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Abstract

The emergent field of machine learning has by now become the main proponent of
data-driven discovery. Yet, with ever more data, it is also faced with new computational
challenges. To make machines "learn", the desired task is oftentimes phrased as an
empirical risk minimization problem that needs to be solved by numerical optimization
routines. Optimization in ML deviates from the scope of traditional optimization in two
regards. First, ML deals with large datasets that need to be subsampled to reduce the
computational burden, inadvertently introducing noise into the optimization procedure.
The second distinction is the sheer size of the parameter space which severely limits
the amount of information that optimization algorithms store. Both aspects together
have made first-order optimization routines a prevalent choice for model training in ML.
First-order algorithms use only gradient information to determine a step direction and
step length to update the parameters. Inclusion of second-order information about the
local curvature has a great potential to improve the performance of the optimizer if done
efficiently.

Probabilistic curvature estimation for use in optimization is a recurring theme of this
thesis and the problem is explored in three different directions that are relevant to
ML training.
By iteratively adapting the scale of an arbitrary curvature estimate it is possible to
circumvent the tedious work of manually tuning the optimizer’s step length during model
training. The general form of the curvature estimate naturally extends its applicability to
various popular optimization algorithms.
Curvature can also be inferred with matrix-variate distributions by projections of the
curvature matrix. Noise can then be captured by a likelihood with non-vanishing width,
leading to a novel update strategy that uses the inherent uncertainty to estimate the
curvature.
Finally, a new form of curvature estimate is derived from gradient observations of
a nonparametric model. It expands the family of viable curvature estimates used in
optimization.
An important outcome of the research is to highlight the benefit of utilizing curvature
information in stochastic optimization. By considering multiple ways of efficiently
leveraging second-order information, the thesis advances the frontier of stochastic
optimization and unlocks new avenues for research on the training of large scale
ML models.



Kurzfassung

Das aufstrebende Feld des maschinellen Lernens ist mittlerweile zur wichtigsten treiben-
den Kraft für datengetriebene Entdeckungen geworden. Doch mit immer mehr Daten steht
das Feld auch vor immer neuen rechentechnischen Herausforderungen. Damit Maschinen
"lernen", wird das zu lösende Problem oft als empirisches Risikominimierungsproblem
formuliert, welches anschließend durch numerische Optimierungsroutinen gelöst werden
muss. Optimierung im ML unterscheidet sich in seinen Herausforderungen in zweier-
lei Hinsicht von der traditionellen Optimierung. Erstens hat das ML mit so großen
Datensätzen zu tun, dass um den Rechenaufwand zu verringern immer nur ein Teil des
gesamten Datensatzes zur Verfügung steht. Dadurch fließt unbeabsichtigt Rauschen
in das Optimierungsverfahren ein. Der zweite Unterschied ist die schiere Größe des
Parameterraums, der die Menge der speicherbaren Informationen stark reduziert. Beide
Aspekte zusammen haben dazu geführt, dass Optimierungsmethoden erster Ordnung
zur Methode der Wahl für das Modelltraining im ML geworden sind. Algorithmen
erster Ordnung verwenden nur Gradienteninformationen für die Berechnung der Schrit-
trichtung und Schrittlänge, um die Parameter zu aktualisieren. Das Einbeziehen von
Information zweiter Ordnung über die lokale Krümmung hat großes Potenzial zur
Verbesserung des Optimierers, wenn dies effizient geschieht.

Die probabilistische Krümmungsschätzung für die Optimierung ist das zentrale Thema
dieser Arbeit. Es werden drei verschiedenen Richtungen zur Lösung dieses Problems
untersucht.
Durch iterative Anpassung der Skala einer beliebigen Krümmungsschätzung ist es
möglich die mühsame Arbeit der manuellen Kalibration der Schrittlänge des Optimierers
während des Modelltrainings zu umgehen. Die allgemeine Form der Krümmungss-
chätzung ist allgemein auf verschiedene populäre Optimierungsalgorithmen anwendbar.
Die Krümmung kann auch durch Projektionen der Krümmungsmatrix unter der An-
nahme einer matrixvariaten Verteilungen geschätzt werden. Das Rauschen kann dann
durch eine Likelihood mit nicht verschwindender Breite erfasst werden, was zu einer
neuen Aktualisierungsstrategie führt, die die inhärente Unsicherheit nutzt um die Krüm-
mung zu schätzen.
Schließlich wird eine neue Form der Krümmungsschätzung aus Gradientenobservatio-
nen eines nichtparametrischen Modells abgeleitet. Sie erweitert die Familie der nützlichen
Krümmungsschätzungen, die in der Optimierung verwendet werden.
Ein wichtiges Ergebnis der Forschungsarbeit ist der Nutzen der Krümmungsinfor-
mationen für die stochastische Optimierung. Durch die Betrachtungverschiedener
Möglichkeiten zur Nutzung von Informationen zweiter Ordnung verschiebt diese Disser-
tation die Grenzen der stochastischen Optimierung und eröffnet neue Möglichkeiten für
die Forschung zum Training von ML-Modellen in großem Maßstab.
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Prologue





1: Immortalized through the quote “sur-
vival of the fittest”.

Chapter1
Introduction

Optimization is a driving force that underlies the fundamental laws of
physics. Many occurrences such as the stable state of matter, trajectory
of light and movement of objects are phenomena that minimize the
exerted energy. Not only the laws of physics but life itself is an ongoing
optimization problem continuously improved by evolution and natural
selection1 [29]

[29]: Darwin (1859), On the origin of species,
1859

. Evolution is an optimization process consisting of two
parts that drives each species to better fit given their environment. The
first part comes from the genetic drift from reproduction which in each
new generation further hones and cultivates the traits that have proven
beneficial for survival. The second is in the form of mutations which are
random by nature and usually of no consequence, but sometimes it can
significantly accelerate or completely change the optimization route by
developing a new beneficial trait. The first process actually maintains
a trajectory and slowly improves over time, making it a safer bet in the
long run over the random search that occurs through mutations with
occasional dividends. Information about a beneficial trajectory towards
an optimum can significantly improve the optimization and should be
used whenever possible2

2: For the continuous optimization in later
chapters this will constitute the gradient
of a function which provides information
about the local slope of the function.

.

Human history is also littered with optimization that has been paramount
for the development of modern civilization [48]

[48]: Floudas and Pardalos (2008),
Encyclopedia of Optimizationand has by now become

an integral part of society. Nature is still a great source of inspiration
and numerous innovations have resulted from mimicking nature [153]

[153]: Vincent et al. (2006), ‘Biomimetics:
its practice and theory’.

Modern algorithms draw inspiration from observing behavior in nature
[154]

[154]: Wahde (2008), Biologically inspired
optimization methods: an introduction. We even try to optimize nature around us through selective breeding

to better match properties that we deem beneficial.

Jumping forward to modern times, optimization is evermore present
in society. With the introduction of computers in the 20th century the
previous line of optimization abruptly switched gear. By providing
mathematicians and engineers with access to hardware that reduced
the time of computing solutions, the problems grew in complexity.
Computers offered the possibility of optimization through simulation,
allowing more scenarios to be explored in search of a specific outcome.
The parameters of the simulation could then also be optimized further
to achieve a selected outcome3

3: A few examples can be to maximize
return, minimize risk, find shortest path,
find fastest path, minimize energy et.c.. As the complexity grew so also did the

expectations of the corresponding optimization algorithms which has
catapulted numerical optimization to the forefront of modern engineering
[109]

[109]: Nocedal and Wright (2006),
Numerical Optimization.

1.1 Computation in Machine Learning

The recent expansion of data-driven modeling, commonly known as
machine learning (ML), brought with it a renewed interest in stochastic
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4: The encountered optimization prob-
lems existed before as well but are now of
particular interest due to the popularity of
ML.

5: Encoding a known invariance can re-
duce the search space and result in more
efficient models and training [17]. Several
physical quantities are conserved as a re-
sult of invariance through Noether’s first
theorem [110].
[17]: Bronstein et al. (2021), ‘Geometric
deep learning: Grids, groups, graphs,
geodesics, and gauges’
[110]: Noether (1918), ‘Invariante Variation-
sprobleme’

6: Integration must cover all probability
mass contained in a volume that grows
exponentially with the dimensionality of
the problem.

optimization4 . Compared to the more traditional form of numerical
modeling ML avoids the tedious task of programming a physical model
for simulation. Instead the computer is tasked with finding a relevant
model from available data. ML models define a class of functions with
parameters that are trained to make precise predictions by learning from
provided data. Finding useful patterns in data is generally a computation-
ally expensive task5 since the relevant search space of complex models
can be enormous.

Several ML concepts are originate from probability theory. A full proba-
bilistic treatment requires reasoning about the generative process of the
data and is primarily captured by two quantities in conjunction with a
model. The likelihood ?(D | ),ℳ) defines the probability of observing
the data under a model ℳ with parameters ). Any knowledge about
the parameters that are available before observation of D is captured in
the prior distribution ?() | ℳ). Learning is then done through Bayes’
theorem which provides a principled way of updating the prior belief of
the parameters from observing data.

Explicit conditioning on the model ℳ is
important when the evidence of compet-
ing models must be considered, otherwise
it is usually omitted.?() | D ,ℳ)︸         ︷︷         ︸

posterior

=

likelihood︷         ︸︸         ︷
?(D | ),ℳ)

prior︷     ︸︸     ︷
?() | ℳ)

?(D | ℳ)︸      ︷︷      ︸
evidence

(1.1)

Combining the prior distribution with the likelihood of observing the
data results in the posterior distribution which contracts around the
parameters that best explain the data. A predictive distribution for new
data is obtained by integrating the likelihood of the new data weighted
by the posterior belief

?(D∗ | D ,ℳ) =
∫

?(D∗ | ),ℳ) ?() | D ,ℳ) 3). (1.2)

Two problems stand in the way of this full Bayesian type of modeling.
An explicit expression of the posterior distribution is seldom available
so approximations must be employed [14]

[14]: Bishop (2006), Pattern recognition and
machine learning §10. As a consequence, the

integration in Eq. (1.2) lacks an analytic solution and has to rely on a
numerical approximation. Numerical integration, however, is notoriously
difficult due to the curse of dimensionality6 [12]

[12]: Bellman (1966), ‘Dynamic Program-
ming’

and it often has to rely
on sampling techniques for estimating the integrals.

Many ML models try to circumvent the problem by estimating the poste-
rior distribution with a single parameter sample instead of a distribution.
The task is then to find a parameter ) of the model that best explains the
data and use that for prediction.

It is often more efficient to optimize the log-
arithm of the marginal likelihood which
results in the same optimum because the
logarithm is a monotonic function.

For a given model it will occur at the
mode of the posterior distribution which corresponds to maximizing the
numerator of Eq. (1.1).

)∗ = arg max
)

?(D | ),ℳ) ?() | ℳ)

The learning process has thus been turned intoC an optimization problem
closely related to empirical risk minimization which is central to large parts
of supervised learning. Predictions for new data now use the single
parameter value and largely ignores the uncertainty7 7: Uncertainty is becoming more impor-

tant as more ML algorithms start interact-
ing with the real world and adversarial
attacks as well as new scenarios must be
considered.

of the prediction
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9: The optimization algorithm requires
optimization.

in the process.

Complex models encountered in ML prove difficult to optimize due to
two important factors8

8: These are taken to their extremes in the
case of deep learning.

.

1. Contemporary ML models have a large number of trainable pa-
rameters to be able to capture intricate nonlinear relationships in
the training data. This results in particularly high-dimensional
optimization problems, making traditional optimization routines
ill-suited due to storage and computational constraints.

2. The training is further complicated by the large datasets employed
for the training. Performing computations with the full dataset
results in a prohibitive computational overhead. By only processing
a smaller batch of data instead of the whole dataset it is possible to
reduce the per-iteration cost and significantly speed up training.
A downside of using smaller batches is the stochasticity that arise
due to the smaller batch size.

These factors combined with automatic differentiation libraries has led
to first-order optimization algorithms playing a prevalent role in the
training of ML models. First-order algorithms use gradient information to
guide the optimization but they rely on hyperparameters which require
tuning for successful training9 . The tuning is usually done by running the
same training procedure with varying hyperparameters which consumes
a significant part of the ML pipeline in terms of computational resources.
This common approach of optimization in ML indicates that algorithmic
improvements can translate into a significant reduction in time to train
models and by extension also the energy invested.

1.2 Computation as Inference

A promising approach for improving the optimization in ML comes from
the advent field of probabilistic numerics [66, 26]

[66]: Hennig et al. (2015), ‘Probabilistic nu-
merics and uncertainty in computations’
[26]: Cockayne et al. (2019), ‘Bayesian
probabilistic numerical methods’

, where computation
itself is treated as probabilistic inference governed by Bayes’ theorem. A
Computational algorithm is treated as a learning agent (�) that interacts
with a problem and iteratively updates its belief about the result from
observations.

The agent updates its belief about the so-
lution to a numerical problem according
to Bayes’ theorem and selects a new point
based on the current belief.

?(� | D) = ?(D | �)?(�)
?(D)

New evaluation points are selected based on the updated belief in con-
junction with a chosen search policy. Deterministic quantities like the
outcome of a computation can also be reasoned about in a probabilis-
tic fashion due to the epistemic uncertainty surrounding the solution.

Examples include but are not limited to
solutions of linear systems, trajectories of
ODEs, Bayesian quadrature, optimization.

The Bayesian nature of the algorithms means that the agent can have
knowledge about the problem a-priori to seeing any data which guides
the exploration strategy10

10: Bayesian decision making provides
many plausible strategies like evaluating
at the most likely point of solution, maxi-
mal reduction of uncertainty or updates
that adhere to precision constraints.

. Several deterministic numerical algorithms
have been identified as probabilistic agents that operate in the limit
of vanishing uncertainty11

11: The likelihood ?(D | �) collapses to a
�-distribution around the exact value.

around the observation. In principle one
could then extend the algorithms to operate under the assumption of
non-vanishing uncertainty to capture noise in the process.
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12: Mainly supervised learning tasks opti-
mized by empirical risk minimization.

13: Both epistemic-uncertainty from not
knowing enough about the problem and
aleatoric-uncertainty from stochasticity can
and should be included.

1.3 Outline

The focus of this thesis is to employ probabilistic models to speed
up and make the optimization/training of complex machine learning
models with large datasets more efficient12 . Most research is centered
around probabilistic numerics [66] by treating numerical algorithms as
probabilistic agents that learn useful information about the problem.
Noise arising from subsampling is specifically addressed by uncertainty
in the likelihood.

Gaussian inference plays a key role in the developed probabilistic opti-
mization routines.

Noise from subsampling is assumed to
be normal distributed by reasoning of the
central limit theorem.

Some familiarity with probability theory, multivariate
calculus, optimization and machine learning is expected and will only
have a short introduction. Some notation and summary of core concepts
that will be important throughout the thesis are presented in the first
three chapters with references to further reading highlighted. Chap-
ters 5, 6 and 7 contain the main contributions of the thesis. Each of the
chapters are based on a project undertaken over the course of the PhD
and will further elaborate on the necessary theory.

Chapter 2 introduces the basic theory that underlies most of the super-
vised machine learning that will appear throughout the manuscript. It
will explain how learning occurs as a form of optimization, what tools
are available to cater the learning and why it becomes difficult compared
to traditional optimization.

Chapter 3 provides a short background of probabilistic inference with
particular focus on Gaussian inference. The standard parametric form
of Gaussian inference is used to present concepts that will be central to
later chapters. A short overview of nonparametric models in the form
of Gaussian processes is provided to cover the background information
required for Ch. 7.

Chapter 4 mainly focuses on general theory relating to unconstrained
optimization and establishes the notation for optimization used through-
out the thesis. Several aspects relating to curvature estimation are pre-
sented and clarifies some important connections between linear algebra
and optimization. It also explains the ideas behind several optimization
routines and compares their suitability in light of the requirements
imposed by ML.

Chapter 5 explores the usage of Gaussian inference to infer the opti-
mizer of a local function approximation and is based on the work in
[36]

[36]: de Roos et al. (2021), ‘A Probabilisti-
cally Motivated Learning Rate Adaptation
for Stochastic Optimization’

. The proposed framework gives rise to a probabilistic version of the
Polyak step and generalizes the update beyond the standard isotropic
Euclidean distance to new curvature metrics. A lower bound of the local
function must be provided which is difficult to estimate in general. The
probabilistic nature of the algorithm allows inclusion of uncertainty13

to aid the estimation. A simple quadratic approximation of the lower
bound is presented which results in a heuristic step-size adaptation for
several first-order optimization algorithms used in ML.



Chapter 1 Introduction 7

Chapter 6 focuses on probabilistic estimation of the local curvature in
the presence of noise. It extends previous work on probabilistic linear
algebra [64]

[64]: Hennig (2015), ‘Probabilistic
interpretation of linear solvers’to a model that includes noisy observations. The model uses

a matrix-variate normal distribution and observes noisy projections of
the curvature matrix often encountered in stochastic optimization related
to ML. An adaptive preconditioning scheme for asymmetric matrix priors
is developed and evaluated on a popular benchmark. The presented
research was originally published in [35] but has been extended with
some additional theory for symmetric priors with uncertainty.

[35]: de Roos and Hennig (2019), ‘Active
Probabilistic Inference on Matrices for Pre-
Conditioning in Stochastic Optimization’

Chapter 7 extends the traditional quadratic curvature estimation to the
nonparametric setting of Gaussian processes. The main contribution is a
computationally tractable approach for exact Gaussian process inference
with gradient observations in high-dimensional input spaces. This opens
up several application areas for Gaussian process modeling, in particular
algorithmic advances in fields such as optimization stands to benefit.
Several nonparametric curvature-estimates are developed and analyzed
as a proof-of-concept for application in optimization and linear algebra.
The research was originally published in [33]

[33]: de Roos et al. (2021), ‘High-
Dimensional Gaussian Process Inference
with Derivatives’.

Chapter 8 concludes the thesis with a high-level summary of the
content and outline new avenues of research made possible through the
contributions of the thesis.

1.4 Publications

The research conducted as a part of my PhD studies has been published
in the following articles, of which the last three are relevant to this
dissertation.

(I) F. de Roos and P. Hennig. ‘Krylov Subspace Recycling for Fast
Iterative Least-Squares in Machine Learning’. In: arXiv preprint
arXiv:1706.00241 (2017).

(II) F. de Roos and P. Hennig. ‘Active Probabilistic Inference on Matri-
ces for Pre-Conditioning in Stochastic Optimization’. In: The 22nd
International Conference on Artificial Intelligence and Statistics. Vol. 89.
Proceedings of Machine Learning Research. PMLR, 2019 for Ch. 6.

(III) F. de Roos, C. Jidling, A. Wills, T. Schön, and P. Hennig. ‘A Prob-
abilistically Motivated Learning Rate Adaptation for Stochastic
Optimization’. In: arXiv preprint arXiv:2102.10880 (2021) for Ch. 5.

(IV) F. de Roos, A. Gessner, and P. Hennig. ‘High-Dimensional Gaussian
Process Inference with Derivatives’. In: International Conference
on Machine Learning. Vol. 139. Proceedings of Machine Learning
Research. PMLR, 2021 for Ch. 7.

A lot of the work has been the result of close collaboration without whom
the basis of this thesis would not exist.
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(I) The work of de Roos and Hennig [34] was conducted together with
Philipp Hennig who provided the starting point of the main idea and
contributed to the writing. All derivations, implementation and a lot of
the writing was largely done by me.

(II) Philipp Hennig initiated the work of de Roos and Hennig [35] by
formulating the problem, providing sources of the necessary background
information and in the end contributed to the writing. Derivations,
implementation and writing was largely done by me in collaboration
with Philipp Hennig.

(III) The research was conducted during a visit to Uppsala University in
collaboration with Carl Jidling, Thomas Schön along with Adrian Wills
from the University of Newcastle. The main idea, derivations, imple-
mentation and writing was mostly done by me. Carl Jidling contributed
to some derivations, illustrations and helped with the writing. Adrian
Wills, Thomas Schön and Philipp Hennig provided useful discussion
and contributed to the overall presentation.

(IV) de Roos et al. [33] was initiated by me in collaboration with Alexandra
Gessner and Philipp Hennig. All the derivations and main idea was
provided by me. Alexandra Gessner helped with the implementation and
a lot of the presentation and tested the framework on an integration task
(which has been omitted from the chapter). Philipp Hennig provided
feedback on the final manuscript.
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Chapter2
Optimization in Machine
Learning

Machine learning (ML) has in recent years experienced a surge in pop-
ularity due to the possibility of making accurate predictions based on
data instead of or combined with parametric models. The field is rapidly
evolving with whole books devoted to specific subcategories. A com-
plete overview of the various categories is well beyond the scope of
the chapter which instead focuses on background knowledge that will
be useful to understand the optimization in later chapters. For a general treatment of the field see

[14]: Bishop (2006), Pattern recognition and
machine learning
[95]: MacKay (2003), Information theory,
inference and learning algorithms

The chapter
will therefore not focus on the various algorithms or fields that exist
within machine learning. Instead it will outline the general procedure
and assumptions that occur within the field of supervised learning and
details regarding the training. These elements will occur throughout
the rest of the manuscript and they showcase the general importance
of optimization in the field as well as the restrictions that appear when
developing optimization algorithms. The latter will play a recurring role
in this dissertation.

2.1 Empirical Risk Minimization

A significant part of machine learning which will be central to this
manuscript deals with so called supervised learning.

Other fields include unsupervised learn-
ing, self-supervised leraning, reinforce-
ment learning, ranking or compression to
name but a few.

In this setting we
have a dataset D that consists of inputs G ∈ X and targets H ∈ Y for
some input and output spaces X, Y respectively. The goal is to train
a predictor <) : X → Y with trainable parameters ) ∈ ℝ� , so that
meaningful predictions can be made for new unseen input data G∗ from
the same underlying distribution. We also need to define a loss function
ℓ : Y × Y → ℝ to assess the performance that measures how much a
prediction Ĥ = <)(G) deviates from the true target H.

For regression with real-valued targets it
is common to use the squared distance
whereas classification with categorical tar-
gets often use cross-entropy.

In more formal terms we assume there is a joint distribution ?(G, H) from
which the dataset D has been sampled. We now want to find parameters
) ∈ ℝ� of the predictor <) that minimize the expected loss over this
distribution.

ℒ()) = E?(G,H)[ℓ (H, <)(G))] (2.1)

There is usually no way of calculating the true expectation over ?(G, H)
since we do not know the underlying data-generating process. Instead we
approximate the expected loss with the empirical estimate of the dataset.

The (G, H)-pairs are assumed to be sam-
pled independent and identically dis-
tributed (i.i.d.) from ?(G, H).

ℒD()) = 1
|D|

∑
(G8 ,H8 )∈D

ℓ (H8 , <)(G8)) (2.2)
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This is known as the empirical risk minimization (ERM) problem which
is the primary framework for training models in machine learning.

The terms loss and risk are used inter-
changeably depending on the field.By

minimizing the empirical loss we assume and hope that the empirical
minimizer will coincide with the true minimizer

)★ = arg min
)

ℒD()) ≈ arg min
)

ℒ()) (2.3)

so that predictions of <)★(·) on new inputs G∗ from ?(G, H) will be
mapped to the correct target H∗. In this way the predictor, once trained, is
expected to generalize its predictions to new unseen input data from the
underlying distribution. Throughout this manuscript we will mainly be
dealing with ERM so the subscript D in eq. (2.2) is generally dropped
for brevity and instead we let ℒ()) denote the empirical loss over the
training set.

2.2 Learning as Optimization

The predictor <)(·) is parameterized by ) ∈ ℝ� which can be adjusted
to reduce the empirical loss.

Examples of parameters ) include the
weights of a deep neural network [57] or
hyperparameters of a Gaussian process
[120].

Equation (2.3) is already phrased as an opti-
mization problem and solving it is what constitutes the training/learning
phase of the predictor. In some cases there exists a closed-form expression
for the optimal ) so an exact solution is possible. This is however not true
in general and even if a closed-form expression exists it can be infeasible
to obtain the solution due to various constraints.

Computational constraints are most often
cited but memory or numerical impreci-
sion are also possible.When such limitations

appear it is necessary to employ approximations or rely on an iterative
scheme that improves the performance of <) with each iteration. This setting is the norm rather than the

exception so many fields within ML stand
to benefit from improved iterative opti-
mization schemes and approximations.

A
straightforward way to guide the search for an optimal ) would be to
use the gradient of Eq. (2.1) w.r.t. ) since it indicates the direction which
would locally lead to the highest increase in the loss. One can then simply
step in the opposite direction to decrease the loss. [57]: Goodfellow et al. (2016), Deep Learn-

ing
[120]: Rasmussen and Williams (2006),
Gaussian Processes for Machine LearningAutomatic Differentiation

Automatic differentiation frameworks (AD) [10, 96] such as TensorFlow [1]
and PyTorch [113] are arguably the greatest benefactor of ML development
together with the increased availability of data and specialized hardware
such as GPUs and TPUs [75].

[10]: Baydin et al. (2018), ‘Automatic differ-
entiation in machine learning: a survey’
[1]: Abadi et al. (2016), ‘Tensorflow: A sys-
tem for large-scale machine learning’
[113]: Paszke et al. (2019), ‘PyTorch: An
Imperative Style, High-Performance Deep
Learning Library’
[75]: Jouppi et al. (2017), ‘In-datacenter per-
formance analysis of a tensor processing
unit’

AD compiles a computational graph at
runtime where each node encodes an operation with inputs along with
the corresponding derivative of the operation. Computations are then
localized such that a node is only responsible for providing a derivative
of its output w.r.t. its inputs. Numerical values of derivatives can then be
passed up and down the computational graph. Application of the chain
rule of derivatives then provides the derivative of arbitrary nodes all the
way down to the leaf nodes1

1: Nodes that have no children in the com-
putational graph.

. By utilizing automatic differentiation it is
possible to construct intricate models with derivative information readily
available for the optimization.

To give an intuition of how AD works in a typical ML setting it is useful
to look at small example. Assume we have a composite function of the
form ℓ ( 5 (6(�))) which is often encountered in ML and we want the
derivative of ℓ w.r.t. � at � = �̄.

For ease of exposition we assume � ∈ ℝ

and all the functions perform a mapping
ℝ → ℝ.

The following equations outline a typical
AD computation where the first line contains the analytic expression for
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the derivative and subsequent highlight the local contraction that occurs
once a numerical value is available.

In the second line 3 5̄ = %ℓ/% 5 is absorbed
to form 36̄ = %ℓ/%6 which is required to
construct 3�̄ = %ℓ/%� in the next step.
This way it is possible to keep the compu-
tations local and minimize the required
memory during runtime.

%ℓ

%�

����
�̄

=
%ℓ

% 5

����
5̄

% 5

%6

����
6̄

%6

%�

����
�̄

=

(
( 3 5̄ ) · % 5

%6

����
6̄

)
· %6
%�

����
�̄

= ( 36̄) ·
%6

%�

����
�̄

= 3�̄

(2.4)

Once a numerical value has been provided for � = �̄ and a gradient is
requested we recursively populate the derivatives with the corresponding
numerical values ( 3 5̄ , 36̄ and 3�̄). This local computational structure
makes AD a modular framework which provides a rich set of functionality
not only limited to ML [100] [100]: Margossian (2019), ‘A review of

automatic differentiation and its efficient
implementation’

. The composite structure of the function
in the example is often used when constructing models in ML and the
previously mentioned predictor would here correspond to <� = 5 (6(�))
with the additional loss function ℓ on top for training. This setup allows
complex models to be constructed that can easily provide gradient
information for iterative optimization routines by using this form of
backpropagation [126]

[126]: Rumelhart et al. (1986), ‘Learning
representations by back-propagating
errors’

. Also known as reverse-mode AD.

With gradient information available it is now possible to train the predic-
tor. A training iteration now consists of the following steps:

1. Evaluate the empirical loss ℒ()C) of the predictor (Eq. (2.2)).
2. Backpropagate through the computational graph of the predictor

to obtain the gradient ∇ℒ()C).
3. Use the gradient to update the model parameters )C for the next

iteration.

These steps can be repeated ad infinitum or until a suitable convergence
criterion has been satisfied. The last step is what constitutes the actual
learning and will be the general focus of this dissertation.

Some general background and consider-
ations on this part will be presented in
Ch. 4.

Subsampling

Another driving force of the ML surge has been access to more powerful
hardware that is better suited for the relevant computations. Better
hardware allows the training of more complex models which in turn
requires larger training sets to avoid overfitting2

2: Overfitting occurs when the model
learns the minute details of the training
data which are not important for general
prediction, or when there is a discrepancy
between the training data and that of the
true underlying distribution. An example
of overfitting can be seen in Fig. 2.1.

, see Fig. 2.1. More
data in turn drives the need for faster hardware. Several iterations of
this cycle has led to the development of powerful GPUs with massive
internal memory, specialized hardware such as TPUs [75] [75]: Jouppi et al. (2017), ‘In-datacenter

performance analysis of a tensor process-
ing unit’

and datasets
that require Terabytes of storage. Training models on such large datasets
are computationally infeasible if the whole dataset has to be processed.

To avoid the cost of processing the whole dataset it is common use smaller
batches, so called mini-batches, during training. A batch consists of a
smaller subset of data ℬ ⊂ D such that |ℬ| � |D| and it is usually
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Figure 2.1: Loss curves for a model that
overfitted the training data. The empirical
loss over the training set keeps decreasing
while the true loss reached a minimum
and began increasing. Since we are mainly
interested in applying the models to new
data it would be better to stop the training
at iteration 15 than to let empirical loss
converge.

3: ℒD ()) in Eq. (2.2)

sampled i.i.d. from D. Other sampling strategies are possible de-
pending on the problem and model.

The empirical loss is then approximated with the
stochastic estimate

ℒℬ()) =
1
|ℬ|

∑
(G8 ,H8 )∈ℬ

ℓ (H8 , <)(G8)). (2.5)

If the batch is sampled i.i.d. from the training set then ℒℬ()) is an
unbiased estimate of the full empirical loss3 . The gradient of ℒℬ())
is now also a stochastic estimate of the full gradient that is cheaper to
compute allowing faster training of the model.

∇ℒℬ()) =
1
|ℬ|

∑
(G8 ,H8 )∈ℬ

∇ℓ (H8 , <)(G8)) (2.6)

A step in the direction −∇ℒℬ()) does not necessarily lead to a reduction
of ℒD()), only in expectation. Larger batches will lead to better estimates
of the true gradient and there is now a trade-off to be made between
the quality of the gradient estimate and the computational cost [7]

[7]: Balles et al. (2017), ‘Coupling Adaptive
Batch Sizes with Learning Rates’

. This
stochasticity along with easy access to gradients has made stochastic
optimization an integral part of machine learning and stochastic gradient
descent (sgd) [122]

[122]: Robbins and Monro (1951), ‘A
stochastic approximation method’one of the most important algorithms of the field.

