the case where
X = ℝ𝑑𝑥 , as this holds true for most architectures and allows for a less
cluttered notation. Here 𝜃 ∈ Θ ⊆ ℝ𝑝 denotes the weights of the neural
network, which are essentially parameters of the function 𝑓𝜃. Neural
networks are a composition of often relatively simple building blocks
𝑓 𝑖𝜃𝑖 : ℝ𝑑𝑖−1 → ℝ𝑑𝑖 , 𝑖 ∈ {1, . . . , 𝐿}, 𝑑0 = 𝑑𝑥 , 𝑑𝐿 = 𝑑𝑦 , commonly called
layers

𝑓𝜃 = 𝑓 𝐿𝜃𝐿 ◦ · · · ◦ 𝑓 1
𝜃1
. (4.1)

Here, 𝐿 is the number of layers, and 𝜃𝑖 the parameters of layer 𝑖. Each
neural network layer is composed of an affine transformation 𝑧 𝑖𝜃𝑖 :
ℝ𝑑𝑖−1 → ℝ𝑑𝑖 applying the weights of the neural network and an activation
function 𝜎𝑖 : ℝ𝑑𝑖 → ℝ𝑑𝑖 .

𝑓 𝑖𝜃𝑖 = 𝜎𝑖 ◦ 𝑧 𝑖𝜃𝑖 . (4.2)
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If we choose 𝜎𝑖 = 𝐼𝑑𝑖 for 𝑖 = 1, . . . , 𝐿, then the neural network 𝑓𝜃
corresponds to an affine transformation. By choosing 𝜎𝑖 to be a non-linear
function, 𝑓𝜃 can be used to model more complex, non-affine functions.
Indeed, with the right choice of activation function and sufficiently many
parameters, the neural network 𝑓𝜃 can theoretically approximate any
continuous function 𝑔 : D ⊆ ℝ𝑑𝑥 → ℝ𝑑𝑦 ,D compact, arbitrarily well [96,
97].

We note that we include the identity transformation in our definition
of 𝜎𝑖 to allow the same notation input (𝑖 = 1), hidden (𝑖 = 2, . . . , 𝐿 − 1)
and output (𝑖 = 𝐿) layers. For example for the output layer, 𝜎𝐿 = 𝐼𝑑𝑦 is a
common choice for regression tasks.

The description of a neural network introduced in Equation 4.1 and
Equation 4.2 is not sufficient to capture all modern architectures. Yet,
those architectures still follow the same overall structure.

4.1.1 Linear Layers

A simple structure for the layers are so-called linear layers or fully connected
layers.

Definition 4.1 Linear layer We can write a general linear layer as a
function 𝑧 𝑖𝜃𝑖 : ℝ𝑑𝑖−1 → ℝ𝑑𝑖 as

𝑧 𝑖𝜃𝑖 (𝑥 𝑖−1) = 𝐴𝑖𝑥 𝑖−1 + 𝑏 𝑖 (4.3)

where 𝜃𝑖 = {𝐴𝑖 , 𝑏 𝑖}, 𝐴𝑖 ∈ ℝ𝑑𝑖×𝑑𝑖−1 is a matrix and 𝑏 𝑖 ∈ ℝ𝑑𝑖 .

4.1.2 Convolutional Layers

Figure 4.1: Sketch of a convolutional layer.
A kernel (brown) slides over an image
(white). The weighted sum of the pixels
covered by the kernel (light brown) is the
output of the layer (red).

Convolutional layers [59, 119] are commonly used for tasks dealing with
image data. The structure of convolutional layers can be motivated by
the assumption that the network output should remain invariant under
small data shifts, i.e., we can still recognize the image even if it is moved
a few pixels to the left or right. Convolutions consist of a kernel 𝐴, a
𝑘 × 𝑘 matrix sliding over an image. At each pixel a sum over the pixels
covered by the kernel is performed, weighted with the entries of 𝐴, (this
procedure is illustrated in Figure 4.1). This description is oversimplified
and does not introduce concepts like padding, stride and channels (see
Goodfellow et al. [66, Ch. 9] for details).

4.1.3 Activation Functions

Both, linear layers and convolutional layers, can only model affine trans-
formations. To model functions other than affine transformations, e.g.,
the XOR function, non-linear features are necessary. Common choices
for these non-linearities (also called activation functions) include rectified
linear units (RELU) [58], tanh, and the softmax function.



4.1 Neural Network Components 27

Definition 4.2 RELU A RELU activation is a function 𝜎 : ℝ→ ℝ+0 :

𝜎(𝑥) = max(0, 𝑥).

Figure 4.2: Tanh (top) and RELU (bottom)
activation functions and their respective
derivatives.

To use the RELU activation for higher dimensional data, the activation
is applied element-wise. RELU activations often achieve better training
results than tanh (both faster training and a lower loss), and are nowadays
the most frequently used activation function [48]. Tanh activations can
suffer from the vanishing gradient problem [15], due to very small gradi-
ents in the tails. Nonetheless, tanh activations are still commonly used
for certain neural network architectures. Figure 4.2 shows a visualization
of the tanh and the RELU activation, and their derivatives.

The softmax function is commonly employed in the last layer of classifi-
cation problems.

Definition 4.3 Softmax The softmax activation is a function 𝜎 : ℝ𝑑 →
ℝ𝑑

𝜎(𝑥)𝑘 = 𝑒𝑥𝑘∑𝑑
𝑙=1 𝑒

𝑥𝑙
.

The list of activation functions presented here is only limited to the most
used ones. Modern software libraries like PyTorch [159] implement a
long list of activations functions, including several extensions of RELU.

With the presented building blocks it is possible to describe simple neural
networks. However, many modern architectures have a more complex
structure and include additional operations like maximum and average
pooling, dropout or batch normalization, which are outside the scope of
this thesis (see [66, Ch. 9, Ch. 11] for more details).

4.1.4 Basic Neural Network Architectures

One objective in deep learning is to construct network architectures 𝑓𝜃,
which are not only theoretically able to represent a function of interest, but
where it is practically possible to find a set of weights that works well for
a given task. Below we outline some basic neural network architectures,
consisting of the basic building blocks described previously. Even those
simple architectures contain structures which make finding a good set of
weights easier.

Figure 4.3: Sketch of a fully connected
linear neural network.

Fully Connected Linear Neural Network This simple architecture
consists of all linear layers with some activation function (see Figure 4.3).
For the output layer, a common choice for the activation function is either
the identity function or the softmax function.

Convolutional Neural Networks Due to the special structure of convo-
lutional layers, these architectures are often used for image classification
tasks. Here, we present a very simple form of a convolutional neural
network. Layers 𝑓 1 . . . 𝑓 𝑖 are convolutional layers, and make up the
biggest part of the network. The last few layers 𝑓 𝑖 . . . 𝑓 𝐿 are linear layers
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with the output activation function usually being the softmax function
for classification tasks. The architecture presented here ignores some
additional tricks used in modern architectures like down-sampling layers,
max-pooling, dropout, batch-norm [117, 191]. Commonly RELU activation
functions are used for this type of architecture.

4.2 Neural Network Training

The previous sections provided the ingredients to build a neural network,
but a key ingredient, finding suitable weights, is still missing. This section
establishes how to locate a good set of weights via minimizing a cost
function. The optimization problem is non-trivial, and we discuss how
deep learning tackles this problem.

4.2.1 Empirical Risk Minimization

We consider the task where we have a data set D = {𝑥𝑛 , 𝑦𝑛}𝑁𝑛=1 , 𝑥𝑛 ∈
X ⊆ ℝ𝑑𝑥 , 𝑦𝑛 ∈ Y ⊆ ℝ𝑑𝑦 , with some data generating process which can be
described through a probability distribution such that 𝑥𝑛 , 𝑦𝑛 ∼ 𝑝(𝑥, 𝑦).
We want to evaluate the performance of a model 𝑓𝜃 : X ⊆ ℝ𝑑𝑥 → ℝ𝑑𝑦 ,
and therefore consider the loss function 𝑐 : Y × Y ⊆ ℝ𝑑𝑦×𝑑𝑦 → ℝ+0 . The
expected loss under the data distribution is therefore given by:

𝔼𝑝(𝑥,𝑦) [𝑐] =
∬

𝑐(𝑦, 𝑓𝜃(𝑥))𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦. (4.4)

The goal is then to find a set of parameters 𝜃∗ which minimizes the
expected cost, i.e.,

𝜃∗ = arg min
𝜃

𝔼𝑝(𝑥,𝑦) [𝑐] .

The equations above cannot be evaluated in practice, as the true data
generating process 𝑝(𝑥, 𝑦) is unknown. But one can approximate the
expression in Equation 4.4 using the data set D

𝑙(𝜃) := 𝔼D [𝑐] =
𝑁∑
𝑛=1

𝑐 (𝑦𝑛 , 𝑓𝜃(𝑥𝑛)) .

Hence, the objective for finding the network weights changes to

𝜃∗ = arg min
𝜃

𝑙(𝜃).

This task is called empirical risk minimization.

4.2.2 Optimization

Finding the minimum of the empirical risk minimization task is, in
general, hard. Given that optimization problems are omnipresent in
classic machine learning and many other fields, a plethora of methods on
how to solve these problems exist, especially in the case of convex 𝑙(𝜃)
[143]. But in the context of deep learning, where 𝜃 are the parameters of a
neural network, classic optimization methods (like the ones discussed in,
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Figure 4.4: Effect of the learning rate on a quadratic optimization task using gradient descent. Top row shows the first 10 steps of the
optimizer in the loss landscape, bottom row shows the corresponding loss. (Left) Optimization using a too large learning rate, leading
to divergent behavior. (Center) The learning rate is chosen too small, so convergence is much slower than when training with a more
appropriate learning rate (right).

e.g., [143]) usually do not work out of the box. The optimization landscape
for deep learning models is non-convex [120] and high-dimensional due
to the large parameter space. Therefore, classic methods (e.g., Newtons
method), do not work.

Dep learning models can be incredibly large (e.g., ∼ 1𝑒6 parameters for a
classic image classification network [86], 3.5𝑒8 for a common language
model [45], 3.5𝑒9 for the decoder of a high-quality image generation
network [172]), which limits the choice of optimization procedure. Hence,
finding the global minima is not feasible due to the large parameter space,
but it is still essential to find a "good" local minimum, where "good"
refers to the model achieving a low loss and good generalization.

The optimization method commonly used in deep learning is based on
gradient descent.

Definition 4.4 Gradient descent We assume a differentiable cost
function 𝑐 and model 𝑓𝜃 (note that not even this is true in practice - the
derivative of RELU activation is only defined on ℝ\{0}). Then, given
a set of parameters 𝜃0, these are updated based on the following rule

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝑡 𝑙(𝜃𝑡) (4.5)

where

∇𝜃 𝑙(𝜃) =
𝑁∑
𝑛=1
∇𝜃𝑐 (𝑦𝑛 , 𝑓𝜃(𝑥𝑛)) .

Here 𝜂 is the learning rate, i.e., a parameter that determines how large
steps taken by the algorithm are.

If the learning rate is chosen too large, it can lead to divergent behavior [66,
Ch. 7], if chosen too small, convergence can be extremely slow (illustrated
in Figure 4.4). Choosing the learning rate can be tedious and classic convex
optimization algorithms use more refined schemes like line-search and
trust-region methods [143]. We observe that Equation 4.5 contains the
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gradient of the loss function. This gradient can be computed through an
algorithm known as backpropagation implemented in modern software
libraries like PyTorch [159]. Backpropagation essentially works via the
repeated application of the chain rule.

The update step in Equation 4.5 requires the computation of the average
gradient over the entire data set. But, given the size of deep learning
data sets, this is often infeasible in practice. So instead of computing the
gradient over the entire data set, a subset of the data set (the batch) is
used to compute an approximation. The resulting algorithm is called
stochastic gradient descent (SGD) [179] (we note that in the literature the
term SGD is sometimes only used for a batch size of 𝐵 = 1, but deep
learning commonly refers to batch gradient descent as SGD).

Definition 4.5 SGD We consider a subset of the data set B ⊆ D where
𝐵 = |B | ≤ 𝑁 and use this information for the parameter update

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝑡 𝑙(𝜃𝑡)

where

∇𝜃 𝑙(𝜃) =
𝐵∑
𝑛=1
∇𝜃𝑐 (𝑦𝑛 , 𝑓𝜃(𝑥𝑛)) .

The batch is resampled from the data set after each step.

SGD might seem like a crude approximation to the original objective,
but it works well in the context of deep learning, possibly not despite
but due to the approximations made. We will not discuss why SGD
and its variants find good global minima (as a priori this sounds rather
perplexing), but several papers have made progress on understanding
this behavior [82, 113, 192]. Finding optimizers that work well is an area
of active research in modern deep learning, and several extensions of
SGD exist, e.g., SGD with Momentum [184], Adam [110], or Adagrad [49]
to name a few commonly used choices.

4.2.3 Loss Functions

We now specify common loss function used in machine learning. These
loss functions provide the objective we want to optimize.

Definition 4.6 The mean squared error (MSE) 𝑙MSE : ℝ𝑝 → ℝ+ describes
the average squared distance between model outputs and the data set

𝑙MSE(𝜃) = 1
𝐵

𝐵∑
𝑛=1
| |𝑦𝑛 − 𝑓𝜃(𝑥𝑛)| |22.

The MSE loss is often used for regression tasks.

Maximum Likelihood Estimation

Optimizing the MSE loss can also be interpreted as maximum (log)likelihood
estimation (MLE). 𝑝(𝑦 | 𝑥, 𝜃) describes the probability distribution of the
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model outputting 𝑦 given some inputs 𝑥 and parameters 𝜃, also known
as the likelihood. We can then try to optimize the expectation of the
likelihood under the data generating distribution 𝑝(𝑥, 𝑦)

𝜃∗MLE = arg max
𝜃

𝔼𝑝(𝑥,𝑦) [𝑝(𝑦 | 𝑥, 𝜃)] .

Again, the expectation cannot be computed and has to be approximated
using data. Considering the negative log-likelihood given the data set,
we obtain

𝑙MLE(𝜃) = − log 𝑝(𝑌 | 𝑋, 𝜃) = −
𝑁∑
𝑛=1

log 𝑝(𝑦𝑛 | 𝑓𝜃(𝑥𝑛)),

where 𝑋 = {𝑥𝑛}𝑁𝑛=1 and 𝑌 = {𝑦𝑛}𝑁𝑛=1. We assume 𝑝(𝑦𝑛 | 𝑓𝜃(𝑥𝑛)) =
N (𝑦𝑛 | 𝑓𝜃(𝑥𝑛), 𝜎2𝐼). Here 𝜎 is the data set noise (assumed to be con-
stant across all dimensions). Plugging the expression for 𝑝(𝑦𝑛 | 𝑓𝜃(𝑥𝑛))
into the expression for the loss,

𝑙MLE(𝜃) = −𝑁 log 𝜎 − 𝑁
2

log(2𝜋) − 1
𝜎2

𝑁∑
𝑛=1
| |𝑦𝑛 − 𝑓𝜃(𝑥𝑛)| |22.

Since the constant factors do not affect the minima, we find that maximum
log-likelihood estimation is indeed equivalent to minimizing the mean
squared error: 𝜃∗ = arg min𝜃 𝑙MLE(𝜃) = arg min𝜃 𝑙MSE(𝜃).

Cross Entropy Loss We consider the task of assigning each data point
𝑥𝑛 to a class 𝑐𝑛 ∈ {1, . . . , 𝐶}. We assume we have a model 𝑓𝜃, which
outputs a probability distribution over all possible classes 𝑝(𝑐 | 𝑥, 𝜃).
This is commonly achieved by using the softmax layer as the last layer.
Therefore, the model 𝑓𝜃 outputs a 𝐶-dimensional vector encoding the
probability for each class. Hence, the objective we want to optimize is

𝜃∗MLE = arg max
𝜃

𝔼𝑝(𝑐,𝑥) [𝑝(𝑐 | 𝑥, 𝜃)] .

Again, we approximate this expression using samples from the data set.
The true class distribution is given by 𝑝(𝑐 | 𝑥𝑛) = 𝛿𝑐,𝑐𝑛 for 𝑐 ∈ {1 . . . 𝐶}
and 𝑐𝑛 is the true class label. We assume a constant prior across all
classes.

Definition 4.7 The cross entropy loss 𝑙Cross entropy : ℝ𝑝 → ℝ+ is given
by

𝑙Cross entropy(𝜃) = 1
𝑁

𝑁∑
𝑛=1

𝐶∑
𝑐=1

log ([ 𝑓𝜃(𝑥𝑛)]𝑐) 𝛿𝑐,𝑐𝑛 .

Regularization

Neural networks are capable of modelling a large class of functions. Hence,
a model with sufficiently many parameters might be able to achieve zero
loss on a given data set but then perform badly on previously unseen
data. This issue, i.e., the model not being able to capture the structure of
the data, is known as overfitting. To detect overfitting a common setup
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Figure 4.5: Effect of under- and over-parametrizing a model. (Left) The neural network is under-parametrized and hence underfitting the
data. (Center) The model is overfitting the data, as it is too large. However, overfitting can be avoided using a regularizer (here weight
decay) (right).

is to train the model on a subset of the available data set, and then test
the model on the held out data. If a large drop in performance occurs on
the test data, this is likely due to overfitting. In contrast, if the model is
not able to achieve low loss on the training data, i.e., it is underfitting,
the network’s modelling capacity needs to be increased, e.g., by using a
larger network. Figure 4.5 illustrates the effect of over- and underfitting.

One way to improve the generalization of a model is to penalize unfavor-
able properties, for example by using a regularizer 𝑟 : ℝ𝑝 → ℝ on the
model. This regularizer is then added to the loss

𝑙𝑡𝑜𝑡 = 𝑙(𝜃) + 𝜆𝑟(𝜃). (4.6)

𝜆 is a parameter which determines the strength of the regularization.
If 𝜆 is chosen to large it might limit the expressiveness of the model.
One possible choice of regularizer is the Euclidean norm of the weights
known as weight decay 𝑟(𝜃) = | |𝜃 | |22. This method works by penalizing
too large weights which avoids rapid changes in the function values
(illustrated by Figure 4.5).

4.3 Bayesian Deep Learning

Neural networks achieve remarkable results on a range of tasks. However,
if simply not enough data is available during training, model predictions
might be arbitrarily bad. Additionally, outside the data domain, the
model’s extrapolation is dominated by the functional form of its activation
function [214], potentially leading to bad predictions. On classification
tasks this even leads to an overconfidence of the model outside the data
domain [90]. Therefore, it is absolutely crucial to get uncertainty estimates
for the model outputs, and we argue for a Bayesian approach.

4.3.1 Bayesian Neural Networks

To take a Bayesian perspective, we would like to obtain a posterior
distribution over model parameters 𝜃 given some data and a prior. Bayes
rule can be used to compute a posterior, provided some prior knowledge
about the distribution of model parameters 𝑝(𝜃), and the likelihood
given some data.
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Definition 4.8 Bayes theorem Consider the prior 𝑝(𝐵) and the
marginal probability 𝑝(𝐴) =

∫
𝑝(𝐴, 𝐵)𝑑𝐵 on 𝐵, 𝐴 respectively, and

some likelihood 𝑝(𝐴 | 𝐵). Then the distribution over 𝐵 given 𝐴, the
posterior, is given by

𝑝(𝐵 | 𝐴) = 𝑝(𝐴 | 𝐵)𝑝(𝐵)
𝑝(𝐴) .

This means we would like to compute

𝑝(𝜃 | D) = 𝑝(𝑌 | 𝑋, 𝜃)𝑝(𝜃)∫
𝑝(𝑌 | 𝑋, 𝜃)𝑝(𝜃)𝑑𝜃 . (4.7)

In the previous section we have already identified that common loss
functions are likelihoods 𝑝(𝑌 | 𝜃, 𝑋) up to a constant.

Usually it is not possible to compute the normalization constant in
Bayes rule Equation 4.7, and thus BNNs require some approximation
strategy. One option is to use MC-methods (introduced in Section 2.3)
for approximating 𝑝(𝜃 |D), but this comes with a high computational
cost [100]. Other common approximate inference schemes are variational
inference [18, 72, 94], and ensemble methods [118].

4.3.2 The Laplace Approximation

A way to equip neural networks with lightweight, post-training uncer-
tainty is the Laplace approximation for neural networks [133]. We first
establish a connection between the regularized loss and the posterior,
and then show how to use the Laplace approximation to compute the
posterior.

Loss as Maximum-a-posteriori Estimate

We assume a prior 𝑝(𝜃) on the weights, (often assumed to be an isotropic
Gaussian). Then, the posterior of the parameters given data can be
computed via

𝑝(𝜃 | 𝑋,𝑌) = 𝑝(𝑌 | 𝜃, 𝑋)𝑝(𝜃)
𝑝(𝑋,𝑌) .

As discussed, 𝑝(𝑋,𝑌) is usually unknown, and computing it via Monte
Carlo sampling is computationally infeasible.

Given the expression for the posterior of the weights, the maximum-a-
posteriori estimate, i.e., the mode of the posterior, is defined via

𝜃MAP = arg max
𝜃

𝑝(𝜃 | 𝑋,𝑌).

We then apply the logarithm to this expression and drop terms indepen-
dent of 𝜃

𝜃MAP = arg max
𝜃
(log 𝑝(𝑌 | 𝜃, 𝑋) + log 𝑝(𝜃)) .
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By identifying the regularizer as prior log 𝑝(𝜃) ∝ 𝜆| |𝜃 | |2 - which corre-
sponds to an isotropic Gaussian for weight decay - we can interpret the
minimum of 𝑙tot in Equation 4.6 as the MAP-estimate.

Applying the Laplace Approximation

We now consider the task of computing a posterior distribution, given an
isotropic Gaussian prior on the weights 𝑝(𝜃) = N (𝜃 | 0, 𝜎−2

0 𝐼𝑝). Given this
interpretation of the loss, the challenge of computing the normalization
constant of the posterior remains. But the mode of the posterior—the
MAP—can be computed by doing gradient descent on the loss. To obtain
a normalized expression for the posterior, we approximate the posterior
with a Gaussian using the Laplace approximation (see Section 2.2), i.e.,

𝑝(𝜃 | D) ≈ N (𝜃 | 𝜃MAP ,Σ) C 𝑞(𝜃).

The variance is given by the inverse Hessian of the negative log posterior

Σ = (−∇2
𝜃 log 𝑝(𝜃 | D)|𝜃=𝜃MAP)−1 = (∇2

𝜃 𝑙MLE(𝜃)|𝜃=𝜃MAP + 𝜎2
0 𝐼𝑝)−1.

We note that the posterior expectation of the weights under the true
posterior might actually differ from the MAP estimate, hence this can
only been seen as an approximation to the fully-Bayesian approach. But
the MAP estimate is currently the quantity of interest in deep learning
and much effort goes towards tuning this quantity.

Full Hessian GGN

Figure 4.6: Full Hessian (left) and GGN
approximation (right) of a small neural
network.

General Gauss Newton Approximation Computing the full Hessian Σ
is computationally expensive. Additionally, the Laplace approximation
requires a positive semi-definite Hessian, which is not always guaranteed
for neural networks. For large network, some weights might play little to
no role in obtaining a low loss. These weights, due to the lack of gradient
information, might not reach a minimum in the loss landscape, leading
to negative eigenvalues of the Hessian. Hence, it is common to consider
positive semi-definite approximations of the Hessian, one of them is the
general Gauss Newton approximation (GGN; [188]) (see Figure 4.6).

Since the Hessian of the prior is trivial to compute, we only consider an
approximation of the Hessian of the likelihood

𝐻 =
𝑁∑
𝑛=1
∇2
𝜃 log 𝑝(𝑦𝑛 | 𝑓𝜃(𝑥𝑛))|𝜃=𝜃MAP

=
𝑁∑
𝑛=1

𝐽(𝑥𝑛)⊤∇2
𝑓 log 𝑝(𝑦𝑛 | 𝑓 )| 𝑓= 𝑓𝜃MAP (𝑥𝑛 )𝐽(𝑥𝑛)

+
𝑁∑
𝑛=1
∇2
𝜃 log 𝑝(𝑦𝑛 | 𝑓𝜃(𝑥𝑛))|𝜃=𝜃MAP(∇ 𝑓 log 𝑝(𝑦𝑛 | 𝑓 ))2 | 𝑓= 𝑓𝜃MAP (𝑥𝑛 )

= 𝐻GGN + 𝑅,
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where 𝐽(𝑥𝑛) = ∇𝜃 𝑓𝜃(𝑥𝑛)|𝜃=𝜃MAP . The GGN approximation is given by

𝐻GGN =
𝑁∑
𝑛=1

𝐽(𝑥𝑛)⊤∇2
𝑓 log 𝑝(𝑦𝑛 | 𝑓 )| 𝑓= 𝑓𝜃MAP (𝑥𝑛 )𝐽(𝑥𝑛),

Σ−1
GGN = 𝐻GGN + 𝜎2

0 𝐼𝑝 .

Instead of considering the full Hessian, further approximations only use
the diagonal [44] or a per-layer block-diagonal structure [135]. Addition-
ally, rather than considering the full network, we can consider only a
subnetwork [40] or even only the last layer [116]. These approximations
are especially useful if the network considered is large.

Computing Predictive Distributions

With an approximation of the weight-posterior available in closed form,
we would like to compute the expected prediction 𝑦 given some input 𝑥,
the data set D and the model 𝑓𝜃:

𝑝(𝑦 | 𝑓𝜃(𝑥),D) =
∫

𝑝(𝑦 | 𝑓𝜃)𝑝(𝜃 | D)𝑑𝜃

≈
∫

𝑝(𝑦 | 𝑓𝜃)𝑞(𝜃)𝑑𝜃.

We assume observation noise on the data, i.e., 𝑝(𝑦 | 𝑓𝜃) = N (𝑦 | 𝑓𝜃 , 𝜎2𝐼𝑑).

Sampling One option to compute this integral is Monte Carlo sampling
(see Section 2.3)

𝑝(𝑦 | 𝑓𝜃(𝑥),D) ≈ 1
𝑆

𝑆∑
𝑖=1

𝑝(𝑦 | 𝑓𝜃𝑖 ), 𝜃𝑖 ∼ 𝑞(𝜃).

Linearization Instead of sampling, we can linearize the neural network
with respect to the weights [54, 107]. This approximation allows for a
closed form computation of predictive distribution. Additionally, the
assumption of a linear 𝑓 in the parameters corresponds to the GGN
matching the exact Hessian.

In detail, we start by linearizing the neural network in the parameters

𝑓𝜃 ≈ 𝑓𝜃MAP + 𝐽(𝑥)(𝜃 − 𝜃MAP).

We then obtain a predictive distribution over the outputs of the network

𝑝(𝑦 | 𝑓𝜃(𝑥),D) ≈ N (𝑦 | 𝑓𝜃MAP(𝑥), 𝐽(𝑥)𝑇ΣGGN𝐽(𝑥) + 𝜎2𝐼),

where 𝜎2 is the variance of the observation noise.

In case the GGN is used to approximate the Hessian, MC sampling often
does not lead to good results. This is possibly due to the fact that using
the GGN implicitly assumes a linear model, and hence requires the use of
the linearization approach [99]. To illustrate this issue we conduct a small
experiment running full HMC to compute the predictive distribution
and compare it to the Laplace approach using linearization and sampling.
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Figure 4.7: Training a Bayesian neural network on a regression data set. (Left) Hamiltonian Monte Carlo is used to compute the predictive
distribution. (Center) and (right) employ the Laplace approximation, using sampling and linearization respectively to compute the
predictive posterior. Shaded areas indicate one to three standard deviations.

Both HMC and the linearization approach give high uncertainty estimates
outside the data regime in contrast to Laplace approach using sampling
(see Figure 4.7).

The Laplace approximation introduces two parameters, 𝜎2
0 as the prior

variance, and 𝜎2 as the observations noise. Although 𝜎2
0 can be computed

from the weight decay factor, it is often tuned in practice. Optimization
of these two parameters works via log-likelihood maximization [39].

4.4 Structure of Neural Networks

Modern neural network architectures are commonly significantly more
complex than a simple multi-layer linear network. Architectures are
designed to improve network performance, where performance here
refers to several aspects, e.g., to decrease training time, to decrease model
size, to generalize better, or to fulfill certain mathematical constraints. This
chapter provides examples of certain structural choices with a particular
focus on architectures motivated by scientific modelling assumptions.

First, we motivate architectures by the goal of improving training effi-
ciency. Second, we consider how modern architectures incorporate the
structure of the training data. And third, we show how the data generat-
ing process can be incorporated into the structure of neural networks.
Since neural ODEs recur throughout this section, we take a closer look at
this continuous perspective of deep learning.

4.4.1 Improving Training Efficiency

We start off with the observation that training deeper and deeper networks
becomes increasingly difficult. The special structure of Residual neural
networks (ResNets) [86] reduces this problem. ResNets consist of residual
blocks containing skip-connections, i.e.,

𝑥 𝑖+1 = 𝑥 𝑖 + 𝑓 𝑖
𝜃𝑖
(𝑥 𝑖)

𝑥 𝑖 is the output of the previous layer/block and 𝑥 𝑖+1 the input to the
next layer. 𝑓 𝑖𝜃 commonly corresponds to a two-layer neural network.
The argument for this specific structure is that each 𝑓 𝑖 only needs to
learn deviations from the identity, making it easier to train the network.
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ResNets allow training of networks with up to a thousand layers [87].
ResNets are just one example of a long list of ingredients that enable the
training of modern architectures.

Haber and Ruthotto [79] and He et al. [86] observe that ResNets can
be interpreted as numerical solutions of ODEs using the Euler method
(Definition 3.2) with step size ℎ = 1. Since the Euler method is known to
make a relatively large numerical error per step, Lu et al. [130] suggest
replacing Euler steps with higher order Runge-Kutta methods. In this
framework, we can think of the network 𝑓 𝑖

𝜃𝑖
as the vector field of an

ODE. Instead of using only fixed step methods, Chen et al. [29] suggest
taking a fully continuous view by using adaptive step-size solvers. They
compare the resulting architecture, termed neural ODE, to a ResNet that
automatically adjusts its depth. We will return to the discussion of if and
when such architectures can be considered continuous in Chapter 5. In a
similar vein, Deep Equilibrium Networks [7] aim to replace the functionality
of repeatedly applying the same layer with a single layer.

4.4.2 Incorporating Data Structure
Figure 4.8: Example of a translational
shift of an image. Image classification
networks should remain invariant to this
transformation.

Much of the data used in deep learning has some structure that can be
incorporated into the learning process to improve model performance.
A prime example is image classification - the class label should not
change when the position of an object is slightly shifted (see Figure 4.8).
Therefore, transformations that are invariant under translations are
desirable for such tasks. And indeed, convolutional neural networks
implement translation invariance. Since their success on the ImageNet
benchmark [43, 117], they have become the architecture of choice for
image classification.

Figure 4.9: Representation of a caffeine
molecule.Another example is data with a graph structure, e.g., the structure of

molecules [208] (see Figure 4.9), representations of code [228], or social
networks [53]. Graph neural networks [187] are specifically designed to
handle this kind of data and have become an active area of research.
A prime example is AlphaFold [102], which predicts the structure of a
protein given its sequence. Incorporating the graph structure of the input
and output into the model architecture is a key component, along with
incorporating additional biological and chemical knowledge.

4.4.3 Incorporating the Data Generating Process

For some data sets, we may have a scientific model that describes the
data generating process. Incorporating this additional knowledge could
make the model more data efficient or could lead to better interpolation
and extrapolation. As an example, we consider dynamical systems where
we might assume, that the underlying dynamics can be modelled with
an ODE. However, we may not know the exact functional form of the
ODE, so it may be useful to derive it in a data driven way. To maintain
the ODE description, we can use neural ODEs [29, 182, 219], i.e., ODEs
where a neural network 𝑓𝜃 : ℝ ×ℝ𝑛 → ℝ𝑛 with trainable parameters 𝜃
describes the vector field:

𝑥′ = 𝑓𝜃(𝑡 , 𝑥), 𝑥(𝑡0) = 𝑥0.
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We note that using standard activation functions and linear or convo-
lutional layers, neural network are locally Lipschitz continuous on any
bounded domain, thus guaranteeing existence and uniqueness of a solu-
tion (via the Picard-Lindelöf theorem 3.1). This approach can be extended
to systems where a model for dynamics is partially known [220] or to
energy conserving systems via Hamiltonian neural networks [74, 227]. To
model noisy processes, neural ODEs can be extended to neural stochastic
differential equations (SDEs) [108, 114, 122, 126, 200].

4.4.4 Incorporating the Numerical Task

Scientific models often involve solving a numerical task, which can be
computationally quite expensive. The question is if and how machine
learning can be used to improve computational speed. The idea of network
architectures in this area is to embed the numerical problem directly into
the network architecture and the optimization task, to then make use of
the interpolation capabilities of the neural network. We will illustrate
this using the example of Physics informed neural networks (PINNs) [171].
PINNs consider the task of finding the solution to a non-linear partial
differential equation (PDE):

𝑢′ + T [𝑢] = 0,

where T is a nonlinear differential operator, and 𝑢 : ℝ × X ⊂ ℝ𝑑 → ℝ𝑑.
The problem setup also includes initial and boundary conditions for
some {𝑡𝑏𝑛 , 𝑥𝑏𝑛}𝑁𝑏𝑛=1 , 𝑡

𝑏
𝑛 ∈ ℝ, 𝑥𝑏𝑛 ∈ X such that D𝑛[𝑢(𝑡𝑏𝑛 , 𝑥𝑏𝑛)] = 𝑏𝑛 . Here

D𝑛 is a differential operator necessary to define suitable boundary
conditions for the PDE. Based on this definition we can then define a
network architecture 𝑓𝜃 using a sufficiently differentiable neural network
𝑢𝜃 : ℝ × X ⊂ ℝ𝑑 → ℝ𝑑:

𝑓𝜃 ≔
𝑑𝑢𝜃
𝑑𝑡
+ T [𝑢𝜃].

If 𝑓𝜃 is zero everywhere and 𝑢𝜃 satisfies the boundary conditions then
𝑢𝜃 is a solution to the PDE problem. This statement can be encoded in
the loss

𝑙(𝜃) =
𝑁𝑏∑
𝑛=1

(
D𝑛[𝑢𝜃(𝑡𝑏𝑛 , 𝑥𝑏𝑛)]

)2
+

𝑁𝑐∑
𝑛=1

𝑓𝜃(𝑡𝑐𝑛 , 𝑥𝑐𝑛)2

where 𝑡𝑐𝑛 , 𝑥𝑐𝑛 are some collocation points. By minimizing this loss, the
neural network 𝑢𝜃 approximates the solution to the initial boundary
value problem. This approach can also be extended to the discrete setting
by considering a specific numerical method for solving the task [171]. We
observe that this neural network obtains valid results by incorporating
the problem formulation directly into the model architecture. Similarly,
neural operators attempt to find solutions for linear PDEs [1].

In Chapter 7 we introduce a neural network architecture for integration,
which essentially works by cleverly building the integration task into the
network architecture.
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4.4.5 A Continuous Viewpoint: Neural Ordinary
Differential Equations

In the previous sections, we have motivated the structure of different
network architectures. Neural ODEs have occurred twice in this context:
first with the aim of making a classic architecture more compact and
second with the aim of modelling dynamical systems. Based on this
motivation we take a closer look at the neural ODE architecture and
the wide range of applications of neural ODEs. A neural ODE is no
different from a standard ODE except that the vector field is a neural
network.

Definition 4.9 Neural ODE We call an ODE a neural ODE if the vector
field is described by a neural network 𝑓𝜃 : ℝ × X ⊆ ℝ𝑑 → X , with
weights 𝜃 ∈ Θ ⊆ ℝ𝑝 . We then consider the initial value problem

𝑥′ = 𝑓𝜃(𝑡 , 𝑥), 𝑥(𝑡0) = 𝑥0.

To train the parameters of a neural ODE it is necessary to compute gradi-
ents of the flow (or its numerical approximation). One option is to simply
use the auto differentiation capabilities of modern deep learning frame-
works, and backpropagate through the numerical solver. Alternatively,
Chen et al. [29] proposed using a continuous adjoint method based on
Pontryagin [166], which essentially works by solving the ODE backwards.
This method requires less memory than backpropagation, but can run
into severe numerical issues for some problems [64]. Finding good meth-
ods for computing gradients of neural ODEs has remained an issue, and
several works attempt to address this [37, 230]. Backpropagation through
the solver and the adjoint method are implemented in the software
library torchdiffeq [29], and DiffEqFlux [170] implements different
backpropagation schemes. Generally, the choice of backpropagation
method is not straightforward, as one has to take memory requirements
(storing the entire trajectory) vs runtime (solving the ODE backwards)
into account.

Neural ODEs are often hard to train, learning unnecessarily complex
dynamics which require additional ODE solver steps. Therefore, Xia et al.
[212] suggest adding a damping term to the ODE equations. Another
option to improve ODE training is via an appropriate regularization of
the Jacobian [56]. To improve the expressive power of the neural ODE
model, Dupont et al. [50] suggest adding additional input dimensions.
Other extensions to the neural ODE framework are possible, e.g., special
implementations for time varying parameters and the use of higher order
ODEs [137].

Applications of Neural ODEs

We now provide an overview of neural ODE applications which range
from classification tasks, to modelling a dynamical system, to sampling
from probability distributions.



40 Chapter 4 Neural Networks

Classification Tasks Due to their structural similarity to ResNets, neural
ODEs are often used for classification tasks, although it remains difficult to
achieve state-of-the-art performance with these models. Several methods
aim to encode time varying weights for neural ODEs, making the resulting
architecture more similar to standard ResNets [31, 169, 225]. The structure
of neural ODEs or neural SDEs has shown to make architectures more
robust [126, 216]. Additionally, neural SDEs can provide uncertainty
estimated for classification tasks [114].

Dynamics Modelling The obvious application for neural ODEs is time
series data. Yin et al. [220] propose to extend already known parametric
ODE systems with a neural ODE. To incorporate knowledge like energy
conservation, Zhong et al. [227] embed the Hamiltonian equations of
motion into the neural network architecture. Since most neural ODE
models only use the initial conditions as input to their model, Kidger
et al. [109] propose a method to include all observations as inputs for
the model. Neural ODEs can also be used, to extend recurrent neural
networks in a continuous fashion, making the use of irregularly sampled
data possible [42, 182]. Since the input is often a priori too complex to be
modelled directly by a neural ODE, one option is to use the neural ODE
in the latent space of a variational autoencoder [182, 219]. Neural ODEs
can also be used to extend graph neural networks [165].

Generative Modelling Learning general distributions and then being
able to sample from them, enables learning the structure of any data set,
such as images. Normalizing flow describes the idea of using learnable
transformations to get from a standard normal distribution to a distribu-
tion learned from data [175]. Chen et al. [29] and Grathwohl et al. [71]
propose a continuous extension of normalizing flows using neural ODEs.
The idea exploits the fact that neural ODEs can be solved both forward
and backward in time, making it possible to evaluate prior and posterior
in closed form. Song et al. [194] propose to use a neural SDE to learn a
score function from data, leading to high quality image generation.
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Abstract

A key appeal of the Neural Ordinary Differential Equation (ODE) frame-
work is that it seems to provide a continuous-time extension of discrete
residual neural networks. As we show herein, though, trained neural
ODE models actually depend on the specific numerical method used
during training. If the trained model is supposed to be a flow generated
from an ODE, it should be possible to choose another numerical solver
with equal or smaller numerical error without loss of performance. We
observe that if training relies on a solver with overly coarse discretization,
then testing with another solver of equal or smaller numerical error re-
sults in a sharp drop in accuracy. In such cases, the combination of vector
field and numerical method cannot be interpreted as a flow generated
from an ODE, which arguably poses a fatal breakdown of the neural
ODE concept. We observe, however, that there exists a critical step size
beyond which the training yields a valid ODE vector field. We propose a
method that monitors the behavior of the ODE solver during training to
adapt its step size, aiming to ensure a valid ODE without unnecessarily
increasing computational cost. We verify this adaptation algorithm on a
common benchmark data set as well as a synthetic data set. Code and experiments available at the

Github repository
numerics_independent_neural_odes

5.1 Introduction

The choice of neural network architecture is an important consideration in
the deep learning community. Among a plethora of options, ResNets [86]
have emerged as an important subclass of models, as they mitigate the
gradient issues [8] arising with training deep neural networks by adding
skip connections between the successive layers. Besides the architectural
advancements inspired from the original scheme [213, 222], recently
neural ODE models [29, 51, 79, 130] have been proposed as an analog
of continuous-depth ResNets. While neural ODEs do not necessarily
improve upon the sheer predictive performance of ResNets, they offer the
vast knowledge of ODE theory to be applied to deep learning research.
For instance, the authors in Yan et al. [216] discovered that for specific
perturbations, neural ODEs are more robust than convolutional neural
networks. Moreover, inspired by the theoretical properties of the solution
curves, they propose a regularizer which improved the robustness of
neural ODE models even further. However, if neural ODEs are chosen for
their theoretical advantages, it is essential that the effective model—the
combination of ODE problem and its solution via a particular numerical
method—is a close approximation of the true analytical, but practically
inaccessible ODE solution.

In this work, we study the empirical risk minimization (ERM) problem

𝑙 =
1
𝑁

𝑁∑
𝑛=1

𝑐( 𝑓𝜃(𝑥𝑛), 𝑦𝑛) (5.1)

https://github.com/boschresearch/numerics_independent_neural_odes
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Figure 5.1: The neural ODE was trained
on a classification task with a small (left)
and large (right) step size. (Top-left) and
(top-right) show the trajectories for the
two different solvers. The colors of the
trajectories indicate the label for each
IVP. Panels (bottom-left) and (bottom-right)
show the test accuracy of the neural ODE
solver using different step sizes for test-
ing. ( ) indicates the number of steps
used for testing are the same as the num-
ber of steps used for training. ( ) - the
number of steps used for testing are dif-
ferent from the number of steps used for
training.
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where D = {(𝑥𝑛 , 𝑦𝑛) | 𝑥𝑛 ∈ ℝ𝑑𝑥 , 𝑦𝑛 ∈ ℝ𝑑𝑦 , 𝑛 = 1, . . . , 𝑁} is a set of
training data, 𝑐 : ℝ𝑑𝑥 ×ℝ𝑑𝑦 → ℝ is a (non-negative) loss function and 𝑓
is a Neural ODE model with weights 𝜃, i.e.,

𝑓 = 𝑓𝑑 ◦ 𝜑 𝑓𝑣
𝑇 ◦ 𝑓𝑢 (5.2)

where 𝑓𝑥 , 𝑥 ∈ {𝑑, 𝑣, 𝑢} are neural networks and 𝑢 and 𝑑 denote the
upstream and downstream layers respectively. 𝜑 is defined to be the
(analytical) flow of the dynamical system

𝑧′ = 𝑓𝑣(𝑧;𝜃𝑣), 𝑧(𝑡) = 𝜑
𝑓𝑣
𝑡 (𝑧(0)). (5.3)

As the vector field 𝑓𝑣 of the dynamical system is itself defined by a
neural network, evaluating 𝜑

𝑓𝑣
𝑇 is intractable, and we have to resort

to a numerical scheme Ψ𝑡 to compute 𝜑𝑡 . Ψ belongs either to a class
of fixed step methods (Section 3.2.1) or is an adaptive step size solver
(Section 3.2.2) as proposed in Chen et al. [29]. For fixed step solvers with
step size ℎ one can directly compute the number of steps taken by the
solver #steps = 𝑇ℎ−1. We set the final time 𝑇 = 1 for all our experiments.
The global numerical error 𝑒train of the model is the difference between
the true, (unknown), analytical solution of the model and the numerical
solution 𝑒train = | |𝜑𝑇(𝑧(0)) −Ψ𝑇(𝑧(0))| | at time 𝑇. The global numerical
error for a given problem can be controlled by adjusting either the step
size or the local error tolerance.

G1

G 2

Figure 5.2: Synthetic data set used for
the neural ODE experiments. The color
indicates the class labels.

Since the numerical solvers play an essential role in the approximation of
the solutions of an ODE, it is intuitive to ask: how does the choice of the
numerical method affect the training of a neural ODE model? Specifically,
does the discretization of the numerical solver impact the resulting flow
of the ODE? To test the effect of the numerical solver on a neural ODE
model, we first train a neural ODE on a synthetic classification task
consisting of three concentric spheres, where the outer and inner sphere
correspond to the same class (see Figure 5.2 and for more information see
Section 5.2.4). For this problem there are no true underlying dynamics
and therefore, the model only has to find some dynamics which solve
the problem. We train the neural ODE model using a fixed step solver
with a small step size and a solver with a large step size (see Figure 5.1
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(left) and (right) respectively). If the model is trained with a large step
size, then the numerically computed trajectories for the individual IVPs
cross in phase space (see Figure 5.1 (right)). Specifically, we observe that
trajectories of IVPs belonging to different classes cross. This crossing
behavior contradicts the expected behavior of ODE solutions, as according
to the Picard-Lindelöf theorem we expect unique solutions to the IVPs
(Theorem 3.1). We observe crossing trajectories because the discretization
error of the solver is so large that the resulting numerical solutions no
longer maintain the properties of ODE solutions.

We observe that both, the model trained with the small step size and
the model trained with the large step size, achieve very high accuracy.
This leads us to the conclusion that the step size parameter is not like
any other hyperparameter, as its chosen value often does not affect the
performance of the model. Instead, the step size affects whether the
trained model has a valid ODE interpretation. Crossing trajectories are
not bad per se if the performance is all we are interested. If, however, we
are interested in applying algorithms whose success is motivated from
ODE theory to, for example, increase model robustness [216], then the
trajectories must not cross.

We argue that if any discretization with similar or lesser discretization
error yields the same prediction, the trained model corresponds to an
ODE that is qualitatively well approximated by the applied discretization.
Therefore, in our experiments we evaluate each neural ODE model with
smaller and larger step sizes than the training step size. We notice that
the model trained with the small step size achieves the same level of
performance when using a solver with smaller discretization error for
testing (Figure 5.1 (bottom-left)). For the model trained with the large
step size, we observe a significant drop in performance if the model is
evaluated using a solver with a smaller discretization error (see Figure 5.1
(bottom-right)). The reason for the drop in model performance is that the
decision boundary of the classifier has adapted to the global numerical
error 𝑒𝑡𝑟𝑎𝑖𝑛 in the computed solution. For this specific example, correct
classification relies on crossing trajectories as a feature. Therefore, the
solutions of solvers with a smaller discretization error are no longer
assigned the right class by the classifier and the neural ODE model is a
ResNet model without ODE interpretation.

If we are interested in extending ODE theory to neural ODE models,
we have to ensure that the trained neural ODE model indeed maintains
the properties of ODE solutions. In this work we show that the training
process of a neural ODE yields a discrete ResNet without valid ODE
interpretation if the discretization is chosen too coarse. With our rigorous
neural ODE experiments on a synthetic data set as well as CIFAR10
using both fixed step and adaptive step size methods, we show that if
the precision of the solver used for training is high enough, the model
does not depend on the solver used for testing as long as the test solver
has a small enough discretization error. Therefore, such a model allows
for a valid ODE interpretation. Based on this observation we propose
an algorithm to find the coarsest discretization for which the model is
independent of the solver.
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Figure 5.3: Output of the neural ODE
block for different step sizes The model
is the same as in Figure 5.1, trained with a
step size of ℎtrain = 1/2. The points indi-
cate the output of the neural ODE block,
the color of the points shows their true la-
bel, and the light color in the background
indicates the label assigned by the classi-
fier to this region. The model was tested
with a step size of ℎtest = 1/2 in (left) and
ℎtest = 1/4 in (right). Axis were scaled
such that the final locations of all test
data points after passing through the
ODE block are shown.