2.3 Deep Learning [57]: Goodfellow et al. (2016), Deep Learn-
ing
[61]: He et al. (2016), ‘Deep Residual Learn-
ing for Image Recognition’
[85]: Krizhevsky (2009), Learning multiple
layers of features from tiny images
[39]: Devlin et al. (2019), ‘BERT: Pre-
training of Deep Bidirectional Transform-
ers for Language Understanding’
[18]: Brown et al. (2020), ‘Language Mod-
els are Few-Shot Learners’
[17]: Bronstein et al. (2021), ‘Geometric
deep learning: Grids, groups, graphs,
geodesics, and gauges’
[76]: Jumper et al. (2021), ‘Highly accu-
rate protein structure prediction with Al-
phaFold’

One of the currently most important fields of machine learning is deep
learning (DL) [57] due to its strong empirical results for disparate input
spaces such as images [61, 85], text [39, 18], graphs [17] protein folding
[76]. The field is mentioned here because it lies at the extreme end of
optimization problems encounter in ML with a large number of trainable
parameters. Many experiments in the following chapters will be applied
to problems involving DL. Therefore a short introduction to the basic
building blocks is in order.

The main idea behind deep learning in a supervised setting is to stack a
sequence of computational layers on top of each other to build one large
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composite model

<)(x) = h(;) ◦ h(;−1) ◦ · · · ◦ h(1)(x). (2.7)

Each layer, denoted by the superscript, then has a set of parameters that
when combined make up the full set of trainable parameters ) ∈ ℝ� .
Since deep learning architectures usually have many layers the number of
parameters � quickly grow and easily number in the millions, providing
a significant bottleneck for optimization algorithms.

More on the effect of dimensionality in
Ch. 4.

Depending on the task and input it is good to use layers that are better
suited for the purpose. What follows is a quick overview of some of the
most common types of layers that will feature in later chapters.

These layers are presented to convey the
general idea behind the architecture and
there now exist more powerful layers with
better properties [90].
[90]: Liu et al. (2017), ‘A survey of deep
neural network architectures and their ap-
plications’

Dense layer One of the earliest and most common layers is the dense
layer.

Also known as a fully-connected layer.
Each layer performs an affine transformation of the previous layer’s

output followed by a nonlinearity4
4: See Tab. 2.1 for examples.

.

h(;)(h(;−1)) = �
(
] (;)h(;−1) + b(;)

)
Dense layers takes a vector as input for a single datum and performs a
mapping ℝ3in → ℝ3out . The trainable parameters of a dense layer are the
matrix ] (;) ∈ ℝ3out×3in and bias b(;) ∈ ℝ3out .

[105]: Nair and Hinton (2010), ‘Rectified
linear units improve restricted boltzmann
machines’
[24]: Clevert et al. (2016), ‘Fast and Accu-
rate Deep Network Learning by Exponen-
tial Linear Units (ELUs)’

Name Activation
Sigmoid �(I) = 1/(1 + 4−I)

Tanh �(I) = tanh(I) = 4I−4−I
4I+4−I

ReLU [105] �(I) = max(I, 0)

ELU [24] �(I) =
{
I if I > 0
(4I − 1) else

Table 2.1: Table of common nonlinearities
employed in DL. The first two are known
to saturate for high and low values of I
leading to the vanishing gradient problem
[69]. ReLU avoids the vanishing gradient
problem and is arguably the most popular
activation function but it can lead to many
inactive parameters. ELU tries to alleviate
the problems of the previous nonlineari-
ties.

[69]: Hochreiter (1998), ‘The vanishing gra-
dient problem during learning recurrent
neural nets and problem solutions’
[89]: LeCun et al. (1998), ‘Gradient-based
learning applied to document recognition’

Convolutional layer (CNN) Similar in spirit to the dense layer but
better suited for spatial data such as images is the convolutional layer
[89]. The matrix multiplication of the dense layer is here replaced by a
convolution with filters stored in the tensor W(;).

The convolution operation ∗ can also be
written as a matrix multiplication but re-
quires reshaping of the data.h(;)(h(;−1)) = �

(
W(;) ∗ h(;−1) + b(;)

)
Convolutional layers can be applied to many forms of input data making
the size and shape of the parameters differ depending on the applica-
tion. In general the input has a spatial layout and an associated “depth”
(ℝ[3in]×3).

[3in] denotes a general input shape. An
image with width F and height ℎ would
have [3in] = F × ℎ.

The convolution operation then produces an output that main-
tains the spatial layout of the input but locally applies a stack of features
which changes the depth (ℝ[3̃8= ]×� , where � is the number of features). The altered dimensions [3̃8=] of the spa-

tial layout differs depending on additional
parameters such as stride, padding and
dilation used by the layer [41].
[41]: Dumoulin and Visin (2016), ‘A guide
to convolution arithmetic for deep learn-
ing’

A
typical application of CNNs is in image classification where the input is
an RGB image with a width F, height ℎ and depth 3 = 3 color channels.
In this case W(;) ∈ ℝF2×Fℎ×3×� matches the spatial layout with a width
and height and it performs a 2-d convolution. The bias b ∈ ℝ� behaves
similar to the bias of the dense layer and is applied across the spatial
layout to each output feature.
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Convolutional layers are often combined with max-pooling layers which
down-samples their input and propagates the maximal feature activation
forward to the next layer.

Recurrent layer (RNN) A layer that is more suitable for temporal data
is the recurrent layer [43]

[43]: Elman (1990), ‘Finding structure in
time’. It updates the computation of the dense layer

to also include a recurrent connection to itself at a previous point in
time.

h(;)
C (h(;−1)

C , h(;)
C−1) = �

(
] (;)h(;−1)

C +[ (;)h(;)
C−1 + b(;)

)
The input and output of the recurrent layer are similar to the dense layer’s
but now the recurrent connection matrix [ ∈ ℝ3>×3> is also included
in the trainable parameters. The presented transformation is nowadays
considered very basic and borderline obsolete but it captures the general
idea of the recurrent connection. More powerful modern alternatives for
sequential data include the LSTM [70], GRU [23] and the Transformer
[149].

[70]: Hochreiter and Schmidhuber (1997),
‘Long short-term memory’
[23]: Cho et al. (2014), ‘Learning phrase
representations using RNN encoder-
decoder for statistical machine translation’
[149]: Vaswani et al. (2017), ‘Attention is all
you need’

2.4 Limitations of Optimization

There are several elements of model training in ML that make it prob-
lematic, some of which will be explored in later chapters. The two most
prominent reasons which also sets ML-training apart from traditional
unconstrained optimization are:

1. Large datasets lead to expensive processing of all the data. By using
smaller batches the cost can be reduced but it inadvertently leads
to stochastic estimates of the loss and gradient which complicates
the optimization.

2. The sheer complexity of the models make the storage of informa-
tion an important aspect to consider in optimization algorithm
development. This is particularly prevalent in deep learning which
is notoriously parameter-heavy.

Many experiments in later chapters will
be of this type.In such a setting it is important to

not use too much storage and a memory requirement that scale
beyond O(�) is considered prohibitive.



Chapter3
Probabilistic Inference

Probability theory naturally arises when we want to reason about cor-
related quantities when we have additional information about some of
them. This information can either come from observational data or in the
form of modeling assumptions encoded as prior knowledge. Probability
theory then formalizes how the uncertainty of the unknown quantity
changes in light of new information. This lies at the core of ML where we
want to reason about new unseen test data after having observed data
from a training set.

A special branch of probabilistic inference that will be of particular
importance in this manuscript is Gaussian inference. Several of the
probabilistic models presented in later chapters will rely on properties and
assumptions relating to Gaussian inference. This chapter will provide the
necessary background information in the form of important aspects and
properties that govern probabilistic inference with Gaussian distributions.
A basic familiarity with probability theory is assumed and the first section
is mainly there to recount a few important properties of probability theory.
For a more elaborate exposition the reader is encouraged to consult a
book on probability theory [73] or sources dealing with probabilistic
machine learning such as the books by MacKay [95], Bishop [14] or
Murphy [103].

[73]: Jaynes (2003), Probability theory: The
logic of science
[95]: MacKay (2003), Information theory,
inference and learning algorithms
[14]: Bishop (2006), Pattern recognition and
machine learning
[103]: Murphy (2012), Machine learning: a
probabilistic perspective

The remainder of the chapter is then dedicated to properties of Gaussian
distributions and how they can be used for efficient inference. First the
standard form of parametric inference will be discussed which provides
the necessary background of Ch. 5 and 6. The next step will be to move
from parametric to nonparametric models which will be important in
Ch. 7. This leads to the concept of Gaussian processes which are closely
linked to kernel methods. Only some basic properties will be presented.
Good sources for additional information on these topics are the books of
Rasmussen and Williams [120] and Schölkopf and Smola [133].

[120]: Rasmussen and Williams (2006),
Gaussian Processes for Machine Learning
[133]: Schölkopf and Smola (2002), Learn-
ing with kernels: support vector machines,
regularization, optimization, and beyond

3.1 Probability Theory

What follows is a short reminder of basic properties of probability theory
which will be exemplified in later sections of the chapter. These rules of
probability theory are a result of the axioms of probability1

1: A different set of axioms that result in
the same theory was proposed by Cox
[27].suggested

by Kolmogorov in 1933 [84]. An extensive exposition of the subject is
available in the book by Jaynes [73].

[84]: Kolmogorov (1933), Grundbegriffe der
Wahrscheinlichkeitsrechnung
[27]: Cox (1946), ‘Probability, frequency
and reasonable expectation’
[73]: Jaynes (2003), Probability theory: The
logic of science

One of the most important aspects of probability theory is the concept of
correlation. It measures how much two random variables vary together
and is vital for probabilistic inference. In the case of two correlated
random variables � and � it is possible to improve the reasoning about
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µ− σ µ µ+ σ

N (µ, σ)

Figure 3.1: Shape of the one-dimensional
probability density function for a normal
distribution, Eq. (3.1).

� by gaining information about � and vice versa. Two random variables
are said to be correlated when the joint distribution does not factorize
into the product of each marginal distribution, ?(�, �) ≠ ?(�)?(�).

� and � are said to be independent if
?(�, �) = ?(�)?(�).

Two important properties of probability distributions are captured in the
sum rule and the product rule informally provided below.

?(�) =
∫

?(�, �) 3� (S)

?(�, �) = ?(� | �) ?(�) = ?(� | �) ?(�) (P)

The domain of integration is all possible
values of �.
For discrete distributions the integral is
replaced with a sum over all possible states
of �.

The sum rule states that the probability that one of several outcomes
occur is the sum of the individual probabilities and is important for
proper normalization of the probabilities. The product rule allows a
convenient way of expression the joint probability that two events occur
depending on the available information.

By combining these two rules of probability distributions we get Bayes’
theorem [11]

[11]: Bayes (1763), ‘An Essay towards
Solving a Problem in the Doctrine of
Chances.’

?(� | �) =
?(�, �)
?(�) =

?(� | �)?(�)
?(�) for ?(�) ≠ 0, (B)

which is the primary tool for probabilistic reasoning. It relates how our
belief over the random variable � changes by learning information about
�. The components of Bayes’ rule will be further explained in the next
section along with important properties of Gaussian distributions.

3.2 Gaussian Inference

The normal distribution Also known as the bell distribution for its
distinct shape or the Gaussian distribu-
tion due to its discovery by Carl Friedrich
Gauß.

is arguably one of the most famous distributions
due to its characteristic shape and common application to error-analysis.2

2: Measurements are often assumed to be
corrupted by normal distributed noise.

For a 1-d input, the distribution is defined by a mean � ∈ ℝ that
determines the location of the distribution, and a variance �2 ∈ ℝ+ which
controls the shape.

It can also be expressed in terms of the
natural parameters �/�2 and −1/(2�2).

?(F) = N
(
F;�, �2) = 1√

2��2
exp

(
−(F − �)2

2�2

)
(3.1)

The exponential term determines the shape of the distribution and the
factor in front is a normalization constant, often denoted /, that ensures
the distribution integrates to 1.

Another reason for the importance of the Gaussian distribution is the
central limit theorem (CLT) which states that the empirical mean estimate
of a random variable that has been sampled i.i.d. from the same distri-
bution, will approach a normal distribution as the number of samples
increase.

The empirical mean of # i.i.d. random
variables Ḡ = (G1+ ...+G# )/# approaches
Ḡ ∼ N(�, �2/#) as # → ∞, where
� = E[G] and �2 = V[G] is the mean and
variance of the underlying distribution.

In empirical risk minimization we try to minimize the mean
loss over the dataset and by approximating the loss over a smaller batch
we naturally get an approximately normal distributed estimate.
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Figure 3.2: Top: joint Gaussian distribution
?(F1 , F2). Bottom: marginal distribution
?(F1) ( ) and conditional distribution
?(F1 | F2 = 1) ( ). Observing F2 = 1
updates the belief of F1.

There are also several important analytical and computational properties
relating to random variables that have a joint Gaussian distribution that
gives it a prevalent position in probabilistic inference.

For two random variables that have a joint Gaussian distribution Eq. (3.1)
expands into

?(F1 , F2) = N
( [
F1
F2

]
;
[
�1
�2

]
,

[
�11 �12
�21 �22

] )
=

1
/

exp

(
−1

2

[
F1 − �1
F2 − �2

]> [
�11 �12
�21 �22

]−1 [
F1 − �1
F2 − �2

] )
,

(3.2)

where �11, �22 encode the marginal variance of the respective random
variable i. e.

?(F1) = N(�1 , �11),
?(F2) = N(�2 , �22),

and �12 = �21 indicates howF1 andF2 correlate with each other. A visual
presentation of these properties can be seen in Fig. 3.2 where �11 and �22
relate to the width of the distribution in F1 and F2 direction respectively
and �12 indicates the angle of the distribution. A �12 = 0 corresponds to
an axis-aligned distribution which additionally indicates that the two
variables are independent of each other, i. e. ?(F1 , F2) = ?(F1)?(F2).
In such a setting F2 provides no information of F1 and vice versa. The
bottom panel in Fig. 3.2 shows the effect of conditioning the variable
F1 on an observation F2. By learning information about F2 the belief
over F1 has changed according to the correlation between them. When
two random variables share a joint normal distribution there exists an
analytic expression for conditioning one variable on an observation of
the other. For the distribution in Eq. (3.2) the posterior belief over F1 is
updated in the following way by making the exact observation F2 =, .

Exact as in we assume there is no uncer-
tainty in the observation.

?(F1 |F2 =,) = N
(
F1;�1 +

�12
�22

(, − �2), �11 −
�2

12
�22

)
(3.3)

The expression shows that the posterior distribution over F1 is again
a Gaussian distribution with a shifted mean and reduced variance.
Figure 3.2 shows the effect of conditioning a variable on another in a joint
normal distribution. In the limit of �12 → 0 we see that the observation
does not lead an update belief over F1. This is to be expected since it
means that the two random variables F1 and F2 are independent.

This can be shown by inserting the above
expression for ?(G, H) and ?(H) into Bayes’
theorem in Eq. (B). See [14] for derivation.
[14]: Bishop (2006), Pattern recognition and
machine learning §2.3

Multivariate Normal Distribution

Properties of Gaussian inference extend beyond the 2-dimensional exam-
ple presented so far. In the remainder of the chapter we let the random
variablew reside in a�-dimensional continuous space (w ∈ ℝ�) in order
to generalize the expressions we have seen so far. Since high-dimensional
distributions are difficult to visualize on paper we will rely on more
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2-dimensional illustrations but the generalization to higher dimensions
will be highlighted.

A general �-dimensional normal distribution is characterized by the
mean vector - ∈ ℝ� and the symmetric nonnegative definite3

3: � must have eigenvalues �8 ≥ 0 for all
8. �8 = 0 indicates a rank-deficient distri-
bution so there are directions in which
Eq. (3.4) does not change, see Fig. (3.5) for
an example.

covariance
matrix � ∈ ℝ�×� as N

(
w;-,�

)
. The functional form of the distribution

reads

N
(
w;-,�

)
=

1√
(2�)� |�|

exp
(
−1

2
(w − -)>�−1(w − -)

)
, (3.4)

with the normalization constant now requiring the determinant of � to
evaluate. Most applications found later in the manuscript are focused
more on the parameters and location of the distribution and not the
actual scale of the distribution, which means that the normalization
will be neglected and is just stated here for completeness. There are
two properties of Gaussian distributions that will play a significant role
throughout the manuscript which warrant some elaboration along with
an example.

The first property is that the normal distribution is a conjugate distribution
to itself w.r.t. the mean. Conjugate distributions is a property

found among exponential families which
ensures that the posterior distribution will
have the same form as the prior for a con-
jugate likelihood [103].
[103]: Murphy (2012), Machine learning: a
probabilistic perspective §9

This means that a Gaussian likelihood combined
with a Gaussian prior will result in a joint Gaussian distribution, which
by extension leads to a Gaussian posterior distribution.

N(y |w)︷   ︸︸   ︷
?(y | w)

N(w)︷︸︸︷
?(w) =

N(y,w)︷  ︸︸  ︷
?(y,w) ⇒

N(w |y)︷   ︸︸   ︷
?(w | y)

The second property is that a linear combination of normal distributed
random variables is again normal distributed. A generic formulation of
this property is that for a matrix G ∈ ℝ"×� and a Gaussian prior in
Eq. (3.4) the distribution of Gw is

?(Gw) = N(G-,G�G>).

If now an observable y ∈ ℝ" can be phrased as a linear transformation
of the Gaussian random variable w ∈ ℝ� with additive Gaussian noise

Note that 9 is here a vector sampled from
a multivariate normal distribution with
covariance X.

y = Gw + 9, with 9 ∼ N(0,X), (3.5)

then the combination of both properties allows for analytic inference. An
example of this is available in Fig. 3.3 and below the setup is explained
in more detail.
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Figure 3.3: Bayesian inference visualized
for Gaussian distributions. The elongated
prior ( ) indicates a higher uncer-
tainty of F2 compared to F1. A projection
of the random variable is observed in the
likelihood ( ). By conditioning on the
observation y the belief of w is updated to
the posterior ( ). The relative width
of the prior and the likelihood determines
the location of the posterior distribution.
A decrease in width of either distribution
moves the posterior towards the corre-
sponding distribution.
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Figure 3.4: Gaussian prior ?(w)

w1

w
2

Figure 3.5: Gaussian likelihood ?(y | w)

Prior The prior distribution encodes any available knowledge of the
parameters prior to seeing any data. With a Gaussian distribution it
is possible to encode information in the mean - and covariance �
respectively

?(w) = N(-,�).

The mean - can be used to center the distribution around the values
we expect to be most probable and � should encode how sure we are
about the estimate, or equivalently, how much the value is expected to
deviate. A 2-dimensional multivariate Gaussian distribution can be seen
in Fig. 3.4. The axis-aligned elliptic contour levels indicate that the two
random variables are independent and that the prior uncertainty of F2
is higher than of F1.

Likelihood The likelihood links the random variable of interest to an
observable quantity. In Fig. 3.5 an observation as a linear projection of
the variable w is highlighted. The generic expression for such a Gaussian
likelihood is

?(y | w) = N (y;Gw ,X) (3.6)

for G ∈ ℝ"×� and X ∈ ℝ"×" , which is equivalent to the statement in
Eq. (3.5). In general the observation will be an"-dimensional hyperplane
in �-dimensional input space and can therefore be a rank-deficient
distribution. This is the case in Fig. 3.5 where " = 1 and � = 2 results
in a distribution that has infinitely long contour lines orthogonal to the
image of G.

Posterior By observing data in the form of Eq. (3.6), we gain infor-
mation about which values of w could have produced the observation.
The uncertainty about w is then reduced and captured in the posterior
distribution which is also Gaussian by virtue of the conjugate Gaussian
prior and likelihood.
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Figure 3.6: Gaussian posterior ?(w | y)

4: Homogenous variance.

?(w | y) = N
(
-̄, �̄

)
, with parameters

-̄ = - + �G>(G�G> + X)−1(y − G-)
�̄ = � − �G>(G�G> + X)−1G�.

(3.7)

Note how the ellipse in Fig. 3.6 aligned with the observation. This is
because only information orthogonal to the contour lines of the likelihood
was obtained, but none along the contour lines. The posterior distribution
also did not move towards the observation in the closest direction but
deviated upwards. This is because the anisotropic prior covariance
encodes higher uncertainty of F2 (up-down direction) compared to F1
(left-right direction).

Parametric Regression

The aforementioned inference scheme is of particular interest for para-
metric regression where a function is modeled as a linear combination of
feature functions stacked into the row vector 5(G) according to

The features in 5(G) can also contain train-
able parameters ) which are here omitted
for the sake of clarity.

5 (G) = 5(G)w.

If a set of input-output pairs {G8 , H8}#8=1 has been collected and the obser-
vations are obtained with homoscedastic4 Gaussian noise corresponding
to the following model

H8 = 5 (G8) + �8 �8 ∼ N(0, �2),

then Eq. (3.7) readily provides the posterior belief of w assuming the
prior belief is Gaussian. To arrive at an explicit expression for the posterior
we just have to replace G with the stacked feature matrix � where row
8 contains the features evaluated at G8 . The posterior mean of Eq. (3.7)
now reads

-̄ = - + ��>(���> + �2O)−1(y −�-) or equivalently

-̄ = - + (�−1 + �−2�>�)−1�−2�>(y −�-),

which is the closed-form expression of the regularized least-squares
estimate.

Both expressions are equivalent but with
different computational cost depending
on # and �. If # < � then the first
expression is cheaper to evaluate due to
the smaller size of the matrix in the inverse
and vice versa for the second.

-̄ = arg min
w

1
�2 ‖y −�w‖2 + ‖w − -‖2

�−1 (3.8)

3.3 Gaussian Processes

The previous section showcased several properties of the Gaussian distri-
bution that are useful for parametric inference with a finite dimensional
input space. These properties can also be extended to infinite dimen-
sional spaces which results in an object called a Gaussian process (gp).
We will here consider the regression of a scalar function 5 (x) over inputs
x ∈ ℝ� .

A gp is a nonparametric estimator closely
related to kernel ridge regression, see [78]
for a review.
Inputs are generally not limited to be real
valued.

[78]: Kanagawa et al. (2018), ‘Gaussian Pro-
cesses and Kernel Methods: A Review on
Connections and Equivalences’
[120]: Rasmussen and Williams (2006),
Gaussian Processes for Machine Learning

A Gaussian process is a distribution over functions which can
be evaluated at arbitrary positions making the input infinite dimensional.
The defining property of a Gaussian process is that a function evaluated
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at discrete points will have a joint normal distribution [120]. For scalar
inference 5 : ℝ� → ℝ it is defined by a mean function �(·) : ℝ� → ℝ

and kernel function :(·, ·) : ℝ� ×ℝ� → ℝ.

?( 5 ) = GP (�(·), :(·, ·))

Similar to the parametric case in Sec.3.2, the prior mean �(·) moves the
distribution and for scalar functions it is best visualized as a shift in
function values. The kernel function has a more intricate effect on the
model compared to the mean. It encodes similarities between function
values based on the input and determines properties of the model
function which can greatly improve the prediction quality. Examples of properties include smooth-

ness, invariances, periodicity et.c.
When the

gp is evaluated on a stacked set of inputs - ∈ ℝ#×� it results in normal
distribution with the following mean and covariance

The following expression is equivalent
and will be the preferred notation moving
forward ?( 5- ) = N

(
-- ,Q--

)
.?

©«

5 (x1)
...

5 (x# )


ª®®¬ = N

©«

�(x1)
...

�(x# )

 ,

:(x1 , x1) . . . :(x1 , x# )

...
. . .

...

:(x# , x1) . . . :(x# , x# )


ª®®¬ . (3.9)

The joint normal distribution in Eq. (3.9) makes gps particularly attractive
for regression problems where function observations are corrupted by
an additive normal distributed noise term. For a set of observations
_ = {H}#

8=1 with individual observations phrased as either of

H8 = 5 (x8) + �8 �8 ∼ N(0, �2)
?(H8 | 5 (x8)) = N( 5 (x8), �2)

there exists an analytic expression for ?( 5- ,_ ). Due to the conjugacy of
the normal distribution we get the marginal distribution This property was outlined in the previous

section and can be seen in Fig. 3.3 where
the prior is multiplied with the likelihood
to obtain the posterior.

?(_ ) = N(�(-),Q-- + �2O).

It is possible to infer the value of the function based on the noisy
observations in _ by constructing the joint distribution. The posterior
distribution of 5 is also a gp which can be evaluated at new points by
using the joint Gaussian distribution

?

( [
_
5 (x∗)

] )
= N

( [
--
�(x∗)

]
,

[
Q-- + �2O :-x∗

:x∗- :x∗x∗

] )
.

An important property of the covariance matrix, generally and henceforth
referred to as the kernel matrix, is  -- � 0.

This is intuitive since a random variable
is perfectly correlated with itself and an-
other variable cannot be more correlated
with the first without introducing linearly
dependent columns of the covariance.

A side effect of the positive
semi-definiteness (p.s.d.) is that inference can be phrased as a convex
optimization problem which can be solved analytically. The posterior
predictive distribution of 5 evaluated at x∗ is

?( 5 (x∗) | _ , -, x∗) = N(�(x∗) + :x∗ ,-
(
Q-- + �2O

)−1 (_ − �-),

:(x∗ , x∗) − :(x∗ , -)
(
Q-- + �2O

)−1
:(-, x∗))

Inference with gps usually has a computational cost that scales cubically
O(#3), in the number of data points # . There are certain situations
where inference can be made cheaper if the data allows it.

Temporally sorted data with Bayesian fil-
ters and grid-structured data are two ex-
amples.

There also exist
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Figure 3.7: gps with Matérn covariance
functions found in Eq. (3.11) for differ-
ent smoothness parameter �. Each graph
shows the posterior mean ( ) and two
samples ( / ) as well the associ-
ated uncertainty in the shaded region.

various approximations that can be employed to speed up the inference
procedure. A thorough review of gps is beyond the scope of this thesis
and the curious reader is referred to the work of Rasmussen and Williams
[120] and Quinonero-Candela and Rasmussen [118] for good starting
points.

[120]: Rasmussen and Williams (2006),
Gaussian Processes for Machine Learning
[118]: Quinonero-Candela and Rasmussen
(2005), ‘A unifying view of sparse approx-
imate Gaussian process regression’

Kernels

Kernels can be defined over various input spaces and define properties
of the function to be modeled. There exists a plethora of kernels that
encode various properties which can be used to improve the predictive
abilities of the model. We will here look more closely at two families of
kernels that will be of importance in Ch. 7. It will be useful to define the
kernels as a function of a scalar quantity, A(·, ·) : ℝ� × ℝ� → ℝ, that
defines a similarity between the two inputs.

:(x , x′) = :(A(x , x′))

Stationary Some of the most famous kernel functions belong to the
family of stationary kernels. These kernels only depend on the relative
distance between the inputs, commonly written as :(x , x′) = :(|x − x′ |).
This also means that further from the input the posterior mean will revert
to the prior mean. A typical parameterization of stationary kernels for
inputs x ∈ ℝ� is to use the Mahalanobis distance [97]

[97]: Mahalanobis (1936), ‘On the general-
ized distance in statistics’

A(x , x′) = (x − x′)>�(x − x′) (3.10)

as similarity measure, but there are many possibilities. Any valid distance measure can be used
leading to plenty of possible formulations.

The matrix � can
be any valid p.s.d. matrix which can be used to improve the performance
of the model. A simple example where this is useful is if the input
dimensions drastically vary in magnitude or the target function shows
more fluctuations in some dimensions. � can then be used to rescale
respective input dimensions to better capture meaningful variations in
the target function. If � = �O, then all input dimensions are treated
equally at which point the kernel is also called isotropic.

An important feature of stationary kernels is that they are shift-invariant,
meaning that the kernel takes the same value after an arbitrary shift in
input space.5

5: Only the relative distance between in-
puts is of importance, not the absolute
location.

:(x + c, x′ + c) = :(|x + c − x′ − c |) = :(|x − x′ |) = :(x , x′)

A few popular kernels that use the distance A(·, ·) in Eq. (3.10) are found
in the Matérn family of kernels. The kernels are parameterized by the
factor � which determines the smoothness of the functions. The general
expression for a kernel with parameter � of the Matérn family reads

:�(A) =
21−�

Γ(�)
(√

2�A
)�
��(

√
2�A),

which requires the gamma function and a modified Bessel function
to evaluate [120]. For certain cases that are of particular interest to
ML and stochastic differential equations this expression simplifies to
contain polynomial and exponential components. When � = ? + 1/2 for
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Figure 3.8: gps with covariance functions
found in Eq. (3.13) for different values of
?. Each graph shows the posterior mean (

) and two samples ( / ) as
well as uncertainty in the shaded region.
The parameter c is centered in the figure.

? = 0, 1, 2, . . . the kernel expression simplifies and a sample from the
gp will have ? continuous derivatives. Kernel expressions for the most
common members of this simplified family are listed in Eq. (3.11) and
samples are visualized in Fig. 3.7.

� = 1/2 : :(A) = �2 exp(−
√
A)

� = 3/2 : :(A) = �2(1 −
√

3A) exp(−
√

3A)

� = 5/2 : :(A) = �2(1 +
√

5A + 5
3
A) exp(−

√
5A)

� → ∞ : :(A) = �2 exp(−A/2)

(3.11)

Two of these are particularly famous and are commonly referred to
by different names. The first occurs for � = 1/2 and the kernel is
then known as the Laplace kernel due to its similarity to the Laplace
distribution. Samples from the process also correspond to paths of
the Ornstein-Uhlenbeck process [144, 129]

[144]: Uhlenbeck and Ornstein (1930), ‘On
the theory of the Brownian motion’
[129]: Särkkä and Solin (2019), Applied
stochastic differential equations

. The second is the limiting
function as � → ∞ which is known as the exponentiated quadratic,
squared exponential, radial-basis function or Gaussian kernel due to its
functional form6

6: Several unfortunate misnomers that are
common in the kernel community.

. In this setting the � parameter suggests that sample
functions should have infinite continuous derivatives which is also the
case and leads to very smooth samples.

[136]: Shawe-Taylor, Cristianini, et al.
(2004), Kernel methods for pattern analysis
[42]: Duvenaud (2014), ‘Automatic model
construction with Gaussian processes’
[120]: Rasmussen and Williams (2006),
Gaussian Processes for Machine Learning

Dot product Another family of kernels that occasionally appear are so
called dot product kernels. These kernels are defined by a variant of the
similarity measure

Sometimes A(x , x′) = (x>�x′ + 2) is used
instead.