5.2 Interaction of neural ODE and ODE Solver
can Lead to Discrete Dynamics

We want to study how the neural ODE is affected by the specific solver
configuration used for training. To this end, in our experiments we first
train each model with a specific step size ℎtrain (or a specific tolerance
toltrain in the case of adaptive step size methods). For the remainder of
this section we will only consider fixed step solvers, but all points made
equally hold for adaptive step methods, as shown by our experiments.
Post-training, we evaluate the trained models using different step sizes
ℎtest and note how using smaller steps sizes ℎtest < ℎtrain affects the model
performance. We expect that if the model yields good performance in
the limiting behavior using smaller and smaller step sizes ℎtest → 0
for testing, then model should correspond to a valid ODE. For a model
trained with a small step size, we find that the numerical solutions
do not change drastically if the testing step size ℎtest is decreased (see
Figure 5.1 (c)). But if the step size ℎtrain is beyond a critical value, the
model accumulates a large global numerical error 𝑒train. The decision
layer may use these drastically altered solutions as a signal/feature in
the downstream computations. In this case, the model is tied to a specific,
discrete flow and the model remains no longer valid in the limit of using
smaller and smaller step sizes ℎtest → 0.

5.2.1 The Trajectory Crossing Problem

In this subsection, we examine the trajectory crossing effect which causes
the ODE interpretation to break down. First, we look at the numerically
computed trajectories in phase space of a neural ODE model trained
with a very large step size of ℎtrain = 1/2 (see Figure 5.1 (right)). A key
observation is that the trajectories cross in phase space. This crossing
happens because the step size ℎtrain is much bigger than the length
scale at which the vector field changes, thus missing “the curvature” of
the true solution. Specifically, we observe that the model exploits this
trajectory crossing behavior as a feature to separate observations from
different classes. This is a clear indication that these trajectories do not
approximate the true analytical solution of an ODE, as according to
the Picard-Lindelöf theorem (Theorem 3.1), solutions of ODEs do not
cross in phase space. Since the numerical solutions using smaller step
sizes ℎtest < ℎtrain no longer maintain the crossing trajectory feature,
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Figure 5.4: Solutions to Equation 5.4 using the Euler method with step size ℎ = 10−2.5 (left) and ℎ = 10−3.5 (center). The points indicate
where each IVP ends up in phase space and the color indicates the class the solution belongs to. The trajectories taken by the numerical
solver are shown in the color indicating the respective class. In (left) the black dotted line indicates one possibility how to separate the
data linearly. (Right) shows for which step sizes the solution is linearly separable (1) or not (0).

the classifier cannot separate the data with the learned vector field (see
Figure 5.3).

5.2.2 Lady Windermere’s Fan

In cases where trajectory crossings do not occur, other, more subtle effects
can also lead to a drop in performance in the limit of using smaller and
smaller test step sizes ℎtest → 0. The compound effect of local numerical
error leads to a biased global error which is sometimes exploited as
a feature in downstream blocks. This effect how the local error gets
accumulated into global error was coined as Lady Windermere’s Fan in
Hairer et al. [80, Ch. I.7].

To understand these effects we introduce an example based on the XOR
problem 𝐷 = {((0, 0) ↦→ 0), ((1, 1) ↦→ 0), ((0, 1) ↦→ 1), ((1, 0) ↦→ 1)}. This
data set cannot be classified correctly in two dimensions with a linear
decision boundary [66, Ch. 1.2]. Therefore, we consider the ODE

𝑧′(𝑡) =
(

𝛼 1
−𝛾 | |𝑧 | |𝛿 𝛽

)
𝑧. (5.4)

The qualitative behavior of the analytical flow are increasing ellipsoids
with ever-increasing rotational speed. We chose this problem as an
example based on the knowledge that the precision of a solver influences
how the rotational speed of the ellipsoids is resolved. Therefore, this
problem is useful in illustrating how the numerical accuracy of the solver
can affect the final solution.

Figure 5.4 depicts the numerical solution of this flow with one set of
fixed parameters and different step sizes ℎ = 10−2.5 , 10−3.5. For both step
sizes we do not observe crossing trajectories, but the final solutions differ
greatly. For ℎ = 10−2.5 the numerical flow produces a transformation in
which the data points can be separated linearly. But for the smaller step
size of ℎ = 10−3.5, the numerical solution is no longer linearly separable.
The problem here is that the numerical solution using the larger step size
is not accurate enough to resolve the rotational velocity. For each step the
local error gets accumulated into the global error. In Figure 5.4 (left), the
accumulation of error in the numerical solution results in a valid feature
for a linear decision (classification) layer. The reason for this is that the
global numerical errors 𝑒train are biased. We define as the fingerprint of
the method the structure in the global numerical error. The decision layer
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then adapts to this method specific fingerprint. How this fingerprint
affects the performance of the model when using smaller step size ℎtest is
dependent on two aspects. First, does the data remain separable when
using smaller step sizes ℎtest < ℎtrain? If not, we will observe a significant
drop in performance. Second, how sensitive is the decision layer to
changes in the solutions, and how much do the numerical solutions
change when decreasing the test step size ℎtest → 0? Essentially, the
input sensitivity of the downstream layer should be less than the output
sensitivity of ℎtest < ℎtrain. For the decision layer, there should exist a
sensitivity threshold 𝑑 such that 𝑓𝑑(𝑧(𝑇) + 𝛿) = 𝑓𝑑(𝑧(𝑇)) ∀||𝛿 | | < 𝑑. Thus,
if two solvers compute the same solution up to 𝛿, the classifier identifies
these solutions as the same class and the result of the model is not affected
by the interchanging these solvers.

5.2.3 Discussion

We have just described two effects, trajectory crossing and Lady Winder-
mere’s fan, which can lead to a drop in performance when the model
is tested with a different solver. The trajectory crossing effect is a clear
indication that the model violates ODE-semantics, and it is not valid to
apply ODE-theory to this model. But even if we do not observe trajectory
crossing for some step size ℎ̃ we are not guaranteed to not observe trajec-
tory crossings for all ℎ < ℎ̃ (see Appendix Section B.1 for an example).
On the other hand, note that the occurrence of Lady Windermere’s fan
as a downstream feature does not violate an ODE interpretation of the
numerical flow. However, we argue that a pronounced Lady Winder-
mere’s fan should still be avoided as a downstream feature because the
feature vanishes in the continuous-depth limit leading the neural ODE
model ad absurdum. Additionally, distinguishing Lady Windermere’s
fan from the trajectory crossing problem is hard without visualization
as both effects lead to a drop in performance if a solver with higher
numerical accuracy is used for testing. However, there exists a critical
step size/tolerance 𝜃𝑐𝑟𝑖𝑡 where convergence is close to floating point
accuracy and both effects vanish in the limit. As a first step we propose
to check how robust the model is with respect to the step size/tolerance
to ensure that the resulting model is in a regime where ODE-ness is
guaranteed and therefore one can apply reasoning from ODE theory to
the model.

The current implementation of neural ODEs does not ensure that the
model is driven towards continuous semantics as there are no checks in
the gradient update ensuring that the model remains a valid ODE nor
are there penalties in the loss function if the neural ODE model becomes
tied to a specific numerical configuration. An interesting direction would
also be to regularize the neural ODE block towards continuous semantics.
One idea is to restrict the Lipschitz constant to below 1, as proposed by
Behrmann et al. [13] for ResNets which avoids crossing trajectories.

5.2.4 Experiments

For our experiments, we introduce a classification task based on the
concentric sphere data set proposed by Dupont et al. [50] (see Figure 5.2).
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Figure 5.5: A neural ODE trained on the
Sphere2 data set. The model is tested
with different solvers and different step
sizes. Dark circles indicate that the same
solver is used for training and testing.
Light data indicates a solver with differ-
ent settings is used for testing. The Euler
method and a 4th order Runge-Kutta was
used for training (left and right respec-
tively).
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Figure 5.6: A neural ODE trained on the
CIFAR10 data set. The model is tested
with different solvers and different step
sizes. Dark circles indicate that the same
solver is used for training and testing.
Light data indicates a solver with differ-
ent settings is used for testing. The Euler
method and the RK4 method were used
for training (left and right respectively).

Whether this data set can be fully described by an autonomous ODE,
is dependent on the degrees of freedom introduced by combining the
neural ODE with additional downstream (and upstream) layers.

In this subsection, we present results from the experiments performed on
Sphere2 and CIFAR10 data sets using fixed step and adaptive step solvers.
For additional results on MNIST we refer to the Appendix Section B.2.
The aim of these experiments is to analyze the dynamics of neural ODEs
and show its dependence on the specific solver used during training
by testing the model with a different solver configuration. In the main
experiments presented in the paper, we choose to back-propagate through
the numerical solver. The results pertaining to the adjoint method [29]
are provided in the Appendix Section B.2. For all our experiments, we
do not use an upstream block 𝑓𝑢 similar to the architectures proposed
in Dupont et al. [50]. Additionally, we decided to only use a single ODE
block and a simple architecture for the classifier. We chose such an
architectural scheme to maximize the modeling contributions of the
ODE block. We do not expect to achieve state-of-the-art results with this
simple architecture, but we expect our results to remain valid for more
complicated architectures.
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Figure 5.7: A neural ODE trained on the
CIFAR10 data set. The model is tested
with different solvers and different tol-
erances. Dark circles indicate that the
same solver is used for training and
testing. Light data indicates a solver
with different settings is used for testing.
The Fehlberg21 method and the Dopri54
method were used for training (left and
right respectively).
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For training the neural ODE with fixed step solvers, the Euler method
and a 4th order Runge-Kutta (RK4) method were used (descriptions
of these methods can be found in Section 3.2.1, (for RK4 we used the
3/8-rule)). The trained neural ODE was then tested with different step
sizes and solvers. For a neural ODE trained with the Euler method, the
model was tested with the Euler method, the midpoint method and the
RK4 method. The testing step size was chosen as a factor of 0.5, 0.75, 1, 1.5,
and 2 of the original step size used for training. For RK4, we only tested
using the RK4 method with different step sizes. Likewise, the adaptive
step solver experiments were performed using Fehlberg21 and Dopri54
(see Section 3.2.2). The models were trained and tested using different
tolerances and solvers. The models trained using Fehlberg21 were tested
using Fehlberg21 and Dopri54, whereas the models trained using Dopri54
were only tested using Dopri54. The testing tolerance was chosen as a
factor of 0.1, 1, and 10 of the original tolerance used for training. Here
we do not show the results for all training step sizes and tolerances, but
reduced the data to maintain readability of the plots (for plots showing
all the data see the Appendix Section B.2). We report an average over
five runs, where we used an aggregation of seeds for which the neural
ODE model trained successfully. We did not tune all hyperparameters
to reach the best performance for each solver configuration. Rather, we
focused on hyperparameters that worked well across the entire range of
step sizes and tolerances used for training (see Appendix for the choice
of hyperparameters and the architecture of the neural ODE).

As shown in Figure 5.5, Figure 5.6, and Figure 5.7, when training and
testing the model with the same solver configuration, the test accuracy
does not show any clear dependence on the step size or tolerance. Since
we did not tune the learning rate for each step size/tolerance, any visible
trends could be due to this choice. Indeed, many solver configurations
work well in practice, but only for small enough step sizes/tolerances
the model represents a valid ODE. On both data sets, we observe similar
behavior for dependence of the test accuracy on the test solver: when
using large step sizes/tolerances for training, the neural ODE shows
dependence on the solver used for testing. But there exists some critical
step size/tolerance below which the model shows no clear dependence
on the test solver as long as this test solver has equal or smaller numerical
error than the solver used for training. For additional experimental results
we refer the reader to the Appendix Section B.2.1.

The aforementioned dynamics of neural ODE were also verifiable in
the adaptive step solver experiments (see Figure 5.7). In this case, the
trained model’s test accuracy was dependent on the configuration of the
test solver below a critical tolerance value. For additional results on the
Sphere2 data set we refer the reader to the Appendix Section B.2.2.

5.3 Algorithm for Step Size Adaptation

Although neural ODEs achieve good accuracy for a large variety of solver
configurations, if theoretic results of ODEs are to be applicable to neural
ODEs, it is paramount to find a solution corresponding to an ODE flow.
To ensure this, we propose an algorithm that checks whether the neural
ODE remains independent of the specific train solver configuration and
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Algorithm 1: Step and tolerance adaptation algorithm
1 Inputs 𝜖, train_solver, test_solver, model;
2 while Training do

3 batch = draw_batch(data);
4 logits = model.forward_pass(batch, train_solver(𝜖));
5 loss = model.calculate_loss(logits);
6 train_solver_acc = model.calculate_acc(logits);
7 if Iteration % 50 == 0 then

8 logits = model.do_forward_pass(batch, test_solver(𝜖));
9 test_solver_acc = model.calculate_acc(logits);

10 if |train_solver_acc-test_solver_acc| > 0.1 then

11 𝜖 = 0.5 𝜖;
12 else

13 𝜖 = 1.1 𝜖;

14 model.update(loss);

adapts the step size for fixed step solver and the tolerance for adaptive
solvers if necessary. The proposed algorithm tries to find solver settings
throughout training which keep the number of function evaluations
small, while maintaining continuous semantics.

It is important to note that adaptive step size methods with one fixed
tolerance parameter do not solve this issue, as embedded methods can
severely underestimate the local numerical error if the vector field is not
sufficiently smooth [80]. In contrast to the common application of such
methods, in the case of neural ODEs we cannot choose the appropriate
solver and tolerance for a given problem as the vector field of the neural
ODE block is changing throughout training. While there always exists
a low enough tolerance such that the adaptation issue does not occur,
this low enough tolerance may be prohibitively small in practice and is
certainly leaving runtime efficiency on the table.

So far, there does not exist any other algorithm that we are aware
of which solves the issue. The aim of the proposed algorithms is not
to achieve state-of-the-art results, but rather be a first step towards
ensuring that trained neural ODE models can be viewed independently
of the solver configuration used for training. Here we will describe the
algorithm for the fixed step solvers, which shows promising results for
an equivalent algorithm for adaptive methods (see in the Appendix
Section B.3). Pseudocode for both settings is presented in Algorithm 1.

First the algorithm has to initialize the accuracy parameter 𝜖, which
corresponds to the step size ℎ for fixed step solvers and the tolerance
for adaptive step size solvers. The initial step size is chosen according
to an algorithm described by Hairer et al. [80][p. 169] which ensures
that the neural ODE chooses an appropriate step size for all neural
networks and initializations. In our experiments we found that the initial
step size suggested by the algorithm is not too small, which makes the
algorithm useful in practice. The neural ODE starts training with the
proposed accuracy parameter 𝜖. After a predefined number of iterations
(we chose 𝑘 = 50), the algorithm checks whether the model can still be
interpreted as a valid ODE: the accuracy is calculated over one batch
with the train solver and with a test solver, where the test solver has
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Figure 5.8: Using the step adaptation
algorithm for training on CIFAR10. (Top-
left) shows the test accuracy over the
course of training for five different seeds.
(top-right) shows the number of steps
chosen by the algorithm over the course
of training. (Bottom-left) shows the test
accuracy. At certain points in time (also
marked in (bottom-right)), the model is
evaluated with solvers of smaller dis-
cretization error. (Bottom-right) shows the
number of steps chosen by the algorithm.
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a smaller discretization error than the train solver. To ensure that the
test solver has a smaller discretization error than the train solver, the
accuracy parameter 𝜖 is adjusted for testing if necessary (see Appendix
Section B.3 for details). If test and train solver show a significant difference
in performance, we decrease the accuracy parameter and let the model
train with this accuracy parameter to regain valid ODE dynamics. If
performance of test solver and train solver agree up to a threshold, we
cautiously increase the accuracy parameter.

Unlike in ODE solvers, the difference between train and test accuracy
does not tell by how much the step size needs to be adapted, so we
choose some constant multiplicative factor that works well in practice
(see Algorithm 1 for a simplified version and the Appendix B.3 for details).
The algorithm was robust against small changes to the constants in the
algorithm.

5.3.1 Experiments

We test the step adaptation algorithm on two different data sets: the
synthetic data set and on CIFAR10 (see Appendix B.2.2 for additional
results). We use the Euler method as the train solver and the midpoint
method as the test solver (additional configurations are found in the
Appendix B.2.2). On all data sets, we observe that the number of steps
taken by the solver fluctuate over the course of training (see Figure 5.8).
The reason for such a behavior is that the algorithm increases the step
size until the step size is too large and training with this step size leads
to an adaptation of the vector field to this particular step size. Upon
continuing training with a smaller step size, this behavior is corrected,
and the algorithm starts increasing the step size again. To compare the
results of the step adaptation algorithm to the results of the grid search,
we detail accuracy as well as number of average function evaluations
(NFE) per iteration. For the grid search, we determine the critical number
of steps using the same method as in the step adaptation algorithm. We
report the two step sizes above and below the critical step size which were
part of the grid search. For the step adaptation algorithm we calculate
the NFE per iteration by including all function evaluations over course
of training (see Table 5.1). The achieved accuracy and step size found
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Table 5.1: Results for the accuracy and the number of function evaluations to achieve time continuous dynamics using a grid search and
the proposed step adaptation algorithm. For the grid search, we report the accuracy of the run with the smallest step size above the
critical threshold.

Grid search Step adaptation algorithm
Data set NFE Accuracy NFE Accuracy

Concentric spheres 2d 65-129 98.7 ± 1.0% 100.5 98.9 ± 0.6%
Cifar10 17-33 54.7 ± 0.3% 21.9 55.0 ± 0.8%

by our algorithm is on par with the smallest step size above the critical
threshold thereby eliminating the need for a grid search.

5.4 Related Work

The connections between ResNets and ODEs have been discussed in E
[51], Haber and Ruthotto [79], Lu et al. [130], and Sonoda and Murata
[195]. The authors in Behrmann et al. [13] use similar ideas to build an
invertible ResNet. Likewise, additional knowledge about the ODE solvers
can be exploited to create more stable and robust architectures with a
ResNet backend [16, 26, 32, 34, 78, 79, 186].

Continuous-depth deep learning was first proposed in Chen et al. [29]
and E [51]. Although ResNets are universal function approximators [123],
neural ODEs require specific architectural choices to be as expressive as
their discrete counterparts [50, 121, 223]. In this direction, one common
approach is to introduce a time-dependence for the weights of the neural
network [6, 31, 169, 225]. Other solutions include novel neural ODE
models [129, 136] with improved training behavior, and variants based on
kernels [157] and Gaussian processes [88]. Adaptive ResNet architectures
have been proposed in Chang et al. [27] and Veit and Belongie [202].
The dynamical systems view of ResNets has lead to the development of
methods using time step control as a part of the ResNet architecture [218,
224]. Thorpe and Gennip [198] show that in the deep limit the neural
ODE block and its weights converge. This supports our argument for the
existence of a critical step size. Weinan et al. [206] and Bo et al. [19] show
the theoretical implications and advantages a continuous formulation
ResNet models has.

Gusak et al. [77] and Zhuang et al. [230] observe a drop in performance
when changing to numerically more precise solvers. In a similar vein
as our work, Queiruga et al. [169] study how the solver influences
the neural ODE model, showing that a model trained with the Euler
method can have significantly lower performance when tested with
a higher order solver. To avoid this issue, they propose to use higher
order solvers for training neural ODEs. Krishnapriyan et al. [115] discuss
how to achieve a continuous neural ODE model in context of modelling
dynamics of physical systems. Gusak et al. [76] look at the role the exact
parametrization of the Runge-Kutta method has.
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5.5 Conclusion

We have shown that the step size of fixed step solvers and the tolerance
for adaptive methods used for training neural ODEs impacts whether the
resulting model maintains properties of ODE solutions. As a simple test
that works well in practice, we conclude that the model only corresponds
to a continuous ODE flow, if the performance does not depend on the
exact solver configuration. We illustrated that the reasons for the model
to become dependent on a specific train solver configuration are the use
of the bias in the numerical global errors as a feature by the classifier,
and the sensitivity of the classifier to changes in the numerical solution.
We have verified this behavior on CIFAR10 as well as a synthetic data set
using fixed step and adaptive methods. Based on these observations, we
developed step size and tolerance adaptation algorithms, which maintain
a continuous ODE interpretation throughout training. For minimal loss
in accuracy and computational efficiency, our step adaptation algorithm
eliminates a massive grid search. In future work, we plan to eliminate
the oscillatory behavior of the adaptation algorithm and improve the
tolerance adaptation algorithm to guarantee robust training on many
data sets.
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Abstract

Neural ordinary differential equations are an emerging class of deep
learning models for dynamical systems. They are particularly useful
for learning an ODE vector field from observed trajectories (i.e., inverse
problems). We here consider aspects of these models relevant for their
application in science and engineering. Scientific predictions generally
require structured uncertainty estimates. As a first contribution, we show
that basic and lightweight Bayesian deep learning techniques like the
Laplace approximation can be applied to neural ODEs to yield structured
and meaningful uncertainty quantification. But, in the scientific domain,
available information often goes beyond raw trajectories, and also includes
mechanistic knowledge, e.g., in the form of conservation laws. We explore
how mechanistic knowledge and uncertainty quantification interact on
two recently proposed neural ODE frameworks—symplectic neural
ODEs and physical models augmented with neural ODEs. In particular,
uncertainty reflects the effect of mechanistic information more directly
than the predictive power of the trained model could. And vice versa,
structure can improve the extrapolation abilities of neural ODEs, a fact
that can be best assessed in practice through uncertainty estimates.
Our experimental analysis demonstrates the effectiveness of the Laplace
approach on both low dimensional ODE problems and a high dimensional
partial differential equation.

6.1 Introduction

Ordinary differential equations are a powerful tool for modelling dy-
namical systems. If the dynamics of the underlying system are partially
unknown and only sampled trajectories are available, modelling the
vector field poses a learning problem. One option is to parametrize the
right-hand side of an ODE with a neural network, commonly known as a
neural ODE [29]. Yet, even if the exact parametric form of the underly-
ing dynamics is unknown, we often have some structural information
available. Examples include partial knowledge of the parametric form,
or knowledge of symmetries or conservation laws observed by the sys-
tem. This structural knowledge can be incorporated in the neural ODE
architecture. For example, Zhong et al. [226, 227] encode Hamiltonian
dynamics and dissipative Hamiltonian dynamics into the structure of
the neural ODE using Hamiltonian neural networks [74]. Yin et al. [220]
exploit knowledge about the underlying physical model by augmenting
a known parametric model with a neural ODE. Both approaches provide
a more informative prior on the network architecture giving the models
superior extrapolation behavior in comparison to plain neural ODEs.
This kind of structure helps, but does not completely remove the need
for training data. When there is just not enough data available to identify
the system, meaningful predictive uncertainties are crucial. Structured
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Figure 6.1: Structure of training data im-
pacts model uncertainty. Training of a
Hamiltonian neural ODE on two dif-
ferent data sets (bottom), with Laplace-
approximated uncertainty. 𝑞, 𝑝 describe
position and momentum of the parti-
cle. (Top) show trajectories for each data
set, solid lines correspond to the MAP
output, ( ) corresponds to 𝑞, ( ) cor-
responds to 𝑝. (Bottom) Vector field recov-
ered by the model. Background color in-
dicates the uncertainty estimates (bright
means certain, dark means uncertain).
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uncertainty can help quantify the benefit arising from structural prior
knowledge. Bayesian inference provides the framework to construct and
quantify this uncertainty. Generally, a fully Bayesian approach can be
slow or infeasible in the context of deep learning but the Laplace approx-
imation [39, 133, 178] enables the use of approximate Bayesian methods
in deep learning. The advantage of the Laplace approximation is that
it is applied post-training, which avoids adding additional complexity
to the model during training, and the model maintains the predictive
performance of the maximum a posteriori (MAP) trained model.

In this work, we apply the Laplace approximation to neural ODEs to
obtain uncertainty estimates for ODE solutions and the vector field. Doing
so is not a straightforward application of previous works on Laplace
approximations, because of the nonlinear nature of the ODE solution. We
then demonstrate that the Laplace approximated neural ODEs provide
meaningful, structured uncertainty, which in turn provides novel insight
into the information provided by mechanistic knowledge. Specifically, the
uncertainty estimates inform us how confident we can be in the model’s
extrapolation.

As an example for intuition, we use a Hamiltonian neural ODE (for
details see Section 6.4.1), trained on data generated from the harmonic
oscillator. We apply the Laplace approach to find uncertainty estimates
for the trained model. The harmonic oscillator (without friction) is the
textbook case of an energy-conserving system, and Hamiltonian neural
ODEs capture precisely this conservation property. We use two slightly
different data sets, the only difference being they are shifted by a quarter
period (corresponding to a rotation by 90 degrees in phase space see
Figure 6.1 (bottom)). For the first data set the solution in the extrapolation
regime follows the true solution closely (see Figure 6.1 (top-left)). This
behavior is reflected in the low uncertainties around the solution and the
large region of high confidence in the vector field (Figure 6.1 (top-left) and
(top-right)). On the other hand, for the second data set the extrapolation
diverges quickly from the true solution, which is reflected in the high
uncertainty in the extrapolation region. The reason for this difference in
model precision is that the architecture captures the dependence on 𝑝
explicitly, which can be exploited in one case, but not in the other. The
same raw number of data points can thus be more or less informative,
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depending on where they lie in phase space.

In dynamical systems, the trajectory may leave the data domain eventually.
Even if the combination of structural prior and data set is sufficient to
provide good extrapolations close to the training conditions, small
changes in the initial conditions can eradicate this ability. Without
uncertainty estimates (or knowledge of the true dynamics), it is then
difficult to judge the validity of the extrapolation.

6.2 Technical Background

This briefly discusses neural ODEs. Section 6.3 then combines neural
ODEs and the Laplace approximation (see Section 4.3) to find uncertainty
estimates for neural ODEs.

6.2.1 Neural ODEs

Neural ODEs are differential equations where the right-hand side, the
vector field, is parametrized by a neural network 𝑓𝜃(𝑧) with weights 𝜃

𝑧′ = 𝑓𝜃(𝑧), 𝑡 ∈ [𝑡0 , 𝑡𝑁 ], 𝑧(𝑡0) = 𝑧0.

In general, neural ODEs cannot be solved analytically, and a numerical
scheme has to be employed, here denoted by ODESolve (Runge-Kutta
methods [80] are common concrete choices):

𝑧(𝑡𝑛) = ODESolve( 𝑓𝜃 , 𝑧0 , [𝑡0 , 𝑡𝑛]).

𝑡𝑛 denotes the time point of a specific output.

We consider regression tasks D = (𝑧0 , 𝑡0 , {𝑡𝑛 , 𝑦𝑛}𝑁𝑛=1), where 𝑦𝑛 defines
the outputs and 𝑡𝑛 the corresponding points in time. This translates to
an empirical risk minimization task of the form

𝑙(𝜃) = ∑
(𝑥𝑛 ,𝑦𝑛 )∈D

𝑐(ODESolve( 𝑓𝜃 , 𝑥𝑛), 𝑦𝑛),

where 𝑐 is a standard loss function (i.e., square loss for regression tasks).
We use 𝑥𝑛 = {𝑧0 , [𝑡0 , 𝑡𝑛]} to denote the inputs for the ODESolve.

6.3 Laplace Approximation for Neural ODEs

Where neural ODEs are used in the scientific domain, the model out-
put should include quantified uncertainties, assessing the reliability of
predictions. In this section we extend the Laplace approach to neural
ODEs and introduce how to compute uncertainty estimates for neural
ODEs. For our implementation we extend laplace-torch [39] to neural
ODEs.
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Given the approximate Hessian, we can calculate the predictive distribu-
tion for new data via

𝑝(𝑦 | 𝑥,D) =
∫

𝑝(𝑦 | ODESolve( 𝑓𝜃 , 𝑥))𝑞(𝜃)𝑑𝜃.

Since this integral is analytically intractable, some form of approximation
has to be applied. Thus, applying the Laplace approximation to the
neural ODE architecture poses a few technical challenges. In particular,
the predictive distribution of ODESolve can be computed by sampling and
linearization. Below, we discuss both options, and argue that linearization
is favorable. Finally, we show how to find the predictive distribution of
the vector field.

Sampling the Network Weights A first way to approximate Equa-
tion 6.3 is to sample the weights of the neural net from the posterior
distribution (see also Section 4.3)

𝑝(𝑦 | 𝑥,D) = 1
𝑁

𝑁∑
𝑖=1

𝑝(𝑦 | ODESolve( 𝑓𝜃𝑖 , 𝑥)),

for 𝜃𝑖 ∼ 𝑞(𝜃). The neural ODE is then solved for each of these weight
configurations. This requires solving a neural ODE repeatedly, for each
perturbed vector field.

Linearizing the ODESolve Farquhar et al. [54] and Khan et al. [107]
suggest linearizing the neural network with respect to the weights. In
this case sampling is no longer necessary since the predictive distribution
can be obtained in closed form. For neural ODEs, this corresponds to
linearizing the entire ODESolve around the MAP with respect to the
parameters

ODESolve( 𝑓𝜃 , 𝑥) ≈ ODESolve( 𝑓𝜃MAP , 𝑥) + 𝐽𝜃MAP(𝑥)(𝜃 − 𝜃MAP),

where 𝐽𝜃MAP is the Jacobian of ODESolve with respect to the parameters

[𝐽𝜃MAP]𝑖 , 𝑗 =
𝜕ODESolve𝑖

𝜕𝜃𝑗
(𝜃MAP , 𝑥).

The Jacobian of ODESolve is computed using automatic differentiation
functionalities. The predictive distribution can now be obtained in closed
form

𝑝(𝑦 | 𝑥,D) ≈ N (𝑦 | ODESolve( 𝑓𝜃MAP , 𝑥), 𝐽𝜃MAP(𝑥)𝑇Σ𝐽𝜃MAP(𝑥) + 𝜎2𝐼),

where 𝜎2 is the variance of the observation noise (for more details we
refer to [39]).

Given the two approaches to find the predictive distribution of the
ODESolve, which one is preferable? Sampling, in combination with GGN
approximation of the Hessian, does not provide useful uncertainties,
possibly due to the mismatch between the approximation and true
Hessian. Additionally, Immer et al. [99] show that the GGN implicitly
assumes linearization, so sampling may not provide additional benefits.
For a comparison of the sampling and the linearization approach we
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Figure 6.2: Comparison of HMC and Laplace approximation on the Lotka-Volterra data set. (Top) Trajectories (lines) with uncertainty estimates.
(Bottom) Vector field with uncertainty estimates. The background color indicates the norm of the uncertainty estimates.

refer to Figure C.1 in the Appendix. Thus, we use a linearization of the
ODESolve to approximate the predictive distribution.

Linearizing the Vector Field The key to understanding the interplay
between data, model structure and extrapolation quality and uncertainty
lies in understanding which parts of the vectorfield have been identified
through the available data and the model structure. Although lineariza-
tion provides closed-form predictive distributions for the outputs of the
ODESolve, it does not provide uncertainties for the vector field 𝑓𝜃 . Instead
of linearizing the ODESolve, another option is to just linearize the vector
field with respect to the parameters. However, in this case, the GGN
approximation is no longer equal to the Hessian of the linearized model.
Linearizing the vector field allows to calculate the predictive distribution
for the vector field in closed form

𝑝(𝑧′ | 𝑧,D) ≈ N
(
𝑧′ | 𝑓𝜃MAP(𝑧), 𝐽(𝑧)𝑇Σ𝐽(𝑧)

)
,

where 𝐽 is in this case the Jacobian of the vector field 𝑓 with respect to
the parameters.

6.3.1 Comparison to HMC

For an empirical evaluation, we here compare the quality of uncertainty
estimates provided by the Laplace approximation to Monte Carlo sam-
pling. Specifically, we use HMC with no U-turn sampling (NUTS) (see
Section 2.3.2, and implementation details in Section C.2.2 in the Ap-
pendix). To compare HMC and the Laplace approach, we introduce two
data sets based the Lotka-Volterra equations (see Equation C.1 in the
Appendix, for additional results on the pendulum data set we refer to
Section C.3.2 in the Appendix). Data-set-half-cycle only provides data for
half a cycle whereas data-set-full-cycle provides data about the entire cycle.
For data-set-half-cycle, both HMC and Laplace are uncertain about the ex-
trapolation outside data domain (see Figure 6.2 (top-left) and (bottom-left)),
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in contrast to data-set-full-cycle where both models extrapolate accurately
with high confidence. This is also reflected in the uncertainty estimates for
the vector field (see Figure 6.2). Notably, the mean extrapolation for HMC
and Laplace behave differently as the Laplace extrapolation corresponds
to the MAP whereas the HMC extrapolation corresponds to the mean
of the posterior. Furthermore, the uncertainty estimates of the Laplace
approximation decrease whenever the MAP solution returns to data
domain in phase space. This is likely a shortcoming of the linearization
approach, which neglects that the uncertainties should add up over
the course of the ODESolve. As indicated by high uncertainty estimates,
the similarity between the MAP extrapolation and the true solution is
just coincidence as there are other weight configurations which do not
extrapolate well.

One of the biggest advantages of the Laplace approximation is that is
computationally much cheaper than HMC (see Figure 6.2 for the runtime
of each experiment). In our experiment we choose a sufficiently small
number of weights to enable HMC inference, however already doubling
the network weights proved to be infeasibly slow for HMC (surpassing
the allocated runtime of 24 h) whereas training and inference time for
the Laplace approximation barely increased. We find that the Laplace
approximation is slightly inaccurate in its uncertainty estimates due
to the linearization approach, but the superior runtime performance
justifies the output quality.

6.4 Structure Interacts with Uncertainty

Recent approaches [220, 227] in using neural ODEs for dynamics model
learning aim to improve the modelling capabilities of neural ODEs by
including structural knowledge about the dynamics. We will see that, for
such models, even small shifts in the data set can disproportionally change
the prediction of the neural ODE (see Figure 6.1), because the structural
information causes complicated interactions with the identifiability, and
hence, uncertainty of the phase space. Experiments below show that
a small change in data set, and structural information can lead to a
wide range of results, but that the Laplace approximation serves as a
reliable tool to characterize and visualize this issue through the notion of
uncertainty.

6.4.1 Hamiltonian Neural ODEs

Dynamical systems of practical concern often come with information
about the underlying physics. One option to introduce knowledge about
the underlying dynamics of a system is via conservation laws, e.g., the
Hamiltonian equation of motion. For energy-conserving systems, the
dynamics obey Hamiltonian equations of motion Equation 2.7. The
Hamiltonian 𝐻 is conserved over time (𝑑𝐻/𝑑𝑡 = 0). We give a short
introduction of how to construct a Hamiltonian neural ODE similar
to SymODE introduced in Zhong et al. [226, 227]. For a lot of real
systems it is sufficient to consider a separable Hamiltonian of the form
𝐻(𝑞, 𝑝) = 𝑇(𝑝) + 𝑉(𝑞). To learn such a separable Hamiltonian from
data, we use neural networks to represent 𝑉 and 𝑇 (we term this model
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Figure 6.3: Structural information in neural
ODEs affects both point and uncertainty es-
timates. Two different architectures used
for training: naive (left) architecture and
separable (right) Hamiltonian network.
(Top) Solutions to the initial value prob-
lem (( ) corresponds to 𝑞, ( ) corre-
sponds to 𝑝) with uncertainty estimates
provided by the Laplace approximation.
(Bottom) Vector field of the neural ODE
model.

separable). To further refine the prior knowledge in the architecture, we
can use that the kinetic energy 𝑇 is given by 𝑇(𝑝) = 𝑝𝑇𝑀−1𝑝/2 where
𝑀 is a positive definite mass matrix, a constrained model. We add the
parameters of the matrix 𝑀 to the trainable parameters of our model. In
summary, there are three neural ODE models we consider in this work:
The naive approach of Equation 6.2.1, where the right-hand side, 𝑓 , is
represented by a neural network, a separable model and a constrained

model.

For the following experiments, we train neural ODEs on different data
sets generated from the harmonic oscillator (for experimental details and
the network architecture see Appendix Section C.2.3).

Uncertainty in Hamiltonian Neural ODEs The model is only provided
with data in the lower plane (i.e., data set-lower-half ), corresponding
to half a period of the particle’s motion (see for example Figure 6.3).
To compute uncertainty estimates for the trajectories and the vector
field 𝑓𝜃 of the neural ODE we use the Laplace approximation with the
linearization schemes introduced in Section 6.3. In the region where data
is available the naive model is able to fit the data. The extrapolation for
the trajectories and the vector field is close to the true dynamics, but
the uncertainty estimates indicate that there is not enough information
available to guarantee correct extrapolation outside the data domain
(cf. Section C.2.2).

How does additional structure (i.e., a separable and a constrained neural
ODE) change the extrapolation behavior on data set-lower-half? Similar
to the naive model, the separable model becomes uncertain outside the
data domain (see Figure 6.3). Although the approximation power of this
model should be identical to the naive structure, and hence, an identical
extrapolation quality should be achievable, there is a qualitative difference
in the extrapolation of the solution and the vector field (we attribute this
to the different structure in the architecture see Appendix Section C.2.3).
The distinctive rectangular shape in the uncertainty estimates of the
vector field reflects the separable structure of this model.

On the other hand, if we train the constrained model on data-set-lower-half,
the uncertainty estimates of the vector field exhibit a vertical band of low
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uncertainty around the data (Figure ??). This shape is directly linked to
the architecture of the model: The only trainable parameters (apart from
𝑀 which is a scalar), are the parameters of the potential 𝑉𝜃(𝑞) where
learning 𝑉𝜃 depends only on the availability of data for 𝑞. So wherever
data identifies 𝑉𝜃 the value of the Hamiltonian 𝐻 is known since we
use the concrete parametric form of 𝑇(𝑝). If there is data available for
some (𝑞, 𝑝) the vector field is determined in the region (𝑞,ℝ), leading
to uncertainty bands in the structure of the vector field. Therefore, the
constrained model is able to extrapolate with relatively low uncertainty,
since the extrapolation remains within the domain where training data
was available for 𝑞.

Conversely, if we rotate the data set by 90 degrees (data set-left-half ), the
domain where data is available for 𝑞 changes significantly. This time,
however, sufficient data for 𝑞 is not available and therefore, the solution
shows high uncertainty in the extrapolation region (Figure 6.1). For results
of the other models on data-set-left-half see Appendix Section C.3.3.

These results highlight the intricate effect of mechanistic knowledge on
extrapolation, and its reflection in model uncertainty: While a particular
data set might not be sufficient for the naive model to extrapolate accu-
rately, mechanistic knowledge in the form of conservation laws might
change this. However, seemingly benign changes in the data set (here:
a shift in phase) can substantially affect the quality of the predictions.
These effects are not always intuitive and hard to see in point predictions,
but they become immediately evident when looking at the uncertainty
estimates of the vector field and the solution provided by the Laplace
approximation. Given the distinct algebraic structure of the model con-
sidered in this section and the low dimensionality of the problem we can
assess which data fully identifies the vector field to allow for extrapolation.
But also in more complex, high dimensional problems, where predicting
the impact of the encoded structural knowledge becomes increasingly
hard, the temporal evolution of the Laplace uncertainty estimates reveals
the extrapolation capabilities of a model consistently. The probabilistic
notion thus recommends itself when designing structural priors.

6.4.2 Augmenting Parametric Models with Neural ODEs

Instead of including knowledge of conserved quantities in the architecture
of the neural ODE, another option is to consider knowledge of the
parametric form of the underlying physics. But in many cases we do
not have knowledge of the full dynamics, hence Yin et al. [220] suggest
augmenting a known parametric model 𝑓𝑝 with a neural network 𝑓𝜃 . The
resulting dynamics of the model are given by

𝑧′ = 𝑓𝜃(𝑧) + 𝑓𝑝(𝑧), 𝑡 ∈ [𝑡0 , 𝑡𝑁 ], 𝑧(𝑡0) = 𝑧0. (6.1)

To ensure that the dynamics are not dominated by the neural ODE, Yin
et al. [220] suggest regularizing 𝑓𝜃 (for more details we refer to their
paper). We apply the Laplace approach to models trained on two data
sets proposed by Yin et al. [220] – a damped pendulum and damped
wave equations.
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Figure 6.4: Uncertainty estimates for augmented parametric models. Neural ODE and augmented parametric model trained on the damped
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Pendulum Dataset To show the effectiveness of the Laplace approach,
we train an augmented parametric model and a plain neural ODE on a
data set describing a damped pendulum 𝜙′′ + 𝜔2 sin 𝜙 + 𝛼𝜙′ = 0, where
𝜙 is the angle, 𝜔 the frequency and 𝛼 a damping coefficient. For the
parametric model we use frictionless pendulum dynamics where we add
the frequency 𝜔 as a trainable parameter to our model.

The difference in the architecture between the two models is already
evident in the uncertainty estimates of the vector field (shown in Fig-
ure 6.4). For the augmented model, the region where the model has low
uncertainty is larger than for the plain neural ODE model. However,
far away from the data both models become uncertain. To highlight the
differences between the two models we evaluate them with different
initial conditions. On the first set of initial conditions (Figure 6.4 (center-
left)) both models are able to extrapolate accurately, which is captured
by the low uncertainty estimates. For the initial conditions in Figure 6.4
center-right, both models are able to fit the data, yet the plain neural
ODE model is unable to extrapolate, reflected by the large uncertainty
estimates in the extrapolation regime. There also exist initial conditions
for which both models fail to extrapolate, but our experiments reveal that
the Laplace approximation is able to detect these regions (see Figure 6.4
right). Running HMC inference on a reduced version of this task, we
observe the same behavior. For the additional HMC results we refer to
the Appendix Section C.3.2.

Given the complicated structure of the data set and model architecture,
it is a priori unclear for which initial conditions the model extrapolates
well. Hence, it is absolutely crucial to use uncertainty estimates to assess
the models’ outputs.

High Dimensional Wave Dataset We show that the Laplace approx-
imation is also applicable to high dimensional data. In this case we
use the damped wave equation as a data set, where the wave is de-
scribed by a scalar function 𝑢 and the wave equation is given by
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Figure 6.5: Laplace approximation applied to
wave PDE. Training an augmented para-
metric model on the damped wave equa-
tion data set (Figure shows result for 𝑢 —
for the time derivative and additional re-
sults we refer to Appendix.). First three
images (marked by orange frame) are
part of the training data.

𝜕2𝑢/𝜕𝑡2 − 𝑐2Δ𝑢 + 𝑘𝜕𝑢/𝜕𝑡 = 0. 𝑘 is a damping coefficient. The data
set consists of a 64x64 spatial discretization for 𝑢 and 𝑑𝑢/𝑑𝑡 over multiple
time points. Our model consists of a parametric model for the wave
equation without the damping term augmented with a neural ODE
model.

The uncertainty estimates reproduce the overall structure of the wave
expansion (see Section C.3.4 in the Appendix for different initial condi-
tions). Specifically, in the extrapolation regime behind the wave front the
uncertainty estimates increase (see Figure 6.5). To check if the uncertainty
estimates are well calibrated, we compute the ratio of error and standard
deviation, where the error is given by the difference between the true so-
lution and the model’s output. We denote this ratio by 𝛾. The uncertainty
estimates are well calibrated if 𝛾 is close to one. Overall, we find that
the uncertainty estimates provided by the Laplace approximation are
underconfident (𝛾 < 1). The imperfections in the uncertainty estimates
are compensated by the fact the Laplace approach facilitates the compu-
tation of uncertainty estimates on such a high dimensional data set in
reasonable time—other approaches like HMC would be computationally
infeasible.

6.4.3 Discussion And Outlook

While our experiments suggest that the Laplace approximation produces
high quality uncertainty quantification for a variety of tasks, and for
various quantities, there are some numerical and computational issues
to carefully consider, which we briefly discuss here.

The computationally most expensive part of the Laplace approximation is
the calculation of the GGN, and especially its inverse. But once calculated
and stored, it does not have to be reevaluated for future predictions. Since
neural ODEs commonly use a relatively small network size, compared
to other deep learning applications, storing the Hessian need not be
an issue. If it is, there are a few options available, like diagonalizing,
only using the last layer or only considering a subnetwork to reduce the
memory cost [39]. How well these methods apply to neural ODEs is left
as future work. Another issue we face is that the GGN sometimes loses
its positive-semi-definiteness, due to numerical issues (i.e., large variance
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in the eigenvalues). This can be alleviated by adding a small constant
to the diagonal elements of the Hessian. We also found that this effect
is enhanced by the structure of Hamiltonian neural networks (possibly
due to the derivative structure of the activation functions). For inference,
taking the Jacobian over the whole trajectory can be costly (especially for
large data sets like the wave data set). However, in practice we are often
only interested in the final output and dense sampling is not necessary.

6.5 Related Work

Neural ODEs [29] have been applied to a wide range of problems such
as image classification [29, 31, 225], normalizing flows [29, 70], learning
dynamical systems via residual neural networks [42, 109] or variational
autoencoders [29, 182, 219].

Neural ODEs With Structure Greydanus et al. [74] introduce the idea
of adding a Hamiltonian structure to a neural network. Zhong et al.
[227] extend this idea to neural ODEs and Zhong et al. [226] add a
term to Hamiltonian neural ODEs to model dissipative systems. Yin
et al. [220] propose to augment parametric models with neural ODEs by
regularizing the neural ODE term.

Neural ODEs With Uncertainty To model the latent space of a variational
autoencoder Yildiz et al. [219] use a Bayesian neural network to describe
the vector field. Similarly, Dandekar et al. [35] train a neural ODE with a
Bayesian neural network as the vector field on regression and classification
tasks using Monte Carlo sampling to do inference. Yang et al. [217] apply
HMC and variational inference to physics-informed neural networks.
Norcliffe et al. [144] propose to use neural processes to equip neural
ODEs with uncertainty estimates. Relative to these works, ours is the
first to construct and assess uncertainty quantification for neural ODEs
with structured architectural priors.

Stochastic differential equations (SDEs) can be used to model the stochas-
ticity of real-world processes. This approach has been transferred to
neural ODEs for example for training a recurrent neural network [42] or
to do variational inference using a latent stochastic differential equation
[122]. To improve uncertainty quantification in image classification, Kong
et al. [114] propose to use a neural SDEs and Anumasa and Srĳith [3]
combine a GP with a neural ODE.

GPs for Modelling ODE Dynamics Another approach to free-form
dynamics modelling are Gaussian processes (GPs) [89, 91]. Hegde et
al. [89] learn a posterior distribution over the vector field of the ODE.
Ensinger et al. [52] encode a Hamiltonian structure in the GP and use
symplectic ODE solvers to train the model. Wang et al. [205] augment
incomplete physical knowledge with a GP. Ridderbusch et al. [177]
propose to use GPs to learn a vector field from data by using prior
structural knowledge.
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6.6 Conclusion

Uncertainty is always relevant in machine learning, but particularly so
for the highly structured and often unintuitive prediction of dynamical
systems with neural ODEs. At its most basic, uncertainty estimates tell us
if the model has seen enough data to learn the dynamics. But the position
in state space, and number, of data points required for this to happen
depend intricately on additional mechanistic knowledge potentially
encoded in the model. Small changes in the data set can have a fatal effect
on the extraploratory abilities of the neural ODE model. These aspects
can be hard or impossible to spot from point predictions alone, yet may
become obvious when uncertainty estimates are available.