A(x , x′) = (x − c)>�(x′ − c). (3.12)

� is once again a p.s.d. matrix that defines the underlying distance
measurement and x ∈ ℝ� . These kernels are rotation-invariant around
the point c which can easily be seen by considering an arbitrary rotation
matrix X ∈ ℝ�×� for the case � = O and c = 0.7

7: This looks like a restrictive assumption
but is made general by using the auxiliary
variable x̃ = x − c instead.

A rotation matrix is a matrix with or-
thonormal columns such that X>X = O

:(Xx ,Xx′) = :(x>X>OXx′) = :(x>Ox′) = :(x , x′)

One can also define the transformation for a general � but the transfor-
mation invariance is then dependent on the spectrum of �. 8

8: X̃ = *�−1/2X where * and � are
matrices of the eigendecomposition.

Two important examples of kernels that use A from Eq.(3.12) are listed
below.

:(A) = �2 A
?

?!

:(A) = �2 exp(A) = �2
∞∑
?=0

A?

?!

(3.13)

The first models functions as polynomials of order ? [133] while the
second generalizes the expression to infinite order. A few examples of
these kernels can be seen in Fig. 3.8 for different ?.

Generalization The kernels that have been presented so far might
seem restrictive in their modeling possibilities but we have only looked
at a small subset of available kernels for the sake of exposition. While
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each kernel has its own benefits and limitations the real power of kernel
methods lies in the many ways they can be combined for more expressive
modeling [136, 42, 120]. A few such properties are listed below for two
gps 5 ∼ GP(� 5 , : 5 ) and 6 ∼ GP(�6 , :6).

I The sum of two gps is another gp: 5 + 6 ∼ GP(� 5 + �6 , : 5 + :6)
I The product of two gps in another gp: 5 · 6 ∼ GP(� 5 · �6 , : 5 · :6)
I A gp can be defined over another feature space:

5 (#(·)) ∼ GP(� 5 (#(·)), : 5 (#(·),#(·)))

By combining kernels in this way it is possible to encode a lot of prior
knowledge that can be used to make better predictions with less data.

Hyperparameters Although gps are commonly referred to as non-
parametric methods they do contain certain hyperparameters which
determine the overall shape of the functions they model. One example of
such a parameter that often occur in kernel methods is a characteristic
lengthscale. In Eq. (3.10) and Eq. (3.12) this lengthscale is encoded in
� which determines how quickly functions are expected to change in
each direction. A proper Bayesian treatment of the hyperparameters by
integrating out the effect of the hyperparameter is usually intractable and
would have to rely on costly sampling techniques. Instead it is common
practice to find parameter values that maximize the logarithm of the
marginal likelihood. A benefit of this approach is that it turns the problem
of integration into one of optimization. It is also possible to differentiate
the logarithm of the marginal likelihood to use gradient information of
the hyperparameters to speed up the optimization.

See Ch. 4 for more details on possible
optimization routines.



Chapter4
Mathematical Optimization

So far we have seen that optimization is an important aspect of training
models in machine learning. While availability of gradient information
is a great benefactor of ML there are other details such as stochastic
estimates due to large datasets and large parameter spaces that make
its application more difficult. In this chapter we will go over some basic
information from traditional mathematical optimization and see how it
translates to the setting of ML. Most of the content is based on information
from the books of Boyd and Vandenberghe [16], Nocedal and Wright
[109] and Dennis Jr and Schnabel [38].

[16]: Boyd and Vandenberghe (2004),
Convex optimization
[109]: Nocedal and Wright (2006),
Numerical Optimization
[38]: Dennis Jr and Schnabel (1989), ‘A
view of unconstrained optimization’

The chapter will focus on optimization in the form of unconstrained
minimization of a scalar function 5 ()) : ℝ� → ℝ.

The minimization problem can be
turned into a maximization problem by
max 5 ()) ≡ min− 5 ()).

That means that the
parameter ) can take any value in ℝ� and the goal is to find

In constrained optimization ) is restricted
to a subset of ℝ� such as positive val-
ues or locations that satisfy an equality or
inequality constraint.

arg min
)

5 ()). (4.1)

In machine learning this function will usually occur as a regularized risk
minimization problem (Eq. (2.2)) or as the negative log likelihood of a
probabilistic model. The overarching goal is to find a global minimizer
of the function, )★, such that 5 ()★) ≤ 5 ()) for all ). In practice this
condition is difficult to ensure and we often have to accept a local
minimum instead.

There are two conditions that must be satisfied for a point to be a
minimum of a function 5 ()) with continuous second derivative [109]: [109]: Nocedal and Wright (2006), Numeri-

cal Optimization Thm. 2.4

∇ 5 ()★) = 0,
∇∇> 5 ()★) � 0. The Hessian matrix N()) = ∇∇> 5 ()) has

elements [∇∇> 5 ())]8 9 = %2 5 ())/%�8%�9
The first condition indicates that )★ is a change-point so the function
is neither increasing nor decreasing. The second condition states that
the Hessian (the matrix with all second-order partial derivatives) is
symmetric and positive definite (spd).

This is the multivariate version of saying
“the second derivative is positive at )★”.This condition ensures that )★ is

indeed a minimum because the gradient and by extension the function
can only increase for other ) in a small neighborhood around )★.

The second condition also be relaxed to
allow positive semi-definiteness. In this
setting the minimum is not unique but
instead a whole subspace of ℝ� that lie
in the null space of ∇∇> 5 ()★) will be a
valid minimum.

For the
sake of explanation we will only assume the function to be sufficiently
smooth to allow a continuous second derivative.

All of the optimization algorithms of this chapter will be of iterative
nature. At iteration C the algorithm then performs the generic parameter
update

)C+1 = )C − �C · dC , (4.2)

which consists of a step direction dC and a scalar step length �C ∈ ℝ+.
Each update is then expected to result in 5 ()C+1) < 5 ()C), and by iterating
long enough a minimum will be reached.
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In the remainder of the chapter we will explore different strategies for
choosing �C and dC as this will be of central importance to the following
chapters. We will go over two general classes of optimization and highlight
their respective advantages. We will also explore the area in between the
two classes, and elaborate on their connection to linear algebra.

4.1 First-order Optimization

The first group of optimization routines is known as first-order algorithms.
They fall in this category because they use information up to the first
derivative. These methods choose the next update direction dC by using
available gradient information. In principle one could also use zeroth-

order information i. e. function values and
still call it a first-order algorithm. This is
implicitly done by line search routines, see
Sec. 4.4.

By virtue of AD frameworks that readily
provide gradients, this family of methods have gained tremendous
popularity in the ML community [131]

[131]: Schmidt et al. (2021), ‘Descending
through a Crowded Valley - Benchmark-
ing Deep Learning Optimizers’ Appendix
A

.

A simple example of a first-order algorithm is gradient descent with the
standard update

)C+1 = )C − �C · ∇ 5 ()C), (4.3)

where the step direction follows the negative gradient dC = ∇ 5 ()C). The
convergence rate of gradient descent along with most first-order methods
are limited by certain properties of the Hessian.

For a multivariate quadratic function

The constraints on W indicate that the
matrix is symmetric and positive definite
(spd).

5 ()) = 1
2
() − )★)>W() − )★) with W = W> and W � 0,

we get the constant Hessian ∇∇> 5 ()) = W. In this setting it is possible
to upper bound the convergence rate by studying the convergence of an
algorithm that uses the optimal step length�C = arg min 5 ()C−� ·∇ 5 ()C)).
It is the possible to show that the distance to the optimum then decreases
in the following fashion [93, 109]

[93]: Luenberger (1973), Introduction to lin-
ear and nonlinear programming §7.8
[109]: Nocedal and Wright (2006), Numeri-
cal Optimization Thm. 3.3

‖)C+1 − )★‖W ≤
(
�W − 1
�W + 1

)
‖)C − )★‖W . (4.4)

�W is the condition number defined as the ratio of largest and smallest
eigenvalue of W

�W =
�max(W)
�min(W) . (4.5)

The subscripted norm ‖·‖W in Eq. (4.4) refers to a general metric induced
by the spd matrix W that can be used to measure distances.

The rate in Eq. (4.4) can also be expressed
in the more common euclidean norm
‖G − H‖2, which corresponds to W = �

in Eq. (4.6), by performing a change of
variables.‖x − y‖2

W =
1
2
(x − y)>W(x − y) (4.6)

This norm is also known as the Mahalanobis distance and occurs fre-
quently within probability theory and statistics [97] [97]: Mahalanobis (1936), ‘On the

generalized distance in statistics’
. Both the gen-

eral norm and condition number will be recurring features of this
manuscript.

The condition number in Eq. (4.5) measures the most extreme curvature
ratio. A high �W means that the direction with highest curvature has
significantly higher curvature than the direction with the lowest curvature.
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1: Lipschitz continuous derivatives and
strong convexity are common assump-
tions.

θ1

θ 2

Figure 4.1: Gradient descent ( ) and
Momentum ( ) on a quadratic opti-
mization problem with highlighted con-
tour lines. When the eigenvalues of the
Hessian significantly differ (�max(�) �
�min(�)), then gradient-based optimiza-
tion algorithms tend to zigzag across the
valleys leading to slow convergence. Mo-
mentum speeds up the convergence by
averaging out the oscillations.

2: Problems with � � 1.

This conceptualizes as very long and narrow ravines in the optimization
landscape. For a �W � 1 the convergence constant in Eq. (4.4) (�W −
1)/(�W + 1) ≈ 1 and the convergence is very slow for gd. Such a situation
can be seen in Fig. 4.1 where gd keeps jumping across the ravine and
makes little progress towards the minimum.

For more general optimization problems it is necessary to make additional
assumptions about the function1 , some of which can be difficult to verify
in practice. We will not delve into the details but these assumptions usually
correspond to properties of the Hessian to arrive at local convergence
rates.

Momentum Another kind of first-order parameter update worth men-
tioning is Polyak’s momentum [117]

[117]: Polyak (1964), ‘Some methods of
speeding up the convergence of iteration
methods’

. In addition to the gradient it also uses
an accumulating momentum term m that determines the step direction

mC = �mC−1 + ∇ 5 ()C)
)C+1 = )C − �C · mC ,

(4.7)

with a � ∈ [0, 1].

By reformulating the momentum update
to mC = �mC−1 + (1 − �)∇ 5 ()C ) it is
possible to interpret the momentum as a
biased running average [98, 6].

[98]: Mahsereci (2018), ‘Probabilis-
tic Approaches to Stochastic Optimization’
§8
[6]: Balles and Hennig (2018), ‘Dissecting
Adam: The Sign, Magnitude and Variance
of Stochastic Gradients’

Under certain convexity conditions it can speed up the
optimization and achieve a convergence rate that scales with the square
root of the condition number

√
�W − 1

√
�W + 1

.

This requires an appropriately chosen momentum term �, and step length
� but can lead to significantly better convergence than standard gradient
descent [141, 54]

[141]: Sutskever et al. (2013), ‘On the im-
portance of initialization and momentum
in deep learning’
[54]: Goh (2017), ‘Why Momentum Really
Works’

. An example of this discrepancy in performance between
the two algorithms can be seen in Fig. 4.1.

These two forms of first-order optimization algorithms constitute the
backbone of the stochastic optimization routines used in training of
DL models, but also features heavily in other areas of ML. Most of the first-
order algorithms that come bundled with popular AD/ML frameworks
employ a manipulated version of gd or momentum in their updates.

4.2 Second-order Optimization

The strong dependence on the condition number in first-order opti-
mization algorithms means that the algorithm makes slow progress on
ill-conditioned2 problems. In traditional optimization it is common to
use more efficient optimization algorithms that reduce or eliminate this
dependency on condition number. The most prominent family of such
algorithms are known as second-order algorithms. To see the benefit
of these algorithms we start by approximating the function around the
current iterate with a second-order Taylor expansion.

5 ()C + d) ≈ 5 ()C) + d>∇ 5 ()C) +
1
2
d> (∇∇> 5 ()C))︸        ︷︷        ︸

N()C )

d + O(|d |3) (T)
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The Hessian matrix ∇∇> 5 ()C) features a prominent role in unconstrained
optimization and will generally be denoted N()C). From the truncated
Taylor series we build a surrogate function which we aim to minimize in
the current iteration.

5̄ (d) = 5 ()C) + d>∇ 5 ()C) +
1
2
d>N()C)d (4.8)

The minimum of this The derivative w.r.t. the local variable d
∇d 5̄ = 0

surrogate function is found by setting the derivative
to zero assuming N()) is symmetric and positive definite

The matrix N is spd if N = N> and
v>Nv > 0 ∀v ∈ ℝ� . This is equiva-
lent to saying all eigenvalues of N �8 > 0
8 = 1, ..., �.

. The minimum
of the surrogate occurs at the dC that satisfies

N()C)dC = −∇ 5 ()C)
⇔ dC = −N()C)−1∇ 5 ()C).

(N)

Solving this linear system and using the resulting dC in Eq. (4.2) along
with � = 1 leads to the famous Newton step [16] [16]: Boyd and Vandenberghe (2004),

Convex optimization §9.5
. If the function is close

to a minimum so the surrogate Eq. (4.8) is a good approximation then
the Newton update converges with a quadratic rate [109] [109]: Nocedal and Wright (2006),

Numerical Optimization Thm. 3.5
.

‖)C+1 − )★‖ ≤ 2 · ‖)C − )★‖2

This means that the effective scaling factor 2 in front decreases with each
iteration. Another way to phrase it that the convergence rate is accelerating.
Often just a few iterations of the Newton update are necessary to make
significant progress in traditional optimization.

There are several advantages to the Newton update compared to first-
order algorithms, and one in particular is worth highlighting. Simply
performing a parameter update with the gradient and an arbitrary step
length is not consistent in terms of units

[)] = [)] − � · [ 5 ][)]

This also makes the update sensitive to the scale of the function. If we
multiplicatively rescale the function with  > 0

5̄ ()C) =  · 5 ()C) → ∇ 5̄ ()C) =  · ∇ 5 ()C),

we see that the gradient changes by the corresponding amount. In order
to still scale properly � must counteract the change imposed by . For an  > 1 5̄ ()) > 5 ()) the step length

� must decrease and vice versa for 0 <
 < 1.The corresponding analysis for the Newton step reveals an invariance to

the scaling as well as consistency with the units.

[)] = [)] − � ·
(
 · [ 5 ]
[)]2

)−1 (
 · [ 5 ]
[)]

)
= [)] − � · 



(
[)]2
[ 5 ]

) ( [ 5 ]
[)]

)
= [)] − � · [)]

A downside of second-order methods such as the Newton update is
its poor scaling with dimensionality. Computing the Hessian, which is
required for the update, is theoretically possible for a general function
thanks to automatic differentiation. However, for a high-dimensional
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input space it might not be possible to store the matrix in memory due to
the O(�2) storage requirement. Another aspect that is often cited as the
main bottleneck is the O(�3) computational scaling due to the matrix
inversion in Eq. (N). In some cases the matrix N()) exhibits certain
structure that makes it possible to invert the matrix at reduced cost,
but generally it will require the solution of a linear system which has a
computational cost that scales cubically in the dimension of the problem.
By comparing these restrictions to the O(�) storage and computation
required for first-order methods one can understand the prevalence and
necessity of the latter in high-dimensional optimization problems.

4.3 Linear Algebra

There are more aspects to the field of optimization that will be highlighted
in subsequent sections. Before that we will look into one particular
connection between linear algebra and optimization that was touched
upon in the previous sections.

Finding the step direction in Eq. (N) is connected to a common task in
linear algebra. If the matrix N()) is spd then the local surrogate function
Eq. (4.8), has a unique local optimum at the Newton step in Eq. (N). In
this setting there is an important connection between optimization and
iterative linear solvers encountered in linear algebra. Solving the linear
system Nd = b is equivalent to optimizing the quadratic function

)(d) = 1
2
(d − d∗)>N(d − d∗) + 2, (4.9)

with an arbitrary offset 2 that is generally neglected. The minimum
occurs at N(d − d∗) = 0 ⇔ d = d∗ = N−1b. Replacing the r.h.s. b with
the negative gradient recovers the Newton step in Eq. (N).

One of the most famous solvers for this kind of problem is the method
of conjugate gradients (cg) [67].

[67]: Hestenes and Stiefel (1952), ‘Methods
of conjugate gradients for solving linear
systems’
[137]: Shewchuk (1994), An Introduction to
the Conjugate Gradient Method Without the
Agonizing Pain

It will solve a linear system with a spd
matrix N by iteratively improving the current estimate of the solution. In linear algebra these linear systems are

often denoted Gx = b. To avoid cluttered
notation it is only mentioned here for ref-
erence.

cg has several appealing properties making it one of the most popular
iterative algorithms for solving linear systems with an spd matrix [137].
A few of these properties are listed below.

I The algorithm only requires access to matrix-vector multiplications
(mvm) with the matrix i. e., y = Nv. Sometimes it is not possible to
construct or store the matrix that is present in the linear system but
it might be possible to multiply with it. This is particularly beneficial
when N exhibits certain characteristics such as sparsity patterns
or low-rank structure. cg has become particularly interesting in
combination with AD libraries due to a trick that allows mvms with
the Hessian by performing 2 AD operations [114]

[114]: Pearlmutter (1994), ‘Fast exact
multiplication by the Hessian’.

Nv can be calculated with 2 reverse-mode
operations as N())v = ∇(v>∇ 5 ())).
A combination of forward-mode and
reverse-mode is also possible and more
efficient but not generally available.

I Low memory requirements. It is possible to phrase the updates
of cg to use only 3 vectors of size � making it similar in storage
requirement to first-order methods.

I Converges to the solution after � iterations in exact arithmetic. The
convergence can break down due to numerical imprecision and
practitioners have to rely on efficient preconditioning or restarts to
improve stability and convergence.
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I The convergence rate of cg is usually referenced to depend on the
square root of the condition number(√

� − 1
√
� + 1

)
,

similar to gd with Momentum3

3: cg chooses a step direction sC =

−∇ 5 ()C ) + �C · sC−1 which can be seen
as an adaptive form of Momentum that
uses knowledge of the underlying prob-
lem to adjust the parameters (�C , �C ) for
local optimality.

, but without tuning of parameters.
The referenced convergence rate is an upper bound and a tighter
superlinear rate is often observed. Whether this occurs or not
depends on the distribution of the eigenvalues [145]. A beneficial
setup is when there are a few significantly larger eigenvalues or if
there are clustered eigenvalues [109].

The convergence is governed by an effec-
tive condition number that changes as the
Ritz values converge to the extreme eigen-
values.
[145]: Van der Sluis and Vorst (1986), ‘The
rate of convergence of conjugate gradients’
[109]: Nocedal and Wright (2006), Numeri-
cal Optimization §5.1I cg can often converge faster to a good approximate solution in

: � � iterations, potentially leading to a good cost-performance
trade-off.

cg can also be seen as an optimization algorithm within another opti-
mization algorithm when used for solving linear systems that include
the Hessian, such as the Newton update. Approximating the Newton
step with cg is known as Newton-cg [109], truncated Newton [107] or
Hessian-free optimization [101].

see also scipy.optimize.minimize

[107]: Nash (2000), ‘A survey of truncated-
Newton methods’
[101]: Martens (2010), ‘Deep learning via
Hessian-free optimization’A lot of work has focused on generalizing

the cg algorithm to nonlinear functions [45, 115, 28]
[45]: Fletcher and Reeves (1964), ‘Function
minimization by conjugate gradients’
[115]: Polak, E. and Ribiere, G. (1969),
‘Note sur la convergence de méthodes de
directions conjuguées’
[28]: Dai and Yuan (1999), ‘A Nonlinear
Conjugate Gradient Method with a Strong
Global Convergence Property’

. The main difference
between these algorithms is in which assumptions are used implicitly to
determine a new step direction3 when properties of orthogonality and
conjugacy are not fulfilled.

One downside of cg worth mentioning is its sensitivity to numerical
imprecision. This restricts the applicability of cg within ML where
subsampling is often necessary which introduces significant noise beyond
the numeric precision.

4.4 Step Length

Talking about first-order optimization algorithms will invariably lead to
a discussion about the step length parameter � in Eq. (4.2).

Also known as step size or learning rate.
These terms will be used interchangeably
throughout the manuscript but refer to the
same quantity.

Compared
to second-order methods there is usually not a suitable standard value
of the step length varies a lot between problems and will have a strong
impact on the optimization. If the step length is chosen too large then the
optimization algorithm might fail to converge or even diverge, leading to
numeric overflows. If, on the other hand, the step length is chosen too
small it will lead to minor and slow progress. Finding a suitable value for
the step length usually requires a significant amount of trial and error.
The process can be accelerated by running the same optimization problem
with different learning rates in parallel. This is obviously only possible
if there is hardware available. In ML, the iterative process of tuning the
learning rate, either sequentially or in parallel, is a time-consuming yet
necessary step of model development.

In the previous sections we saw that the convergence rate of first-order
algorithms depends on the condition number �. The optimal step length
has a similar dependency but is mostly influenced by the largest eigen-
value of the Hessian, which encodes the highest curvature locally, as
opposed to the ratio.

For general optimization this corresponds
to a ratio of problem-dependent Lipschitz
constant ! and strong convexity parameter
�. These parameters bound how much
and little a function can deviate with a
perturbation in the input.In this way it is possible to interpret the step length

as a crude approximation to the curvature.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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In traditional deterministic optimization one can circumvent the problem
of choosing a step size by employing a line search routine instead [109]

[109]: Nocedal and Wright (2006),
Numerical Optimization §3.

Such algorithms look for a local minimum along a predetermined search
direction by repeatedly evaluating the function, and potentially gradient
along the line. A step length is then chosen as

�C = arg min
� ∈ℝ+

5 ()C − � · dC), with d>
C ∇ 5 ()C) > 0. (4.10)

Finding the exact minimum along dC can be expensive and often it is more
useful to trade a few exact parameter updates against more parameter
updates with approximately optimal step lengths.

This mentality is mirrored in ERM where
more iterations with smaller batches are
favored over large batches with fewer iter-
ations.To this end there

are line search conditions that ensure a “sufficient” decrease in each
iteration is achieved [160, 161, 4]

[160]: Wolfe (1969), ‘Convergence condi-
tions for ascent methods’
[161]: Wolfe (1971), ‘Convergence con-
ditions for ascent methods. II: Some
corrections’
[4]: Armĳo (1966), ‘Minimization of
functions having Lipschitz continuous
first partial derivatives’

. These conditions have been generalized
in various ways to the stochastic setting encountered in ML [99, 150, 157]

[99]: Mahsereci and Hennig (2017),
‘Probabilistic line searches for stochastic
optimization’
[150]: Vaswani et al. (2020), ‘Adaptive
Gradient Methods Converge Faster with
Over-Parameterization (and you can do a
line-search)’
[157]: Wills and Schön (2019), ‘Stochastic
quasi-Newton with line-search regulariza-
tion’

.
Despite promising progress, line search routines are not so common in
ML due to the multiplicatively increasing cost and time associated with
repeated queries of function and gradient. Instead the same problem is
often solved with a first-order algorithm in parallel on multiple machines
with different fixed learning rates.

4.5 Step Direction

In Sec. 4.1 and 4.2 we studied the benefits and limitations of first-order and
second-order optimization algorithms which lie diametrically opposite
each other in terms of computation and convergence. It is then natural to
ask if there are ways to mitigate the limitations of first-order algorithms
yet avoid the extreme cost of second-order algorithms. Here we will
explore some of the options that lie in-between the two frameworks
and see how it is possible to interpolate between the two. The first
setting is preconditioning which is mainly used in linear algebra but
also applies to optimization. The second is optimization with a general
metric and we will see how the two can be made equivalent under certain
assumptions.

Preconditioning

In Sec. 4.3 we saw how cg can be seen as a first-order optimization algo-
rithm that matches the optimal convergence rate of gd with momentum.
It is possible to speed up the convergence rate further by employing a
technique called preconditioning. The idea behind preconditioning is to
alter the spectral density of N in Eq. (4.9), and by extension the condition
number �, to make more progress in each iteration [109] [109]: Nocedal and Wright (2006),

Numerical Optimization §5.1
. Determining a

suitable preconditioner is a problem dependent art and employing it can
be necessary to ensure convergence of cg due to numerical imprecision.
Preconditioning is usually presented in terms of the specific problem
where cg is applicable (Eq. (4.9)). To facilitate the comparison with a
general metric in the next section we will instead look at preconditioning
from a general optimization perspective.

The main idea behind preconditioning is to linearly transform the input
space into a new beneficial basis, perform the optimization in the new



Chapter 4 Mathematical Optimization 34

space and transform back. This requires an invertible map V : ℝ� → ℝ� V is usually characterized with an invert-
ible � × � matrix.in order to construct the transformed variable )̃ = V). It is now possible to

express the function in terms of the transformed variable 5 ()) = 5 (V−1)̃). Since V is invertible it follows that )̃ =

V) ⇔ V−1)̃ = )

Using the chain rule of derivatives we can now express the gradient in the
transformed space by expanding the derivative in its partial constituents

The transpose appears because of the con-
traction of the 9-index and we want the
gradient to match the orientation of )̃.

% 5 (V−1)̃)
%�̃(8)

=
% 5 ())
%�(9)︸ ︷︷ ︸
∇ 5 ())

%�(9)

%�̃(8)︸︷︷︸
V−1

= V−>∇ 5 ()). (4.11)

A single gradient descent step in the transformed space is now realized
with the update

)̃C+1 = )̃C − �C · V−>∇ 5 ()C). (4.12)

We can then transform back to the original parameter by multiplying
Eq. (4.12) from the left with V−1 to arrive at the final update

)C+1 = )C − �C · V−1V−>︸   ︷︷   ︸
]−1

∇ 5 ()C). (4.13)

We now see that a preconditioned gradient step does not require the
matrix V explicitly but rather the combined symmetric matrix ]−1 =

V−1V−>. The resulting matrix ]−1 is spd if V is of full rank leading to a
well-defined parameter update.

V can also be rank-deficient but it leads to
optimization steps restricted to a limited
subspace and the pseudo inverse must be
used as a least-square solution.

To better understand the effect of preconditioning it is useful to look at the
local Taylor series in the transformed space. Expressing the second-order
Taylor expansion, see Eq. (T), in terms of the transformed variable leads
to

5 (V−1)̃ + d̃) ≈ 5 ()) + d̃>V−>∇ 5 ()) + 1
2
d̃> V−>[N())]V−1︸            ︷︷            ︸

�̃())

d̃. (4.14)

In the transformed space we have a local curvature induced by �̃()).
If �̃()) = � then the condition number � = 1 and we can expect
fast convergence. In this setting ] = N()) and a step of Eq. (4.13) is
equivalent to the Newton step.

[16]: Boyd and Vandenberghe (2004), Con-
vex optimization

θ1

θ 2

f(θ)

θ̃1

θ̃ 2

f(θ̃)

Figure 4.2: The left plot shows level curves
for a convex function 5 (·) with gradient
( ) and rescaled gradient ( ) ac-
cording to the elliptic metric. The right
plot shows the level curves and gradient
for the equivalent preconditioned input.
Example function from [16].
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General Metric

Another way of improving the convergence rate of first-order algorithms
is to consider the optimization in a more general metric that better
captures the underlying curvature [16] [16]: Boyd and Vandenberghe (2004),

Convex optimization §9.4
. One way of interpreting this

is to add a quadratic regularization term to the parameter update that
penalizes dimensions unevenly. A visualization of such a regularization
can be seen in Fig. 4.3.

θ1

θ 2

da

db

||d||

θ1

θ 2
da

db

||d||W

Figure 4.3: Corresponding level curves
for the distance in standard !2 norm (left)
and with an arbitrary metric (right). In the
left figure | |d0 | | ( ) < | |d1 | | ( ).
The converse is true for the general metric
(right). Note that the right contours does
not have to be axis-aligned but is an attrac-
tive choice since ] is then diagonal and
cheap to invert.

There are two equivalent ways of writing the regularized update that
are used interchangeably in the literature. The first is to phrase the local
parameter update in terms of the new iterate

‖a−b‖2
] is the squared distance between

a and b measured in ] -norm for ] � 0.
In statistics this is known as the Maha-
lanobis distance [97].
[97]: Mahalanobis (1936), ‘On the general-
ized distance in statistics’

)C+1 = arg min
)

5 ()C) + () − )C)>∇ 5 ()C) +
1
2
() − )C)>] () − )C)︸                    ︷︷                    ︸

‖)−)C ‖2
]

,

which is suitable for illustrative purposes. The second option is to express
the regularization in terms of the update d = () − )C)

dC = arg min
d

5 ()C) + d>∇ 5 ()C) +
1
2

(
d>,d

)︸    ︷︷    ︸
‖d‖2

]

(4.15)

which is more suitable for the connection to other optimization routines
and will be the preferred option moving forward. If ] is an spd matrix
then there exists a unique minimum to Eq. (4.15) which occurs at

A valid metric requires that dist(a , b) =
dist(b, a) (symmetry) and dist(a , b) ≥
0, ∀a , b (positive definiteness). A general-
ization of this definition of distance with
weaker constraints is known as a Bregman
divergence.]dC = −∇ 5 ()C) ⇔ dC = −]−1∇ 5 ()C).

By combining the full parameter update of Eq. (4.2) with a step length
we get

)C+1 = )C − �C ·]−1∇ 5 ()C). (4.16)

There are several aspects of the update that are worth elaborating as they
connect to previous sections of the chapter.

A connection to Gaussian inference will
be explored in Ch. 5.

I For ] = O Eq. (4.16) is equivalent to the standard gradient descent
step. This corresponds to circular contour lines so every dimension
is treated equivalently.

See Fig. 4.3.
I For ] = N()C) with N()C) � 0 Eq. (4.16) recovers the Newton

step. This way it is possible to interpret the Newton step as a
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4: or the inverse of the Hessian

parameter update with a regularization provided by the local
curvature captured by the Hessian.

I For a general ] � 0 the update in Eq. (4.16) is equivalent to the
preconditioned update in Eq. (4.13).

Knowledge about the optimization problem can be encoded in] to bring
the convergence rate of first-order methods closer to that of second-order
methods while still keeping the per-iteration cost low. The majority of
stochastic optimization routines that are used in ML revolve around
finding cheap metrics ] that are updated during the course of the
optimization.

] is usually a diagonal matrix to allow
cheap inversion.

4.6 Quasi-Newton Methods

The introduction of a metric/preconditioner allows a convenient way of
trading computational cost per iteration vs precision if the parameter
update. This is useful when there is information about the optimization
problem that can be encoded in ] to approximate the curvature. It
is in general difficult to come up with a cheap and efficient ] for a
specific problem and even more so for arbitrary problems. A poten-
tial workaround for this is to let ] adapt to the problem during the
optimization. Phrased differently, it is possible to have a model that
learns the curvature during the optimization. Arguably, the most famous
adaptive curvature estimators are known as Quasi-Newton (qn) methods.
The name stems from the way that the algorithms operate, namely, by
performing an approximate Newton step on a limited subspace which
reduces the cost per-step compared to the full Newton update. These
algorithms only require access to gradients which are collected during
the optimization to estimate the curvature. Since the Hessian encodes the
local change in gradients one can then try to fit a matrix with a constant
curvature to approximate the Hessian4 .

The whole procedure relies on the chain rule of derivatives together with
the fundamental theorem of calculus as a way to link a difference in
gradients to properties of the Hessian. We start by parameterizing the
path between two consecutive parameter iterates of the optimization

rC(�) = )C + �()C+1 − )C).

By now integrating the change in gradient along the we arrive at two
possible parameterizations.

1∫
0

%

%�
∇ 5 (rC(�))d� =


∇ 5 (rC(1)) − ∇ 5 (rC(0)) = ∇ 5 ()C+1) − ∇ 5 ()C)
1∫

0
∇∇> 5 (rC(�))︸         ︷︷         ︸

N(rC (�))

()C+1 − )C)d�

If we now equate these two expressions we arrive at the full form of the
famous secant equation [109]: It is also known as the secant condition.

[109]: Nocedal and Wright (2006), Numeri-
cal Optimization Thm. 2.11∫

0

N(rC(�))()C+1 − )C)d� = ∇ 5 ()C+1) − ∇ 5 ()C), (4.17)
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θ1 τ∗τ∗ θ2

f(θ1)

f(θ2)

Figure 4.4: Two functions with a �∗ ∈
[�1 , �2] such that 5 ′(�∗) = Δ 5 /Δ�.

which connects the Hessian to gradients and is the foundation of all qn-
methods. The parametric form of the Hessian in Eq. (4.17) is cumbersome
to deal with so it is usually approximated as constant along the path.
This approximation can be justified in two ways:

1. The averaged Hessian along the path rC(�) is constant and fulfills
the condition

1∫
0

N̄C(�)︸︷︷︸
NC

()C+1 − )C)d� = ∇ 5 ()C+1) − ∇ 5 ()C).

2. For a twice continuously differentiable function there exists a point
�∗ along rC(�) such that

1∫
0

N(rC(�∗))︸    ︷︷    ︸
NC

()C+1 − )C)d� = ∇ 5 ()C+1) − ∇ 5 ()C).

A 1d example of this statement involving the function and derivative
can be seen in Fig. 4.4.

Regardless of justification, by approximating the Hessian as constant
over r(�) Eq. (4.17) simplifies to

The Hessian is multiplied with the vector
()C+1 − )C ) not evaluated at that point.

NC()C+1 − )C) = ∇ 5 ()C+1) − ∇ 5 ()C), (4.18)

which avoids the integration along a curve. This approximation is so
common that many researchers refer to the approximation in Eq. (4.18)
when talking about the secant equation. To avoid confusion when com-
paring to similar work we will also refer Eq. (4.18) as the secant equation
for the remainder of the manuscript unless otherwise stated.

A Family of Updates

It turns out that there are many ways to fit a matrix such that a linear
constraint is fulfilled. This leads to a whole family of matrix updates
that each satisfy the secant equation, Eq. (4.18), in various ways. Some of
these updates will reappear in later chapters and therefore merit further
discussion. The following list of updates is by no means exhaustive
but will only highlight a few of the more prevalent ones with different
appealing properties. See [37, 59, 55, 109]

[37]: Dennis and Moré (1977), ‘Quasi-
Newton methods, motivation and theory’
[59]: Haelterman (2009), ‘Analytical study
of the least squares quasi-Newton method
for interaction problems’
[55]: Goldfarb (1970), ‘A family of
variable-metric methods derived by
variational means’
[109]: Nocedal and Wright (2006),
Numerical Optimization

and references therein for more
updates, history, comparisons and theory.

To simplify the notation we start by defining two vectors that correspond
to a difference in inputs as well as gradients

sC = )C+1 − )C and
yC = ∇ 5 ()C+1) − ∇ 5 ()C).

With these vectors defined it is possible to write the secant equation in
the shorter form

NsC = yC
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which makes the notation less cluttered moving forward. The goal of
qn-methods is to use the secant equation in order to build an estimate
of the Hessian that can be used to determine new step directions by
imitating the Newton step

dC = −N−1
C ∇ 5 ()C). (4.19)

We will here focus on the matrix updates but a successful implementation
would require an additional line search routine to ensure convergence
and stability of the resulting matrices.

Broyden’s rank-1 The first and simplest update is the rank-1 update of
Broyden [19]

[19]: Broyden (1965), ‘A class of methods
for solving nonlinear simultaneous equa-
tions’

NC+1 = NC +
(yC − NCsC)s>C ]

s>C ]sC
(Broyden)

with an arbitrary symmetric matrix ] of full rank. ] can also be rank-deficient but the impor-
tant part is that sC is not in the nullspace
of ] so s>C ]sC ≠ 0.

This update satisfies
NC+1sC = yC which is easily verified by performing the multiplication. It
is however not symmetric, which is a property of the Hessian for a twice
continuously differentiable scalar function. Broyden’s update can, despite
the asymmetry, lead to good performance when used to determine a new
step direction with Eq. (4.19).

Symmetric rank-1 Trying to make Broyden’s update symmetric in-
evitably leads to the SR-1 update. The update can be made symmetric by
exchanging ]sC ↔ (yC − NCsC) in Broyden’s update to arrive at

NC+1 = NC +
(yC − NCsC)(yC − NCsC)>

s>C (yC − NCsC)
. (SR-1)

It is still a rank-1 update but it retains the symmetric property as long
as the initial matrix N0 is symmetric. A slight drawback is that the
matrix is not positive definite in general and requires greater care if
s>C yC ≈ s>C NCsC . The first detail means that there is no well-defined
minimum to the quadratic approximation in Eq. (4.8) and second leads
to an ill-defined inverse of the matrix. To combat these shortcomings
it is common to use the SR-1 update in conjunction with trust-region
methods.

Trust-region methods are an alternative
to line search methods. These define a
“region of trust” in which a surrogate is
minimized. If the surrogate is a good fit
to the real function, the region is made
larger and is made smaller if the surrogate
matches poorly.

Davidon-Fletcher-Powell (DFP) The next logical step in developing a
good update is to make the SR-1 update positive definite, which is feasible
if we instead consider a rank-2 update. There are several possibilities
to achieve such an update but one of the most famous options was
developed by Davidon [31], Fletcher and Powell [47].

[31]: Davidon (1959), Variable metric method
for minimization
[47]: Fletcher and Powell (1963), ‘A
rapidly convergent descent method for
minimization’

The DFP-update is
often written

NC+1 =
(
O − �CyCs>C

)
NC

(
O − �CsCy>

C

)
+ �CyCy>

C , (DFP)

with �C = (s>C yC)−1, to emphasize the recurrent nature of the update and
for efficient implementation in algorithms. It can also be phrased in the
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following way to make the rank-2 update clear.

NC+1 = NC + [yC , (yC − NCs)]
[
�C(�Cs>C NCsC − 1) �C

�C 0

] [
y>
C

(yC − NCsC)>
]

The DFP-update satisfies the most important properties we want fulfilled
when approximating the Hessian. It is symmetric, updates are of low-rank
to facilitate fast inversion and the resulting matrix is positive definite
if s>C NCsC > s>C yC > 0. Despite ticking all the right boxes the DFP-
update is often overshadowed by the next and last update which has
become the standard algorithm for unconstrained optimization in several
optimization packages.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) The most popular qn method
improves upon the DFP update in a simple yet important way. Instead
of updating the estimate of the Hessian, it performs the update for
the inverse. It is easiest understood by rewriting the secant equation
(Eq. (4.18)) to involve the inverse Hessian

A more formal derivation is to write the up-
date as the minimization problem solved
by the Dennis family [37].
[37]: Dennis and Moré (1977), ‘Quasi-
Newton methods, motivation and theory’NsC = yC ⇔ sC = N−1yC .

By now adapting the DFP-update to rely on the above condition we get
the update

N−1
C+1 =

(
O − �CsCy>

C

)
N−1
C

(
O − �CyCs>C

)
+ �CsCs>C , (BFGS)

with once again �C = (s>C yC)−1. The update was independently discovered
around the same time by Broyden [20], Fletcher [46], Goldfarb [55] and
Shanno [135] giving rise to its name and it is to this day one of the most
popular optimization methods.

[20]: Broyden (1970), ‘The convergence of
a class of double-rank minimization algo-
rithms 1. general considerations’
[46]: Fletcher (1970), ‘A new approach to
variable metric algorithms’
[55]: Goldfarb (1970), ‘A family of variable-
metric methods derived by variational
means’
[135]: Shanno (1970), ‘Conditioning of
quasi-Newton methods for function mini-
mization’

An advantage of BFGS compared to DFP
is that the inverse Hessian is already estimated so the step direction in
Eq. (4.19) only requires a matrix multiplication and no matrix inversion.

Low-rank Update

All of the preceding updates have been presented as rank-1 or rank-
2 updates and it was indicated that low-rank updates are beneficial.
The main reason for this is captured in Woodbury’s matrix inversion
lemma [162] [162]: Woodbury (1950), Inverting modified

matrices
stated below. For matrices G ∈ ℝ�×� , [ ,\ ∈ ℝ�×" and

I ∈ ℝ"×" with " < � it is possible to write the inverse of the low-rank
update

(G +[I\>)−1 = G−1 − G−1[ (I−1 + \>G−1[ )−1\>G−1. (4.20)

If G is cheap to invert then it is possible to solve linear systems with the
low-rank update at cost O("3 +"�) (neglecting the cost of finding G−1)
which can be significantly lower than the naïve O(�3). This is exactly
the operation that is required to find the approximate Newton step in
Eq. (4.19) making low-rank updates very attractive for qn algorithms.

This trick is only applicable when " < � and preferably " � �

because there is a significant computational overhead when implementing
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Eq. (4.20) in standard languages compared to the highly optimized low-
level numerical routines that are called when solving linear systems.

An example of this will be presented in
Ch.7.

In general there is no guarantee that the NC will converge to the true N())
as C → � for the presented qn updates unless the Hessian is indeed spd
and constant everywhere. If that is the case then some of the updates
will converge but the optimization problem is then better addressed
with cg due to its lower computational cost and storage requirement. The updates of cg and the presented al-

gorithms can be made equivalent in this
case, but cg avoids storing the matrix.

Since we can only learn the real Hessian locally but its inverse would be
expensive it is more beneficial to only store a few " (s , y)-pairs instead
of the whole history. If " is small and the vectors capture high-curvature
directions then the low-rank curvature estimates can be used as a cheap
preconditioner to speed up the convergence according to the analysis in
Sec. 4.5.

The important part is to reduce the con-
dition number and therefore also low-
curvature regions can just as well be used.All of the low-rank updates are amenable to this kind of limited

memory version and the name is then updated to reflect the truncated
history by adding an L in front, such as L-bfgs.

4.7 Summary

We have now explored some central aspects of unconstrained optimiza-
tion which one should be aware of when constructing new optimization
algorithms. We have seen how the, on the surface, simple choice of
determining a step direction and step length becomes a multifaceted
problem with several possible ways to approach. Inclusion of curvature
information helps alleviate the difficulty of finding these parameters but
it comes with additional computational requirements that make it infea-
sible for high-dimensional optimization.

This prohibitive scaling with dimension
will be a recurring theme throughout this
document.A lot of work has been invested

in finding a good trade-off between accuracy and cost of applying the
curvature estimate. This is particularly obvious in deep learning where
the available optimization algorithms grow by the day [131]

[131]: Schmidt et al. (2021), ‘Descending
through a Crowded Valley - Benchmark-
ing Deep Learning Optimizers’ Appendix
A

.

While aspects of the preceding sections will appear in every following
chapter, some chapters have a tighter connection to the background.

I Chapter 5 connects the notion of general metric (Sec. 4.5) with
Gaussian inference to adjust the step length (Sec. 4.4) of general
first-order optimization algorithms (Sec. 4.1).

I Chapter 6 uses matrix-variate Gaussian inference to learn a cur-
vature estimate that can be used as a preconditioner (Sec. 4.5) for
first-order algorithms (Sec. 4.1) in a manner similar to quasi-Newton
methods (Sec. 4.6). The resulting algorithm is initially derived using
the connection between optimization and linear algebra (Sec. 4.3).

I Chapter 7 deviates from the constant curvature assumptions em-
ployed so far and uses Gaussian processes to construct nonpara-
metric counterparts to the traditional algorithms presented in
sections 4.5 and 4.6. The chapter does not delve into details of the
algorithmic development but solves an important issue that largely
prevented the applicability of Gaussian processes in this direction.
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1: See PyTorch.optim documentation for
some of the most popular algorithms.

2: See Sec. 3.2.
3: See Sec. 4.5.

Chapter5
Probabilistic Metric Adaptation

5.1 Introduction

The The manuscript was originally presented
in [36].
[36]: de Roos et al. (2021), ‘A Probabilisti-
cally Motivated Learning Rate Adaptation
for Stochastic Optimization’

preliminary parts of chapter 2 and 4 outlined the need for cheap, yet
effective optimization algorithms to deal with the high dimensional input
space of contemporary ML and DL models. Since optimization constitutes
an integral part of the learning procedure there now exists a zoo of viable
first-order optimization algorithms with minor computational overhead
that utilize automatic differentiation1 . These algorithms all have several
hyperparameters that influence their efficacy of which the most influential
is the learning rate. A lot of work is invested into tuning the learning rate
to get a good model in the end. This chapter will explore the connection
between Gaussian inference2 and optimization with a general metric3 .
Combining the two frameworks produces a probabilistic version of the
Polyak step [116] Details will be provided in Sec. 5.2.

[116]: Polyak (1987), Introduction to Opti-
mization

for an ideal setup with non-trivial additional information.
In the absence of specialized information we develop a heuristic that
automatically tunes the learning rate for popular first-order optimization
algorithms, which empirically exhibits robustness across a range of
popular ML tasks and datasets. The second point can be interpreted as
either empirically updating the scale of a prior distribution to achieve a
better update from an observation, or it can be seen as updating the scale
of general metric to automatically tune the step length of the optimization
algorithm.

Particular focus is placed on empirical risk minimization where a loss
function 5 that is average sum of individual losses ℓ over elements x8 of
the dataset as

We let 8 ∈ D denote an index that indicates
a unique datum in the dataset.

5 ()) = 1
|D|

∑
8∈D

ℓ (), x8) + ℛ()), (5.1)

where ) ∈ ℝ� denotes the parameter to be optimized and ℛ(·) is an
additional regularization term. In traditional fashion, to facilitate efficient
training at the cost of accuracy, sub-sampling is employed which instead
considers the loss over smaller batches ℬ ⊂ D as an unbiased but noisy
estimate of the true loss.

ℒℬ()) =
1
|ℬ|

∑
8∈ℬ

ℓ (), x8) + ℛ()) (5.2)

If the elements of the batch are drawn i.i.d. and 1 � |ℬ| � |D|, then
by the Central Limit Theorem, ℒℬ is approximately normal distributed
around the true function value

?(ℒℬ()C)) = N(ℒℬ()C); 5 ()C), '), (5.3)

https://pytorch.org/docs/stable/optim.html
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with a variance ' that scales with the batch size as O(1/|ℬ|). While
stochasticity drastically reduces computational cost and may have benefi-
cial side-effects like improved generalization [60, 164] [60]: Hardt et al. (2016), ‘Train faster,

generalize better: Stability of stochastic
gradient descent’
[164]: Wu et al. (2020), ‘On the noisy
gradient descent that generalizes as sgd’

, it also complicates
parameter tuning. In contrast to classic numerical optimization routines,
variants of stochastic gradient-descent (sgd [122, 82]

[122]: Robbins and Monro (1951), ‘A
stochastic approximation method’
[82]: Kiefer and Wolfowitz (1952),
‘Stochastic Estimation of the Maximum of
a Regression Function’

expose free param-
eters to the user. Chief among them is the scalar learning rate � that
determines the length of the step size taken in the direction dC as

)C+1 = )C − � · dC , (5.4)

with dC chosen iteratively by the optimization routine (in the case of vanilla
sgd dC = ∇ℒℬ()C)). The learning rate constitutes a crude approximation
to local curvature and crucially affects the convergence of the training,
and by extension the performance of the model. Its optimal value depends
on parameters of the model such as the network architecture, the dataset,
and the optimization algorithm. Combining these aspects results in a
broad range of possible learning rates for each new problem and model.
Although various semi-automated and fully automated routines have
been proposed to tune the learning rate [9, 99, 151]

[9]: Baydin et al. (2018), ‘Online Learning
Rate Adaptation with Hypergradient
Descent’
[99]: Mahsereci and Hennig (2017),
‘Probabilistic line searches for stochastic
optimization’
[151]: Vaswani et al. (2019), ‘Painless
stochastic gradient: Interpolation, line-
search, and convergence rates’

, practitioners still
largely rely on a manual process of repeated training runs, causing
significant use of computational resources [5]

[5]: Asi and Duchi (2019), ‘The importance
of better models in stochastic optimiza-
tion’

and manual labor.

Contributions

In this work, we describe a probabilistic inference scheme that can be
used as an add-on to existing first-order optimization methods (Section 5.2).
The procedure explicitly models observation noise caused by data sub-
sampling which in the noise-free limit recovers a generalization of
the Polyak (1987) [116]: Polyak (1987), Introduction to Opti-

mization
step for parameter updates. In Section 5.2 we show

how various well-known optimization methods can be included in the
inference and pave the way for the identification of new ones. There
are several parameters associated with the inference procedure. We
analyze them in detail and based on the findings arrive at a learning
rate adaptation scheme (Section 5.3). It relies on a local quadratic model
of the loss function, implicitly defined by the underlying optimization
algorithm. The learning rate is adapted during training thereby reducing
the need for outer-loop tuning. We empirically show that the proposed
update rule is robust w.r.t. the learning rate, leading to stable convergence
for a range of popular optimization algorithms across common deep
learning benchmarks.

5.2 Method

To set the scene, consider a re-factored second-order Taylor expansion of
the scalar function 5 ()) : ℝ� → ℝ in a vector d around the current loca-
tion )C , using the (ground-truth, full-batch) gradient ∇ 5C , ∇ 5 ()) | )=)C
and Hessian NC ∈ ℝ�×� with [NC]8 9 , %2 5 ())

%)8%)9
| )=)C . Assuming the Hes-
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sian is invertible, we write this local approximation as

5̄C()C + d) = 1
2
(d + N−1

C ∇ 5C)>NC(d + N−1
C ∇ 5C)︸                                    ︷︷                                    ︸

)N (d)

+ 5 ()C) −
1
2
∇ 5 >C N−1

C ∇ 5C︸                      ︷︷                      ︸
5 ∗

.

(5.5)

When the Hessian is positive definite, the minimum value of this
quadratic approximation 5 ∗ is attained at the well-known Newton update
d★C = −N−1

C ∇ 5C which occurs at the point )★
C = )C − N−1

C ∇ 5C . Because
computing this update is computationally costly, large parts of classic con-
vex optimization (in particular, conjugate gradients and quasi-Newton
methods [109] [109]: Nocedal and Wright (2006),

Numerical Optimization §5 & §6
) are concerned with efficient estimation of d★C from a

sequence of observed gradients. Big-data machine learning adds a new
challenge to this setting, for which these classic methods are ill-equipped:
significant sub-sampling noise on the gradient and (if it is computed) the
Hessian.

Probabilistic Model

We phrase the task of locating (inferring) the minimizer )★
C ∈ ℝ� of

the local quadratic model given in Eq. (5.5) at iteration C based on noisy
observations of the cost ℒℬ()C) from Eq. (5.2) as a probabilistic inference
problem: We model )★

C as a random variable, denoted )̂★
C , and compute

the posterior distribution of )̂★
C conditioned on ℒℬ()C) via Bayes rule

?()̂★
C | ℒℬ()C)) =

?(ℒℬ()C) | )̂★
C ) ?()̂★

C )
?(ℒℬ()C))

. (5.6)

The prior ?()̂★
C ) is taken to be Gaussian and centered around the current

parameter value )C :

?()̂★
C ) = N()̂★

C ; )C , ]C), (5.7)

where ]C ∈ ℝ�×� is an arbitrary symmetric positive definite covariance
matrix, which is discussed further in Section 5.2. To develop the likelihood
?(ℒℬ()C) | )̂★

C ), we start by rewriting Eq. (5.5) in terms of )★
C as

5̄C()C)|d=0 = 5̄C()C − d★C + d★C )
= 5̄C()C + )C − )★

C + d★C ).
(5.8)

Inserting this statement in Eq. (5.5) and recalling that )★
C − )C = d★C =

−N−1
C ∇ 5C , we obtain Inserting d = 0 = −d★C +d★C = )C−)★

C +d★C
in Eq. (5.5) results in the equivalent expres-
sion found in Eq. (5.9). The full expression
is: )NC ()C − )★

C + d★C ) + 5★.5̄C()C) =
1
2
()C − )★

C )>NC()C − )★
C ) + 5 ∗ ,

and ∇ 5̄C = NC()C − )★
C ).

(5.9)

Since the quadratic approximation matches the true function and its
gradient at )C , we note that 5 ()C) = 5̄C()C) = 1

2∇ 5̄ >C ()C − )★
C ) + 5 ∗.
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This finding motivates us to express the noisy observation ℒℬ()C) in the
probabilistic model as the following linear projection

5 ∗ is the minimum of a local quadratic
approximation of ℒℬ()C ).

ℒℬ()C) =
1
2
g>C ()C − )̂★

C ) + 5 ∗ + &C ,

&C ∼ N(0, 'C),
(5.10)

or equivalently by the likelihood

?(ℒℬ()C) | )̂★
C ) = N

(
ℒℬ()C);

1
2
g>C ()C − )̂★

C ) + 5 ∗ , 'C

)
. (5.11)

Here we use gC to denote a the gradient of the loss over the mini-batch
and 'C is the observation noise due to sub-sampling. Under the Gaussian
prior (5.7) and linear likelihood (5.11) there is a closed-form expression

For ?()) = N();-,�) with ), - ∈
ℝ� ,� ∈ ℝ�×� and ?(H | )) = N(H;G) +
1, ') with G ∈ ℝ1×� and 1 ∈ ℝ, ' ∈ ℝ+,
it holds that ?() | H) =
N

(
);- + �G>(H−G-−1)

G�G>+' ,� − �GG>�
G�G>+'

)
.

See Ch. 3 and Eq. (3.7) for more details.

for the posterior, stated in Eq. (5.6). The posterior mean will serve as our
next estimate, )C+1, and is given by

)C+1 = )C −]C gC
2(ℒℬ()C) − 5 ∗)
g>C ]C gC + 'C

. (5.12)

This parameter update is of the same form as the generic update in
Eq. (5.4) if dC = ]C gC . In the next section we will clarify how this update
corresponds to popular first-order algorithms and later look into the
different parameters that are required for the inference.

Choice of Covariance

The update in Eq. (5.12) leaves the prior covariance matrix ]C as a free
parameter. To be a valid covariance, it must be symmetric and positive
definite. For the batch gradient gC (i.e.∇ℒℬ), a step in direction dC = ]C gC
is a descent direction (on the batch), because −g>C dC < 0. To clarify the
connection to optimization algorithms with a provided learning rate
we will refer to ]C as � ·]C , with � ∈ ℝ+. For different choices of ]C ,
Eq. (5.12) can be seen as a generalization of several existing optimization
algorithms.

SGD The most straightforward connection is to SGD [122] [122]: Robbins and Monro (1951), ‘A
stochastic approximation method’

: If we
consider � ·]C = � · O, Eq. (5.12) becomes

)C+1 = )C − � · gC
2(ℒℬ()C) − 5 ∗)
�‖gC ‖2 + 'C

. (5.13)

For 'C = 0 this update recovers the Polyak step [116, 92] [116]: Polyak (1987), Introduction to
Optimization
[92]: Loizou et al. (2020), ‘Stochastic
Polyak step-size for SGD: An adaptive
learning rate for fast convergence’

if 5 ∗ is known.
A correctly identified 5 ∗ in the probabilistic argument above motivates
a learning rate adaptation for sgd. As the optimizer approaches the
optimum, ℒℬ & 5 ∗, the rate goes towards zero. If instead the fraction
above is constant across iterations, we recover the standard update for
sgd with fixed learning rate.

General Optimizer There has been a surge of stochastic first-order
optimization algorithms to tackle the requirements of machine learning
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Optimizer � ·]C

sgd �O

Adagrad �
(
MC−1 + diag(gC g>C )

)−1/2

RMSprop �
(
MC−1 + (1 − )diag(gC g>C )

)−1/2

Momentum �
(
O + �̃mC−1m>

C−1

)
Adam �

(
(1 − �1)\C + �̃1\CmC−1m>

C−1\C
)

Table 5.1: Covariance matrices used for
popular optimization algorithms. Each
consists of a diagonal matrix and the last
two have an additional rank one update
with a modified scaling which we elab-
orate on in Section 5.2. MC for Adagrad
and RMSprop are recursively defined as
the quantity inside the parenthesis start-
ing from M0 = 0. The diagonal matrix \C
for Adam is the M−1/2

C of RMSprop scaled
with additional bias correction.

and deep learning in particular, many of which employ an element-
wise scaling to the batch gradient gC[131] [131]: Schmidt et al. (2021), ‘Descending

through a Crowded Valley - Benchmark-
ing Deep Learning Optimizers’

. These element-wise updates
correspond to a diagonal matrix ]C in Eq. (5.12) which is the definition
of an axis-aligned Gaussian distribution for the prior. A few popular
popular diagonal first-order optimizers are summarized in Tab. 5.1 along
with a novel interpretation of updates that involve momentum.

The inference is not limited to a diagonal ]C , it is just a computationally
efficient approach to speed up first-order methods. Several higher order
optimization methods can be included as well. In particular, if ]−1

C is
chosen as a curvature matrix, e.g., the Hessian, Gauss-Newton, or the
Fisher information matrix, then the inference amounts to an adaptive
version of a Newton step, a Gauss-Newton step or Natural Gradient
Descent, respectively [102]

[102]: Martens (2020), New insights and
perspectives on the natural gradient method

.

In addition to the posterior mean one could also consider the posterior
covariance on )̂★

C [22]
[22]: Chen et al. (2020), ‘Self-Tuning
Stochastic Optimization with Curvature-
Aware Gradient Filtering’

. It could be propagated through optimization using
a predictive Chapman-Kolmogorov equation. This could be realized as a
Kalman filter prediction step, but would introduce additional empirical
parameters and cost. We omit the covariance update to avoid confusion
and instead focus on the useful connection to first-order optimization
algorithms.

Accelerated Gradient Updates

Several popular optimization algorithms employ an exponential aver-
aging of gradients in the form of momentum [116, 141, 83] [116]: Polyak (1987), Introduction to

Optimization
[141]: Sutskever et al. (2013), ‘On the im-
portance of initialization and momentum
in deep learning’
[83]: Kingma and Ba (2015), ‘Adam: A
Method for Stochastic Optimization’

to speed up
the training. Such methods can be included in the probabilistic inference
in two ways. The first is to interpret the momentum term as another
estimate of the true gradient instead of the batch gradient, essentially
replacing gC with mC in the derivations of Section. 5.2. The second way
that we opted for is to retain the batch gradient but adjust the covariance
with a rank one update.

A more intuitive update used by Adam
is mC = �mC−1 + (1 − �)gC . Expanding
the recursion leads to the geometric series
mC = (1 − �)∑C

8=0 �
8 gC−8 = (1 − �C )ḡ for

� ∈ (0, 1). Adam then rescales mC with
(1 − �C ) to reduce the bias and recover the
estimate ḡC .

Momentum The Pytorch implementation of sgd with momentum uses
the following update:

mC = � · mC−1 + gC ,

)C = )C−1 − � · mC ,
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Figure 5.1: Performance of adapted vs
fixed learning rate for different � and � for
sgd with momentum. Green indicates an
improvement of adaptation. For � = 0.9
the performance is generally the worst. See
Sec. 5.4 and Fig. 5.6 for more details.

where � is a hyperparameter controlling the influence of previous gradi-
ents. This update is identified in the probabilistic model with

� ·]C gC = � ·
(
O + �

〈mC−1 , gC〉
· mC−1m>

C−1

)
gC .

Adam In a similar manner it is possible to express the update of Adam
[83] with the diagonal matrix

\C = �C ·
(
�2 · MC−1 + (1 − �2) · diag(gC g>C )

)−1/2
,

�C =
√
(1 − �C2)/(1 − �C1),

and the exponential average mC = �1mC−1 + (1 − �1)gC as

� ·]C gC = � ·
(
(1 − �1)\C + �̃1\CmC−1m>

C−1\C
)
gC ,

�̃1 =
�1

〈\CmC−1 , gC〉
.

Neither the Momentum nor Adam update is positive definite, per defini-
tion, in this form due to the scalar parameter in front of the rank-1 update.
For sgd with momentum this scalar value will be negative if 〈mC−1 , gC〉 < 0
and violates the positive definiteness if � 〈mC−1 , gC〉 < − 〈gC , gC〉. The conditions are analogous for Adam.This
occurs when mC−1 is pointing significantly uphill at iteration C and the
situation is more likely to arise for high values of �, see Fig. 5.1.

5.3 Algorithm

gt
Wgt

θ∗
θt

θt+1

Figure 5.2: Illustration of the probabilistic
inference scheme. The gray contour levels
describe the local quadratic model 5̄C ()).
The ( ) line comprises all possible val-
ues of )̂★

C (orthogonal to gC ) that satisfy
Eq. (5.10) (in the noise-free case); this in-
cludes the true value )★

C . The lighter green
levels are multiples of the standard devia-
tion

√
'C representing the uncertainty in

Eq. (5.10). The ( ) and ( ) colored
ellipses illustrate two axis-aligned Gaus-
sian distributions (Eq. (5.7)) centered at )C ,
corresponding to different scaling of the
covariance � ·]C . The circles indicate the
posterior mean ()C+1 in Eq. (5.12)) for each
distribution. The blue distribution has a
larger variance relative to 'C leading to a
larger step towards the solution compared
to the red.