To make neural ODEs a useful tool for scientific or engineering applica-
tions, it is thus crucial to make uncertainty estimates available at train- and
test-time. The experiments presented in this work suggest that Laplace
approximations, with the necessary technical adaptations for this model
class, can provide such uncertainties for neural ODEs at simultaneously
high fidelity and at low cost. Moreover, the uncertainty estimates are able
to reflect key structural effects of mechanistic knowledge, and they thus
help make neural ODEs more reliable as a tool for scientific inference.
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Abstract

Bayesian quadrature is a probabilistic numerical method for computing
integrals. Using a Gaussian process model of the integrand to encode
prior information, BQ returns a posterior distribution on the value of the
integral which can be used for uncertainty quantification. Despite these
advantages, BQ suffers from high computational cost, at least in its basic
form. We propose an alternative to BQ based on Bayesian neural network
priors, which greatly improves scalability. This is achieved through neural
network architectures based on Stein operators, and an approximation of
the Bayesian posterior based on the Laplace approximation. We call the
method Bayesian Stein networks, and demonstrate its advantages on the
Genz functions benchmark, posterior expectations arising in the Bayesian
analysis of dynamical systems, and the expected energy production for
large-scale wind farms.

7.1 Introduction

Integration is a core task in probabilistic machine learning. It is required
to perform operations such as marginalizing out random variables,
or computing normalization constants, predictive distributions, and
posterior expectations. Here, we consider the computation of the integral
of some function 𝑓 : X → ℝ, where X ⊆ ℝ𝑑, against some distribution
Π with (Lebesgue) density 𝜋 : X → ℝ:

Π[ 𝑓 ] =
∫
X
𝑓 (𝑥)𝜋(𝑥)𝑑𝑥, (7.1)

where we assume we have access to evaluations { 𝑓 (𝑥𝑛)}𝑁𝑛=1 at a set of
points {𝑥𝑛}𝑁𝑛=1 ⊆ X . A plethora of methods exist for tackling this task;
the most common are MC methods, which are sampling-based methods
that have been studied extensively in theory and practice [156, 180] (see
Section 2.3). This subsumes naive Monte Carlo, Markov chain Monte
Carlo and quasi-Monte Carlo (QMC). Sampling is (at least asymptotically,
for MCMC) unbiased and thus a gold standard, but precisely for this
reason, it can only converge with stochastic rate, and thus requires a large
number of samples𝑁 , both for accuracy and uncertainty quantification.

This is a challenge if evaluations of 𝑓 or samples from 𝜋 are expensive.
The former (“expensive 𝑓 ”) emerges regularly in climate simulations or
other large physical models. Section 7.5.3 provides an example with a
wind farm model – a field where state-of-the-art models require hundreds
of hours of CPU for a single evaluation [111, 112]. The latter (“expensive
sampling”) features where 𝜋 is a posterior distribution for a complex
model conditioned on a large amount of data. Section 7.5.2 illustrates
this through an example of Bayesian inference in dynamical system.
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In such scenarios, probabilistic numerical methods (PNMs) [33, 92, 93,
149, 207], and in particular Bayesian approaches, perform particularly
well. For numerical integration, the principle behind Bayesian PNMs
is to encode prior information about the integrand 𝑓 , then condition
on evaluations of 𝑓 to obtain a posterior distribution over Π[ 𝑓 ]. These
methods are well suited for computationally expensive problems since
informative priors can be used to encode properties of the problem and
to reduce the number of evaluations needed. In addition, the posterior
quantifies uncertainty for any finite value of 𝑁 .

The most popular Bayesian PNM for integration is Bayesian Quadra-
ture [22, 46, 150, 173], a method that places a Gaussian Process [174]
prior on 𝑓 (see Section 2.4.1). With this convenient choice of prior, the
posterior on Π[ 𝑓 ] is a univariate Gaussian, whose mean and variance can
be computed in closed form for certain combinations of prior covariance
and distribution. However, for high-dimensional problems where large
amounts of data are necessary, the computational cost of GPs, cubic in
𝑁 , can render BQ too computationally expensive. Fast BQ methods have
been proposed to resolve this issue [101, 106], but these usually work for
a limited range of 𝜋 or {𝑥𝑛}𝑁𝑛=1, and therefore do not provide a widely
applicable solution.

This raises the question of whether an alternative probabilistic model
could be used in place of a GP within probabilistic integration. Bayesian
neural networks (BNNs) are an obvious candidate, as they are known
to work well in high dimensions and with large 𝑁 . Unfortunately, their
application to integration tasks is not straightforward since, in contrast
to the GP case, analytical integration of the posterior mean of a BNN
is usually intractable. This is a significant challenge which has so far
prevented their use for probabilistic numerics. We resolve this challenge
by proposing the concept of Bayesian Stein (neural) networks (BSNs), a
novel BNN architecture based on a final layer constructed through a
Stein operator [2]. Such choice of architecture is designed specifically so
that the resulting BNN is analytically integrable (see Section 7.3.1), and
hence at our disposal for numerical integration.
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Figure 7.1: Integration methods can be
compared at a high-level in terms of their
computational cost and ability to include
prior information. In both respects, BSNs
provide a compromise in-between MC
and BQ.

Given these approaches—MC, BQ, BSNs—a natural question remains:
“How should we select a method for a given integration task?”. We
provide an empirical answer to this question in Section 7.5, where we
consider a popular benchmark data set, compute posterior expectations
arising in the Bayesian treatment of dynamical systems, and estimate the
expected power output of a wind farm.

Our conclusions are summarized in Figure 7.1 and presented below.
If sampling 𝜋 and evaluating 𝑓 is computationally cheap, so one can
obtain a very large number of data points relative to the complexity
of the problem, then MC methods are likely the best choice. But if 𝑁
is very limited due to our computational budget, then BQ is likely a
better option. BSNs excel in the intermediate region where 𝑁 is such
that BQ becomes prohibitively expensive, but MC is not accurate enough.
The architecture of neural networks, plus sophisticated deep learning
software libraries, make training of (small) neural networks memory
efficient and fast. However, achieving good accuracy at low training cost
requires special care during training for the Stein architecture. Finding
a good training setup is a main contribution of this work, outlined in
Section 7.4.
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For all integration methods, estimates from scarce data are imperfect,
so uncertainty estimates are crucial. Bayesian deep learning provides
this functionality. Full Bayesian inference is costly even for small neural
networks, but we show that a lightweight Laplace approximation [133,
178] can provide good approximate uncertainty for the Stein network.

7.2 Related Work

BQ is the method most closely related to our proposed approach, and
BQ is fully detailed in Section 2.4.1. Bayesian PN methods based on alter-
native priors have also been proposed. These include Bayesian additive
regression tree priors [229], multi-output Gaussian process priors [63,
211], and Dirichlet process priors [147]. These priors each provide different
advantages, such as the ability to model highly discontinuous functions,
vector-valued functions, or modelling probability distributions respec-
tively. Unfortunately none of these approaches significantly improve
scalability, the main goal of this work.

The use of (non-Bayesian) neural networks for integration was previously
proposed by Lloyd et al. [127]. However, their method is only applicable
for uniform 𝜋 and shallow networks. Si et al. [190] and Wan et al. [204]
propose to use a Langevin Stein operator applied to a neural network
to find good control variates for variance reduction in Monte Carlo
approximations (based on an earlier construction by [146]). In contrast to
their work, we use the neural network to directly compute Π[ 𝑓 ], and our
neural network follows Bayesian semantics and can be used to quantify
uncertainty. This requires a different network architecture and an efficient
posterior inference algorithm.

7.3 Bayesian Stein Networks

We now describe BSNs. This requires discussing Stein operators, BNNs,
and Laplace approximations.

7.3.1 Stein Neural Networks

Stein operators are a technical construction originating in probability
theory, but have recently been used as a computational tool [2]. Building
on this line of work, we will use Stein operators to construct the final
layer of our BNNs. The reason for this is simple: given some function 𝑢
(with possibly unknown mean) and a distribution 𝜋, a Stein operator can
map 𝑢 to a mean zero function under 𝜋. This final layer therefore allows
us to construct flexible BNNs with the powerful property that any draw
from the posterior will have a known mean under 𝜋. We now highlight this
procedure in detail.

We call S a Stein Operator if for any suitably regular continuously differ-
entiable 𝑢 : ℝ𝑑 → ℝ𝑑, the following holds

Π [S[𝑢]] = 0. (7.2)
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SupposeX = ℝ𝑑 ,𝜋 is continuously differentiable onX , such that∇𝑥 log𝜋
is well-defined ([∇𝑥 log𝜋(𝑥)]𝑖 = 𝜕 log𝜋(𝑥)/𝜕𝑥𝑖 for all 𝑖 ∈ {1, . . . , 𝑑}).
One example of an operator fulfilling Equation 7.2 is the diffusion Stein
operator [9, 69]:

S𝑚[𝑢](𝑥) :=
(
𝑚(𝑥)⊤∇𝑥 log𝜋(𝑥))⊤ 𝑢(𝑥)
+ ∇𝑥 · (𝑚(𝑥)𝑢(𝑥)) ,

(7.3)

where ∇𝑥 · 𝑢(𝑥) = ∑𝑑
𝑖=1 𝜕𝑢𝑖(𝑥)/𝜕𝑥𝑖 , and 𝑚 : ℝ𝑑 → ℝ𝑑×𝑑 is an invertible

matrix-valued function. This operator only requires access to ∇𝑥 log𝜋(𝑥),
and can thus be used even if the normalization constant of 𝜋 in unknown.
This is an advantage if 𝜋 is itself a posterior distribution. In such settings,
samples form 𝜋 can be obtained via MCMC, but the distribution 𝜋 itself
cannot be evaluated directly.

To construct BSNs, we use an architecture based on a continuously
differentiable deep neural network 𝑢𝜃𝑢 : X → ℝ𝑑 , where 𝜃𝑢 ∈ Θ𝑢 ⊆ ℝ𝑝 ,
combined with a final layer taking the form of a Stein operator (that we
call Stein layer). More precisely, we consider an architecture 𝑔𝜃 : X → ℝ

where:

𝑔𝜃(𝑥) := S𝑚 [𝑢𝜃𝑢 ] (𝑥) + 𝜃0. (7.4)

We call this neural network a Stein neural network following [190, 204],
but note that we use the more general diffusion Stein operators S𝑚 [9,
69]. Previous cases can be recovered with 𝑚(𝑥) = 𝐼𝑑, where 𝐼𝑑 is a 𝑑-
dimensional identity matrix, however we will demonstrate in Section 7.5.2
that alternative choices for 𝑚 can significantly improve the performance
of our method.

The parameter 𝜃 = {𝜃0 , 𝜃𝑢} ∈ Θ ⊆ ℝ𝑝+1 denotes the weights of the
neural network 𝑔𝜃. Thanks to our choice of architecture, Equation 7.2
holds, and we have:

Π [𝑔𝜃] = 𝜃0. (7.5)

The last layer of 𝑔𝜃 directly tracks the integral of the network, which
is the key property for our purpose: by training such a network 𝑔𝜃
on data from 𝑓 so that 𝑔𝜃 ≈ 𝑓 , we are simultaneously constructing a
good approximation of the integral Π[𝑔𝜃] ≈ Π[ 𝑓 ] (see Figure 7.2 for a
summary).

7.3.2 Uncertainty Estimates for Stein Neural Networks

In the context of Bayesian PNM, proposing a BNN architecture is not
enough: we are also interested in tractable uncertainty estimates over
Π[ 𝑓 ]. We obtain this through the Laplace approximation introduced in
Section 4.3.

The specific architecture of the BSN model means that all the uncertainty
on Π[ 𝑓 ] is represented by the Bayesian posterior on 𝜃0. The posterior
on 𝜃0 is then the marginal of the weight posterior 𝑝(𝜃 |D). Bayesian
inference for deep networks provides uncertainty estimates [132, 139]
through 𝑝(𝜃 |D), but this posterior is intractable in general. MCMC
is a prominent tool for approximating 𝑝(𝜃 |D), but using it within an



7.3 Bayesian Stein Networks 71

x

5 (G=)

∇ log�(G=)

𝜃MAP

Neural network regression for 𝑔𝜃
{𝑥𝑛 , 𝑓 (𝑥𝑛),∇ log𝜋(𝑥𝑛)}

x

5 (G=)

6�MAP (G)

Laplace approximation

�0

�0,MAP

?(�0 | D)

Figure 7.2: Visualization of BSNs.
The BSN prior is conditioned on
{𝑥𝑛 , 𝑓 (𝑥𝑛),∇ log𝜋(𝑥𝑛)}𝑁𝑛=1 to obtain a
Bayesian posterior on 𝜃0. This posterior
quantifies our uncertainty about Π[ 𝑓 ].
For computational reasons, this posterior
is approximated the Laplace approxima-
tion around the MAP estimate 𝜃0,MAP.

integration method would be circular and re-introduce the specter of high
computational cost [100]. Other popular approximate inference schemes
include variational inference [18, 72, 94] and ensemble methods [118].
Although cheaper, the cost associated with this can still be significant.

We instead opt for the arguably most lightweight approach available
for BNNs: the Laplace approximation [133, 178]. It is a simple and
computationally cheap method, but yet provides competitive uncertainty
estimates [39]. The Laplace approximation constructs a second-order
Taylor approximation around the mode of the posterior, which amounts
to a Gaussian approximate of the posterior around the MAP (maximum-
a-posteriori) estimate. This can be criticized from a Bayesian standpoint
as the MAP estimate and the posterior mean of the weights do not
necessarily coincide. However, the MAP estimate is the quantity that
is usually tuned in deep learning and is also cheap as it only has to be
computed once.

Of course, any Bayesian treatment of neural networks requires a prior
𝑝(𝜃). The choice is important since the prior encodes the model class,
but there is currently no widely accepted choice. Our choice is motivated
by the fact that for the Laplace approximation, only isotropic Gaussian
priors are currently feasible [39, 133, 178]. Fortuin et al. [57] suggest that
such priors are undesirable, but Wilson and Izmailov [209] argue to
the contrary: despite their simplicity, such priors still induce sufficiently
complex distributions over functions.

To be more precise, our approximation of the posterior is implemented
in two steps: a Laplace approximation, and an approximation of the
corresponding Hessian. For the first step, we consider a BSN 𝑔𝜃 trained
to minimize the mean squared error loss with weight decay regularizer.
Hence, the minimum of the loss is indeed a MAP estimate, and we
can apply the Laplace approximation as in Section 4.3. Our second
step consists of a positive definite approximation of the Hessian which
we obtain via the GGN approximation [188]. Hence, we can extract an
approximation of the posterior on the network’s prediction of the integral
Π[ 𝑓 ] :

𝑞GGN-Laplace(𝜃0) = N
(
𝜃0 |𝜃0,MAP , (ΣGGN)0,0

)
.
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7.4 Architectural Considerations

Due to their specific architecture, naive attempts to train BSNs can
lead to unsatisfactory results. Below, as a key contribution, we provide
architectural considerations that we have found to significantly improve
the conditioning of the loss and lead to better training.

7.4.1 Choice of Activation Function

We require 𝑢𝜃𝑢 to be continuously differentiable on X , which imposes
restrictions on the activation functions of the BSN. A sufficient condition
is for these activation functions to be themselves continuously differ-
entiable. This excludes the popular RELU activation functions, but in-
cludes the CELU (‘Continuously Differentiable Exponential Linear Units’
[11]; CELU(𝑥) = max(0, 𝑥) + min(0, exp(𝑥) − 1)), its continuous exten-
sion. It also includes the tanh (tanh(𝑥) = (exp(𝑥) − exp(−𝑥))/(exp(𝑥) +
exp(−𝑥))), Gaussian (Gauss(𝑥) = exp(−𝑥2)), and sigmoid (sigm(𝑥) =
1/(1 + exp(−𝑥))), TanhShrink (TanhShrink(𝑥) = 𝑥 − tanh(𝑥)) activations.
We compared activation functions (see Figure 7.4 below) and found the
CELU to give marginally superior performance on test problems. Based
on its good performance, we use CELU activations for all experiments.

7.4.2 Choice of Optimization Procedure

Optimization for BSNs is challenging due to the unique network architec-
ture. For one, the architecture contains gradients of the Stein layer, which
are harder to train than standard activation functions. This is because
∇𝑥 log𝜋 can be arbitrarily complicated depending on 𝜋. We find that the
training of 𝑔𝜃 with Adam [110] is considerably slower compared with
training 𝑢𝜃𝑢 (see Section D.1.1 in the Appendix). We suspect that this is
due to the loss landscape of the BSN being more narrow (i.e., having
a larger spread in curvature eigenvalue spectrum) than that of 𝑢𝜃𝑢 . A
second order method should alleviate this issue. Hence, we train the BSN
with L-BFGS (an approximate second order method) and the Hessian-free
optimizer [134] (a conjugate gradient based second order method). And
indeed, (approximate) second order optimization reaches much better
performance (for an extended discussion see Appendix Section D.1.1).

We therefore used L-BFGS throughout all subsequent experiments. Such
quasi-Newton methods have fallen out of fashion in deep learning
because they are not stable to noise. In our experiments, we train on the
full data set, so noise is not an issue. We accomplish better (i.e., lower
loss) and faster convergence (both in iterations and compute time) with
this method compared to gradient descent and its variants. Note that
this approach is only feasible for relatively small (in number of weights
𝑝) network architectures, as it requires storing the gradient history for
the approximate Hessian in memory. When training on the entire data
set (i.e. no mini-batching), we observe significant speed-up from using
GPUs when 𝑛 is large (≈ 104).
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7.4.3 Choice of 𝑚(𝑥)

For most of the experiments we set𝑚(𝑥) = 𝐼𝑑 , but in general other choices
for𝑚 are possible. We test a set of different choices (𝑚(𝑥) = 𝐼𝑑/(| |𝑥 | |22+1),
𝑚(𝑥) = 𝐼𝑑/

√
| |𝑥 | |22 + 1, 𝑚(𝑥) = 𝐼𝑑𝜋(𝑥), 𝑚(𝑥) = diag(𝑥)), but find that

none of these perform significantly better than𝑚(𝑥) = 𝐼𝑑 (see Section D.1.1
for more details).

7.4.4 Choice of Point Set

BSNs can be implemented regardless of the choice of {𝑥𝑛}𝑁𝑛=1, but we
expect better performance when {𝑥𝑛}𝑁𝑛=1 cover regions of high probability
under 𝜋. A simple solution is to use independent samples from 𝜋; this
will be our default choice. When independent sampling is not possible,
we can use MCMC instead, so long as 𝜋 can be evaluated up to some
normalization constant. Alternatives also include grid of points or QMC
point sets (see Section D.1.1 in the Appendix for a comparison of different
point sets), but these are usually only helpful when X is a hypercube
and Π is uniform. Alternatively, one could also use active learning (see
[21, 75] for corresponding approaches for BQ) based on the Laplace
approximation of the uncertainty, but this may not perform well for
larger 𝑑, and we did not explore the idea further.

7.4.5 Stein Architecture for Bounded Domains

The architecture outlined in Section 7.3.1 is only valid on the open
integration domain X = ℝ𝑑 . For bounded X ⊂ ℝ𝑑 , it is incorrect because
Π[S𝑚[𝑢]] = 0 is not necessarily true. This can be guaranteed by adding a
layer before the Stein layer. For example, let �̃�𝜃𝑢 (𝑥) = 𝑢𝜃𝑢 (𝑥)𝛿(𝑥), where
𝛿(𝑥) is a smooth function (so that �̃�𝜃𝑢 is continuously differentiable)
going to zero on the boundary of X . Then, 𝜋(·)�̃�𝜃𝑢 (·) is zero on the
boundary of X , and as a result Π[S[�̃�𝜃𝑢 ]] = 0. When X = (𝑎, 𝑏) ⊂ ℝ,
one such function is given by 𝛿(𝑥) = (𝑥 − 𝑎)(𝑏 − 𝑥), and we will use this
example where necessary in our experiments. Beyond bounded X , the
architecture can also be adapted to manifold or discrete X ; see [10] and
[189] respectively.

7.5 Experiments

We consider three main experiments: the Genz functions benchmark, a
parameter inference problem for a dynamical system called Goodwin
Oscillator, and an example describing the energy output of a wind farm.
We compare BSNs to the following approaches:

▶ Monte Carlo methods. When independent sampling from 𝜋 can be
used (i.e. for the Genz benchmark and the wind farm experiments)
we use MC. When this is not possible, we use instead an MCMC
method called Metropolis-Adjusted Langevin algorithm [MALA;
181] (see Section 2.3.2).
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Table 7.1: Performance on Genz integral family in 𝑑 = 2. Mean relative integration error and standard deviation (based on 5 repetitions)
using 𝑁 = 5120.

Mean Absolute Error
Integrand MC BQ BSN

Continuous 1.59e-03 ± 0.90e-03 1.40e-03 ± 0.09e-03 1.11e-05 ± 0.55e-05

Discontinuous 2.69e-02 ± 2.64e-02 1.12e-02 ± 0.50e-02 2.56e-03 ± 1.94e-03

Gaussian 1.52e-02 ± 8.85e-03 1.17e-06 ± 1.11e-06 1.83e-04 ± 1.35e-04
Corner 1.85e-02 ± 1.85e-02 2.49e-04 ± 1.53e-04 6.00e-04 ± 5.39e-04
Oscillatory 2.88e-01 ± 1.75e-01 4.13e-03 ± 0.89e-03 1.34e-03 ± 0.97e-03

Product 7.59e-03 ± 4.11e-03 1.82e-04 ± 0.42e-04 1.42e-04 ± 0.76e-04

▶ A BQ implementation based on emukit [158], with an RBF covari-
ance function 𝑘(𝑥, 𝑦) = 𝜆 exp(−∥𝑥 − 𝑦∥22/𝑙2) for some 𝑙 ,𝜆 > 0.
We use log-likelihood maximization to choose 𝑙 and set the GP
prior mean to 0, as we do not have any prior knowledge about the
value of the integral. In Section D.1.1 we conduct an additional
experiment using the Matern 1/2 Kernel. However, for this kernel,
the posterior mean is only available in 𝑑 = 1.

▶ A control functional estimator based on Stein’s method (Stein-CF)
as described in [145] for the experiments on the Genz data set and
the Goodwin oscillator. The approach can be thought of as a kernel
interpolant alternative to our neural network approach. We use
𝑚(𝑥) = 𝐼𝑑 and an RBF kernel. We use log-likelihood maximization
to set the kernel hyperparameters.

To implement the Laplace approximation, we use laplace-torch library
[39]. Across all experiments we employ the same fully connected architec-
ture for 𝑢𝜃𝑢 , where each hidden layer has 32 units, and we use 2 hidden
layers (see Section D.1.1 in the Appendix for more details).

7.5.1 Genz Benchmark

We first consider the Genz family of integrands [62], available in the
ProbNum package [207], as a test ground (see Appendix Section D.1.2 for
detailed definitions). This benchmark, consisting of six integrands with
known integrals, was proposed to highlight the performance of numerical
integration methods on challenging tasks including discontinuities,
peaks and oscillations. Each integrand has a parameter which can be
used to increase the dimensionality 𝑑 of the domain. We follow the
implementation of Si et al. [190], where the test functions are transformed
to be supported onX = ℝ𝑑 and integrated against a multivariate standard
Gaussian distribution Π. Since these functions are very cheap, we do
not expect BSN or BQ to be competitive with MC methods in terms of
runtime, but we use this experiment to showcase the performance of
BSNs for challenging integrands and compare methods for fixed 𝑁 .

In Table 7.1, we first consider the case 𝑑 = 2 and 𝑁 = 5120. BSN and BQ
both outperform MC by several orders of magnitude in terms of mean
relative integration error. Notably, BSN is significantly better than BQ
for the discontinuous Genz function, indicating that the neural network
is able to adapt to rapidly changing functions. For the Gaussian Genz
function, BQ outperforms the BSN due to the fact that the prior is more
informative. Both methods lead to a significant improvement over MC,
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Figure 7.3: Continuous Genz function. We
compare methods as a function of 𝑑
for 𝑁 = 100 (left) and 𝑁 = 10000
(right)(based on 5 repetitions).
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Figure 7.4: Impact of the choice of activation
function for the Continuous Genz function.
Loss 𝑙 (left) and mean relative integration
error (right) (mean based on 5 repetitions)
as a function of 𝑁 .

but we can run the BSN at higher number of data points 𝑁 than BQ. See
Section D.1.2 in the Appendix for detailed figures.