The update in Eq. (5.12) is the most general form of the provided infer-
ence scheme from which one can approximate or specialize the update
depending on available information and problem. While the structure of
� ·]C should be seen as a design choice addressing an algorithm within a
larger family, the remaining parameters are typically problem-dependent
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and play an important role in the convergence of the underlying algo-
rithm. This section addresses this issue and constructs a simple learning
rate adaptation scheme. An advantage of the probabilistic derivation is
that it offers an interpretation of these parameters, which can be used
to construct empirical estimators. Pseudo-code for our method that is
implemented as a wrapper applicable to valid optimization algorithms
is provided in Alg. 1.

Parameters

Depending on the problem, the update scheme requires estimation
of up to three parameters: The scale of the prior variance/learning
rate �, the lower bound 5 ∗ and the observation variance 'C . With the
probabilistic motivation developed in Section 5.2, it is possible to link
these parameters to function values and hence estimate them at runtime.
These three parameters have an interesting interplay—the same update
of )C to )C+1 (Eq. 5.12) can arise from different constellations of these three
numbers. In traditional optimization, uncertainty of the observation is
typically not considered, which is why 'C does not appear in the standard
Polyak step.

Uncertainty 'C The most straightforward parameter to estimate in
stochastic optimization is the observation variance 'C in Eq. (5.12). In
the case of mini-batching it is possible to estimate the uncertainty of the
full loss, as outlined via the CLT argument in Section 5.1. For general
functions the situation is more complicated and since the inclusion of 'C
corresponds to a reduction in step length, the same effect can be achieved
by omitting 'C and instead decrease the difference in the numerator. In
our algorithm we try to infer the local quadratic minimizer of the batch
loss which yields an uncertainty estimate from the function variance of a
batch.

If instead the local quadratic minimizer of
the true loss is estimated then 'C would
include additional terms to account for
uncertainty in the gradient as well.

Scale � The second influential parameter is �, a scalar multiplication of
the prior covariance corresponding to the learning rate of the optimizer.
For the general case of Eq. (5.12) with 'C > 0, the ratio between 'C and
� · g>C ]C gC becomes important for the overall step length and hence
the convergence of the algorithm. This behavior is visualized in Fig. 5.2
where the variance of the red distribution is low compared to 'C , leading
to a small update. A result of this is that the initial learning rate can
be arbitrarily ill-calibrated with regards to the noise variance. It also
suggests that updating the scale � during the optimization, once more
parameters are estimated, could lead to improved performance. If instead
'C = 0 and 5 ∗ in Eq. (5.12) is known, then the update will not depend on
the scale �.

Lower bound 5 ∗ The final parameter 5 ∗ is also the most important in
terms of performance and stability. For a known 5 ∗ and 'C = 0, the Polyak
step achieves a linear convergence rate towards 5 ∗, independent of the
Lipschitz constant which normally bounds the convergence of first-order
optimization algorithms [116, 150]

[116]: Polyak (1987), Introduction to
Optimization
[150]: Vaswani et al. (2020), ‘Adaptive
Gradient Methods Converge Faster with
Over-Parameterization (and you can do a
line-search)’. If 5 ∗ is not known and set too large,

then the optimizer will converge to parameters for which 5 ()) = 5 ∗ and
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not the actual minimum. If instead 5 ∗ is estimated below the minimum,
then the Polyak step will try to reach function values below the minimum.
This is problematic in flat regions, often resulting in steps that are too large
which can undo a lot of progress.

This is exemplified in Fig. 5.3.
To combat this behavior, a maximum

step length is often introduced as a problem dependent hyperparameter
[13, 92]

[13]: Berrada et al. (2019), ‘Training neural
networks for and by interpolation’
[92]: Loizou et al. (2020), ‘Stochastic
Polyak step-size for SGD: An adaptive
learning rate for fast convergence’

. The same authors showed that for Machine learning problems
with overparameterized models that fulfill interpolation4

4: models which can achieve a training
loss close to 0 for all training samples
simultaneously

it is possible to
use 5 ∗ = 0 as a lower bound for the empirical risk minimization together
with a maximum step length for fast convergence.

All combined The main parameters of the probabilistic model ( 5 ∗, 'C ,
�) have a complicated interplay, which affects the modus operandi of the
proposed algorithm depending on available information. Figure 5.3
highlights some of the difficulties related to naïvely setting the parameters
in the probabilistic update for a deterministic optimization problem. If
the global lower bound is known (0 in this case), then using it for 5 ∗
will not guarantee fast convergence in the general setting and can even
lead the optimization to diverge. This occurs for the gray line of Fig. 5.3.In such situations the optimization
can be stabilized by introducing an uncertainty 'C that indicates how
much 5 ∗ deviates from the minimum of a local quadratic approximation.
Two examples of added uncertainty are visible in Fig. 5.3 but these
are generally difficult to construct. Comparing Fig. 5.3a and Fig. 5.3b
shows that even though a suitable model for 'C has been identified
the performance still depends on the variance �. Adapting the variance
on-the-go alleviates this problem when 'C > 0 and when the standard
step of the underlying optimizer is used, see Fig. 5.3c. There are several
ways in which these three parameters can be configured depending on
the problem at hand.

Implementation

The previous section showed that the relatively simple update of Eq. (5.12)
requires careful consideration. Here we will outline the steps taken in
Alg. 1 to address some of the shortcomings. Once a valid optimizer has
been selected all the quantities up to and including line 5 are accounted
for. A step of our algorithm then requests two parameters: a lower bound
5 ∗ and an uncertainty estimate 'C (defaults to 0). In the absence of
externally provided lower bound 5 ∗ (default behavior), we still want
the algorithm to adapt the learning rate during optimization in a useful
manner. The approach that we use for this situation is to consider an
implied quadratic, which given a function value 5 ()C), gradient gC and a
spd matrix �C ·]C constructs a local surrogate

)C(d) = )min + 1
2
(d + �C]C gC)> (�C]C)−1 (d + �C]C gC) . (5.14)

The parameters are chosen such that )C(0) = 5 ()) and ∇d) |d=0 =

gC . The minimum of this surrogate occurs at the step d = −�C]C gC
corresponding to a decrease of )(0) − )(−�C]C gC) = �C · g>C ]C gC/2. This
lower bound in Eq. (5.12) amounts to a standard step of the underlying
optimization algorithm if 'C = 0, but with an additional advantage.

A parameter update can be seen as a step
to the quadratic minimizer, Eq. (5.14) and
Section 4.5, where the length is governed
by the scale of , . By adapting the scale
of , to better match the function it is
possible to improve the convergence rate.By re-evaluating the function at the new parameter, one can adapt the

scale of the covariance/learning rate so )C − )C+1 = �C · g>C ]C gC/2 ≈
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Figure 5.3: Influence of variance (learning rate) adaption for the inference step on the 2-d Rosenbrock (1960) function. Each figure shows
the standard step of the optimizer ( ), the inference with 'C = 0, i.e., Polyak step ( ), inference with fixed 'C = 0.1 ( ) and
the inference with adaptive 'C = 0.05 5C ( ). Each run used the Adam optimizer with �1 = 0.7, �2 = 0.999 and starting learning rate
indicated in the figure title. Each of the inference steps use the correct 5 ∗ = 0. The gray line uses 'C = 0 and is therefore agnostic to the
learning rate and should result in the same iterates for all three setups. This is the case up to approximately iteration 100 after which they
deviate.

5 ()C) − 5 ()C+1). The decision of which lower bound to use occurs in lines
6 to 9 of Alg. 1 and is followed by the update in Eq. (5.12).

In line 11 we re-evaluate the function (same batch) and then compare the
ratio of observed and expected decrease. A ratio of 1 corresponds to a
perfect match of curvature between the real function and the estimated
quadratic in direction dC . If the ratio deviates from 1, we adapt the learning
rate by multiplicatively increasing or decreasing � with ↑ = 1.2 and
↓ = 1/2, inspired by the update rates of Rprop [121] [121]: Riedmiller and Braun (1992),

‘Rprop-a fast adaptive learning algorithm’
. Similar ideas are

also employed in trust-region methods [109]
[109]: Nocedal and Wright (2006),
Numerical Optimization §4

to adapt the size of the
trust region. One could simply choose a new � that makes the ratio 1
but this made the algorithm sensitive to outliers.

If two successive batches have a flat and
steep gradient respectively, then � can
drastically increase in the first iteration
leading to an excessive step in the second
iteration.

Instead we apply the
updates iteratively to guard against outliers which frequently occur due
to the stochasticity of the problems considered. The asymmetry of the
update is to penalize steps that are too large since these can be critical to
the optimization procedure. We allow a bit of deviation from the optimal
value of the ratio to account for stochasticity of the gradients. As the
learning rate is adapted for each mini-batch it will find values that work
well across batches and is suitable for the full-batch function.

Computation

The overall cost of our algorithm is essentially one forward-pass of
the batch loss more expensive than that of the underlying optimizer.
This is due to the requirement of re-evaluating the batch loss before
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Algorithm 1: Step size adaptation for a provided optimization algo-
rithm.
Input :)1: Starting point,

�: Initial learning rate,
�()): Function handle,
�()): Gradient handle,
,(g): Step direction handle,
5 ∗: Optional lower bound,
'()) = 0: Optional noise estimate,

1 for 8 = 1 . . . do
2 5C = �()C)
3 gC = �()C)
4 dC = � ·,(gC)
5 )C = g>C dC

6 if 5 ∗ is available then
7 Δ 5 = 5C − 5 ∗; // Use provided lower bound
8 else
9 Δ 5 = 5C − )C/2; // Use estimated lower bound

10 )C+1 = )C − dC · 2 · Δ 5

)C+'()C )

11 5+ = �()C+1); // Re-evaluate same batch

12 if ( 5C − 5+)/()/2) > 4/3 then
13 � = 1.2 · �; // � too small ↑
14 else if ( 5C − 5+)/()/2) > 3/4 then
15 � = 1/2 · �; // � too large ↓

the next iteration. Apart from the re-evaluation there are two non-
scalar operations involved in each step: finding the step direction dC =
� · ]C gC , and computing the inner product d>

C gC (i.e. � · g>C ]C gC) in
Eq. (5.12). The former operation is handled by the underlying optimization
algorithm which does not incur any additional computational cost since
the optimizer must compute it regardless. The latter operation scales
linearly with the number of parameters once dC is obtained, which is of
similar complexity to the first-order optimizers in Tab. 5.1. Optimizers
in Pytorch usually compute the update dC per-parameter and apply the
update immediately to save memory, thus never building the full dC . In
order to keep the implementation as general as possible for the identified
algorithms, we explicitly store the vector dC for the inner product which
incurs a storage requirement of an additional vector of size �. This
storage can be avoided but would require implementing a new version
of each optimizer.

5.4 Experiments

This section presents experimental results of relevant deep learning
classification problems. We start by describing the different experiments
and discuss the findings in the end. To ensure diversity in the problem
set, reliable baseline comparisons and reproducible results, we made use
of test problems provided by the DeepOBS benchmarking toolbox [132]

[132]: Schneider et al. (2019), ‘DeepOBS:
A Deep Learning Optimizer Benchmark
Suite’ https://deepobs.github.io

. We implemented our method in Pytorch [113] [113]: Paszke et al. (2019), ‘PyTorch: An
Imperative Style, High-Performance Deep
Learning Library’

ver. 1.4 as a wrapper to

https://deepobs.github.io
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Figure 5.4: Training loss for sgd with mo-
mentum with a fixed learning rate on the
left and adapted version on the right for
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Figure 5.5: Training loss for fixed learning
rate sgd with momentum on the left and
adapted version on the right for a CIFAR-
10 problem.

the implemented optimizers listed in Tab. 5.1. Across all experiments
we used the default values of the parameters in Alg. 1. The adaptation
scheme (with no 5 ∗ provided) is compared to a fixed learning rate,
Hypergradient descent [9] and L4 [123] where applicable.

[9]: Baydin et al. (2018), ‘Online Learning
Rate Adaptation with Hypergradient De-
scent’
[123]: Rolinek and Martius (2018), ‘L4:
Practical loss-based stepsize adaptation
for deep learning’

In the absence
of 5 ∗ we found no significant difference in results by including an estimate
of the noise variance 'C or not, so it was left at 0. To show the effect of
using a poor learning rate and the efficacy of our adaptation, we ran each
experiment and optimizer with initial learning rates in the range 10−5

to 1. In the following figures a specific learning rate is encoded with a
color ranging from 10−5 ( ) through 10−3 ( ) to 100 ( ). For L4
we varied the !4 parameter which scales the numerator of Eq.(5.12) in
the recommended range from the default value of 0.15 ( ) to 0.25 (

). To better show the robustness of the proposed algorithm we mainly
report the results in terms of accuracy since it is constrained to [0, 1]. All
of the DeepOBS results can be seen in Fig. 5.9 and 5.10. Results with the
training loss follow the behaviour of Fig. 5.9 so they are presented on
a per-problem basis in Figs. 5.4, 5.5 and 5.7 for sgd with momentum to
highlight the behaviour. Apart from the momentum term of Adam and
sgd with momentum for our adaptation which were set to 0.5, all other
hyperparameters were kept at the Pytorch default values.

(F)-MNIST

DeepOBS provides several test problems that are applicable to both the
Fashion MNIST and standard MNIST dataset due to the identical data
format. Figure 5.4 show convergence results of the training loss for two
optimization algorithms on three available problems. The models used in
each problem are a logistic regressor, a 4 layered multilayered perceptron
and an artificial neural network with 2 convolutional layers followed by 2
dense layers for the classification. The corresponding model is indicated
on the side.

CIFAR-10

The network used for the CIFAR-10 dataset [86] [86]: Krizhevsky (2009), ‘Learning
multiple layers of features from tiny
images’

consists of 3 convolutional
layers followed by 3 dense layers and ;2 regularization of 2 · 10−3. Each
optimizer ran for 100 epochs as opposed to 50 for the other experiments
due to the slower convergence, see Fig. 5.5. The same architecture was
also used to investigate how momentum affects our adaptation in deep
learning. A typical result can be seen in Fig. 5.6 illustrating a sweep across
learning rates (�) and momentum (�1) for Adam. The figure shows that
the performance tend to deteriorate for large values of �1. A similar sweep
took place for sgd with momentum (Fig. 5.1) to settle on a momentum
� of 0.5 for both optimizers across all experiments. During the sweep
we measured the average time it took to finish the training of one epoch
and found that our algorithm required on average 41% longer than the
standard update.
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Figure 5.6: Difference in achieved training
accuracy between proposed adaptation
and fixed learning rate version of Adam
for different initial learning rates (�) and
momentum (�1). Green color means adap-
tation improved and red signifies worse
accuracy after 50 epochs of training on an
own implementation of the test problem
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Section 5.2.
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Figure 5.7: Training loss for fixed learning
rate sgd with momentum on the left and
adapted version on the right for the SVHN
problem.

SVHN

The SVHN dataset [108] contains more than 600 000 images of house
numbers seen from the street. One deepOBS architecture used for this
experiment is a wide resnet [165], which is an extension of the deep resnet
[61]. A key difference between the two architectures is that the wide resnet
uses fewer and wider residual blocks, yielding improvements in training
time, performance and number of parameters. The network consists of 16
convolutional layers with a widening factor of 4, and we used a batch-size
of 128 and ;2 regularization of 5 · 10−4. A typical convergence of training
loss is seen in Fig. 5.7 and more optimizers and metrics are available in
Fig. 5.9 and 5.10. [108]: Netzer et al. (2011), ‘Reading Digits

in Natural Images with Unsupervised Fea-
ture Learning’
[165]: Zagoruyko and Komodakis (2016),
‘Wide Residual Networks’
[61]: He et al. (2016), ‘Deep Residual Learn-
ing for Image Recognition’

CIFAR-100

To test the optimization on a larger model and dataset we used the
ResNet18 implementation from the Pytorch model zoo and trained the
model on the CIFAR-100 dataset with a batch size of 128. The used
;2-regularization of 5 · 10−4 was too low for the model which resulted in
overfitting and poor generalization performance, but the overall trend
compared to the problems from DeepOBS is still visible. In Fig. 5.8 we
see different metrics evolve during the training and the learning rate. For
each of the optimizers there seems to be an initial convergence point for
the learning rate that then transitions into a more noisy regime.
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Figure 5.8: Results for a model trained on CIFAR-100 for 50 epochs. All the settings and limits are the same as the results from DeepOBS in
Fig. 5.9 and Fig. 5.10. The last row shows the learning rate that was used at the end of each epoch for the proposed learning rate adaptation.
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Figure 5.9: Training accuracy (higher is better) per epoch for different optimizers, learning rate adaptations and benchmark problems from DeepOBS. Each row shows the training accuracy for one test
problem identified by a dataset and model description and each columngroup shows a family of optimizers. The leftmost graph in each group (thin gray border) has a fixed learning rate. Next to it (thick
black border) is the proposed adaptation. A dashed border indicates results for Hypergradient descent and the dash-dotted show results for L4. Each graph contains experiments with initial learning rates in
the range 10−5 ( ) through 10−3 ( ) to 100 ( ). In the case of L4 the learning is replaced with !4 with values between 0.15 ( ) and 0.25 ( ). In every problem each optimizer ran for 50
epochs except for cifar10_3c3d which ran for 100 epochs. All hyperparameters were left at the default values except for the momentum term of the proposed adaptation which was set to 0.5 instead of default
0.9 for Momentum and Adam. The graphs under sgd show a typical example of how sensitive the performance of a model is to a fixed learning rate during training and how the adaptation avoids this
problem.
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Figure 5.10: Training accuracy (higher is better) per epoch for different optimizers, learning rate adaptations and benchmark problems from DeepOBS. Each row shows the training accuracy for one test
problem identified by a dataset and model description and each columngroup shows a family of optimizers. The leftmost graph in each group (thin gray border) has a fixed learning rate. Next to it (thick
black border) is the proposed adaptation. A dashed border indicates results for Hypergradient descent and the dash-dotted show results for L4. Each graph contains experiments with initial learning rates in
the range 10−5 ( ) through 10−3 ( ) to 100 ( ). In the case of L4 the learning is replaced with !4 with values between 0.15 ( ) and 0.25 ( ). In every problem each optimizer ran for 50
epochs except for cifar10_3c3d which ran for 100 epochs. All hyperparameters were left at the default values except for the momentum term of the proposed adaptation which was set to 0.5 instead of default
0.9 for Momentum and Adam. The graphs under sgd show a typical example of how sensitive the performance of a model is to a fixed learning rate during training and how the adaptation avoids this
problem.
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Discussion

The results presented in Fig. 5.9 and 5.10 show that the proposed learning
rate adaptation is robust across a wide range of classification problems
and optimizers. It reliably adjusts the learning rate which most times
results in a final accuracy close to the best achieved accuracy on the task.
The exception being sgd which in some cases falls behind due to the
higher variance of � · g>C ]C gC compared to other algorithms.

Albeit the notable robustness, certain initializations of the learning rate
are still too large for the optimization to converge, which is visible from
the straggling dark/black lines in certain problems. An example of too large learning rate is

seen for Adam in the F-MNIST tasks.
In these cases the

learning rates are several orders of magnitude larger than the optimal
fixed learning rate and neither adaptation converges.

Hypergradient descent often shows improvements over the correspond-
ing fixed learning rate version but sometimes gets stuck for too small
learning rates Hypergradient is seen struggling with a

too small learning rate in the F-MNIST
experiments.

and it does not show the same agnosticism towards the
initial learning rate. The update to the learning rate for Hypergradient
descent is calculated from the inner product of two subsequent gradients
and scaled with a small hyper learning rate. Since the size and archi-
tecture of the considered networks drastically vary between problems,
the default value of the hyper learning rate is bound to be off for some
architectures, requiring additional tuning for optimal performance. Our
method instead updates the learning rate based on a dimensionless
quantity making it less sensitive to variations in the network.

L4 estimates 5 ∗ and uses a form of Polyak step in each iteration making
each parameter update independent of the learning rate. The algorithm
instead introduces additional hyperparameters which the authors empir-
ically set for good performance. When L4 finished a training run without
diverging it was usually among the fastest to reach a high accuracy, but
the results in Fig. 5.9 show that the default parameter values would still
require additional tuning depending on dataset and model making them
less robust across problems.

Our implemented adaptation updates the learning rate for every batch
throughout the training, leading to an overall computational cost on
average < 50% higher than that of the underlying optimizer.

As outlined in Sec.15.
The majority

of the additional cost stems from re-evaluating the loss on the same batch.
A simple remedy to reduce the overhead is to not evaluate every batch
or epoch, but every 2Cth epoch for C = 0, 1, .... This allows significant
adaptation in the beginning to get the scale right and less frequently
during later stages of training, see the learning rate in Fig. 5.8 for
motivation. Overall, the additional cost of the re-evaluation is justified if
it means that no additional runs are required to find a suitable learning
rate.

One recurring observation from the experiments with the adaptation
is that the smaller initial learning rates converge without exception,
suggesting one could initialize the underlying optimizer with a small
learning rate (10−4 − 10−3) and let the adaptation accelerate to a suitable
level.
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5.5 Related Work

[141]: Sutskever et al. (2013), ‘On the im-
portance of initialization and momentum
in deep learning’
[40]: Duchi et al. (2011), ‘Adaptive
Subgradient Methods for Online Learning
and Stochastic Optimization’
[130]: Schaul et al. (2013), ‘No More Pesky
Learning Rates’
[30]: Dauphin et al. (2015), ‘RMSProp and
equilibrated adaptive learning rates for
non-convex optimization’
[83]: Kingma and Ba (2015), ‘Adam: A
Method for Stochastic Optimization’

Stochastic gradient descent and its variants remain the workhorse for the
stochastic optimization in deep learning, and big-data machine learning
more generally. Several methods that improve the convergence over
standard sgd by reducing the variance of the estimate [141], adapting
the step-direction [40, 130, 30] or combinations thereof [83] have been
proposed as substitutes.

See [125]: Ruder (2016), An overview of
gradient descent optimization algorithms for
an overview of algorithms.

[57]: Goodfellow et al. (2016), Deep
Learning
[9]: Baydin et al. (2018), ‘Online Learning
Rate Adaptation with Hypergradient
Descent’
[2]: Andrychowicz et al. (2016), ‘Learning
to learn by gradient descent by gradient
descent’
[4]: Armĳo (1966), ‘Minimization of
functions having Lipschitz continuous
first partial derivatives’
[99]: Mahsereci and Hennig (2017),
‘Probabilistic line searches for stochastic
optimization’
[151]: Vaswani et al. (2019), ‘Painless
stochastic gradient: Interpolation,
line-search, and convergence rates’

The learning rate is the single most important
hyperparameter in these first-order optimization methods that are used
in machine learning, with the model performance hinging on successful
selection [57]. A too large value can ruin the convergence, while a too
small value makes the progress very slow and the optimizer risks getting
completely stuck without further improvement. A few recent ideas to
reduce this influence are to include the learning rate as an additional
parameter that can be optimized with backpropagation cf. results in
Fig. 5.9 [9] or to train another model to predict the next step [2]. One
cane also use a line search routine, with new iterates chosen to satisfy
conditions that ensure suitable convergence [4]. Stochastic versions of
these line searches were proposed by Mahsereci and Hennig [99] and
Vaswani et al. [151]. An advantage, in terms of simplicity, of our framework
over these methods is that it only requires a single additional function
evaluation, keeping the iteration cost comparably low.

The Polyak (1987) step, which is a special case of our probabilistic
treatment, has previously been used in machine learning for models that
satisfy interpolation [92]. Loizou et al. [92] used the Polyak step together
with sgd and proved a convergence rate for the algorithm. Around the
same time Berrada et al. [13] proposed the ALI-G algorithm which also
amounts to a stochastic Polyak step for sgd and a version that incorporates
a form of momentum update.

[116]: Polyak (1987), Introduction to Opti-
mization
[92]: Loizou et al. (2020), ‘Stochastic Polyak
step-size for SGD: An adaptive learning
rate for fast convergence’
[13]: Berrada et al. (2019), ‘Training neural
networks for and by interpolation’
[123]: Rolinek and Martius (2018), ‘L4:
Practical loss-based stepsize adaptation
for deep learning’

The L4 optimizer of Rolinek and Martius [123] estimates 5 ∗ and uses
the Polyak step to train deep models. Compared to our algorithm it
relies on different estimators for the gradient to specifically speed up
Momentum and Adam. It also avoids the function re-evaluation but
instead introduces additional hyperparameters to estimate the lower
bound 5 ∗, making it more sensitive to varying problem setups, cf. results
in Fig. 5.9. Such an estimate is also possible to include in our algorithm
but was not considered further but instead we focused on the scaling of
the covariance.

Another concurrent line of research is that of Vaswani et al. [150] [150]: Vaswani et al. (2020), ‘Adaptive Gra-
dient Methods Converge Faster with Over-
Parameterization (and you can do a line-
search)’

who
extend the line search of Vaswani et al. [151] and the Polyak step of Loizou
et al. [92]

[92]: Loizou et al. (2020), ‘Stochastic Polyak
step-size for SGD: An adaptive learning
rate for fast convergence’

for problems that satisfy interpolation. The main contribution
was to use a general metric to recover additional optimization algorithms
(the diagonal versions in Tab. 5.1) and analyze the convergence properties.
Compared to our work it does not consider the connection to probabilistic
inference nor the additional optimizers. It is similar to this work in the
sense that Gaussian inference also uses a general metric induced by the
inverse covariance matrix. Moreover, we do not specifically consider the
interpolation setting but instead aim at adapting the learning rate for
general problems. The usage of a line search introduces the need for ≥ 1
additional function evaluations per batch whereas ours rely on a single
re-evaluation.
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The derivations of Sec. 5.2 are reminiscent of probabilistic linear algebra
routines with additional noise [66, 35, 25]

[66]: Hennig et al. (2015), ‘Probabilistic nu-
merics and uncertainty in computations’
[35]: de Roos and Hennig (2019), ‘Active
Probabilistic Inference on Matrices
for Pre-Conditioning in Stochastic
Optimization’
[25]: Cockayne et al. (2019), ‘A Bayesian
conjugate gradient method’

. Our algorithm could operate
in a similar manner if the same batch and Hessian is used for repeated
parameter updates and the posterior covariance is propagated. Instead
we focused on the connection to first-order optimization algorithms for
large-scale machine learning tasks.

5.6 Conclusion

We have proposed an algorithm motivated by Gaussian inference, to
construct a family of update rules that perform a learning rate adaptation
for popular first order stochastic optimization routines. The algorithm
is applicable to optimization routines where the step direction can be
phrased as the product of a symmetric, positive definite matrix with the
gradient. It uses a local quadratic approximation of the loss function
defined by the underlying optimization algorithm to adaptively scale the
step size. In our experiments, the algorithm is able to efficiently adapt
the learning rate across a wide range of initial learning rates, optimizers
and deep learning problems. The robust algorithm achieves competitive
performance compared to hand-tuned learning rates, Hypergradient
descent and the L4 optimizer with less tuning required. The proposed
adaptation scheme thus offers a way to automatically update the learning
rate of deep learning optimizers within the inner loop – removing the
need for outer-loop parameter tuning of the learning rate which comes
at high cost in terms of human labor and hardware resources.

5.7 Future Directions

Arguably the most obvious extension of this chapter is to include other
curvature estimates in the developed framework. While valuable in its
own right the results in Sec. 5.4 suggest that there is a very similar
performance between most of the adapted optimization algorithms and
that this direction potentially only holds marginal benefits. Instead there
are two more promising directions that could yield new insights and
greater flexibility.

The first approach was already hinted at in Sec. 5.2 where the momentum
term of several popular optimization algorithms can be seen as an
exponential moving average of the gradient [123] [123]: Rolinek and Martius (2018), ‘L4:

Practical loss-based stepsize adaptation
for deep learning’

. Adapting the presented
framework to operate on the momentum instead of the gradient would
only require minor modifications to the algorithm. These include making
sure the gradient is an unbiased estimate by appropriate re-scaling,
updating the inner product g>C ]C gC accordingly and properly scaling
the function when updating the curvature estimate.

The second approach would be to wrap the framework in a more proba-
bilistic interpretation. It could be possible to use a Kalman filter to track
the scalar learning rate or the local lower bound 5 ∗. The former would be
straightforward to implement and could replace the seemingly arbitrary
yet well-performing scaling factors ↓ and ↑ in Alg. 1. The latter would
be more intricate but potentially with larger benefits. It would allow a
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more natural learning rate decay that is based on available data and to a
lesser extent the heuristics that are currently employed.

If a learning rate adaptation, like the one presented, could be combined
with a momentum adaptation as well then a significant part of the
difficulties introduced by stochastic optimization would be addressed.
The resulting algorithm would be close to a stochastic version of cg which
chooses a step length according to the aforementioned routines and
updates the momentum according to observed data. This kind of data
for the momentum could be obtained from the alignment of subsequent
gradients similar to how conjugacy in cg is determined.
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Matrix Inference for Curvature
Learning

Some The manuscript was originally published
in [35].
[35]: de Roos and Hennig (2019), ‘Active
Probabilistic Inference on Matrices for Pre-
Conditioning in Stochastic Optimization’

of the most important algorithms for unconstrained optimization
approximate the underlying curvature by observing gradients. This leads
to algorithms that interpolate between gd and the Newton update

See introductory chapter Ch. 4.

in terms
of parameter update cost and reduction in function value. Oftentimes
these qn algorithms can drastically improve the convergence rate at a
minor computational overhead, making them the go-to algorithms for
deterministic unconstrained optimization [16]

[16]: Boyd and Vandenberghe (2004),
Convex optimization.

The usage of qn methods in stochastic optimization is so far quite limited. A situation often encountered in ML due
to large datasets.This is mainly because there has been no clear way to deal with the

stochasticity of the gradient in a computationally feasible manner to
estimate the curvature.

In this chapter we will address this issue with a probabilistic model
of the curvature matrix along with uncertain gradient observations. A
matrix-variate normal distribution is used to estimate of the curvature in
the presence of noise. The estimate is used to speed up sgd for typical
ML problems. The same rules and equations of Gaussian inference
encountered in Sec. 3.2 are valid, they are just applied to an object
of higher dimensionality with certain modeling choices to reduce the
computational complexity.

6.1 Introduction

The most common optimization objective in machine learning that also
is the focus of this chapter is empirical risk minimization. See Ch. 2 for background.A loss function
to be minimized is constructed in the form

ℒ()) = 1
|D|

|D|∑
8∈D

ℓ8()) + ℛ()), (6.1)

where ℓ8(·) is the individual loss of a single datum from the dataset D,
) are model parameters to be optimized (e.g. the weights of a neural
network) and ℛ(·) is a form of regularization. Evaluating the full loss
in every iteration is computationally expensive for large datasets. A
popular approach to reduce the computational overhead is to instead
consider smaller batches. This data sub-sampling gives rise to a stochastic
optimization problem. If a gradient is computed for a randomly sampled
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batch ℬ ⊂ D of data points it results in a stochastic gradient

∇ℒℬ()) =
1
|ℬ|

|ℬ|∑
8∈ℬ

∇ℓ8()) + ℛ()). (6.2)

If D is large andℬ is sampled i.i.d., then∇ℒ̃ is an unbiased estimator and,
by the multivariate Central Limit Theorem, is approximately Gaussian
distributed (assuming |ℬ| � |D|) around the full-data gradient [7, 146]

[7]: Balles et al. (2017), ‘Coupling Adaptive
Batch Sizes with Learning Rates’
[146]: van der Vaart (1998), Asymptotic
Statistics

?
(
∇ℒℬ())

��∇ℒ)
= N

(
∇ℒ̃());∇ℒ()), |ℬ|−1 cov(∇ℒ)

)
, (6.3)

where cov(∇ℒ) is the empirical covariance over D. For problems of large
scale in both data and parameter-space cheap optimization algorithms
like stochastic gradient descent [122] [122]: Robbins and Monro (1951), ‘A

stochastic approximation method’
and its by now many variants (e.g.,

momentum [117]
[117]: Polyak (1964), ‘Some methods of
speeding up the convergence of iteration
methods’

, Adam [83]

[83]: Kingma and Ba (2015), ‘Adam: A
Method for Stochastic Optimization’

, etc.) are standard procedure.

For (non-stochastic) gradient descent, it is a classic result that the rate of
convergence depends on the condition-number of the objective’s Hessian
N()) = ∇∇>ℒ()). For example, Thm. 3.4 in the book of Nocedal and
Wright [109]

[109]: Nocedal and Wright (2006), Numeri-
cal Optimization

states that the iterates of gradient descent with optimal local
step sizes on a twice-differentiable objective ℒ()) : ℝ# → ℝ converge
to a local optimum )∗ such that, for sufficiently large C,

ℒ()C+1)−ℒ()∗) ≤ A2(ℒ()C)−ℒ()∗)), with A ∈
(
� − 1
� + 1

, 1
)
, (6.4)

where the condition number � = �1/�� is the ratio of between the largest
and smallest eigenvalues of the Hessian N()C). In noise-free optimization,
it is therefore common practice to try and reduce the effective condition
number of the Hessian by a linear re-scaling )̃ = V>) See Sec. 4.5 for further details.of the input space
using a preconditioner V ∈ ℝ�×� .

For ill-conditioned problems (� � 1), an effective preconditioning
strategy can drastically improve the convergence rate. There is however
a trade-off to be made when considering options for preconditioners.
A good preconditioner should decrease the condition number of the
problem and be cheap to apply, either through sparseness, low-rank
structure or other tricks [71] [71]: Hoffman et al. (2013), ‘Stochastic

variational inference.’
. Choosing a good preconditioner is a problem-

dependent art and is seldom straightforward.

Sometimes preconditioners can be constructed as a good “a-priori” guess
of the inverse Hessian N−1. If no such information is available, then in
the deterministic/non-stochastic setting, iterative linear-algebra methods
can be used to build a low-rank preconditioner. For example, if V spans
the leading eigenvectors of the Hessian, the corresponding eigenvalues
can be re-scaled to change the spectrum, and by extension the condition
number. Iterative methods such as those based on the Lanczos process
[56] [56]: Golub and Van Loan (2012), Matrix

computations §10.1
try to consecutively expand a helpful subspace by choosing N-

conjugate vectors based on Hessian-vector products. These methods are
sensitive to numerical accuracy and often fail in the presence of inexact
computations [143] [143]: Trefethen and Bau III (1997),

Numerical Linear Algebra p. 282
. Due to these intricate instabilities such algorithms

tend not to work with the level of stochasticity encountered in practical
machine learning applications.

This chapter proposes a framework for efficient construction of pre-
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1: Matrix-variate inference in Section 6.4.

2: Details regarding algorithm in Sec-
tion 6.6 and 6.7.

3: Technical details in Section 6.8.

conditioners in settings with noise-corrupted Hessian-vector products
available. The main algorithm consists of three components: We first
build a probabilistic Gaussian inference model for matrices from noisy
matrix-vector products by extending existing work on matrix-variate
Gaussian inference1 . Then we construct an algorithm that actively selects
informative vectors aiming to explore the dominant eigendirections of the
Hessian2 . The structure of this algorithm is similar to the classic Arnoldi
and Lanczos iterations designed for noise-free problems. Finally, we pro-
vide some “plumbing” to empirically estimate useful hyper-parameters
and efficiently construct a low-rank preconditioner which can be applied
to high-dimensional models3 . We evaluate the algorithm on some simple
experiments to empirically study its properties as a way to construct
preconditioners and test it on both low-dimensional problems, and a
high-dimensional deep learning problem.

While we use preconditioning as the principal application, the main
contribution of our framework is the ability to construct matrix-valued
estimates in the presence of noise, and to do so at complexity linear in
the width and height of the matrix. It is thus applicable to problems of
large scale, also in domains other than preconditioning and optimization
in general. In contrast to a simple averaging of random observations,
our algorithm actively chooses projections in an effort to improve the
estimate.

6.2 Related Work

Our approach is related to optimization methods that try to emulate the
behavior of Newton’s method without incurring its cubic per-step cost.
That is, iterative optimization updates )C+1 = )C − dC that try to find a
search direction dC that is an approximate solution to the linear problem

N()C)dC = ∇ℒ()C). (6.5)
[37]: Dennis and Moré (1977), ‘Quasi-
Newton methods, motivation and theory’
[114]: Pearlmutter (1994), ‘Fast exact multi-
plication by the Hessian’
[101]: Martens (2010), ‘Deep learning via
Hessian-free optimization’

This includes quasi-Newton methods (qn) like bfgs and its siblings [37],
and Hessian-free optimization [114, 101]. These methods try to keep track
of the Hessian during the optimization. Preconditioning is a simpler
approach that separates the estimation of the (inverse) Hessian from the
on-line phase of optimization and moves it to an initialization phase.
Our algorithm could in principle be run in every single step of the
optimizer, such as in Hessian-free optimization. However, this would
multiply the incurred cost, which is why we here only study its use for
preconditioning.

[134]: Schraudolph et al. (2007), ‘A stochas-
tic quasi-Newton method for online con-
vex optimization’
[21]: Byrd et al. (2016), ‘A stochastic quasi-
Newton method for large-scale optimiza-
tion’
[156]: Wills and Schön (2018), ‘Stochastic
quasi-Newton with adaptive step lengths
for large-scale problems’
[15]: Bollapragada et al. (2018), ‘A Progres-
sive Batching L-BFGS Method for Machine
Learning’

There are stochastic variants of quasi-Newton algorithms originally con-
structed for noise-free optimization [134, 21]. These are generally based
on collecting independent random (not actively designed) samples of
quasi-Newton updates. Estimates can also be obtained by regularizing
estimates [156] or partly update the stochastic gradient by reusing ele-
ments of a batch [15]. The conceptual difference between these methods
and ours is that we actively try to design informative observations by
explicitly taking evaluation uncertainty into account.

Our inference scheme is an extension of Gaussian models for inference
on matrix elements, which started with early work by Dawid [32]

[32]: Dawid (1981), ‘Some matrix-variate
distribution theory: Notational considera-
tions and a Bayesian application’and
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4: See [58] for extensive exposition of
matrix-variate distributions.
[58]: Gupta and Nagar (2018), Matrix vari-
ate distributions

was recently extended in the context of probabilistic numerical methods
[65, 64, 156] [65]: Hennig and Kiefel (2013), ‘Quasi-

Newton method: A new direction’
[64]: Hennig (2015), ‘Probabilistic
interpretation of linear solvers’
[156]: Wills and Schön (2018), ‘Stochastic
quasi-Newton with adaptive step lengths
for large-scale problems’

. Our primary addition to these works is the algebra required
for dealing with structured observation noise.

6.3 Theory

Our goal in this work is to construct an active inference algorithm
for low-rank preconditioning matrices that can deal with data in the
form of Hessian-vector multiplications corrupted by Gaussian noise.
To this end, we will adopt a probabilistic viewpoint with a Gaussian
observation likelihood, and design an active evaluation policy that aims
to efficiently collect informative, non-redundant Hessian-vector products.
The algorithm will be designed so that it produces a Gaussian posterior
measure over the Hessian of the objective function, such that the posterior
mean is a low-rank matrix.

6.4 Matrix Inference

Bayesian inference on matrices N ∈ ℝ�×� can be realized efficiently in a
Gaussian framework by re-arranging the matrix elements into a vector
vec(N) ∈ ℝ�2×1, then performing standard Gaussian inference on this
vector [32] [32]: Dawid (1981), ‘Some matrix-

variate distribution theory: Notational
considerations and a Bayesian application’

. Although Hessian matrices are square and symmetric, the
following derivations apply equally well to rectangular matrices. There
are specializations for symmetric matrices [64]

[64]: Hennig (2015), ‘Probabilistic
interpretation of linear solvers’

, but since they significantly
complicate the derivations below, we use this weaker model.

Assume that we have access to observations _ ∈ ℝ�×" of matrix-
vector products _ = NY along the search directions Y ∈ ℝ�×" . In the
vectorized notation, this amounts to a linear projection of vec(N) through
the Kronecker product matrix (Y> ⊗ O) [62] [62]: Henderson and Searle (1981), ‘The

vec-permutation matrix, the vec operator
and Kronecker products: A review’

:

vec(_ ) = (Y> ⊗ O) vec(N)
_ = ONY.

If the observations are exact (noise-free), the likelihood function is a
Dirac distribution,

?(_ |N , Y) = �(vec(_ ) − (Y> ⊗ O)N) =
= lim

�→0
N(_ ; (Y> ⊗ O)N , ��0). (6.6)

For conjugate inference, we assign a Gaussian prior over N , with a prior
mean matrix N0 and a covariance consisting of a Kronecker product of 2
symmetric positive-definite matrices.

N(N ,N0 ,\ ⊗] ) = 1
((2�)=2/|\ |= |] |=)1/2

· exp
(
−1

2
(vec(N) − vec(N0))>(\ ⊗] )−1(vec(N) − vec(N0))

)
. (6.7)

This is an equivalent re-formulation of the matrix-variate Gaussian distri-
bution4 . For simplicity, and since we are inferring a Hessian matrix N
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5: See [64] for detailed derivations.
[64]: Hennig (2015), ‘Probabilistic interpre-
tation of linear solvers’

6: The population risk in Eq. (6.1) is re-
placed with the stochastic estimate in
Eq. (6.2).

(which is square and symmetric), we set \ = ] . This combination of
prior (6.7) and likelihood (6.6) has previously been discussed5 . It gives
rise to a Gaussian posterior distribution, whose mean matrix is given by

N< =N0 + (] ⊗] )(Y ⊗ O) vec(^ ) = N0 +]^Y>] =

N0 + (_ − N0Y)(Y>]Y)−1Y>]
(6.8)

where ^ is found as the solution to the linear system

(Y>]Y ⊗]︸        ︷︷        ︸
M

) vec(^ ) = vec((_ − N0Y)︸      ︷︷      ︸
vec(�)

), (6.9)

using the Kronecker product’s property that (G⊗H)−1 = G−1 ⊗H−1 Assuming G and H are invertible.(note
that the matrix (Y>]Y) ∈ ℝ"×" can be inverted in O("3)).

6.5 Adding Noise

While noise-free observations of Gaussian-distributed matrices have been
studied before, observation noise beyond the fully i.i.d. case [156] [156]: Wills and Schön (2018), ‘Stochastic

quasi-Newton with adaptive step lengths
for large-scale problems’

, is
a challenging complication. A lightweight inference-scheme for noisy
observations is one of the core contributions of this paper. In empirical
risk minimization problems, mini-batching replaces a large or infinite
sum into a small sum of individual loss functions6 . Analogous to Eq. (6.3),
the Hessian Ñ of the batch risk ℒ̃ is thus corrupted relative to the true
Hessian N by a Gaussian likelihood:

Ñ()) = N()) + K with K ∼ N(0,�)
and � = cov(∇∇>ℒ)/|ℬ|.

If we now compute matrix-vector products of this batch Hessian with
vectors Y ∈ ℝ�×" , even under the simplifying assumption of Kronecker
structure � = � ⊗ � in the covariance, the observation likelihood
becomes

?(_ |N , Y) = N(vec(_ ); vec(NY), (Y>�Y)88 ⊗ �︸          ︷︷          ︸
X

). (6.10)

The subscript 88 in Eq. (6.10) is there to highlight the diagonal structure
of the right matrix due to the independent batches we use to calculate
the Hessian-vector products. Relative to Eq (6.9), this changes the Gram
matrix to be inverted from M to (M + X).

To get the posterior of N in the noisy setting after" observations, instead
of Eq. (6.9), we now have to solve the linear problem

(M + X)︸   ︷︷   ︸
ℝ�"×�"

vec(^ ) = vec(Δ). (6.11)

This is a more challenging computation, since the sum of Kronecker
products does not generally have an analytic inverse. However, Eq. (6.11)
is a so-called matrix pencil problem, which can be efficiently addressed
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7: The Hadamard product is the element-
wise multiplication of matrices, (G�H)8 9 =
08 9 · 18 9 .

using a generalized eigendecomposition [56] [56]: Golub and Van Loan (2012), Matrix
computations §7.7

. That is, by a matrix \ and
diagonal matrix J = diag(,) such that

M\ = JX\ with \>X\ = O . (6.12)

Eigen-decompositions distribute over a Kronecker product [147] [147]: Van Loan (2000), ‘The ubiquitous
Kronecker product’

. And
this property is inherited by the generalized eigendecomposition, which
offers a convenient way to rewrite a matrix in terms of the other. Eq. (6.11)
can thus be solved with two generalized eigendecompositions. The left
and right parts of the Kronecker products of Eq. (6.11) are written with
separate generalized eigendecompositions as

(Y>]Y)\ =(Y>�Y)88\
, \>(Y>�Y)88\ = O

][ =�[J , [>�[ = O .

[ ,J contain the generalized eigenvectors and eigenvalues from the left
Kronecker term and \ ,
 are analogous for the right Kronecker term.

vec(�) = (Y>]Y ⊗] + (Y>�Y)88 ⊗ �) vec(^ )
= ((Y>�Y)88\ ⊗ �[ )(
 ⊗ J + O ⊗ O)(\−1 ⊗[−1) vec(^ )
= (\−) ⊗[−))(
 ⊗ J + O ⊗ O)(\−1 ⊗[−1) vec(^ )

In the first step above, the left matrix is expressed in terms of the right
matrix in both terms by means of the generalized eigendecomposition. In
remaining step, the conjugacy property in Eq. (6.12) is used to simplify
the expression to the inversion of a diagonal matrix and the Kronecker
product of the generalized eigenvectors. The solution now becomes

vec(^ ) = ([ ⊗ \ ) (J ⊗ 
 + O ⊗ O)−1 vec([>Δ\ )︸                                 ︷︷                                 ︸
1

(J9 9
88+1)�[>Δ\=	98

= ([ ⊗ \ ) vec(	) = [	\>

(6.13)

where � refers to the Hadamard product7 of the two matrices. Using this
form, we can represent the posterior mean estimate for N with Eq. (6.8)
where ^ is replaced with the solution from Eq. (6.13).

N< = N0 + ]^︸︷︷︸
ℝ�×"

Y>]︸︷︷︸
ℝ"×�

If the prior mean N0 is chosen as a simple matrix (e.g. a scaled identity),
thenN< would admit fastO(�")multiplication and inversion (using the
matrix inversion lemma)8

8: (G +[I\>)−1 =

G−1 − G−1[ (I−1 + \>G−1[ )−1\>G−1due to its low-rank outer-product structure.

6.6 Active Inference

The preceding section constructed an inference algorithm that turns noisy
projections of a matrix into a low-rank estimate for the latent matrix. The
second ingredient of our proposed algorithm, outlined in this section,
is an active policy that chooses non-redundant projection directions
to efficiently improve the posterior mean. Algorithm 2 summarizes as
pseudo-code.
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The structure of this algorithm is motivated, albeit not exactly matched
to, that of stationary iterative linear solvers and eigensolvers such as
gmres [127] and cg [67] (and the corresponding eigenvalue-iterations,
the Arnoldi process and the Lanczos process. Cf. [56] and [143]). These
algorithms can be interpreted as optimization methods that iteratively
expand a low-rank approximation to (e.g. in the case of cg / Lanczos) the
Hessian of a quadratic problem, then solve the quadratic problem within
the span of this approximation. In our algorithm, the exact low-rank
approximation is replaced by the posterior mean estimate arising from
the Bayesian inference routine described in Section 6.4. This leads the
algorithm to suppress search directions that are co-linear with those
collected in previous iterations, focusing instead on the efficient collection
of new information.

[127]: Saad and Schultz (1986), ‘GMRES: A
generalized minimal residual algorithm
for solving nonsymmetric linear systems’
[67]: Hestenes and Stiefel (1952), ‘Methods
of conjugate gradients for solving linear
systems’
[56]: Golub and Van Loan (2012), Matrix
computations §10
[143]: Trefethen and Bau III (1997),
Numerical Linear Algebra §VI

Readers familiar with linear solvers, like cg, will recognize the structural
similarity of Algorithm 2 to linear solvers, with two differing aspects. Each
iteration constructs a projection direction s8 , collects one matrix-vector
multiplication, y8 = Ñs8 and rescales them by a step size �8 (here set to 1
and omitted). A linear solver would update the solution )C and residual
r8 using s8 , y8 and �8 but we let the algorithm stay at )0 and sample
new search directions and projections. The core difference to a solver
is in line 5: where the classic solvers would perform a Gram-Schmidt
step, we instead explicitly perform Gaussian inference on the Hessian
�. In the noise-free limit the proposed method would choose the same
search directions as projection methods, a superclass of iterative solvers
containing algorithms such as gmres and cg [64]

[64]: Hennig (2015), ‘Probabilistic
interpretation of linear solvers’.

6.7 Algorithmic Details

Like all numerical methods, the proposed algorithm requires the tuning
of some internal parameters and implementational engineering. All
free parameters are determined in an empirical fashion, via cheap pre-
computations, and use standard linear-algebra tools for the internals.

Estimating Parameters

The Gaussian prior (6.7) and likelihood (6.10) (also used as parameters of
Alg. 2) have several parameters. For simplicity and to limit computational
cost, we set all these to scaled identity matrices: prior mean N0 = ℎ0O,
variance ] = F0O and noise covariance � = �0O. These parameters are
determined empirically: before the method tries to estimate the Hessian,
it gathers gradients and Hessian-gradient products locally, from a small
number of initial batches. The prior ofN is then defined by the parameters

1/ℎ0 =

√
s>Ns
s>NNs

and F0 =
s>Ns
s>s

. (6.14)

The noise variance for the likelihood is set by an empirical estimate

�0 = (E[g2] − ( E[g]︸︷︷︸
ḡ

)2)/
√
s>s . (6.15)
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9: required to determine a search direc-
tion in Eq. (6.16)

10: Available in scipy.sparse.linalg.

Since the batch elements can exhibit a high variance, a more robust choice
is used by setting �0 to the median of the variance estimates. The mean
gradient (ḡ) from the initial sampling is used for the first iteration of the
Hessian-inference scheme, A minor computational saving by reusing

information obtained by estimating �0 in
Eq. (6.15).

line 2. A new search direction along which a
Hessian-vector product is to be computed, is obtained by applying the
inverse of the current estimated Hessian to a stochastic gradient:

s8+1 = −N̂−1
8 ∇ℒ̃()). (6.16)

The estimated Hessian is updated by first solving Eq. (6.11) and using
the result in Eq. (6.8) to get the posterior mean: It is a sum of the prior
mean and a low-rank outer product of two � ×" matrices, with � the
number of parameters and " the number of observations/iterations. A
diagonal prior mean offers efficient inverse multiplication of the estimated
Hessian9 by the matrix inversion lemma.

In the experiments below, the algorithm is used to construct a precondi-
tioner for stochastic optimization algorithms. For this application, spends
some time at the beginning of an optimization process, collecting several
batches “in-place”, each time computing a noisy matrix-Hessian product.
To find the dominant : eigendirections the solver usually requires a
number < > : of iterations, Particularly true if there is a significant

amount of noise.
producing a posterior estimate N< of rank

identity +<. To reduce the computational cost and memory requirements
in the subsequent actual optimization run, we reduce the rank of this
approximation down to : using a standard fast singular value decompo-
sition 10 and obtain the singular values � and the left singular vectors
[ . The approximate Hessian is then constructed as N ≈ [�[>. This is
equivalent to taking the symmetric part of a polar decomposition which
yields the closest symmetric approximation to a matrix in Frobenius norm
[68] [68]: Higham (1988), ‘Computing a nearest

symmetric positive semidefinite matrix’
. For a �-dimensional problem and a preconditioner of rank :, this

method requires the storage of O(�:) numbers and has a computational
overhead of O(�:) additional FLOPS compared to a standard sgd update.
Such overhead is negligible for batch-sizes |ℬ| > :, the typical case in
machine learning.

Algorithm 2: Active probabilistic matrix inference for linear problems
of the form Nd = b, where multiplications with the matrix N can
only be performed corrupted by noise.
Input :)0: Point where curvature is estimated,

N(·): Handle for Hvp,
∇ℒℬ(·): Handle for gradient,
<: Number of iterations,
?(N): Prior distribution,
?(_ | N , Y): Observation model

Output: N< = N0 +]^Y>] ; // a low rank matrix

1 for 8 = 1 . . . < do
2 r8 = −∇ℒℬ()0) ; // Noisy gradient

3 s8 = N−1
8−1r8−1; // Step direction

4 y8 = N(s8) ; // Observe Hvp on same batch as gradient

5 N8 = inferMatrix (?(_ | N , Y),?(N), Y, _ ) ; // N in Sec. 6.5
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Figure 6.1: Comparison of sgd and preconditioned sgd on the linear test problem, along with other baselines. Details in text. The plots
show data for four different choices of batch size |ℬ| (and thus varying observation noise). For fairness to SGD, the abscissa is scaled in the
number of data points loaded from disk (as opposed to the number of steps). Due to the noisy setting, vanilla cg is unstable and diverges in
the first few steps.

Preconditioning

A preconditioner V is constructed to rescale the stochastic gradients in
the direction of the singular vectors.

V−1 = O +[ [�O:/
√
� − O:][> (6.17)

By rescaling the gradients with V−1V−> = V−2, the linear system in
Eq. (6.5) is transformed into V−>Ñ()C)V−1VdC = V−>∇ℒ̃()C).

See the introduction in Sec. ?? for more
details. Note that in Sec. 4.5 V denotes an
approximation to N whereas here it is an
approximation to N−1.

The goal,
as outlined above, is to reduce the condition number of the transformed
Hessian V−>N()C)V−1. If the estimated vectors [ ,� are indeed the
real eigenvectors and eigenvalues, this approach would rescale these
directions to have length �. Theoretically � = 1 would be ideal if the real
eigen-pairs are used. When instead an approximation of the subspace
is used with poor approximations of the eigenvalues �̃8 , it is possible
to scale a direction too much so the eigenvectors corresponding to
the largest eigenvalues become the new smallest eigenvalues. In our
experiments this rarely happened because the Hessian contained many
eigenvalues �8 � 1 and so � = 1 could be used. The improved condition
number allows a larger step-size to be used. The step-size is scaled by the
empirical improvement of the condition number, i.e. the fixed step-size
of sgd � is multiplied with �2 = �1/�: (in Eq. (6.17)), the ratio between
largest and the smallest estimated eigenvalue. In the current notation a
preconditioned sgd update can be written

)+1 = )C − � · V−2∇ℒ̃()C).

6.8 High-Dimensional Modification

Deep learning has become the benchmark for stochastic optimization
algorithms and it imposes several new constraints on the algorithms.
Due to the large number of parameters, even if access to the fraction
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of eigendirections which make the Hessian ill-conditioned is available,
it would likely be inefficient to use because each vector has the same
size as the network, and the approach would only work if a few of the
eigenvalues of the Hessian have a clear separation in magnitude. This
changes the functionality we can expect from a preconditioner to keeping
the parameter updates relevant with respect to the current condition
number rather than finding all directions with problematic curvature.

Some simplifications are required in order to adapt the algorithm for
deep learning. The most important change is that we approximate the
Hessian as a layer-wise block matrix, effectively treating each layer of a
deep net as an independent task. Hessian-vector products are calculated
using automatic differentiation [114] [114]: Pearlmutter (1994), ‘Fast exact

multiplication by the Hessian’
. It was difficult to get good estimates

of the eigenvalues for the algorithm because of large deviations, likely
due to the noisy Hessian-vector products. To alleviate this problem we
changed the multiplicative update of the step-size presented in section 5
to redefining the step-length. Each time the algorithm is used to build
a preconditioner, a new step-length is set to the scalar prior mean in
Eq. (6.14). The last modification is how the empirical parameters of the
prior (section 6.7) are set. 1/ℎ0 is used as the new step-length and gave
better results when a smaller step-size of s>Ns/s>NNs was used and
�0 is estimated with �0 =

√
(∑[g>g] − ĝ> ĝ)/<, with ĝ =

∑<
8
gℬ8

. ĝ is the accumulated gradient obtained
from collecting gradients and Hessian-
vector products before estimating the pre-
conditioner.

All
the parameters of the prior and likelihood (ℎ0, F0 and �0) are shared
among the layers. No clear improvement was visible when treating the
parameters separately for each layer.

6.9 Experiments

The performance of the proposed algorithm is evaluated on a simple test
problem along with two standard applications in machine learning.

Regression

Figure 6.1 shows the results from a conceptual test setup designed to
showcase the algorithm’s potential: an ill-conditioned linear problem
of a scale chosen such that the analytical solution can still be found for
comparison. Linear parametric least-squares regression on the SARCOS
dataset [152]

[152]: Vĳayakumar and Schaal (2000),
‘Locally Weighted Projection Regression:
Incremental Real Time Learning in High
Dimensional Space’

is used as a test setup. The dataset contains |D| = 44, 484
observations of a uni-variate

The dataset contains 7 such univariate
target variables. Following convention, the
first target dimension is used.

response function H8 = 5 (x8) in a 21-
dimensional space x8 ∈ ℝ21. We used the polynomial feature functions
)(x) = G[x , vec(xx>)] ∈ ℝ253, with a linear mapping, G, manually
designed to make the problem ill-conditioned. The model 5 (x) = )(x)>)
with a quadratic loss function then yields a quadratic optimization
problem,

)∗ = arg min
)

‖)‖2 + 1
|D| ‖5

>) − y‖2

= ‖)‖2 + 1
|D|

|D|∑
8=1

()(x8)>) − H8)2 ,
(6.18)

where 5 ∈ ℝ253×44,484 is the map from weights to data. The exact
solution of this problem is given by the regularized least-squares estimate
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Figure 6.2: Progress of preconditioned
and standard sgd on the MNIST logistic re-
gression problem (details in text). Left plot
shows progress on the raw optimization
objective (train loss), the right plot shows
generalization in terms of test accuracy.
Two lines are shown for sgd ((p)-sgd is
the second). The solid one uses a step-size
�opt optimized for good performance. This
directly induces a step-size �prec. for the
preconditioner. For comparison, we also
show progress of sgd when directly using
this step size—it makes sgd unstable.

)∗ = (55>/|D| + O)−15y/|D|. For this problem size, the solution can
be computed easily, providing an oracle baseline for our experiments. But
if the number of features were higher (e.g. & 104), then exact solutions
would not be tractable. One could instead compute, as in deep learning,
batch gradients from Eq. (6.18), and also produce a noisy approximation
of the Hessian N = (55>/|D| + O) as the low rank matrix

Ñ = O + 1
|ℬ|

∑
1∈ℬ

)(G1))(G1)> (6.19)

where ℬ is a batch. Clearly, multiplying an arbitrary vector with this low-
rank matrix has cost O(|ℬ|), thus providing the functionality required
for our noisy solver. Figure 6.1 compares the progress of vanilla sgd with
that of preconditioned sgd if the preconditioner is constructed with the
proposed algorithm. In each case, the construction of the preconditioner
was performed in 16 iterations of the inference algorithm. Even in the
largest case of ℬ = 256, this amounts to 4096 data read, and thus only a
minuscule fraction of the overall runtime.

An alternative approach would be to compute the inverse of Ñ separately
for each batch, then average over the batch-least-squares estimate )̃ =

Ñ−15y/|ℬ|. In our toy setup, this can again be done directly in the feature
space. In an application with larger feature space, this is still feasible using
the matrix inversion lemma on Eq. (6.19), instead inverting a dense matrix
of size |ℬ| × |ℬ|. The Figure also shows the progression of this stochastic
estimate labeled as avg-inv.

The avg-inv estimator used |ℬ| = 256
for all experiments because smaller batch-
sizes consistently diverged.

It performs much worse unless the batch-size
is increased, which highlights the advantage of the active selection of
projection directions for identifying appropriate eigenvectors. A third
option is to use an iterative solver with noise-corrupted observations to
approach the optimum. In figure 6.1 a barely visible line labeled cg can be
seen which used the method of conjugate gradients with a batch-size of
256. This method required a batch-size |ℬ| > 10000 to show reasonable
convergence on the training objective but would still perform poorly on
the test set.

Logistic Regression

Figure 6.2 shows an analogous experiment on a more realistic, and non-
linear problem: Classic linear logistic regression on the digits 3 and 5 from
the MNIST dataset (i.e. using linear features )(x) = x, and ?(H | x) =
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Figure 6.3: Training loss for sgd (left) and
preconditioned sgd (right) on the CIFAR-
10 dataset for different learning rates and
batch-size of 32 over 250 epochs. Both
graphs share y-axis and colors to facilitate
comparison between the optimizers. The
solid lines represent the mean of several
individual runs plotted as translucent.
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Figure 6.4: Test loss for sgd (left) and pre-
conditioned sgd (right) on the CIFAR-10
dataset for different learning rates and
batch-size of 32 over 250 epochs. Both
graphs share y-axis and colors to facili-
tate comparison between the optimizers.
These graphs were collected at the same
runs as the results in Fig. 6.3.

�()(x)>))). Here we used the model proposed in [120] [120]: Rasmussen and Williams (2006),
Gaussian Processes for Machine Learning
§3.4

, which defines
a convex, non-linear regularized empirical risk minimization problem
that again allows the construction of stochastic gradients, and associated
noisy Hessian-vector products. Analogous to Figure 6.1, Figure 6.2 shows
progress of sgd and preconditioned sgd. As before, this problem is actually
just small enough to compute an exact solution by Newton optimization
( in Fig. 6.2). And as before, computation of the preconditioner takes
up a small fraction of the optimization runtime.