We then considered the impact of dimensionality on MC, BQ, and BSN in
Figure 7.3. We focus on the Continuous Genz function for simplicity. If too
few evaluations 𝑁 are available, the Stein network cannot approximate 𝑓
well, but with a sufficiently large 𝑁 (i.e. 𝑁 ≈ 102 in 𝑑 = 1 and 𝑁 ≈ 104 in
𝑑 = 10), BSN significantly outperforms MC and BQ.

We also considered the impact of the choice of activation functions for
𝑢𝜃𝑢 in Figure 7.4. Again, we focus on the Continuous Genz integrand, but
limit ourselves to 𝑑 = 1. We consider a diverse set of activation functions
(described in Section 7.4), all continuously differentiable as required for
the final Stein layer. We find that the CELU activation leads to the best
results on the Continuous Genz dataset, but other activation functions
like the tanh and Gaussian activations also perform well.

Finally, we have a deeper look at the Continuous Genz function in
𝑑 = 20 in Figure 7.5. We observe that a large enough 𝑁 (𝑁 ≈ 104) is
necessary for the interpolation capabilities of the model to significantly
improve performance. In those cases, the BSN achieves significantly
better performance than MC-sampling. We note that MC sampling is
cheap on the Genz benchmark dataset, and this benchmark is only used
as a test bed to vary the complexity of our integrands, so we only compare
the MC method to the other methods in terms of sample efficiency. Both
BQ and Stein-CF do not achieve good performance and are too expensive
(in runtime and in memory) to run for large 𝑁 . The BSN can perform
well even for much larger data sets (we ran it up to 𝑁 ≈ 106).

To evaluate the uncertainty estimates provided by the GGN-Laplace
approach, we calculate their calibration 𝛾. The calibration is given by the
ratio between relative integration error 𝑒abs, and the standard deviation
𝜎𝜃0 of the GGN-Laplace approximation of the posterior on 𝜃0: 𝛾 =
𝑒abs/𝜎𝜃0 . Similarly, for BQ, 𝜎𝜃0 is the posterior standard deviation onΠ[ 𝑓 ].
A calibration fluctuating around one indicates a well calibrated model,
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Figure 7.5: Continuous Genz function in
𝑑 = 20. Mean relative integration error
(top-left), run time (top-right), and calibra-
tion (bottom-right) (mean and standard
deviation based on 5 repetitions) as a
function of 𝑁 . Bottom-left: Mean relative
integration error as a function of run time
in seconds.
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and a large calibration suggests a model that is overconfident, rendering
its uncertainty estimates unreliable. The GGN-Laplace approach as well
as BQ lead to uncertainty estimates which are underconfident (although
less so for the BSN), especially in the high data regime (see Figure 7.5).
Underconfident predictions are still useful in that they provide a prudent
assessment of our uncertainty.

Figure 7.6: Memory requirements of BQ
and BSN on the continuous Genz data
set in 𝑑 = 20 (based on 5 repetitions).

We can compare the BSN and BQ not only in runtime but also in
terms of memory requirements. However, computing accurate memory
requirements in python can be difficult as common python libraries
use for example C++ backends. The memory requirements of these non-
python backends is commonly not taken into account using the built-in
memory profiler. So instead, we use the profiler of our cluster, which
outputs the maximum memory required by the program. Figure 7.6
shows that the BSN memory requirements increase more slowly than for
BQ. The kernel based methods (BQ and CF) both surpass our allotted
memory limit of 20 GB (see Figure 7.6).

7.5.2 Bayesian Inference for the Goodwin Oscillator

A challenging computational task in Bayesian inference is posterior
inference for parameters of dynamical systems (see for example [25]).
The challenge is due to the large computational cost of posterior sampling,
which is incurred due to the need to solve systems of differential equations
numerically at a high-level of accuracy. In addition, large data sets
can further increase the computational cost, making the task a prime
candidate for BSNs. For this experiment, we consider parameter inference
in a dynamical system called the Goodwin oscillator [68]. This model
describes how the feedback loop between mRNA transcription and
protein expression can lead to oscillatory dynamics in a cell. It is a
common benchmark for MC methods [24, 148, 176].

We analyze the setting with no intermediate protein species, leading to a
system with 𝑑 = 4 parameters: 𝑥 = (𝑎1 , 𝑎2 , 𝑘, 𝛼) ∈ ℝ4+. Given a posterior
distribution 𝜋, we want to compute the posterior mean Π[ 𝑓 ] of each of
the ODE parameters, i.e., 𝑓 (𝑥) = 𝑥. For this experiment, the posterior
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distribution is conditioned on a synthetic data set of 2400 observations
generated for some known parameter values. Our exact experimental
setup is based on [30], and we refer to the Section D.1.3 in the Appendix
for more details.

The posterior density 𝜋 is only available in unnormalized form, and we
therefore use MALA for sampling. This is relatively expensive: sampling
𝑛 = 1000 realizations takes around 30 seconds, which is on the same
timescale as network inference (∼ 1 min). For ODE problems requiring
more complex solvers or settings with a large data set, the sampling time
might increase even further.

In this setting, ∇𝑥 log𝜋(𝑥) can take very large values, which makes
training the BSN harder. We find that 𝑚(𝑥) = 𝐼𝑑/𝐶 for 𝐶 ∈ ℝ can
considerably improve the performance. We considered two choices for
the constant 𝐶:

▶ Using the standard deviation of {∇𝑥 log𝜋(𝑥𝑛)}𝑁𝑛=1 (called 𝐶 = std
in Figure 7.7).

▶ Using the largest value of ∇𝑥 log𝜋 across the data set: 𝐶 =
max𝑛=1,...,𝑁 ∇𝑥 log𝜋(𝑥𝑛) (called 𝐶 = max in Figure 7.7).

Figure 7.7 compares the performance of the proposed regularizations.
Both choices work well, in contrast to using no regularization at all (i.e.
𝐶 = 1). We find that the BSN either matches the performance of MALA
(for parameter 𝛼) or surpasses it (parameter 𝑎1). The Stein-CF performs
well but struggles in the high data regime due to unstable hyperparameter
optimization. The results for 𝑎2 and 𝑘 are presented in Section D.1.3 in
the Appendix. The saturation in reached accuracy for both the BSN
and MALA can be attributed to the noisy likelihood evaluations. Before
concluding, we emphasize that BSN is the only available Bayesian PNM
here. This is because 𝜋 is unnormalized and BQ is therefore not possible
to implement.
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Figure 7.8: Wind farm model. Mean rela-
tive integration error (top left), and run
time (top-right) (mean and standard de-
viation based on 5 repetitions) as a func-
tion of 𝑁 . Bottom-left: Fraction of run-
time BSN and BQ contribute to the total
runtime which includes the runtime of
the wind farm simulation. Bottom-right:
Uncertainty estimates provided by the
Laplace approximation.
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7.5.3 Expected Local Turbine Thrust Coefficient for Wind
Farm Layout Design

The energy produced by a wind farm depends on factors including
the distance between turbines, the direction of the wind, and the wake
produced by individual turbines. To understand this phenomenon, fluid
dynamic simulations can be used to estimate a local turbine thrust coeffi-
cient (which we denote 𝑓 ), which largely determines energy production
[142]. Since a number of these factors are unknown, it is common practice
to represent uncertainty through a distribution (denoted 𝜋), and calculate
the expected local turbine thrust coefficient Π[ 𝑓 ].

A particular challenge here is the cost of evaluating 𝑓 . For the model
we are using (a low-order wake model from [141]), each evaluation of 𝑓
takes approximately 130 seconds, but more accurate models [112] can
take up to tens of hours per evaluation. However, it is well known that 𝑓
is a smooth function of the inputs, which makes Bayesian PNMs, such as
BSNs, prime candidates for the task.

The input to our model 𝑓 are the wind direction, the turbulence intensity,
as well as a number of parameters representing the design of the wind
farm (including parameters impacting the distance between turbines,
and turbine-specific parameters such as the turbine resistance coefficient,
the turbine hub height and diameter, and parameters describe the turbine
wake). The distribution 𝜋 consists of independent distributions (either
mixtures of Gaussians, or a truncated Gaussian) on each input to the
wake model. Section D.1.4 in the Appendix provides full details on the
wind farm data set.

The results are presented in Figure 7.8. Since the ground truth is unknown
for this problem, we ran BSN on a data set which is 5 times larger than
what is plotted in order to get a benchmark value. We compared the
runtime of all methods including sampling, where we assume that
all the points were sampled sequentially (corresponding to running
the experiment on a single CPU). The additional runtime of both BQ
and the BSN is negligible compared to the initial sampling time. Both
methods achieve a much lower mean relative integration error compared
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to sampling, clearly demonstrating the power of Bayesian PNM methods
for problems involving expensive integrands.

On this data set BQ cannot be used to compute uncertainty estimates,
because we cannot integrate the kernel twice in closed form for trun-
cated Gaussians. However, the uncertainty estimates computed with the
Laplace approximation for the BSN accurately capture deviations from
the ground truth value (shown in Figure 7.8).

7.6 Limitations and Discussion

The primary advantage of BSNs is in terms of scalability, but they also
suffer from some limitations, discussed below.

Firstly, in contrast to GPs where prior knowledge (such as periodicity
or smoothness) about 𝑓 can be encoded via a kernel, selecting good
functional priors for BNNs can be challenging. Our experiments show
that simple prior choices are often sufficient to achieve good results for
moderately hard problems. More advanced options [160, 197] could be
considered, but this would require novel Laplace approximations.

Secondly, our experiments suggest convergence with large 𝑁 . Although
we did not analyse this convergence from a theoretical viewpoint, we note
that Si et al. [190, Proposition 1 and 2] can be used to prove consistency
of the BSN posterior mean to the true value of the integral. Currently, we
do not have any results for the convergence rates, but this could be an
interesting direction for future research (for example, Belomestny et al.
[14] provides a rate for a related approach). This is in contrast with the GP
case where convergence results are highly developed [103–105, 210].

Thirdly, computational cost is highly dependent on the complexity of
the deep network 𝑢𝜃𝑢 . Across all our experiments we used the same
architecture for 𝑢𝜃𝑢 independent of 𝑁 . We expect that the complexity
of the network will need to increase significantly when high accuracy
is required and large 𝑁 is available. In such cases, we expect that mini-
batching and first order optimization could improve scalability, but would
likely incur new issues with stability.

7.7 Conclusion

We have introduced a way to leverage the function approximation abilities
of deep BNNs specifically for integration through the application of a
Stein operator. Employing a Laplace approximation provides uncertainty
quantification of good quality in this architecture. We have noted that
significant work is required to stabilize the training process to this end:
both the architecture and the training method must be adapted to the
non-standard form of the loss.

BSNs perform consistently well across experiments, both in accuracy and
in runtime, and are thus an interesting alternative to BQ, especially for the
intermediate regime between very small sample size (where traditional
BQ works well), and very large sample numbers (where classic MC
methods continue to be the preferred solution). Our experiments on a
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variety of applications also highlight some functional strengths of the
BSN approach. In particular, it can deal flexibly with a wide range of
integration densities, including cases in which the density is known in
unnormalized form.
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The first part of this chapter summarizes the scientific results of the
previous chapters. In the second part then takes a look at remaining
challenges and potential ideas how to solve them.

8.1 Summary & Impact

Although the basic building blocks are quite simple, neural network
architectures are often complex. Applications require knowledge of the
data, the data generating process or the mathematical problem to be
encoded in the model. This adds complexity, but also brings clear benefits:
Depending on the modelling choices made, the model may be more data
efficient, extrapolate better, or fulfil certain mathematical or physical
properties. In this thesis we have considered two important tasks, the
use of ODEs to model data and the numerical computation of integrals.
Throughout this thesis our aim has been to develop and improve these
models and to understand them in more detail.

Understanding Neural ODEs Chapter 5 and Chapter 6 took a closer
look at neural ODEs. The mathematical description of ODEs may suggest
that the resulting neural ODE describes a time-continuous dynamical
system. In reality, numerical solvers are required to implement such
models, which always leads to a discrete representation. During training,
the neural network may strongly overfit to the numerical solver, especially
if the chosen discretization is coarse. When training with very large step
sizes, the resulting trajectories may cross in phase space, leading to a
breakdown of the continuous view. To check whether the model adapts
to a specific solver, one should always test the model with a numerically
more accurate solver. Chapter 5 proposes a novel algorithm for training
neural ODEs to maintain the properties of continuous ODE solutions.
This algorithm involves automatically adjusting the step size or tolerance
of the numerical method during training.

Neural ODE models can be augmented with additional structure, e.g. by
incorporating known physical models or by directly implementing the
Hamiltonian equations of motion. Adherence to conservation laws (as in
the case of Hamiltonian neural ODEs) or partial knowledge of the true
physics might suggest that these models have superior interpolation and
extrapolation capabilities. However, this is not always true in practice,
and in order to have a good understanding of model failure, Chapter 6
introduced a method for adding uncertainty estimates to the model. These
uncertainty estimates are computed using the Laplace approximation.
The resulting uncertainty estimates improve the understanding of the
model and inform practitioners in case of model failure.
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Neural Networks for Numerical Integration Chapter 7 proposed a
novel neural network architecture for numerical integration. The use of
neural networks has two advantages: neural networks tend to scale well to
large amounts of data, and they scale well to higher dimensions. However,
in order to use neural networks for integration, a closed-form solution of
the integral of the neural network must be available. Chapter 7 ensures
the availability of a closed-form solution by making the Langevin Stein
operator part of the network architecture. Since the approximation of the
integral can be very inaccurate for few evaluation points, the proposed
method includes uncertainty estimates via the Laplace approximation.
The choice of activation function, the exact model architecture and the
choice of optimizer are essential for the model to work well. The resulting
model is particularly useful for higher dimensional problems (∼ 10
dimensional) where the data set is too large for BQ to be used effectively,
but data acquisition is too computationally expensive for MC-sampling.

8.2 Current Challenges & Future Directions

This section identifies several challenges in the research of task-specific
architectures: Improving the training process and the implementation
of the models, better understanding of the network’s outputs, and the
application to real world problems.

Improve Training All models described in this thesis, the neural ODE
models and Hamiltonian ODEs in Chapter 5 and Chapter 6 or the Bayesian
Stein Network in Chapter 7, are hard to train, especially compared to
training a standard fully connected neural network with RELU activations.
This is not an issue of their large size, as all architectures considered are
relatively small (several 1000 parameters).

Optimization process: Training neural ODEs on data from a long trajectory
can lead to collapse of the model to the mean function. To avoid this
problem, two approaches have been proposed in the literature. One is to
sequentially increase the length of the data set, first feeding only the first
few points into the model and then increasing the data set after a certain
number of iterations. This approach introduces additional hyperparame-
ters and requires the choice of how to partition the data set and the choice
of iterations at which to increase the data set further. Another approach
is to use multiple shooting, i.e. to start the model from multiple points in
time and possibly for shorter trajectories. However, this requires (almost)
noiseless data. Other approaches include gradient matching (which may
introduce scaling issues when fitting the GP/splines) or using controlled
neural ODEs [109]. Other options might include using a different loss
function or considering probabilistic numerical solvers as in Tronarp
et al. [199] for parameter inference of ODEs.

Choice of optimizer: The experiments with the BSN showed that this specific
architecture benefits significantly more from training with approximate
second order optimization than a standard RELU architecture. In fact, it
seems necessary to avoid (stochastic) first-order descent to achieve good
results. A similar choice is made for PINNs [171], as they often operate on
the entire data set as well. To make the BSN more applicable in practice,
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Figure 8.1: Effective activation functions
for a standard tanh network (left) and a
BSN (right). Red line indicates the output
of the network, black lines the individual
activation functions.

especially for large scale problems where training on the full data set is
no longer feasible, it might be important to understand the issues related
to first order optimization. A possible research direction could be the
development of good preconditioners for such architectures.

Effective activation functions: One avenue towards understanding why
training such architectures is hard is by visualizing the effective activation
functions. Here, we introduce effective activation functions as a concept to
potentially understand why training is hard. Effective activation function
visualize the functions that are the output of the second to last layer
after applying the task specific transformations. For BSNs we can write
the network architecture as 𝑓𝜃 = T [𝑢𝜃], where T is an affine operator
corresponding to the Stein operator. The network 𝑢𝜃 is a composition of
layers, i.e., 𝑢𝜃 = 𝑢𝐿𝜃𝐿 ◦ · · · ◦ 𝑢1

𝜃1
. To visualize the effective activations we

consider the outputs of T [𝑢𝐿−1
𝜃𝐿−1
◦ · · · ◦ 𝑢1

𝜃1
]. For a two layer tanh network,

the outputs correspond to shifted tanh functions. Figure 8.1 shows the
effective activation functions for a linear three layer tanh-network, a BSN
with tanh activations. The effective activations for the BSN are more
complex than for the simple network, due to their special structure. In
certain cases, these functions can have (multiple) minima and maxima,
making optimization harder. This issue was for example also observed
for periodic activation functions [231].

Being hard to train is not only an issue of the more niche architectures
considered herein, but also of standard large scale models like generative
adversarial networks [67] or transformers [201], e.g., see Arjovsky et al.
[5], Bau et al. [12], and Liu et al. [125] for a discussion of model training
challenges. Hence, improving understanding of why models are hard to
train is not only important for the models discussed in this thesis, but
also for modern deep learning models in general.

Better Implementation Both BSNs and Hamiltonian neural ODEs
include derivatives as part of the network architectures. These derivatives
must be computed for each forward pass, making the network much
slower than standard architectures. In addition, computing the Jacobian
of the network with respect to the weights, necessary for the Laplace
approximation, is computationally very expensive, since convenient tools
such as backpack [36] do not work for these non-standard architectures.
One way to mitigate this problem is to consider a software stack other than
PyTorch [159], i.e., JAX [20] or Julia [17]. The latter may be interesting
for neural ODEs, as it provides a large library of numerical solvers.

Opening the Black-box Neural networks and their predictions can be
difficult to understand - adding structure seems to improve this problem,
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but also adds complexity to the model.

Uncertainty estimates Good uncertainty estimates are critical for detecting
model failure in a timely manner. In this thesis we have used the Laplace
approximation to obtain uncertainty estimates. Although the results
were already good, the speed could be further improved by using a
better implementation and possibly considering only a substructure of
the model [40, 116].

Choice of prior Both the choice of prior on the weights and the choice
of network architecture define the functional prior of Bayesian neural
networks. The current default choice for the prior on the network weights
is an isotropic Gaussian. This prior seems sufficient to model a large class
of functions [209] and is therefore a good choice when little information
is available. However, defining a more task-specific prior remains a
challenge for BNNs. In addition, it is unclear how to apply non-Gaussian
priors in a computationally efficient way, since the Laplace approximation
no longer works out of the box.

Choice of architecture On the architecture side, the choice of activation
function impacts the interpolation and extrapolation behavior of the net-
work. RELU networks model piece-wise linear functions and extrapolate
linearly far away from the data. In cases where no additional information
about the data is known, this may be sufficient, but in cases where some
knowledge about the data set exists, it may be necessary to encode this
knowledge in the prior. GPs allow knowledge about the function class to
be encoded by the choice of kernel, e.g. smoothness of the function via
the Matern kernel or periodicity via a periodic kernel. Similar settings
might also be interesting for neural networks, potentially leading to more
accurate and more interpretable results.

Application to Real World Problems Neural ODEs and BSNs are
motivated by real world applications. Neural ODEs are motivated by
the fact that many real world processes can be described by differential
equations. If a description of the full dynamics is not available, it only
makes sense to model unknowns in a data driven way, e.g., using neural
networks. Neural ODEs have already been used successfully for vari-
ous applications, e.g., fluid dynamics [167], molecular dynamics [215],
health care [41, 128], and quantum chromodynamics [84]. Integration
problems are ubiquitous to science, and BSNs are directly targeting this
problem. BSNs are particularly interesting for problem setups where
relatively large amounts of data are available, but sampling is not for free.
One example might be integrating out uncertainties over parameters in
simulations that roughly take on the order of minutes, as illustrated by
the wind farm experiment described in Chapter 7. Extending this list of
applications is important to test and improve the applicability of both
neural ODEs and BSNs. This work extends both of these models with
uncertainty estimates provided by the Laplace approximation. Given this
(approximate) Bayesian treatment, it might be interesting to include un-
certainty estimates from upstream tasks or use the uncertainty estimates
obtained via the Laplace approximation for downstream applications.
One way to utilize the uncertainty estimates provided by the Laplace
approach might be to construct an algorithm for active acquisition of
data points.
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A.1 List of Differential Equations

In this section we provide a list of all the differential equations used in
Chapter 3.

A.1.1 Logistic ODE

The logistic ODE is described by the following differential equation

𝑥′ = 𝑥 (1 − 𝑥) , 𝑥(0) = 𝑥0 ,

with the following analytical solution

𝑥(𝑡) = 𝑥0𝑒 𝑡

𝑥0𝑒 𝑡 + 1 − 𝑥0
.

The example in Figure 3.1 uses the following settings:

[𝑡0 , 𝑇] = [0, 10],
𝑥(0) = 𝑥0 = 0.01,

ℎ =
10
7
.

A.1.2 Harmonic Oscillator

The harmonic oscillator describes the motion of a particle in a quadratic
potential. It can also be used to approximate the motion of a pendulum
with a small amplitude. The harmonic oscillator is described by the
following second order differential equation:

𝑥′′ = 𝜔𝑥

where 𝜔 is a problem specific constant. For Figure 3.2, the following
settings were used:

𝜔 = 1
[𝑡0 , 𝑇] = [0, 3𝜋]
𝑥(0) = 0, 𝑥′(0) = 1

ℎ =
𝜋
20

A.1.3 Van der Pol Equation

The Van der Pol oscillator is a non-conservative oscillator described by
the following equation:

𝑥′′ = 𝜔(1 − 𝑥2)𝑥′ − 𝑥,



90 Appendix A Additional Material for Chapter 3

where 𝜔 is a problem specific constant. The following parameters where
used to create Figure 3.3:

𝜔 = 5
[𝑡0 , 𝑇] = [0, 50]
𝑥(0) = 0, 𝑥′(0) = 2
𝑟𝑡𝑜𝑙 = 1𝑒 − 3, 𝑎𝑡𝑜𝑙 = 1𝑒 − 6

A.1.4 Arenstorf Orbits

The Arenstorf orbits are described by the following set of differential
equations

𝑥′′1 = 𝑥1 + 2𝑥′2 − 𝜇2
𝑥1 + 𝜇
𝐷1

− 𝜇1
𝑥1 − 𝜇2

𝐷2

𝑥′′2 = 𝑥2 − 2𝑥′1 − 𝜇2
𝑥2
𝐷1
− 𝜇1

𝑥2
𝐷2

𝐷1 =
(
(𝑥1 + 𝜇1)2 + 𝑥2

2

)3/2

𝐷2 =
(
(𝑥1 − 𝜇2)2 + 𝑥2

2

)3/2

where 𝜇1 = 0.012277471 and 𝜇2 = 1− 𝜇1 are the masses of the moon and
the earth. 𝑥1 , 𝑥2 corresponds to the position of the spaceship. For the
right initial conditions there exist periodic orbits, e.g.,

𝑥1(0) = 0.994, 𝑥′1(0) = 0, 𝑥2(0) = 0,
𝑥′2(0) = −2.00158510637908252240537862224,

𝑇 = 7.0652165601579625588917206249

where 𝑇 is the period length.
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B.1 Crossing Trajectories

In the main text we describe how trajectory crossings are an indication
that the vector field has adapted to a specific solver and such a vector
field then has no meaningful interpretation in the continuous setting. In
this section we want to answer whether the following statement is true: If
for a step size ℎ̃ we do not observe crossing trajectories then for all ℎ < ℎ̃
we will not observe crossing trajectories. To study this problem in more
detail we introduce a vector field 𝑓 : [0.0,∞)×[0.1,∞) → [0,∞)×[0,∞)

0 1 2 3
G

0

1

2

3

H

Figure B.1: Visualization of the vector
field defined in Equation B.1

d
d𝑡

[
𝑥 𝑦

]
= 𝑓 (𝑥, 𝑦),

𝑓 (𝑥, 𝑦) =




[
1 − 2(𝑥 − 1) 2(𝑥−1)

𝑦

]
, if 𝑥 ∈ (1, 1.25][

0.5 0.5
𝑦

]
, if 𝑥 ∈ (1.25, 1.75][

0.5 + 2(𝑥 − 1.75) 0.5−2(𝑥−1.75)
𝑦

]
, if 𝑥 ∈ (1.75, 2][

1 0
]
, else.