Deep Learning

For a high-dimensional test bed, a deep net was used that consists of
convolutional and fully-connected layers to classify the CIFAR-10 dataset
[85] [85]: Krizhevsky (2009), Learning multiple

layers of features from tiny images
. The architecture consisted of 3 convolutional layers with 64, 96 and

128 output channels of size 5 × 5, 3 × 3 and 3 × 3 followed by 3 fully
connected layers of size 512, 256, 10 with cross entropy loss function
on the output and ;2-regularization with magnitude 0.01. All layers
used the ReLU nonlinearity and the convolutional layers had additional
max-pooling.

The proposed optimization algorithm was implemented in PyTorch [112]
[112]: Paszke et al. (2017), ‘Automatic
differentiation in PyTorch’

,
using the modifications listed in section 6.8. To stabilize the algorithm,
a predetermined fixed learning-rate was used for the first epoch of the
preconditioned sgd. Figure 6.3 and 6.4 compare the convergence for the
proposed algorithm against sgd for training loss and test loss respectively
on CIFAR-10.

Both figures show that the preconditioned sgd has similar performance
to a well-tuned sgd regardless of the initial learning rate. A rank 2
approximation of the Hessian was used to keep the cost of computations
and memory low. This approximation was recalculated at the beginning
of every epoch to have it adapt to alternating curvature. The cost of
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Figure 6.5: Evolution of the estimated
learning rate � over 250 epochs for dif-
ferent initial values.

building the rank 2 approximation was 2–5% of the total computational
cost per epoch.

The improved convergence of preconditioned sgd over standard sgd is
mainly attributed the adaptive step-size, which seems to capture the
general scale of the curvature to efficiently make progress. This approach
offers a more rigorous way to update the step-length over popular
empirical approaches using decaying learning-rates or division upon
plateauing [57]

[57]: Goodfellow et al. (2016), Deep
Learning §8

. Inspecting the scale of the found learning rate, see
Fig. 6.5, shows that different initial learning rates tend follow the same
trajectory although spanning values across four orders of magnitude for
this task.

6.10 Conclusion

This chapter presented an active probabilistic inference algorithm to
efficiently construct preconditioners in stochastic optimization prob-
lems. It consists of three conceptual ingredients: First, a matrix-valued
Gaussian inference scheme that can deal with structuredăGaussian
noise in observed matrix-vector products. Second, an active evaluation
scheme aiming to collect informative, non-redundant projections. Third,
additional statistical and linear algebra machinery to empirically esti-
mate hyper-parameters and arrive at a low-rank preconditioner. The
resulting algorithm was shown to significantly improve the behavior
of sgd in typical test problems, even in the case of severe observation
noise typical for contemporary machine learning problems. It scales from
low- to medium- and high-dimensional problems, where its behavior
qualitatively adapts from full and stable preconditioning to low-rank
preconditioning and, eventually, scalar adaptation of the learning rate of
SGD-type optimization.

6.11 Future Directions

The theory developed in Sec. 6.4 can on a high level be interpreted as
a stochastic version of a singular value decomposition. The inference
procedure approximates the subspace spanned by the largest eigenvectors
of the Hessian, which then are used to precondition the updates of a
first-order optimization algorithm. One could instead use the matrix
estimate for more general subspace analysis and dimensionality reduction
techniques.

A clear direction for future research lies in the prior knowledge that goes
into the modeling of the matrix. For the Hessian it would be beneficial
to include information about symmetry. See Sec. 4.6 for a discussion.One possible approach can be
derived based on theory in the upcoming Ch. 7, but there is no conclusive
answer yet regarding an efficient inference scheme.

Another way to approach the problem of symmetric matrix inference
with noise is to look at it as a constrained optimization problem.
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Constrained Optimization

The following derivations are based on the work presented by Wills
and Schön [157] [157]: Wills and Schön (2019), ‘Stochastic

quasi-Newton with line-search regulariza-
tion’

who approached the problem of finding a symmetric
qn-update (the posterior mean) in the noise-free case as a constrained
optimization problem:

max
N

(vec(N) − vec(N0))>(]−1 ⊗]−1)(vec(N) − vec(N0))

s.t. � vec(N) = 0
and (s ⊗ O)> vec(N) = y,

where � is the antisymmetric projection operator. � vec(N) = vec(N) − vec(N>)A noisy optimization
problem can be derived from this setup by replacing the last constraint
with another quadratic term in the optimization.

The task is to solve the following optimization problem:

max
N

(vec(N) − vec(N0))>(]−1 ⊗]−1)(vec(N) − vec(N0)) + ||y − Ns | |�−1

s.t. � vec(N) = 0.

Solving this problem is equivalent to finding the posterior mean with a
symmetric prior and likelihood ?(y | N) = N(y;Ns ,�). To solve it we
define the following parameters:

h ≡ vec(N)
h0 ≡ vec(N0)

\−1 ≡ ]−1 ⊗]−1

Y ≡ s ⊗ O

and use the Lagrangian

ℒ(h , ,) = 1
2
h>\−1h−h>\−1h0+

1
2
(h>Y)�−1(Y>h)−1

2
(h>Y)�−1H−,>(�h).

(6.20)
Constant terms have been omitted. Now looking at the differential w.r.t.
h

∇hℒ = \−1h − \−1h0 + Y�−1(Y>h) − Y�−1y − �>, = 0 (6.21)

implies with unvectorization

\−1(h − h0) + Y�−1((Y>h) − y) = �>, = vec(� −�>)
]−1(N − N0)]−1 + �−1(Ns − y)s> = � −�>.

Now adding the transpose of (� −�>)> results in

2]−1(N − N0)]−1 + �−1(Ns − y)s> + s(Ns − y)>�−1 = 0, (6.22)

or equivalently

2]−1N]−1+�−1Nss>+ss>N�−1 = 2]−1N0]−1+�−1ys>+sy>�−1.

(6.23)
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Finding the N that satisfies this expression would provide the sought-
after posterior mean. Or a symmetric qn-update with modeled

noise.
No general solution is available at this time but a

special case could provide valuable insight.

Special Case

For the special case where� = �−1] in Eq. (6.23) it is possible to progress
further. From a probabilistic point of view it is difficult to justify Beyond computational benefits.that the
noise would have a similar covariance to the prior. From an optimization
point of view, especially if ] = NCAD4 as is often the case See Sec. 4.6, it could make
sense to perform the minimization w.r.t. to this norm. Equation (6.23)
can now be rewritten into

(]−1+�ss>)N]−1+]−1N(]−1+�ss>) = 2]−1N0]−1+�]−1ys>+�sy>]−1.

Now multiplying with −] from the left and the right results in

(−(O + �]ss>))︸              ︷︷              ︸
�

N+N (−(O + ss>]�))︸              ︷︷              ︸
�>

= −
(
2N0 + ys>]� + �]sy>)︸                             ︷︷                             ︸

W

.

(6.24)
This is now a continuous Lyapunov equation in the standard form

GN + NG> = −W , (6.25)

with several important properties [53, 80] [53]: Glad and Ljung (2014), Control theory
§5
[80]: Khalil (2002), Nonlinear systems §12

The following definition will
prove useful for later derivations.

G = −(O + �]ss>) = −(O + us>)

Lemma 6.11.1 Lemma 12.1 of [53]
If W is spd (psd) and G has eigenvalues with Re(,8) < 0.
Then the solution to Eq. (6.25) N is spd (psd).

Theorem 6.11.2 Theorem 5.3 of [53]
If the eigenvalues of G have Re(,8) < 0 and W is spd (psd). Then the solution
to Eq. (6.25) is

N =

∞∫
0

4(GC)W4(G
>C)3C (6.26)

Lemma 6.11.3 If G = −(O + us>) has eigenvalues with negative real part.

exp(GC) = exp(−C)
(
O +

(
4−C − 1



)
us>

)
(6.27)

 = s>u
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Proof.

exp(GC) = exp(−(O + us>)C) = [O and us> commute] =

= exp(−OC) exp(−us>C) = 4−CO

(
∞∑
:=0

(us>):(−C):
:!

)
=

= 4−C
(
O − us>C + us>C2

2
− u()2s>C3

3!
+ . . .

)
=

= 4−C

(
O −

(
∞∑
:=1

:−1(−C):
:!

)
us>

)
=

= 4−C
(
O +

(
4−C − 1



)
us>

)

Lemma 6.11.4 If G follow Lemma 6.11.3 then Eq. (6.26) which solves Eq. (6.25)
has a closed-form solution:

N =

∞∫
0

4(GC)W4(G
>C)3C = ... =

1
2

(
W − (us>W +Wsu>)

 + 2
+ us>Wsu>

( + 1)( + 2)

)
(6.28)

According to Lemma 6.11.1 N will also be spd if W is spd.

Inserting W from Eq. (6.24) into Eq. (6.28) now gives the solution to the
optimization problem in Eq. (6.23) i. e. the posterior mean for the special
case of � = �] .

N1 = N0+
1

 + 2

(
(y − N0s)s>] +]s(y − N0s)> −]s

(
y>s − s>N0s

 + 1

)
s>]

)
(6.29)

A qn-update along this line could provide an iterative update that allows
the posterior to remain spd by tuning the likelihood parameter � while
still keeping the computational cost low. Since ] always arise as the
product ]s it would also be possible to employ the multiplication
implicitly which results in various popular optimization routines [64]

[64]: Hennig (2015), ‘Probabilistic
interpretation of linear solvers’.



Chapter7
Nonparametric Curvature
Estimation

Nonparametric The manuscript was originally published
in [33].
[33]: de Roos et al. (2021), ‘High-
Dimensional Gaussian Process Inference
with Derivatives’

models can improve the interpolation of regression
tasks over parametric counterparts due to increased flexibility. It is
therefore an interesting direction of research to extend the traditional
parametric curvature estimation used until now to a nonparametric
setting. One way of doing it is with kernel methods such as Gaussian
processes (gps). See Ch. 3 for relevant background.Extending the curvature estimate to nonparametric
models is straightforward in theory but computationally challenging
in practice when done naïvely. The overall goal of this chapter is to
provide an efficient inference scheme to allow nonparametric curvature
estimates from gradient observations in Gaussian processes. Contrary to
the previous chapters which focused on the stochastic optimization, we
will here restrict the exposition to deterministic optimization. Due to the
probabilistic nature of Gaussian processes it would be straightforward to
extend the relevant derivations to the stochastic regime. To not confuse
readers familiar with the literature on Gaussian processes we will switch
the notation to use x ∈ ℝ� as input parameter to a scalar function 5 that
we want to minimize.

The input x is used instead of the previ-
ously used parameter ).

7.1 Introduction

The closure of Gaussian processes (gps) under linear operations is
well-established in the literature [120] [120]: Rasmussen and Williams (2006),

Gaussian Processes for Machine Learning
§9.4

. Given a Gaussian process
5 ∼ GP(�, :), with mean and covariance function � and :, respec-
tively, a linear operator ℒ acting on 5 induces another Gaussian process
ℒ 5 ∼ GP(ℒ�,ℒ:ℒ′) for the operator ℒ and its adjoint ℒ′. The linearity
of gps has found extensive use both for conditioning on projected data,
and to perform inference on linear transformations of 5 . Differentiation is
a linear operation which has caused considerable interest in gp modeling
due to the wide variety of applications in which derivative observations
are available. However, each gradient observation of ∇ 5 ∈ ℝ� induces a
block Gram matrix ∇:∇′ ∈ ℝ�×� . As dimension � and number of ob-
servations # grow, inference with gradient information quickly becomes
prohibitive with the naïve computational scaling of O(#3�3). In other
words, one gradient observation comes at the same computational cost
as � independent function evaluations and thus becomes increasingly
disadvantageous as dimensionality grows. This is not surprising, as
the gradient contains � elements and thus bears information about
every coordinate. The unfavorable scaling has confined gp inference with
derivatives to low-dimensional settings in which the information gained
from gradients outweighs the computational overhead.

See Sec. 7.2 for an overview.
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This chapter will explore the structure of the Gram matrix for gradients
and show that it enables inversion at cost linear in�. Such computational
scaling unlocks the previously prohibitive use of gradient evaluations
in high dimensional spaces for nonparametric models. Numerous ma-
chine learning algorithms that operate on high-dimensional spaces are
guided by gradient information and bear the potential to benefit from
an inference mechanism that avoids discarding readily available infor-
mation. Examples for such applications that we here consider comprise
optimization and linear algebra.

The original article also explored gradient-
based hybrid Monte-Carlo methods which
has here been omitted.

Contributions We analyze the structure of the Gram matrix with
derivative observations for stationary and dot product kernels and report
the following discoveries:

Code repository:
https://github.com/fidero/gp-
derivative

I The Gram matrix can be decomposed to allow exact inference in
O(#2� + (#2)3) floating point operations, which is useful in the
limit of few observations (# < �).

I We introduce an efficient approximate inference scheme to in-
clude gradient observations in gps even as the number of high-
dimensional observations increases. It relies on exact matrix-vector
multiplication (mvm) and an iterative solver to approximately invert
the Gram matrix. This implicit mvm avoids constructing the whole
Gram matrix and thereby reduces the memory requirements from
O((#�)2) to O(#2 + #�).

I We demonstrate the applicability of the improved scaling in the
low-data regime for high-dimensional optimization.

I We explore a special case of inference with application to proba-
bilistic linear algebra for which the cost of inference can be further
reduced to O(#2� + #3).

7.2 Related Work

Exact derivative observations have previously been used to condition
gps on linearizations of dynamic systems [138]

[138]: Solak et al. (2003), ‘Derivative
Observations in Gaussian Process Models
of Dynamic Systems’

as a way to condense
information in dense input regions. This required the number of replaced
observations to be larger than the input dimension in order to benefit.
Derivatives have also been employed to speed up sampling algorithms
by querying a surrogate model for gradients [119]

[119]: Rasmussen (2003), ‘Gaussian
processes to speed up hybrid Monte Carlo
for expensive Bayesian integrals’

. In both previous cases
the algorithms were restricted to low-dimensional input but showed
improvements over baselines despite the computational burden.

[139]: Solin et al. (2018), ‘Modeling and in-
terpolation of the ambient magnetic field
by Gaussian processes’
[74]: Jidling et al. (2017), ‘Linearly con-
strained Gaussian processes’
[140]: Solin and Särkkä (2020), ‘Hilbert
space methods for reduced-rank Gaussian
process regression’
[3]: Angelis et al. (2020), ‘SLEIPNIR: De-
terministic and Provably Accurate Feature
Expansion for Gaussian Process Regres-
sion with Derivatives’
[104]: Mutny and Krause (2018), ‘Efficient
high dimensional Bayesian optimization
with additivity and quadrature Fourier
features’
[111]: Osborne et al. (2009), ‘Gaussian pro-
cesses for global optimization’
[91]: Lizotte (2008), ‘Practical Bayesian op-
timization’
[163]: Wu et al. (2017), ‘Bayesian optimiza-
tion with gradients’

Modern gp models that use gradients always had to rely on various
approximations to keep inference tractable. Solin et al. [139] linearly
constrained a gp to explicitly model curl-free magnetic fields [74]. This
involved using the differentiation operator and was made computation-
ally feasible with a reduced rank eigenfunction expansion [140]. Angelis
et al. [3] extended the quadrature Fourier feature expansion (QFF) [104]
to derivative information. The authors used it to construct a low-rank
approximation for efficient inference of ODEs with a high number of ob-
servations. Derivatives have also been included in Bayesian optimization
but mainly in low-dimensional spaces [111, 91], or by relying on a single
gradient observation in each iteration [163].

https://github.com/fidero/gp-derivative
https://github.com/fidero/gp-derivative
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A more task-agnostic approach was presented by Eriksson et al. [44].
The authors derived the gradient Gram matrix for the structured kernel
interpolation (SKI) approximation [159], and its extension to products
SKIP [51]. This was used in conjunction with fast matrix-vector multi-
plication on GPUs [50] and a subspace discovery algorithm to make
inference efficient. Tej et al. [142] used a similar approach but further
incorporated Bayesian quadrature with gradient inference to infer a noisy
policy gradient for reinforcement learning to speed up training.

[44]: Eriksson et al. (2018), ‘Scaling Gaus-
sian process regression with derivatives’
[159]: Wilson and Nickisch (2015), ‘Kernel
interpolation for scalable structured Gaus-
sian processes (KISS-GP)’
[51]: Gardner et al. (2018), ‘Product Kernel
Interpolation for Scalable Gaussian Pro-
cesses’
[50]: Gardner et al. (2018), ‘GPyTorch:
Blackbox Matrix-Matrix Gaussian Process
Inference with GPU Acceleration’
[142]: Tej et al. (2020), ‘Deep Bayesian
Quadrature Policy Optimization’

An obvious application of gradients for inference is in optimization
and in some cases linear algebra. These are two fields we will discuss
further in Sec. 7.4. Probabilistic versions of linear algebra and quasi-
Newton algorithms can be constructed by modeling the Hessian with a
matrix-variate normal distribution and update the belief from gradient
observations [64, 157, 35, 155]

[64]: Hennig (2015), ‘Probabilistic
interpretation of linear solvers’
[157]: Wills and Schön (2019), ‘Stochastic
quasi-Newton with line-search regulariza-
tion’
[35]: de Roos and Hennig (2019), ‘Active
Probabilistic Inference on Matrices
for Pre-Conditioning in Stochastic
Optimization’
[155]: Wenger and Hennig (2020),
‘Probabilistic Linear Solvers for Machine
Learning’

. In Sec. 11 we will connect this to gp inference
for a special kernel. Inference in such models has cost O(#2� + #3).

Extending classic quasi-Newton algorithms to a nonparameteric Hessian
estimate has been done by Hennig and Kiefel [65] and followed up
by Hennig [63]. The authors modeled the elements of the Hessian
using a high-dimensional gp with the RBF kernel and a special matrix-
variate structure to allow cost-efficient inference. They also generalized
the traditional secant equation to integrate the Hessian along a path
for observations, which was possible due to the closed-form integral
expression of the RBF kernel. Wills and Schön [158] expanded this line of
work in two directions. They used the same setup as Hennig and Kiefel
[65] but explicitly encoded symmetry of the Hessian estimate. The authors
also considered modeling the joint distribution of function, gradient and
Hessian ([ 5 , g ,N]) for system identification in the presence of significant
noise, and where the computational requirement of inference was less
critical. In Section 7.4 we present two similar optimization strategies that
utilize exact efficient gradient inference for nonparametric optimization.

[65]: Hennig and Kiefel (2013), ‘Quasi-
Newton method: A new direction’
[63]: Hennig (2013), ‘Fast Probabilistic Op-
timization from Noisy Gradients’
[158]: Wills and Schön (2017), ‘On the con-
struction of probabilistic Newton-type al-
gorithms’

7.3 Theory

Kernel matrices of Gaussian processes (gps) built from gradient observa-
tions are highly structured. In this section, after reviewing gps, we show
that for standard kernels, the kernel Gram matrix can be decomposed into
a Kronecker product with an additive low-rank correction, as exemplified
in Fig. 7.1. Exploiting this structure, exact gp inference with gradients
is feasible in O(#2� + (#2)3) operations instead of O((�#)3) when
inverting the kernel matrix exactly. Furthermore, the same structure
enables storage of O(#2 + #�) values instead of O((#�)2).

Gaussian Processes

Definition 7.3.1 A Gaussian process 5 ∼ GP(�, :) is a random process with
mean function � : ℝ� ↦→ ℝ and covariance function : : ℝ� × ℝ� ↦→ ℝ

such that 5 evaluated at a finite set of inputs follow a multi-variate normal
distribution [120]

[120]: Rasmussen and Williams (2006),
Gaussian Processes for Machine Learning
§2.2.



Chapter 7 Nonparametric Curvature Estimation 82

gps are popular nonparametric models with numerous favorable proper-
ties, of which we highlight their closure under linear operations. A linear
operator acting on a gp results again in a gp. Let ℒ ,ℳ be linear operators
acting on 5 . Then the joint distribution of ℒ 5 and ℳ 5 is:[

ℒ 5

ℳ 5

]
∼ GP

( [
ℒ�
ℳ�

]
,

[
ℒ:ℒ′ ℒ:ℳ′

ℳ:ℒ′ ℳ:ℳ′

] )
, (7.1)

where ℒ′ and ℳ′ act on the second argument of the covariance function
:. The conditional ℒ 5 | ℳ 5 is obtained with standard Gaussian algebra
computations and requires the inversion of ℳ:ℳ′. See Ch. 3 for standard Gaussian computa-

tions.Examples of linear operators comprise projections, integration, and
differentiation. We focus here on inference of either 5 itself, its gradient
g = ∇ 5 , or its Hessian matrix N = ∇∇> 5 conditioned on gradient
observations, i.e. ℒ = {Id,∇,∇∇>} and ℳ = ∇.

Application of ℒ = Id does nothing,
i.e. ℒ 5 = 5 .

Notation We collect gradient observations g0 ∈ ℝ� at locations x0 ∈
ℝ� , 0 = 1, . . . , # which we vertically stack into the data matrices
^ ∈ ℝ�×# and M ∈ ℝ�×# . The object of interest is the Gram matrix
∇Q∇′ ∈ ℝ�#×�# where Q = :(^ ,^ ) and ∇,∇′ act w.r.t. all elements
of ^ . We let subscripts 0, 1 identify indices related to data points, e.g.,
x0 , x1 . Superscript indices 8 , 9 refer to indices along the input dimension.
In further abuse of notation we will let the operation ˜̂ = ^ − c denote
the subtraction of c from each column in ^ .

Q′

H

= ⊗ +

[ I [>∇Q∇′

�

Figure 7.1: Gram matrix built from three 10-dimensional gradient observations using a stationary isotropic exponential quadratic kernel.
Explicit expression (left) and its decomposition into a Kronecker product H and low-rank correction [I[) that allows for efficient inversion
using Woodbury’s matrix lemma (cf. Sec. 7.3) if # < � (right). Colored elements indicate nonzero values (red for positive, blue for negative)
and white means the value is 0.

Exploiting Kernel Structure

The efficient inversion of ∇Q∇′ relies on its somewhat repetitive structure
involving a Kronecker product (see Fig. 7.1) caused by application of the
product and chain rule of differentiation to the kernel. The Kronecker
product G ⊗ H produces a matrix with blocks 08 9H. cf. Van Loan [148] for properties of the

Kronecker product.
[148]: Van Loan (2000), ‘The ubiquitous
Kronecker product’

Any kernel :(x0 , x1)with inputs x0 , x1 ∈ ℝ� , can be equivalently written
in terms of a scalar function A : ℝ� ×ℝ� ↦→ ℝ as : (A(x0 , x1)) C :01(A).
Note the general definition of A, which in particular is more general than
the distance used by stationary kernels. Since : is also a scalar function
of x0 and x1 , A could be equal to : if there is no way to further condense
the relationship between x0 and x1 .
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Definition 7.3.2 Write :(x0 , x1) = :01(A) with A ∈ ℝ. Define :′
01

=

%:(A(x0 ,x1 ))
%A , :′′

01
=

%2:(A(x0 ,x1 ))
%A2 and %0

8
= %

%x0
8 and similarly for %1 9 .

The derivatives of : w.r.t. %x0 8 and %x1
9 can be written as

%0
8 :01(A) = :′01(A) %0

8A

%1
9 :01(A) = :′01(A) %1

9A

%0
8%1

9 :(A) = :′01(A) · %0
8%1

9A + :′′01(A) · (%0
8A)(%1 9A) (7.2)

The ∇Q∇′ kernel defines a matrix-variate
covariance. It can be shown that columns
sampled with this covariance are curl-
free [106, 49] and simple modification can
make them divergence-free [94, 72]. This
is not surprising since we model the gra-
dient of a scalar potential, yet these prop-
erties have been explicitly derived for the
RBF kernel.
[49]: Fuselier Jr (2007), ‘Refined error esti-
mates for matrix-valued radial basis func-
tions’
[106]: Narcowich and Ward (1994), ‘Gen-
eralized Hermite interpolation via matrix-
valued conditionally positive definite func-
tions’
[94]: Macêdo and Castro (2010), Learning
divergence-free and curl-free vector fields with
matrix-valued kernels
[72]: Holderrieth et al. (2021), ‘Equivariant
Learning of Stochastic Fields: Gaussian
Processes and Steerable Conditional Neu-
ral Processes’

This expression is still general but we can already see that the derivatives
of : w.r.t. A depend only on the indices 0, 1 of the data points and form
# × # matrices that we call Q′ and Q′′. Importantly, they do not depend
on the dimensional indices 8 , 9. While the abundance of indices invites for
a tensor-like implementation, the prime gain comes from writing Eq. (7.2)
in matrix form. Doing so permits linear algebra operations that are not
applicable to tensors. To organize the matrix we use the convention of
ordering the entries in the Gram matrix ∇Q∇′ first according to the #
data points x1:# , and then according to dimension, i.e.,

∇Q∇′ =
©«
∇:(x1 , x1)∇′ . . . ∇:(x1 , x# )∇′

...
. . .

...

∇:(x# , x1)∇′ . . . ∇:(x# , x# )∇′

ª®®¬ , (7.3)

where each block has the size � × �. We highlight this ordering as it
deviates from the conventional way found in the literature.

The same results can be derived for a
dimension-prioritized ordering.Each element

of the 0, 1th block take the form %0
8%1

9 :(A) specified in Eq. (7.2), where no
assumption on the structure of the kernel has been done at this point.

We specify the matrix form of the general expression of Eq. (7.2) for two
overarching classes of kernels: the dot product and stationary class of
kernels. For these kernels, A is defined as

A = (x0 − c)>�(x1 − c) (dot product kernels),
A = (x0 − x1)>�(x0 − x1) (stationary kernels),

with an arbitrary offset c and a symmetric positive definite scaling matrix
�. The necessary quantities of Eq. (7.2) are summarized in Tab. 7.1.

Family %0
8A(x0 , x1) %1

9A(x0 , x1) %0
8%
9

1
A(x0 , x1)

dot product [�(x1 − c)]8 [�(x0 − c)]9 �8 9

stationary 2 · [�(x0 − x1)]8 −2 · [�(x0 − x1)]9 −2 ·�8 9

Table 7.1: Required derivatives for gradi-
ent inference used in Eq. (7.2).

The factor 2 for stationary kernels often cancel due to scalar multiplication
in :′(A) and :′′(A).

Dot Product Kernels Combining the summary in Tab. 7.1 with Eq. (7.2)
we arrive at the following Gram matrix for dot product kernels with
gradients

%0
8%1

9 :(A) = :′01(A) ·�
8 9 + :′′01(A) · [�(x1 − c)]8[�(x0 − c)]9 .
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The first term is of Kronecker structure which is easy to invert using
properties of Kronecker products. The second consists of rank-1 correc-
tions block-wise multiplied with the scalar value :′′

01
. The input indices

are flipped for the term i.e., 1 appears as a row index and 0 as column.
This shuffling is what makes the structure of the gradient Gram matrix
difficult, but it can be resolved with the perfect shuffle matrix Y## [148] [148]: Van Loan (2000), ‘The ubiquitous

Kronecker product’
.

Y## is a fourth order isotropic tensor de-
fined as Y8 9:; = �8;� 9: .
Y## vec(") = vec(">) for " ∈ ℝ#×# .

To derive the structure of the second term we start by defining the matrix
˜̂ ∈ ℝ�×# , ˜̂ = ^ − c. We can then form the following outer product to

get the structure:

[�(x1 − c)]8
[
(x0 − c)>�>] 9

= [� ˜̂
1]8[(� ˜̂

0)>]9

=

#∑
<,=

[� ˜̂
=]8[� ˜̂

<]9�0<�1=

=

#∑
=,=′

#∑
<,<′

[� ˜̂
=]8[� ˜̂

<]9�0<′�1=′�<<′�==′

=

#∑
=,=′

#∑
<,<′

(
�0<′ · [� ˜̂

=]8
)
(�<<′�==′)︸      ︷︷      ︸

Y##

(
�1=′ · [� ˜̂

<]9
)

=

#∑
=,=′

#∑
<,<′

[O ⊗ � ˜̂ ]80,<′= [Y## ]<′=,=′< [O ⊗ (� ˜̂ )>]9
=′<,1

=
[
(O ⊗ � ˜̂ )Y## (O ⊗ ˜̂�)>

] 8 9
01

To get the right scalar value for each block outer product one has to write
the term like below.

(O ⊗ � ˜̂ )︸     ︷︷     ︸
[

(Y## diag(vec(Q′′)))︸                    ︷︷                    ︸
I

(O ⊗ � ˜̂ )>︸      ︷︷      ︸
[>

(7.4)

with I<′=,=′< = Q′′
<=�<<′�==′ a symmetric #2 × #2 matrix. The values in Q′′ has to be properly dis-

tributed which is what the expression for
I ensures.The full expression of the Gram matrix is

Q′ ⊗ � + (O ⊗ � ˜̂ )I (O ⊗ ˜̂ >�), (7.5)

where [ = O ⊗ � ˜̂ = O ⊗ �(^ − c) is of size �# × #2. The matrix I ∈
ℝ#2×#2 is a permutation of diag (vec(Q′′)), i.e. a diagonal matrix that has
the elements of Q′′ on its diagonal, such that I vec(S) = vec(Q′′ �S>),
for S ∈ ℝ#×# .

� denotes the Hadamard (element-wise)
product

Kernel :(A) :′(A) :′′(A)

Polynomial(?) A?

?(?−1)
A?−1

(?−1) A?−2

Polynomial(2) A2

2 A 1

Exponential/Taylor exp (A) exp (A) exp (A)

Table 7.2: Examples of dot product kernels
where A = (x0 − c)>�(x1 − c).

The kernel is denoted Taylor due to work of
Karvonen et al. [79] who showed that con-
ditioning the kernel on order  = 0, 1, ...
derivatives gives a probabilistic Taylor ex-
pansion of order  around c.
[79]: Karvonen et al. (2021), ‘A Probabilis-
tic Taylor Expansion with Applications in
Filtering and Differential Equations’

Stationary kernels In the same fashion as the dot product we use the
results in Tab. 7.1 together with Eq. (7.2) to get the Gram structure

%0
8%1

9 :(A) = −2:′01(A) ·�9; − 4:′′01(A) · [�(x0 − x1)]8[(x0 − x1)>�]9 . (7.6)
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The overall structure also results in a matrix of the form

Q′ ⊗ � +[ I[> ,

where the first term Q′ ⊗ � as well as I remain unaltered compared to
the dot product.