(B.1)

We chose this vector field because only for the region 𝑥 ∈ (1, 2] the
curvature of the vector field changes (see Figure B.1 for a visualization of
the vector field). The described vector field is Lipschitz continuous on
[0.0,∞) × [0.1,∞), therefore the Picard-Lindelöf theorem applies and
the true solutions to the ODE do not cross in phase space.

We use the Euler method with different step sizes to solve the ODE. First
we only look at the IVPs where 𝑥(𝑡 = 0) = 0 (shown in blue in Figure B.2).
Each IVP can be thought of as a data point in a data set. For the large step
size ℎ = 1 we do not observe crossing trajectories (see Figure B.2). The
numerical solver fails to resolve the change in curvature in the vector field.
If we decrease the step size to ℎ = 1/2 we observe crossing trajectories
(see Figure B.2). This clearly shows that not observing crossing trajectories
for some ℎ̃ does not give us any information about what will happen
for ℎ < ℎ̃. But since we know that the numerical solvers converge to the
true solution, we can make the following statement: For a given set of
IVPs there exists a step size ℎ∗ such that for all ℎ < ℎ∗ we do not observe
crossing trajectories. And indeed if we choose an even smaller step size
we no longer observe crossing trajectories (see Figure B.2 (c)).

We also want to emphasize that observed behavior for the different
step sizes is dependent on the set of IVPs. To illustrate this point we
add additional IVPs to our original data set, where for the new IVP
𝑥(𝑡 = 0) = 1.4 (the additional IVPs are shown in orange in Figure B.2).
Now we also observe crossing trajectories for the large step size ℎ = 1.
This shows that whether we observe crossing trajectories or not, is not
only dependent on the step size but also on the set of IVPs we choose.
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Figure B.2: Numerical solutions to Equation B.1 using the Euler method. In blue is the set of IVPs for which 𝑥(0) = 0 and in orange is an
additional set of IVPs for which 𝑥(𝑡 = 0) = 1.5. The ODE is solved using different step size, ℎ = 1 in (left), ℎ = 2−1 in (center), and ℎ = 2−5

in (right).

B.2 Experimental Results

In the main text we do not plot the results for all the training step
sizes/ tolerances but only for every second training step size/tolerance to
improve the clarity of the plots. Here we now include the plots showing
all training runs, and we include additional results for all data sets.

B.2.1 Results for Fixed Step Solvers

In this section we present the results for fixed step solvers. The model is
trained with the Euler method or a 4th order Runge-Kutta method (RK4)
with different step sizes. If the Euler method is used for training then the
model is tested with the Euler method, the Midpoint method and RK4.
If RK4 is used for training then the model is only tested with RK4.

We train neural ODE models on CIFAR10 (see Figure B.3), on MNIST
(see Figure B.4), on the 2-dimensional concentric sphere data set (see
Figure B.5).

For all data sets we observe that if the model is trained with a large step
size then there is a drop in performance if a solver with smaller numerical
error is used for testing. But there exists a training step size above which
using a solver with a higher numerical accuracy does not lead to a drop
in performance. The observations support our claims made in the main
text.

100 101 102

#Steps

0.0

0.2

0.4

0.6

Te
st
A
cc
ur
ac
y

Euler- train
Euler- test
Midpoint- test
RK4- test

100 101

#Steps

0.0

0.2

0.4

0.6

Te
st
A
cc
ur
ac
y

RK4- train
RK4- test

Figure B.3: A neural ODE was trained with different step sizes (plotted in different colors) on CIFAR10. The model was tested with
different solvers and different step sizes. In (left) the model was trained using the Euler method. Results obtained by using the same
solver for training and testing are marked by dark circles. Light data indicated different step sizes used for testing. Circles correspond to
the Euler method, cross to the midpoint method and triangles to a 4th order Runge-Kutta method. In (right) a 4th order Runge-Kutta
methods was used for training (dark circles) and testing (light circles).
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Figure B.4: A neural ODE was trained with different step sizes (plotted in different colors) on MNIST. The model was tested with
different solvers and different step sizes. In (left) the model was trained using the Euler method. Results obtained by using the same
solver for training and testing are marked by dark circles. Light data indicated different step sizes used for testing. Circles correspond to
the Euler method, cross to the midpoint method and triangles to a 4th order Runge-Kutta method. In (right) a 4th order Runge-Kutta
methods was used for training (dark circles) and testing (light circles).
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Figure B.5: A neural ODE was trained with different step sizes (plotted in different colors) on the 2-dimensional concentric sphere data
set. The model was tested with different solvers and different step sizes. In (left) the model was trained using the Euler method. Results
obtained by using the same solver for training and testing are marked by dark circles. Light data indicated different step sizes used for
testing. Circles correspond to the Euler method, cross to the midpoint method and triangles to a 4th order Runge-Kutta method. In
(right) a 4th order Runge-Kutta methods was used for training (dark circles) and testing (light circles).

B.2.2 Results for Adaptive Solvers

In this section we present the results for adaptive step size solvers. The
model is trained with Fehlberg21 or Dopri54 with different tolerances. If
Fehlberg21 is used for training then the model is tested with Fehlberg21
and Dopri54. If Dopri54 is used for training then the model is only tested
with Dopri54.

We train the neural ODE models on CIFAR10 (see Figure B.6) on MNIST
(see Figure B.7) and on the Sphere2 data set (see Figure B.8). For CIFAR10
we use backpropagation through the numerical solver to calculate the
gradients. For Sphere2 we use backpropagation through the numerical
solver as well as the adjoint method described in [29] to calculate the
gradients.

We observe that the models trained with a relatively large tolerance show
a drop in performance if the models are tested with a solver with lower
numerical error. We observe this behavior for all data sets and also for
the adjoint method (see Figure B.8), the only exception is MNIST trained
with Dopri54 which we attribute to the high order of the solver and
the low critical step size on MNIST. If the model is trained with a small
tolerance then there is no drop in performance if the model is tested
with a solver with lower numerical error. We note that the Sphere2 data
set trained with Dopri54 (Figure B.8) shows decreasing performance for
smaller tolerances. This might be due to the model taking a lot of steps
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Figure B.6: A neural ODE was trained with different tolerances (plotted in different colors)on CIFAR10. The model was tested with
different solvers and different tolerances. In (left) the model was trained using the Fehlberg21 method. Results obtained by using the same
solver for training and testing are marked by dark circles. Light data indicated different step sizes used for testing. Circles correspond to
Fehlberg21 method, cross to the Dopri54 method. In (right) Dopri54 was used for training (dark circles) and testing (light circles).
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Figure B.7: A neural ODE was trained with different tolerances (plotted in different colors)on MNIST. The model was tested with
different solvers and different tolerances. In (left) the model was trained using the Fehlberg21 method. Results obtained by using the same
solver for training and testing are marked by dark circles. Light data indicated different step sizes used for testing. Circles correspond to
Fehlberg21 method, cross to the Dopri54 method. In (right) Dopri54 was used for training (dark circles) and testing (light circles).

and therefore, the gradient provided by backpropagation might not be
accurate enough. Additionally, tuning the hyperparameters for specific
tolerances might improve the performance. For the model trained on
Sphere2 using the adjoint method we observe that for large tolerances
the model achieves relatively low test accuracy. At large tolerances the
model takes relatively large and inaccurate steps. Therefore, the backward
solutions of the ODE differs from the forward solve and no valid gradient
information is provided to the optimizer. Overall the performance on
MNIST is lower than with fixed step solvers, even though we specifically
tuned the learning rate and optimizer.
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Figure B.8: A neural ODE was trained with different tolerances (plotted in different colors)on Sphere2 (top) and on Sphere2 using the
adjoint method (bottom). The model was tested with different solvers and different tolerances. In (left-column) the model was trained
using the Fehlberg21 method. Results obtained by using the same solver for training and testing are marked by dark circles. Light data
indicated different step sizes used for testing. Circles correspond to Fehlberg21 method, cross to the Dopri54 method. In (right-column)
Dopri54 was used for training (dark circles) and testing (light circles).

B.3 Step Size and Tolerance Adaptation
Algorithm

B.3.1 Step Adaptation Algorithm

Here we describe the full step adaptation algorithm with additional
details omitted in the main text for clarity. The algorithm queries whether
the suggested step size has surpassed the length of the time interval over
which the ODE is integrated. If this is the case, the step size is reduced to
the size of the time interval. This check is necessary to avoid infinitely
increasing the step size. The algorithm does not increase the step size if
accuracy of the model tested with the train solver and the proposed step
size is past the threshold. We do not want the model to continue training
with a too large step size leading to discrete dynamics.

Additionally, it is important to ensure that the test solver is more accurate
than the train solver. For our experiments we use as a combination
of train and test solver the following pairs (Euler, Midpoint), (Euler,
RK4), (Midpoint, RK4). To ensure that the test solver achieves a smaller
numerical error, the test solver reduces the step size for testing if the
training step size is too large. In our algorithm we require that the order
of the global numerical error of the test solver is a factor 50 smaller than
the order of the numerical error of the train solver.

We also tested the proposed step adaptation algorithm on the Sphere2
data set (see Figure B.11), on MNIST (see Figure B.10) and on CIFAR10
(see Figure B.9). The behavior of the algorithm on different data sets as
well as with different combinations of train and test solver supports the
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claims in the main text. It is interesting to note that if Midpoint is used as
a train solver, the algorithm fluctuates around a much lower step size
than if Euler is used as a train solver. A possible explanation for this
behavior is that Midpoint is a second order Runge-Kutta method which
has therefore a lower numerical error than Euler which is a first order
Runge-Kutta method.

Algorithm 2: Step adaptation algorithm
1 initialize starting step_size ℎ according to [80, p. 169];
2 while Training do

3 batch = draw_batch(data);
4 logits = model.do_forward_pass(batch, train_solver(ℎ));
5 loss = model.calculate_loss(logits);
6 train_solver_acc = model.calculate_acc(logits);
7 if Iteration % 50 == 0 then

8 logits = model.do_forward_pass(batch, test_solver(ℎ));
9 test_solver_acc = model.calculate_acc(logits);

10 if |train_solver_acc-test_solver_acc| > 0.1 then

11 ℎ_𝑛𝑒𝑤 = 0.5 ℎ;
12 else

13 ℎ_𝑛𝑒𝑤 = 1.1 ℎ;
14 if ℎ_𝑛𝑒𝑤 > T then

// Avoid increasing the step size
indefinitely

15 ℎ_𝑛𝑒𝑤 = T;
16 end

17 logits = model.do_forward_pass(batch,
train_solver(ℎ_𝑛𝑒𝑤));

18 ℎ_𝑛𝑒𝑤_acc = model.calculate_acc(logits);
19 if |test_solver_acc-ℎ_𝑛𝑒𝑤_acc| > 0.1 then

20 ℎ_𝑛𝑒𝑤 = ℎ;
21 end

22 ℎ = ℎ_𝑛𝑒𝑤
23 end

24 end

25 end
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Figure B.9: Using the step adaptation
algorithm for training on CIFAR10. (top)
using Euler as train solver and RK4 as the
test solver and (bottom) using Midpoint
as train solver and RK4 as the test solver.
(Left-column) show the test accuracy over
the course of training for five different
seeds. (Right-column) show the number
of steps chosen by the algorithm over the
course of training.
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Figure B.10: Using the step adaptation
algorithm for training on MNIST. Using
Euler as the train solver and Midpoint as
the test solver. (Left) show the test accu-
racy over the course of training for five
different seeds. (Righ) show the number
of steps chosen by the algorithm over the
course of training.
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Figure B.11: Using the step adaptation
algorithm for training on Sphere2. (Top)
using Euler as the train solver and Mid-
point as the test solver (center) using Eu-
ler as train solver and RK4 as the test
solver and (bottom) using Midpoint as
train solver and RK4 as the test solver.
(Left-column) show the test accuracy over
the course of training for five different
seeds. (Righ-column) show the number of
steps chosen by the algorithm over the
course of training.
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B.3.2 Tolerance Adaptation Algorithm

The tolerance adaptation algorithm is similar to the step adaptation
algorithm. In order to avoid infinitely increasing the tolerance, the
algorithm checks whether the solver uses at least 𝑚𝑖𝑛𝑠𝑡𝑒𝑝𝑠 which we set
to 2 for our experiments. As for the fixed step solvers, the algorithm
checks whether to accept the tolerance if the tolerance was increased.

For our experiments we used Fehlberg21 and Dopri54 as train solver
and Dopri54 as test solver. To ensure that the test solver has a smaller
numerical error than the train solver the test solver uses a smaller
tolerance than the train solver. If Fehlberg21 is used as a train solver, then
the tolerance for the test solver Dopri54 is set to 1/5 of the train solver
tolerance. If Dopri54 is used as a train solver, then the tolerance for the
test solver Dopri54 is set to 1/10 of the train solver tolerance.

The results for the tolerance adaptation algorithm are shown in Figure B.12.
After an initial adjustment phase, the number of function evaluations
(nfe) and the tolerance fluctuate for the rest of training similar to the
number of steps for the step adaptation algorithm. For different seeds,
the tolerance fluctuates around different final values.

Algorithm 3: Tolerance adaptation algorithm
1 Inputs train_solver, test_solver, model;
2 initialize tolerance tol= 10−6;
3 while Training do

4 batch = draw_batch(data);
5 logits = model.do_forward_pass(batch, train_solver(tol));
6 loss = model.calculate_loss(logits);
7 train_solver_acc = model.calculate_acc(logits);
8 if Iteration % 50 == 0 then

9 logits = model.do_forward_pass(batch, test_solver(tol));
10 test_solver_acc = model.calculate_acc(logits);
11 if |train_solver_acc-test_solver_acc| > 0.1 then

12 tol_new= 0.5 tol;
13 else

14 tol_new = 1.1 tol;
15 if steps <= min_steps then

// Avoid increasing the tolerance
indefinitely

16 tol_new = tol;
17 else

18 logits = model.do_forward_pass(batch,
train_solver(tol_new));

19 tol_new_acc = model.calculate_acc(logits);
20 if |test_solver_acc-tol_new_acc| > 0.1 then

21 tol_new = tol;
22 end

23 end

24 end

25 tol = tol_new
26 end

27 model.update(loss);
28 end
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Figure B.12: Using the tolerance adaptation algorithm for training on Sphere2 for Fehlberg21 as train solver, and Dopri54 as test solver
(top). (Bottom) Dopri54 was used as train and test solver where the test solver uses a reduced tolerance. (Left-column) shows the test
accuracy over the course of training for five different seeds. (Center-column) shows the number of function evaluations the course of
training. (Right-column) show the tolerance chosen by the algorithm over the course of training

B.4 Architecture and Hyper-parameters

We chose the architecture for our network similar to the architecture
proposed by [50]. We tried to find hyperparameters which worked well
for all step sizes. The same hyperparameters were used for the grid
search and for training with the step adaptation algorithm:

B.4.1 Architecture and Hyper-parameters Used for MNIST

Neural ODE Block

▶ Conv2D(1, 96, Kernel 1x1, padding 0) + RELU
▶ Conv2D(96, 96, Kernel 3x3, padding 1) + RELU
▶ Conv2D(96, 1, Kernel 1x1, padding 0)

Classifier

▶ Flatten + LinearLayer(784,10) + SoftMax

Hyper-parameters

▶ Batch size: 256
▶ Optimizer: SGD (fixed step solvers), Adam (adaptive step size

solvers)
▶ Learning rate: 1e-2 (fixed step solvers), 1e-4 (adaptive step size

solvers)
▶ Iterations used for training: 7020

B.4.2 Architecture and Hyper-parameters Used for
CIFAR10

Neural ODE Block
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▶ Conv2D(3, 128, Kernel 1x1, padding 0) + RELU
▶ Conv2D(128, 128, Kernel 3x3, padding 1) + RELU
▶ Conv2D(128, 3, Kernel 1x1, padding 0)

Classifier

▶ Flatten + LinearLayer(3072,10) + SoftMax

Hyper-parameters

▶ Batch size: 256
▶ Optimizer: Adam
▶ Learning rate: 1e-3
▶ Iterations used for training: 7800

B.4.3 Architecture Used for Concentric Sphere 2D Dataset

Neural ODE Block

▶ Conv1D(1, 32, Kernel 1x1, padding 0) + RELU
▶ Conv1D(32, 32, Kernel 3x3, padding 1) + RELU
▶ Conv1D(32, 1, Kernel 1x1, padding 0)

Classifier

▶ Flatten + LinearLayer(2,2) + SoftMax

Hyper-parameters

▶ Batch size: 128
▶ Optimizer: Adam
▶ Learning rate: 1e-4
▶ Iterations used for training: 10000

B.4.4 Python Packages

In our code we make use of the following packages: Matplotlib [98],
Numpy [83], Pytorch [159] and Torchdiffeq [29].
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C.1 Datasets

C.1.1 Lotka-Volterra

As one of the standard data sets to discuss ODEs, we use the Lotka-
Volterra system to compare the Laplace approximation to other models.
The Lotka-Volterra system models the interaction between a species
of predator 𝑦 and prey 𝑥. The system is described by the following
differential equations

𝑑𝑥
𝑑𝑡

= 𝛼𝑥 − 𝛽𝑥𝑦,
𝑑𝑦
𝑑𝑡

= 𝛿𝑥𝑦 − 𝛾𝑦, (C.1)

where 𝛼, 𝛽, 𝛾, 𝛿 are positive real parameters describing the interactions
between predators and prey. For our experiment we chose 𝛼 = 2/3, 𝛽 =
4/3, 𝛿 = 1, 𝛾 = 1. We add zero mean Gaussian noise with variance
𝜎2 = 0.03.

For data-set-half-cycle training data is generated on the interval 𝑡 ∈ [0, 5].
For data-set-full-cycle training data is generated on the interval 𝑡 ∈ [0, 10].
For both data sets we set 𝑥0 = (1, 1).

C.1.2 Harmonic Oscillator

The equations of motion for a harmonic oscillator, for a particle with
position 𝑞 and momentum 𝑝, are given by

¤𝑞 :=
𝑑𝑞
𝑑𝑡

=
𝑝
𝑚
, ¤𝑝 :=

𝑑𝑝
𝑑𝑡

= −𝑘𝑥. (C.2)

𝑘 is the spring constant of the system, 𝑚 is the mass of the particle. For
the experiments we use three different data sets generated from the
harmonic oscillator. All data sets consist of 16 trajectories with different
initial conditions and each trajectory consists of 50 samples. We add zero
mean Gaussian noise with variance 𝜎2 = 0.3 to each data set.

Data Set Lower Half We set 𝑚 = 1, 𝑘 = 2 in Equation C.2. The initial
conditions 𝑞0 and 𝑝0 are each sampled from a Gaussian distribution
with mean 𝜇𝑞 = 3, 𝜇𝑝 = 0 and variance 𝜎2

𝑞 = 𝜎2
𝑝 = 0.2. Training data is

generated on the interval 𝑡 ∈ [0,𝜋/√𝑘].

Data Set Left Half We set 𝑚 = 1, 𝑘 = 2 in Equation C.2. The initial
conditions 𝑞0 and 𝑝0 are each sampled from a Gaussian distribution with
mean 𝜇𝑞 = 0, 𝜇𝑝 = 3

√
𝑘 and variance 𝜎2

𝑞 = 𝜎2
𝑝 = 0.2. Training data is

generated on the interval 𝑡 ∈ [0,𝜋/√𝑘].
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C.1.3 Pendulum

The damped pendulum is described by

𝑑2𝜙

𝑑𝑡2 + 𝜔2 sin 𝜙 + 𝛼
𝑑𝜙
𝑑𝑡

= 0 (C.3)

where 𝜙 is the angle, 𝜔 frequency and 𝛼 a damping constant. For our
data set we set 𝜔 = 2𝜋/12 and 𝛼 = 0.1. We choose 𝑡 ∈ [0, 10] and add
zero mean Gaussian noise with variance 𝜎2 = 0.1 to each data set. The
initial conditions are the same as in Yin et al. [220], i.e., 𝜙0 ← 𝑟𝑦0/||𝑦0 | |2
where 𝑦0 ∼ 𝑈[0,1]×[0,1] and 𝑟 = 1.3 + 𝜖, 𝜖 ∼ 𝑈[0,1]. 𝑈 denotes the
uniform distribution over the specified set. The data set consists of 25
trajectories.

C.1.4 Wave

The damped wave equation is given by

𝜕2𝑢
𝜕𝑡2 − 𝑐2Δ𝑢 + 𝑘 𝜕𝑢

𝜕𝑡
= 0 (C.4)

For the data set we set 𝑐 = 330 and 𝑘 = 50 and 𝑡 ∈ [0, 0.0024].
The initial conditions are the same as in Yin et al. [220], i.e., 𝑢0 ←
exp

[−(𝑥−𝑚0)2−(𝑦−𝑚1)2
𝜎

]
where 𝜎 ∼ 𝑈[10,100], 𝑚0 , 𝑚1 ∼ 𝑈𝑑{20, 40}. 𝑈𝑑 de-

notes the discrete uniform distribution over the denoted interval. 𝑥, 𝑦
are 64 dimensional square matrices with 𝑥𝑖 𝑗 = 𝑖 and 𝑦𝑖 𝑗 = 𝑗. The data set
consists of 200 trajectories.

C.2 Implementation Details

C.2.1 Python Packages

In our code we make use of the following packages: Matplotlib [98],
NumPy [83], JAX [20], Numpyro [162], Laplace-torch [39], SciPy [203],
PyTorch [159] and Torchdiffeq [29].

C.2.2 Comparison to HMC

Details on HMC Settings

For HMC we use an implementation in JAX [20] as we found the sampling
to be very fast for our particular model and easy to integrate in our existing
setup. For our implementation we use the NUTS sampler supplied by
JAX. We use 2000 samples for warm-up and 2000 samples. We used a
normal distribution with zero mean and variance one as a prior for the
weights. Our implementation is based on [35]. For this experiment we
try to keep the network architecture as simple and small as possible, to
keep sampling times reasonably fast.
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Network Architecture

We used the same architecture for the HMC model and the Laplace
model:

▶ Linear(16, 2) ◦ tanh ◦Linear(2, 16).
As an ODE solver we use for both models Dopri5(4) with 𝑟𝑡𝑜𝑙 = 𝑎𝑡𝑜𝑙 =
1.4𝑒−8. For the MAP trained model we use 10000 training iterations.
Computational requirements: We trained the model on CPU requiring a
computation time up to 1.5 h.

C.2.3 Hamiltonian Neural ODEs

The fact that a system is energy conserving cannot only be encoded
into the architecture of the vector field but also in the algorithm of
the numerical ODE solver. We solve all required ODEs using the Euler
method for the naive model, and symplectic Euler for the Hamiltonian
neural ODEs (see Section 3.2.1 for details on the numerical solvers). We
set the batch size equal to the data set size of 16, and use 5000 iterations
for training (we trained on CPU). Each data set consists of 16 trajectories
with slightly different initial conditions. For our implementation we use
code provided by [227] and base our architecture on the architecture
proposed in this work. We reduced the network size slightly as this
facilitated faster training and using the Laplace approximation on the
entire network.

Neural Network Architectures

For the experiments on the harmonic oscillator data sets the following
architectures were used:

▶ naive: Linear(256, 2) ◦ tanh ◦Linear(2, 256)
▶ separable:𝑉 = 𝑇 = Linear(128, 1, 𝑏𝑖𝑎𝑠 = 𝑓 𝑎𝑙𝑠𝑒)◦tanh ◦Linear(1, 128)
▶ constrained:𝑉 = Linear(128, 1, 𝑏𝑖𝑎𝑠 = 𝑓 𝑎𝑙𝑠𝑒)◦tanh ◦Linear(1, 128)

Training of Hamiltonian Neural ODEs

Training of Hamiltonian neural ODEs can be unstable, especially if suffi-
cient structure is not provided (similar observations have been made by
Zhong et al. [227]). Potentially part of the issue is that Hamiltonian neural
networks contain derivatives of neural networks. These derivatives also
change the architecture of the neural network—e.g., a network with
two linear layers and a tanh activation has a 1/cosh2-activation after
taking the derivative. Furthermore, different activation functions lead to
different extrapolation properties of neural networks [214]. That is why
the extrapolations of the vector field far away from the data look differ-
ent for the naive model and the Hamiltonian models. Computational

requirements: We trained the model on CPU requiring a computation
time up to 8 h per run.
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C.2.4 Augmented Parametric Models

Pendulum

We use the same neural network architecture for the parametric model
and the plain neural ODE model:

▶ Linear(32, 2) ◦ tanh ◦Linear(32, 32) ◦ tanh ◦Linear(2, 32).
We use 10000 epochs for training. For our implementation we use the
code base provided by Yin et al. [220] and the architecture suggested in
this work. Computational requirements: We trained the model on CPU
requiring a computation time up to 5 h per run.

Wave

We use the following neural network architecture for the parametric
model:

▶ Conv2d(16, 2, kernel_size = 3, padding = 1) ◦ ReLU ◦
Conv2d(16, 16, kernel_size = 3, padding = 1, bias = 𝑓 𝑎𝑙𝑠𝑒) ◦
ReLU◦Conv2d(16, 2, kernel_size = 3, padding = 1, bias = 𝑓 𝑎𝑙𝑠𝑒).

We use 1000 epochs for training. For our implementation we use the code
base provided by Yin et al. [220]. We use the same architecture as in the
paper, but removed the batch norm as this provided better results for us.
Computational requirements: We trained the model on GPU (NVIDIA
A100 Tensor Core GPU) requiring a computation time up to 12 h per
run.

C.3 Additional Experimental Results

C.3.1 Sampling from the Laplace Posterior

As described in the main text, one option is to sample from the weight
posterior. We compare a sampling based approach, the linearization
approach and HMC on the Lotka-Volterra data set (see Figure ??).

C.3.2 HMC on Pendulum Dataset

We also run a Bayesian neural network using HMC on the damped
pendulum data set from Section C.1.3. However, we use a significantly
smaller architecture as for the experiments in the main text, as the HMC
sampling becomes too slow if the model has too many weights. Therefore,
we use the same architecture as for the Lotka-Volterra experiment (see
Section C.2.2). Since the smaller network size is not as expressive as
the large network, we reduced the data set size from 25 samples to 4.
This smaller data set also leads to a speedup of the HMC approach. The
results for both the plain model and the augmented model are shown in
Figure ??. We find that as for the experiments in the main text, the vector
field of the augmented model has a larger area of low uncertainty than
the plain neural ODE model. Similarly, we observe that the extrapolation
behavior augmented model is better (see Figure ??). Increasing the data
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Figure C.1: (Left) Laplace approach using sampling, (center) Laplace approach using linearization, (right) HMC.

set would again improve extrapolation behavior even further, but also
requires a network large enough to be expressive enough to capture all
the data.
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C.3.3 Hamiltonian Neural ODEs

Figure C.3: Naive network trained on har-
monic oscillator using the Euler method.
Training on data-set-lower-half (top), data-
set-left-half (bottom).
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Figure C.4: Constrained network trained
on harmonic oscillator using symplectic
Euler. Training on data-set-lower-half (top),
data-set-left-half (bottom).
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Figure C.5: Separable network trained
on harmonic oscillator using symplectic
Euler. Training on data-set-lower-half (top),
data-set-left-half (bottom).
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C.3.4 Additional Wave Results

Figure C.6: Laplace approximation applied
to wave PDE. Training an augmented
parametric model on the damped wave
equation data set (Figure shows result
for 𝑑𝑢/𝑑𝑡). First three images (marked
by orange frame) are part of the training
data.

Figure C.7: Laplace approximation applied
to wave PDE. Training an augmented
parametric model on the damped wave
equation data set with a different ini-
tial condition (Figure shows result for
𝑢). First three images (marked by orange
frame) are part of the training data.

Figure C.8: Laplace approximation applied
to wave PDE. Training an augmented
parametric model on the damped wave
equation data set with a different ini-
tial condition (Figure shows result for
𝑑𝑢/𝑑𝑡). First three images (marked by or-
ange frame) are part of the training data.
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D.1 Experimental Details

Below we give implementation details for all the data sets used and
provide additional experimental results.

For our implementation of the BSN and the experiments described in the
main text we make use of the following packages: PyTorch [159], emukit
[158], GPyTorch [60], laplace-torch [39], PyWake[161], and Matplotlib

[98].

D.1.1 Impact of Architecture Design

We provide additional discussion concerning the choice of activation
function, choice of sampling strategy and choice of optimizer.

Choice of Optimizer

We compare different optimizers for the BSN and a standard neural
network, where for the standard neural network we use the same archi-
tecture as for 𝑢𝜃𝑢 . We use the 1-dimensional wind farm data set with
𝑁 = 320 data points. We choose this data set, due to the complicated
structure of the score function of a mixture of Gaussians. For the experi-
ment we consider three optimizers, i.e., Adam [110], L-BFGS [124] and
the Hessian-free optimizer [134]. For Adam, we use mini-batching with a
batch size of 32 and full-batch training. For the Hessian-free optimizer
and L-BFGS we only consider full-batch training. For Adam, we use
10000 iterations, for the Hessian-free optimizer 1000 iterations, and for
L-BFGS we use automatic stopping based on the strong Wolfe conditions.
We compare the loss for all training methods. We also use CELU and
RELU activation functions, where RELU is included as it is the standard
activation function for neural networks.

Training a standard neural network with RELUs work significantly better,
than using CELUs both in terms of the loss reached at the end of training
and in terms of runtime (see Figure D.1 and Figure D.2). Using RELUs does
not work for the BSN, as the gradients of 𝑢𝜃𝑢 lead to discontinuities.

Training of the BSN using Adam is considerably slower than the training
progress of the standard neural network. We find that for CELU activation
function, using (approximate) second order methods leads to a large
improvement both in terms of speed and loss. The success of the second
order methods might be due to a narrow loss landscape, i.e., a larger
spread in the eigenvalue spectrum of the curvature. Therefore, we also
examine the condition number of the Hessian, and we find that the
BSN has a slightly higher condition number than the standard neural
network (we do not report the condition number for RELUs as it cannot be
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Figure D.1: Regression performance of a plain neural network (red) and a BSN (blue) using CELU activations. Loss (left), and condition
number (left) as a function of the iteration. Center: loss as a function of the runtime. Thin dark lines correspond to training with full-batch
Adam. Runtime of the Hessian-free optimizer not plotted, due to its long runtime.

computed numerically). Given its short runtime and good optimization
results, we choose L-BFGS for all our experiments.

Sampling Strategies

For our experiments in the main text, we choose the data points by
sampling from 𝜋, i.e., 𝑥𝑛 ∼ 𝜋. Here we consider two additional sampling
strategies:

▶ Using a quasi-Monte Carlo (QMC) sequence. We use SciPy’s [203]
implementation of QMC based on the Sobol sequence [193].

▶ Linearly spaced points in a hypercube (called grid in Figure D.3).
Here we consider the hypercube [−5𝜎𝜋 , 5𝜎𝜋]𝑑, where 𝜋(𝑥) =
N (𝑥 |0, 𝜎𝜋).

Figure D.3 shows the result of the different sampling strategies in 𝑑 = 1.
The BSN performs better using MC samples then using QMC samples
and grid points. The low performance of the latter is expected, since too
few points a placed in regions with a high probability mass.

Choice of Architecture

We consider a basic architecture of the following form:

𝑢𝜃𝑢 = Linear(𝑑, ℎ) ◦ 𝐶𝐸𝐿𝑈(◦Linear(ℎ, ℎ) ◦ 𝐶𝐸𝐿𝑈)𝑙 ◦ Linear(ℎ, 𝑑),

where ℎ are the number of hidden units and 𝑙 are the number of hidden
layers. Figure D.4 shows the performance of different architectures on
the 1-dimensional continuous Genz data set. All architectures perform
similar but the architecture with 𝑙 = 2 and ℎ = 32 reaches the lowest
error the fastest for large 𝑁 . Hence, we use this architecture for our
experiments.
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Figure D.2: Regression performance of a plain neural network (red) and a BSN (blue) using RELU activations. Loss (left) as a function of
the iteration. Center: loss as a function of the runtime. Thin dark lines correspond to training with full-batch Adam. Runtime of the
Hessian-free optimizer not plotted, due to its long runtime.
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Figure D.5: BQ with Matern 1/2 kernel on
the Genz family in 𝑑 = 1. Mean relative
integration error (based on 5 repetitions)
as a function of 𝑛.
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Figure D.6: Continuous Genz dataset in
𝑑 = 1 with different 𝑚(𝑥). Mean relative
integration error (left), run time (center)
(based on 5 repetitions) as a function of
𝑛. Right: Mean relative integration error
as a function of run time in seconds.
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Choice of 𝑚(𝑥)

For most of our experiments we set 𝑚(𝑥) = 𝐼𝑑 in Equation 7.3. This might
not necessarily be the best choice for a given task, but finding a function
𝑚 that works well is hard. We test different 𝑚 on the 1-dimensional
Continuous Genz function:

▶ 𝑚(𝑥) = 𝐼𝑑
| |𝑥 | |22+1 - 𝑚(𝑥) goes to zero for 𝑥 → ±∞

▶ 𝑚(𝑥) = 𝐼𝑑√
| |𝑥 | |22+1

- 𝑚(𝑥) goes to zero for 𝑥 → ±∞ and cancels the

∇𝑥 log𝜋(𝑥) term for large 𝑥.
▶ 𝑚(𝑥) = 𝐼𝑑𝜋(𝑥) - in cases where 𝜋 is a normal distribution, this

function also goes to zero for 𝑥 → ±∞.
▶ 𝑚(𝑥) = diag𝑥 - example of a function having negative effect.

The results of comparing these different 𝑚 are shown in Figure D.6. On
this test problem, none of the proposed 𝑚 significantly outperforms the
choice 𝑚(𝑥) = 𝐼𝑑, with some performing significantly worse.

Choice of GP Kernel

As a benchmark we use BQ with an RBF kernel for all our experiments.
The reason for this choice of kernel is the closed form availability of
posterior mean and covariance when 𝜋 is a normal distribution. Here
we add an experiment using a Matern 1/2 kernel. For this choice of
kernel the posterior mean is only available in 𝑑 = 1, hence we conduct
the experiment on the 1-dimensional Genz dataset (see Section D.2.1
for the expression of the kernel mean embedding). The corresponding
results a found in Figure D.5. Once again, we do not observe a significant
difference in performance, except for the continuous Genz dataset.
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Figure D.7: Continuous Genz data set in
𝑑 = 2. Mean relative integration error
(top-left), run time (top-right), and calibra-
tion (bottom-right) (based on 5 repetitions)
as a function of 𝑁 . Bottom-left: Mean rel-
ative integration error as a function of
run time in seconds.

D.1.2 Genz Benchmark

In our experiments we use the Genz integrand family data set. Here we
include a short description of each data sett, plus additional experiments
on the 2-dimensional version of each data set. In our experiments we
integrate the Genz function against a standard normal 𝜋(𝑥) = N (𝑥 |0, 1).
This requires the transformation of the inputs to the original Genz
functions 𝑓 , which are to be integrated against [0, 1]𝑑. Therefore, we
compute Π𝜋[ 𝑓 ◦ 𝑐] where 𝑐(𝑥) = 1

2

(
1 + erf

(
𝑥√
2

))
is the cumulative

density function of the standard normal. We give the form of 𝑓 below.

Continuous Genz data set The integrand is given by

𝑓 (𝑥) = exp

(
−

𝑑∑
𝑖=1

𝑎𝑖 |𝑥𝑖 − 𝑢𝑖 |
)

with parameters 𝑎𝑖 = 1.3 and 𝑢𝑖 = 0.55. See Figure D.7 for results on a
2-dimensional version of this data set.

Corner Peak Data Set The integrand is given by

𝑓 (𝑥) =
(
1 +

𝑑∑
𝑖=1

𝑎𝑖𝑥𝑖

)−(𝑑+1)

with parameters 𝑎𝑖 = 5. See Figure D.8 for results on a 2-dimensional
version of this data set.

Discontinuous Genz Data Set The integrand is given by

𝑓 (𝑥) =
{

0, if 𝑥𝑖 > 𝑢𝑖 for any i
exp

(∑𝑑
𝑖=1 𝑎𝑖𝑥𝑖

)
with parameters 𝑎𝑖 = 5 and 𝑢𝑖 = 0.5. See Figure D.9 for results on a
2-dimensional version of this data set.
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Figure D.8: Corner Peak data set in 𝑑 =
2. Mean relative integration error (top-
left), run time (top-right), and calibration
(bottom-right) (based on 5 repetitions) as a
function of 𝑁 . Bottom-left: Mean relative
integration error as a function of run time
in seconds.
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Figure D.9: Discontinuous Genz data set
in 𝑑 = 2. Mean relative integration error
(top-left), run time (top-right), and calibra-
tion (bottom-right) (based on 5 repetitions)
as a function of 𝑁 . Bottom-left: Mean rel-
ative integration error as a function of
run time in seconds.
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Gaussian Peak Data Set The integrand is given by

𝑓 (𝑥) = exp

(
−

𝑑∑
𝑖=1

𝑎2
𝑖 (𝑥𝑖 − 𝑢𝑖)2

)

with parameters 𝑎𝑖 = 5 and 𝑢𝑖 = 0.5 See Figure D.10 for results on a
2-dimensional version of this data set.

Product Peak Data Set The integrand is given by

𝑓 (𝑥) =
𝑑∏
𝑖=1

1(
𝑎−2
𝑖 + (𝑥𝑖 − 𝑢𝑖)2

)
with parameters 𝑎𝑖 = 5 and 𝑢𝑖 = 0.5 See Figure D.11 for results on a
2-dimensional version of this data set.
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Figure D.10: Gaussian peak data set in 𝑑 =
2. Mean relative integration error (top-
left), run time (top-right), and calibration
(bottom-right) (based on 5 repetitions) as a
function of 𝑁 . Bottom-left: Mean relative
integration error as a function of run time
in seconds.
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Figure D.11: Product peak data set in 𝑑 =
2. Mean relative integration error (top-
left), run time (top-right), and calibration
(bottom-right) (based on 5 repetitions) as a
function of 𝑁 . Bottom-left: Mean relative
integration error as a function of run time
in seconds.

Oscillatory Genz Data Set The integrand is given by

𝑓 (𝑥) = cos

(
2𝜋𝑢 +

𝑑∑
𝑖+1

𝑎𝑖𝑥𝑖

)

with parameters 𝑎𝑖 = 5 and 𝑢 = 0.5 See Figure D.12 for results on a
2-dimensional version of this data set.

D.1.3 Goodwin Oscillator

Goodwin oscillator [68] describes how the feedback loop between mRNA
transcription and protein expression can lead to oscillatory dynamics in
a cell. We here consider the case with no intermediate protein species.
The experimental setup is based on earlier work by [24, 30, 148, 176].

The Goodwin oscillator with no intermediate protein species is given



116 Appendix D Additional Material for Chapter 7

Figure D.12: Oscillatory Genz data set in
𝑑 = 2. Mean relative integration error
(top-left), run time (top-right), and calibra-
tion (bottom-right) (based on 5 repetitions)
as a function of 𝑁 . Bottom-left: Mean rel-
ative integration error as a function of
run time in seconds.
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by:

𝑑𝑢1
𝑑𝑡

=
𝑎1

1 + 𝑎2𝑢
𝜌
2

− 𝛼𝑢1

𝑑𝑢2
𝑑𝑡

= 𝑘1𝑢1 − 𝛼𝑢2 ,

where 𝑢1 corresponds to the concentration of mRNA and 𝑢2 to the
concentration of the corresponding protein product. We set 𝜌 = 10.

As initial conditions we set 𝑢0 = (0, 0). To generate the ground truth data
set, we set 𝑎1 = 1, 𝑎2 = 3, 𝑘1 = 1 and 𝛼 = 0.5. We use a measurement noise
of 𝜎 = (0.1, 0.05). Data was collected for 2400 time points in 𝑡 ∈ [1, 25],
leading to the following expression for the likelihood:

𝑝(𝑦 |𝑥) ∝ exp

(
− 1

2𝜎2
1

2400∑
𝑘=1
| |𝑦1,𝑘 − 𝑢1(𝑡𝑘)| |22 −

1
2𝜎2

2

2400∑
𝑘=1
| |𝑦2,𝑘 − 𝑢2(𝑡𝑘)| |22

)

We use an JAX’s implementation of Dopri5(4) to solve the ODE. We use
automatic differentiation implemented in JAX to compute derivatives
of the likelihood with respect to the parameters. To avoid parameters
becoming negative, we use log-transformed parameters 𝑤 = log(𝑥) for
the parameter inference via MCMC. We place a standard normal prior on
the log-transformed parameters 𝑤. For each data set we run five chains,
where the initial conditions for each chain are sampled from the prior.

Figure D.13 shows the results for the remaining two parameters not
shown in the main text.

D.1.4 Wind Farm Modelling

For the wind farm model in our experiments, we assume we have a large-
scale wind farm with equally spaced turbines on a two-dimensional grid
and an ambient turbulence intensity. For each turbine, we use a wake
deficit model by Niayifar and Porté-Agel [141]. We put the following
distributions on parameters for the wind farm simulation
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Figure D.13: Posterior expectations for the
parameters of a Goodwin ODE. Mean rela-
tive integration error (top-left and bottom-
left), and uncertainty estimates (top-right
and bottom-right) (based on 5 repetitions)
as a function of 𝑁 .

▶ Turbine resistance coefficient: Gaussian distribution with mean
𝜇 = 1.33 and variance 𝜎2 = 0.1.

▶ Coefficient describing the wake expansion: Gaussian distribution
left-truncated at 0 with mean 𝜇 = 0.38 and variance 𝜎 = 0.001.

▶ Second coefficient describing the wake expansion: Gaussian
distribution left-truncated at 0 with mean 𝜇 = 4𝑒 − 3 and variance
𝜎2 = 1𝑒 − 8.

▶ Turbulence intensity: Gaussian distribution left-truncated at 0
with mean 𝜇 = 0.1 and variance 𝜎2 = 0.003

▶ Wind direction: Mixture of Gaussian distributions truncated to
have support on [0, 45] with means 𝜇1 = 0, 𝜇2 = 22.5, 𝜇3 = 33.75
and variances 𝜎2

1 = 50, 𝜎2
2 = 40, 𝜎2

3 = 8.
▶ Hub heights: Gaussian distribution left-truncated at 0 with mean

𝜇 = 100 and variance 𝜎2 = 0.5.
▶ Hub diameter: Gaussian distribution left-truncated at 0 with mean

𝜇 = 100 and variance 𝜎2 = 0.1.

These distributions were chosen to have scales which might realistically
represent uncertainty for their input, but if applying our method in
practice these would have to be elicited from wind-farm experts. Note
that the BSNs could be applied to much more complex distributions
so-long as the density of Π can be evaluated point-wise up to some
normalization constant.

Our code is based on the code estimating the local turbine thrust coef-
ficient Kirby et al. [112] using a low-order wake model provided here:
https://github.com/AndrewKirby2/ctstar_statistical_model.
This code is based on the PyWake package [161].

https://github.com/AndrewKirby2/ctstar_statistical_model
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D.2 Kernel Mean Embedding for Truncated
Gaussians

We now provide the derivation of the kernel mean embedding for trun-
cated Gaussians. For truncated Gaussian distributions and the RBF kernel,
we can compute the posterior mean but not the posterior variance. Here
we consider the 1-dimensional case withX = [𝑎, 𝑏]which can be extended
to the 𝑑-dimensinal case for isotropic Gaussians. We provide the expres-
sion for the kernel mean embedding: Π[𝑘(·, 𝑥)] =

∫
X 𝑘(𝑥′, 𝑥)𝜋(𝑥′)𝑑𝑥′.

We consider the case when 𝜋 is a truncated Gaussian and introduce the
following notation:

𝜋(𝑥) = 𝜙(𝑥, 𝜇, 𝜎)
Φ( 𝑏−𝜇𝜎 ) −Φ( 𝑎−𝜇𝜎 )

where𝜙(𝑥) = (√2𝜋𝜎)−1 exp(−(𝑥−𝜇)2/2𝜎2) andΦ(𝑥) = 1
2 (1+erf(𝑥/√2)).

We use 𝑍 to denote the normalization constant

𝑍(𝑎, 𝑏, 𝜇, 𝜎) = Φ
(
𝑏 − 𝜇
𝜎

)
−Φ

( 𝑎 − 𝜇
𝜎

)

We rewrite the RBF kernel using the above identities 𝑘(𝑥, 𝑥′) =
exp

(−(𝑥 − 𝑥′)2/2𝑙2) = 𝑙
√

2𝜋𝜙(𝑥, 𝑥′, 𝑙). We can now express the ker-
nel mean embedding as:

Π[𝑘(·, 𝑥)] =
∫ 𝑏

𝑎
𝑙
√

2𝜋𝜙(𝑥, 𝑥′, 𝑙) 𝜙(𝑥
′, 𝜇, 𝜎)

𝑍(𝑎, 𝑏, 𝜇, 𝜎) 𝑑𝑥
′

= 𝐶𝑙
√

2𝜋
∫ 𝑏

𝑎

𝜙(𝑥′, �̃�, �̃�)
𝑍(𝑎, 𝑏, 𝜇, 𝜎) 𝑑𝑥

′

= 𝑙
√

2𝜋𝐶
𝑍(𝑎, 𝑏, �̃�, �̃�)
𝑍(𝑎, 𝑏, 𝜇, 𝜎) ,

where

�̃� =
𝜇𝑙2 + 𝑥𝜎2

𝜎2 + 𝑙2 , �̃� =

√
𝜎2𝑙2

𝜎2 + 𝑙2 , 𝐶 =
1√

2𝜋(𝜎2 + 𝑙2)
exp

( (𝜇 − 𝑥)2
2(𝜎2 + 𝑙2)

)
.

D.2.1 Kernel Mean Embedding for Matern 1/2 Kernel

For Gaussian distributions and the Matern 1/2 kernel, we can compute
the posterior mean but only in 𝑑 = 1. We provide the expression for
the kernel mean embedding: Π[𝑘(·, 𝑥)] =

∫
ℝ
𝑘(𝑥′, 𝑥)𝜋(𝑥′)𝑑𝑥′, where

𝜋(𝑥) = N (0, 1) is a standard normal and 𝑘(𝑥′, 𝑥) = exp(|𝑥 − 𝑥′ |/𝑙) is the
Matern 1/2 kernel.

Π[𝑘(·, 𝑥)] = 1
2

exp
(

2𝑥𝑙 + 1
2𝑙2

)
erfc

(
𝑥 + 1

𝑙√
2

)
+ 1

2
exp

(
1 − 2𝑥𝑙

2𝑙2

) (
erf

(
𝑥 − 1

𝑙√
2

)
+ 1

)
.
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