Writing the second term in matrix form is a bit more intricate than Eq. (7.4)
due to the mixing of indices 0 and 1, but taking the same approach we
get

[�(x0 − x1)]8[(x0 − x1)>�]9 = [�x0]8[x>0 �]9 − [�x1]8[x>0 �]9 − [�x0]8[x>1 �]9 + [�x1]8[x>1 �]9

=
∑
<=

�0<�1=
(
[�x<]8[x><�]9 − [�x=]8[x><�]9 − [�x<]8[x>=�]9 + [�x=]8[x>=�]9

)
=

∑
<=

(
�0<

(
[�x<]8 − [x>=�]8

)) (
�1=

(
[x><�]9 − [x>=�]9

))
=

∑
<=??′

(
�0<

(
�?<[�x?]8 − �?=[x>?�]8

)) (
�1=

(
�?′<[x>?′�]9 − �?′=[x>?′�]9

))
=

∑
<=>>′??′

(
[�x?]8�0>�<>(�?< − �?=)

) (
[x>=�]9�1>′�=>′(�?′< − �?′=)

)
=

∑
<=

∑
>?

�0>[�x?]8︸     ︷︷     ︸
[08,>?

�><(�?< − �?=)︸             ︷︷             ︸
R>?,<=

∑
>′?′

�>′=(�?′< − �?′=)︸               ︷︷               ︸
R<=,>′?′

�>′1[x>=�]9︸       ︷︷       ︸
[>′?′ ,1 9

.

(7.7)

It is possible to expand the derivation further to include the matrix I
in the same way as the dot product, but the important difference is the
introduction of R that is already visible. R is a sparse #2 × #2 matrix R
that subtracts �x0 from all columns of the 0th block of the block diagonal
matrix O ⊗�^ . For dot product kernels we used [ = (O ⊗�(^ − c)), for
stationary kernels we instead use [ = (O ⊗ �^ )R.

The second term of the Gram matrix is formed by[I[> in the same way
as Eq. (7.4). [ is however no longer a Kronecker product which makes
the algorithmic details more involved. It is therefore more convenient to
use the [R representation where R is a sparse linear operator such that
[> vec(6) = R> vec(^>�6)<= = vec(^>�6<= − ^>�6<<).

Figure 7.1 illustrates the decomposition for the exponential quadratic
a.k.a. radial basis function (RBF) kernel. Note how the diagonal blocks of
[ are empty as a result of applying R.

Table 7.3: Examples for stationary kernels where A = (x0 − x1)>�(x0 − x1).

Kernel :(A) :′(A) :′′(A)

Squared exponential e−A/2 − 1
2 :(A) 1

4 :(A)
Matérn � = 1/2 e−

√
A − :(A)

2
√
A

1
4A3/2

(√
A + 1

)
:(A)

Matérn � = 3/2 (1 +
√

3A) e−
√

3A
√

3
2
√
A

(
e−

√
3A −:(A)

) √
3

2
√
A

(
:(A)
2A − :′(A) − e−

√
3A 1+

√
3A

2A

)
Matérn � = 5/2

(
1 +

√
5A + 5A

3

)
e−

√
5A

( √
5

2
√
A
+ 5

3

)
e−

√
5A −

√
5

2
√
A
:(A)

√
5

2
√
A

(
:(A)
2A − :′(A) − e−

√
5A

(
1+

√
5A

2A + 5
3

))
Rational quadratic

(
1 + A

2
)− − 1

2
(
1 + A

2
)−−1 +1

4
(
1 + A

2
)−−2
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Implementation

The structure of the Gram matrix promotes two important tricks that
enable efficient inference with gradients. Computational gains come into
play when # < �, but for any choice of # , the uncovered structure
enables massive savings in storage and enables efficient approximate
inversion schemes.

Low-data Regime In the high-dimensional regime with a small number
of observations # < � the inverse of the Gram matrix can be efficiently
obtained from Woodbury’s matrix inversion lemma [162] [162]: Woodbury (1950), Inverting modified

matrices(
H +[I[>)−1

= H−1 − H−1[
(
I−1 +[>H−1[

)−1
[>H−1 (7.8)

(if the necessary inverses exist), combined with inversion properties of
the Kronecker product. If H is cheap to invert and the dimension of I is
smaller than the dimension of H, then the above expression can drastically
reduce the computational cost of inversion. In our case H = Q′ ⊗ � for
which the inverse H−1 = (Q′)−1 ⊗ �−1 requires the inverse of the # × #
matrix Q′. The main bottleneck is the inversion of the #2 × #2 matrix
I−1 +[>H−1[ which requires O(#6) operations, which is still a benefit
over the naïve scaling when # < �.

The low-rank structure along with properties of Kronecker products
leads to a general solution of the linear system [∇Q∇′] vec(`) = vec(M)
of the form

` = �−1M(Q′)−1 − ˜̂W (7.9)

for dot product kernels with ˜̂ = ^ − c and gradient observations M. W
is the unvectorized solution to

(I−1 +[>H−1[ ) vec(W) = vec( ˜̂ >M(Q′)−1). (7.10)

Performing the closed-form kernel Gram inversion is summarized and
exemplified in the following three steps for a dot product kernel:

1. Z = [>H−1 vec(M) with Z ∈ ℝ#×# .

I [>H−1 vec(M) = ˜̂ >M(Q′)−1

2. Solve:
(
I−1 +[>H−1[

)
vec(W) = vec(Z) for W ∈ ℝ#×#

I
(
I−1 +[>H−1[

)
=

(
I−1 + (Q′)−1 ⊗ ˜̂ >� ˜̂

)
3. vec(`) = H−1 vec(M) − H−1[ vec(W) with ` ∈ ℝ�×# .

I ` = �−1M(Q′)−1 − ˜̂W(Q′)−1

Corresponding expressions for stationary kernels are obtained by includ-
ing the factor R wherever [ appears.

General Improvements The cubic computational scaling is frequently
cited as the main limitation of gp inference, but often the quadratic
storage is the real bottleneck. For gradient inference that is particularly
true due to the required O((#�)2) memory. A second observation that
arises from the decomposition is that the the Gram matrix ∇Q∇′ is fully
defined by the much smaller matrices Q′, Q′′ (both # × #), �^ (� × #)
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Algorithm 3: ∇Q∇′-mvm for dot product kernels and stationary
(in red). ˜̂ refers to ^ − c for dot product kernels or simply ^ for
stationary.
Input :\ : Matrix to multiply ℝ�×# ,

˜̂ : Evaluation points ℝ�×# ,
�: Distance metric ℝ#×# ,
Q′(^ ,^ ): First derivative matrix ℝ#×# ,
Q′′(^ ,^ ): Second derivative matrix ℝ#×#

1 S = \>� ˜̂
2 m1 = diag(S) ; // Multiplication with R>

3 S = S −m>
1

4 S = Q′′ � S

5 m2 =
∑
0 S01 ; // Multiplication with R

6 S = m>
2 − S

Output: �\Q′ +� ˜̂ S

and � (� ×�, but commonly chosen diagonal or even scalar). Thus, it is
sufficient to keep only those in memory instead of building the whole
�# × �# matrix ∇Q∇′, which requires at most O(#2 + #� + �2) of
storage. Importantly, this benefit arises for � > 1 and for any choice of
# . It is further known how these components act on a matrix of size
� ×# . For dot product kernels, a multiplication of the Gram matrix with
vectorized matrix \ ∈ ℝ�×# is obtained by

(∇Q∇′) vec(\ ) = �\Q′ +� ˜̂ (Q′′ � \>� ˜̂ ) (7.11)

A similar expression is obtained for stationary kernels and a general
routine for the multiplication is visible in Alg. 3. This multiplication
expression can be used with an iterative linear solver [52, 50] [52]: Gibbs and MacKay (1997), Efficient

implementation of Gaussian processes
[50]: Gardner et al. (2018), ‘GPyTorch:
Blackbox Matrix-Matrix Gaussian Process
Inference with GPU Acceleration’

to exactly
solve a linear system in �# iterations, in exact arithmetic. It can also
be used to obtain an approximate solution in fewer iterations. The
multiplication routine is further amenable to preconditioning which can
drastically reduce the required number of iterations [44] [44]: Eriksson et al. (2018), ‘Scaling Gaus-

sian process regression with derivatives’
and ensure

convergence, as well as popular kernel sparsification techniques to lower
the computational cost.

Table 7.4: Memory requirements for building the full ∇Q∇′ matrix versus the decomposition for multiplication.

D\N 10 100 1000 10000

10 78.1 kB / 2.3 kB 7.6 MB / 164.1 kB 762.9 MB / 15.3 MB 74.5 GB / 1.5 GB

25 488.3 kB / 3.5 kB 47.7 MB / 175.8 kB 4.7 GB / 15.4 MB 465.7 GB / 1.5 GB

100 7.6 MB / 9.4 kB 762.9 MB / 234.4 kB 74.5 GB / 16.0 MB 7.3 TB / 1.5 GB

250 47.7 MB / 21.1 kB 4.7 GB / 351.6 kB 465.7 GB / 17.2 MB 45.5 TB / 1.5 GB

1000 762.9 MB / 79.7 kB 74.5 GB / 937.5 kB 7.3 TB / 22.9 MB 727.6 TB / 1.6 GB
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7.4 Applications

Section 7.3 showed how gradient inference for gps can be considerably
accelerated when # < �. We outline two related applications that rely
on gradients in high dimensions and that can benefit from a gradient
surrogate: optimization and probabilistic linear algebra.

Optimization

Unconstrained optimization of a scalar function 5 (x) : ℝ� → ℝ consists
of locating an input x∗ such that 5 (x∗) attains an optimal value, here
this will constitute a minimum.

See Ch. 4 for more details.

This occurs at a point where ∇ 5 (x∗) = 0.
We focus on Hessian inference from gradients in quasi-Newton-style
methods and then suggest a new method that allows inferring the
minimum from gradient evaluations. Pseudo-code for an optimization
algorithm that uses the inference procedure is available in Alg. 4.

Hessian Inference

Quasi-Newton methods are a popular group of algorithms that includes
the famous bfgs rule [20, 46, 55, 135]

[20]: Broyden (1970), ‘The convergence
of a class of double-rank minimization
algorithms 1. general considerations’
[46]: Fletcher (1970), ‘A new approach to
variable metric algorithms’
[55]: Goldfarb (1970), ‘A family of
variable-metric methods derived by
variational means’
[135]: Shanno (1970), ‘Conditioning of
quasi-Newton methods for function
minimization’

. These algorithms either estimate the
Hessian N(x) = ∇∇> 5 (x) or its inverse from gradients. A step direction
at iteration C is then determined as dC = −[N(xC)]−1∇ 5 (xC). Hennig
and Kiefel [65]

[65]: Hennig and Kiefel (2013), ‘Quasi-
Newton method: A new direction’

showed how popular quasi-Newton methods can be
interpreted as inference with a matrix-variate Gaussian distribution
conditioned on gradient information. Here we extend this idea to the
nonparametric setting by inferring the Hessian from observed gradients.
In terms of Eq. (7.1), we consider the linear operator ℒ as the second
derivative, i.e., the Hessian for multivariate functions. Once a solution ` ;

1

to (∇Q∇>) vec(`) = vec(M) has been obtained as presented in Section 7.3,
it is possible to infer the mean of the Hessian at a point x0

[N̄(x0)]8 9 =
∑
1;

(%80%
9
0%

;
1
:)` ;

1
. (7.12)

This requires the third derivative of the kernel matrix and an additional
partial derivative of Eq. (7.2) which results in

%80(%
9
0%

;
1
:(A)) = :′′01 ·�

9;(%80A) + :′′01 ·�
8;(% 90A)

+ :′′01 · (%
8
0%

9
0A)(%;1A)

+ :′′′01 · (%
8
0A)(%

9
0A)(%;1A).

(7.13)

By performing the contraction in Eq. (7.12) first over index ; and then 1 it
is possible to write the Hessian as a matrix of the following form

N̄(x0) =
[
� ˜̂ ,�`

] [
S Ŝ
Ŝ 0

] [ ˜̂ >�
`>�

]
+� · Tr(S̆), (7.14)

with S , Ŝ and S̆ diagonal matrices of size # × # . These matrices
contain expressions of :′′ and :′′′ which are listed in Tab. 7.5. ˜̂ is either
(x0 − ^ ) for stationary kernels or (^ − c) for the dot product kernels.
The posterior mean of the Hessian is of diagonal + low-rank structure
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for a diagonal �, which is common for quasi-Newton algorithms and
gp modeling. The matrix inversion lemma, Eq. (7.8), can then be applied
to efficiently determine the new step direction. On a high level this
means that once ` in Eq. (7.9) has been found, then the cost of inferring
the Hessian with a gp and inverting it is similar to that of standard
quasi-Newton algorithms.

Kernel S 11 Ŝ 11 S̆ 11 m1

dot product k′′′
01

� m1 k′′
01

�01 · k′′
01

� m1 [(x0 − c)>�`]1
stationary 8 · k′′′

01
� m1 −4 · k′′

01
−4 · (k′′

01
� m1)

∑
;
[ ˜̂ � �`];

1

Table 7.5: Quantities required in Eq. (7.14)
for Hessian inference with different fami-
lies of kernels.

Inferring the Optimum

The standard operation of Gaussian process regression is to learn a
mapping 5 (x) : ℝ� → ℝ. With the gradient inference it is now possible
to learn a nonparametric mapping g(x) : ℝ� → ℝ� , but this mapping
can also be reversed to learn an input that corresponds to a gradient.
In this way it is possible to learn x(g) and we can evaluate where the
model believes x(g = 0), i.e, the optimum x∗, lies to construct a new step
direction. The posterior mean of x∗ conditioned on the evaluation points
^ at previous gradients M is

x̄∗ = xC + [∇Q(0,M)∇](∇Q(M,M)∇)−1(^ − xC)
= xC +�`Q′

1∗ +�M̃(Q′′
1∗ � (`>�g̃∗)).

(7.15)

Here we included a prior mean in the inference which corresponds to the
location of the current iteration xC and all the inference has been flipped,
i.e., gradients are inputs to the kernel and previous points of evaluation
are observations. This leads to a new step direction determined by
dC+1 = x̄∗ − xC . For dot product kernels M̃ ∈ ℝ�×# = M − c and g̃∗ = −c.
For stationary kernels M̃ = (g∗ − M) = −M and `>�g̃∗ is replaced by∑
; ` ;

1
· (�M);

1
.

Probabilistic Linear Algebra

Assume the function we want to optimize is

5 (x) = 1
2
(x − x∗)>G(x − x∗), (7.16)

with G ∈ ℝ�×� a symmetric and positive definite matrix. Finding the
minimum is equivalent to solving the linear system Gx = b, because the
gradient ∇ 5 (x) = G(x − x∗) is zero when Gx = Gx∗ B b. See Ch. 4 for more on this connection.To model this
function we use the second order polynomial kernel

:(x0 , x1) =
1
2

[
(x0 − c)>�(x1 − c)

]2
,

and we include a prior mean of the gradient g2 = ∇ 5 (c) = G(c − x∗). For
this setup the overall computational cost decreases from O(#2�+(#2)3)
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Algorithm 4: Two optimization routines based on Hessian and solu-
tion inference: GP-[H/X].
Input : x0: Starting point ℝ� ,

5 (·): Function handle,
g(·): Gradient handle,
:(·, ·): Kernel used for gp,
<: Last < iterations to store,
�: error tolerance

1 d0 = −g(x0)
2 while |gC |/|g0 | > � do
3 �C = LineSearch(dC , 5 (·), 6(·))
4 xC += �CdC
5 gC = g(xC)
6 NC = inferH(xC | ^ , �) ; // Eq. (7.14)
7 dC = -N−1

C gC ; // quasi-Newton step
8 updateData(:, xC , gC) ; // Keep last < observations
9 dC = inferMin(0 | ^ − xC , �) ; // Eq. (7.15)

10 if d>
C gC > 0 then

11 dC = −dC ; // Ensure descent

to O(#2� + #3) because Eq. (7.10) has the analytical solution

W =
1
2
( ˜̂ >� ˜̂ )−1( ˜̂ >G ˜̂ ),

which only requires the inverse of an# ×# matrix instead of an#2 ×#2.
The appearance of ( ˜̂ >G ˜̂ ) stems from

˜̂ >(M − g2) = ˜̂ >(G(^ − x∗) − G(c − x∗)) =
= ˜̂ >(G(^ − c)) = ˜̂ >G ˜̂ .

To see that W is indeed a solution to Eq. (7.10) we look at the relevant
terms for this setup and see how they operate.

l.h.s. : (I−1 + ( ˜̂� ˜̂ )−1 ⊗ ( ˜̂ >� ˜̂ )) vec(W) := W> + ( ˜̂ >� ˜̂ )W( ˜̂� ˜̂ )−1

r.h.s. : vec(Z) = [>H−1 vec((M − g2)) = vec( ˜̂ >(M − g2)( ˜̂ >� ˜̂ )−1)
Z := ( ˜̂ >G ˜̂ )( ˜̂ >� ˜̂ )−1

By inserting W = 1
2 ( ˜̂ >� ˜̂ )−1( ˜̂ >G ˜̂ ) in the l.h.s. we obtain the r.h.s.

W>+( ˜̂ >� ˜̂ )W( ˜̂ >� ˜̂ )−1

=
1
2
( ˜̂ >G ˜̂ )( ˜̂ >� ˜̂ )−1 + ( ˜̂ >� ˜̂ )[1

2
( ˜̂ >� ˜̂ )−1( ˜̂ >G ˜̂ )]( ˜̂ >� ˜̂ )−1

=
1
2
( ˜̂ >G ˜̂ )( ˜̂ >� ˜̂ )−1 + 1

2
( ˜̂ >G ˜̂ )( ˜̂ >� ˜̂ )−1

= ( ˜̂ >G ˜̂ )( ˜̂ >� ˜̂ )−1 = Z

It is now possible to apply the Hessian and optimum inference from above
to linear algebra at reduced cost. If the Hessian inference (cf. Sec. 7.4) is
used in this setting, then it leads to a matrix-based probabilistic linear
solver [8, 64]

[8]: Bartels et al. (2019), ‘Probabilistic
Linear Solvers: A Unifying View’
[64]: Hennig (2015), ‘Probabilistic
interpretation of linear solvers’

. If instead the reversed inference of the optimum is used
(cf. Sec. 7.4), it will lead to an algorithm reminiscent of the solution-based
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probabilistic linear solvers [8, 25]. [8]: Bartels et al. (2019), ‘Probabilistic Lin-
ear Solvers: A Unifying View’
[25]: Cockayne et al. (2019), ‘A Bayesian
conjugate gradient method’

A full comparison is beyond the scope
of this manuscript and is left for future work.

7.5 Experiments

In the preceding section we outlined two applications where nonpara-
metric models could benefit from efficient gradient inference in high
dimensions. Some of these ideas have been explored in previous work
with the focus of improving traditional baselines, but always with var-
ious tricks to circumvent the expensive gradient inference.

Follow-up work could look into incorpo-
ration of additional information, efficient
implementation and suitability of kernels.

Since the
purpose of this paper is to enable gradient inference and not develop
new competing algorithms, the presented experiments are meant as a
proof-of-concept to assess the feasibility of high-dimensional gradient
inference for these algorithms. To this end, the algorithms only used
available gradient information in concordance with the baseline. Several extensions are outlined in Sec. 7.2.
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Figure 7.2: Optimization of a 100-
dimensional quadratic function, Eq. (7.16),
using Alg. 4 with a quadratic kernel as out-
lined in Sec. 11. The new solution-based
inference shows performance similar to cg.
The presented Hessian-based algorithm
uses a fixed c = 0 which compromises the
performance.

Linear Algebra

Consider the linear algebra, i.e., quadratic optimization, problem in
Eq. (7.16). Quadratic problems are ubiquitous in machine learning and
engineering applications, since they form a cornerstone of nonlinear
optimization methods. In our setting, they are particularly interesting due
to the computational benefits highlighted in section 11. There has already
been plenty of work studying the performance of probabilistic linear
algebra routines [155, 8, 25]

[155]: Wenger and Hennig (2020),
‘Probabilistic Linear Solvers for Machine
Learning’
[8]: Bartels et al. (2019), ‘Probabilistic
Linear Solvers: A Unifying View’
[25]: Cockayne et al. (2019), ‘A Bayesian
conjugate gradient method’, of which the proposed Hessian inference

for linear algebra is already known [64] [64]: Hennig (2015), ‘Probabilistic
interpretation of linear solvers’

. We include a synthetic example
of the kind Eq. (7.16) to test the new reversed inference of the solution
in Eq. (7.15). Figure 7.2 compares the convergence of the gold-standard
method of conjugate gradients (cg) [67]

[67]: Hestenes and Stiefel (1952), ‘Methods
of conjugate gradients for solving linear
systems’

with Alg. 4 using the efficient
inference of section 11. The matrixGwas generated to have the spectrum

�8 = �<8= +
�<0G − �<8=

# − 1
· �#−8 · (# − 8),

with �<8= = 0.5, �<0G = 100 yielding a condition number of �(G) = 200
and � = 0.6 so approximately the 30 largest eigenvalues are located in
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Figure 7.3: Comparison of Alg. 4 with an
isotropic RBF kernel against scipy’s im-
plementation of bfgs on a 100-dimensional
version of Eq. (7.17). All algorithms shared
the same line search routine and show sim-
ilar performance.

[1, 100] and the rest distributed in [0.5, 1]. The gp-algorithm retained all
the observations to operate similarly to other probabilistic linear algebra
routines. In particular, the probabilistic methods also use the optimal
step length �C = −d>

C gC/d>
C GdC that is typically used by cg.

The expression for � replaces line 3 in
Alg. 4

A relative tolerance in gradient norm of 10−5 was used as termination
criterion due to numerical instabilities. The starting and solution points
were sampled according to x0 ∼ N(0, 52 · O) and x∗ ∼ N(−2 · 1, O). The
Hessian-based optimization used a fixed c = 0 and g2 = G(c − x∗) =
−Gx∗ = −b in the linear system interpretation Gx = b.

Nonlinear Optimization

The prospect of utilizing a nonparametric model for optimization is more
interesting to evaluate in the nonlinear setting. In Fig. 7.3 the convergence
of both versions of Alg. 4 is compared to scipy’s bfgs implementation.
The nonparametric models use an isotropic RBF kernel with the last 2
observations for inference. The lengthscale � = 9 · O for GP-� and

� = 0.05 · O for GP--.
All algorithms share the same line search

routine. The function to be minimized is a relaxed version of a 100-
dimensional Rosenbrock function [124]

[124]: Rosenbrock (1960), ‘An Automatic
Method for Finding the Greatest or Least
Value of a Function’

5 (x) =
�−1∑
8=1

G2
8 + 2 · (G8+1 − G2

8 )
2. (7.17)

A hyperplane of the function can be seen on the left in Fig. 7.5 for the
first two dimensions with every other dimension evaluated at 0.

The relaxed version was used to better control the magnitude of the
gradients for the high-dimensional problem. This was important because
the RBF kernels used for the optimization used a fixed �, which could
lead to numerical issues if the magnitude of the steps and gradients
drastically changed between iterations.

Runtime Comparison

To better understand the computational saving from the presented de-
composition we compare to the CPU runtime of building and solving
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Figure 7.4: Relative CPU runtime compar-
ison of the proposed Woodbury and tra-
ditional Cholesky decomposition to con-
struct and solve ∇Q(^ ,^ )∇′ vec(`) =

vec(∇ 5 (^ )). For different dimensions (D)
a range of observations (#) is presented
for an isotropic RBF kernel.

∇Q∇′ vec(`) = vec(∇ 5 (^ ))with the traditional Cholesky decomposition.
The results are presented in Fig. 7.4 in terms of the ratio of observations
to dimension for different dimensions. For the larger dimensions a maxi-
mum size of the Gram matrix was 50 000 at which point the hardware
ran out of memory for the Cholesky decomposition. The Woodbury
decomposition can fit more observations than the full Cholesky for a
limited memory budget in the high-dimensional limit. To generate the
data we sampled gradients from Eq. (7.17) for different dimensions and
random input data x ∈ [−2, 2]� . To alleviate numerical problems an
identity matrix was added to the Gram matrix so all eigenvalues are
larger than 1. Each data point in Fig. 7.4 is the average of three repetitions
of a problem. In low � and at very small #/� our naïve python imple-
mentation suffers from overhead of pythonic operations compared to
the vectorized implementation of the Cholesky decomposition in scipy.
For larger dimensions with a small number of observations the computa-
tional cost can be reduced by several orders of magnitude despite the
implementational overhead.
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Figure 7.5: The first two dimensions of
Eq. (7.17) along with the inferred curvature
from 1000 randomly distributed samples.
The inferred function has identified the
minimum and a slight elongation of the
function but not the minute details of the
shape.

Another aspect of the decomposition is the mvm presented in Section 7.3
which can reduce computations and memory requirements. A qualitative
evaluation is available in Fig. 7.5. The right plot shows a hyperplane
with function values inferred from gradient observations evaluated at
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# = 1000 uniformly randomly distributed evaluations in the hypercube
x 8= ∈ [−2, 2]100. Constructing the Gram matrix for these observations
would require (1000 · 100)2 floating point numbers, which for double
precision would amount to > 74 GB of memory, see Tab. 7.4.

The multiplication in Eq. (7.11) Alg. 3 shows the implementation of the
multiplication.

was used in conjunction with an iterative
linear solver to approximately solve the linear system. This approach
required storage of 3#� + 3#2 numbers (cg requirements and interme-
diate matrices included) amounting to a total of only 25 MB of RAM. The
solver ran for 520 iterations until a relative tolerance of 10−6 was reached,
which took 4.9 seconds on a 2.2GHz 8-core processor. Extrapolating this
time to 100 · 1000 iterations (the time to theoretically solve the linear
system exactly) would yield approximately 16 minutes. Such iterative
methods are sensitive to roundoff errors and are not guaranteed to con-
verge for such large matrices without preconditioning. We did not employ
preconditioning as our focus was on the computational feasibility rather
than the best possible model. It would also require research into efficient
utilization of the mvm structure for preconditioning and is therefore left
for future work. The required number of iterations to reach convergence
vary with the lengthscale of the kernel and chosen tolerance. For this
experiment a lengthscale of ℓ 2 = 10 · � was used with the isotropic
RBF kernel, i.e., the inverse lengthscale matrix � = 10−3 · O.

7.6 Discussion

We have presented how structure inherent in the kernel Gram matrix can
be exploited to lower the cost of gp inference with gradients from cubic
to linear in the dimension. This technical observation principally opens
up entirely new perspectives for high-dimensional applications in which
gradient inference has previously been dismissed as prohibitive. We
demonstrate on a conceptual level the great potential of this reformulation
on various algorithms. The major intention behind the paper, however,
is to spark research to overhaul probabilistic algorithms that operate on
high-dimensional spaces and leverage gradient information.

The speed-up in terms of dimensionality does not come without limita-
tions. Our proposed decomposition compromises the number of permis-
sible gradient evaluations compared to the naïve approach of gradient
inference. Hence, our method is applicable only in the low-data regime
in which # < �. This property is unproblematic in applications that
benefit from a local gradient model, e.g., in optimization. Nevertheless,
we also found a remedy for the computational burden when# > � using
iterative linear solvers. Furthermore, the uncovered structure allows us to
store only the quantities that are necessary to multiply the Gram matrix
with an arbitrary vector. We thus showed that global models of the
gradient are possible when a low-confidence gradient belief is sufficient.
This is of particular interest for gp implementations that leverage the
massive parallelization available on GPUs where available memory often
becomes the bottleneck.

The most efficient numerical algorithms use knowledge about their in-
put to speed up the execution. Explicit structural knowledge is usually
reflected in hard-coded algorithms, e.g., linear solvers for matrices with
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specific properties that are known a priori [56]. Other kind of matrix structures include:
banded matrices, Toeplitz matrices, circu-
lant et.c.
[56]: Golub and Van Loan (2012), Matrix
computations

Structure can also be
included in probabilistic numerical methods where the chosen model
encodes known symmetries and constraints. At the same time, these
methods are robust towards numeric uncertainty or noise, which can be
included in the probabilistic model. Since Gaussian processes form a cor-
nerstone of probabilistic numerical methods [66] [66]: Hennig et al. (2015), ‘Probabilistic nu-

merics and uncertainty in computations’
, our framework allows

the incorporation of additional functional constraints into numerical
algorithms for high-dimensional data. Actions taken by such algorithms
are then better suited to the problem at hand. The cheap inclusion of
gp gradient information in numerical routines might therefore enable new
perspectives for algorithms with an underlying probabilistic model.

7.7 Future Directions

Gradient information has been used in gps before but always in con-
junction with some efficient approximation technique. This meant that
development of nonparametric optimization methods would also have to
rely on said approximations or incur a hefty computational overhead to
include gradient information. We realized the importance of this trade off
beyond optimization and therefore spent less focus on the nonparametric
optimization models and more on the general gradient inference. This
means that there still exists plenty of opportunities for nonparametric
optimization, of which a few will here be mentioned.

Traditional qn methods ignore the function evaluations when estimating
the Hessian due to the chosen quadratic model. This is unfortunate since
function evaluations can help determine the magnitude of the curvature
estimate, but it is not necessary in the presence of a line search. This was explored in Ch.5.For
a quadratic model one must consider the following. If the objective
function is a quadratic then the model is a perfect fit and additional
function evaluations only provides information about the offset of the
function. If the objective function is not a quadratic then the model has
to approximately fit the data which imposes an additional weighting of
function and gradient evaluations, resulting in more parameters to tune.
A joint nonparametric model of ( 5 ,∇ 5 ) could help alleviate this scaling
issue by automatically choosing the weighting by choice of kernel. It also
allows enough flexibility to satisfy both observations of functions and
derivatives. The high flexibility of the model also means that additional
information from a line search routine, that is otherwise simply discarded,
can be used in the nonparametric model to further improve the model.
An example of such a line search routine that is based on a gp surrogate
was developed by Mahsereci and Hennig [99]

[99]: Mahsereci and Hennig (2017), ‘Prob-
abilistic line searches for stochastic opti-
mization’with specific focus on

ML optimization.

One theoretically pleasing and potentially strong selling point is to
include the real secant equation as observation for the Hessian estimate
[157] [157]: Wills and Schön (2019), ‘Stochastic

quasi-Newton with line-search regulariza-
tion’

.
See Eq. (4.17) in Sec.4.6 for explanation.

This would require integration of the Hessian along paths which
one would expect to result in a difficult expression for the kernel Gram
matrix. For a scalar function 5 the path integrals are independent of the



Chapter 7 Nonparametric Curvature Estimation 96

path so the kernel covariance takes the convenient form

1∫
0

1∫
0

(∇∇>):(�, �′)(∇∇>)′ 3�d�′ =

∇:(x0 , x2)∇> + ∇:(x1 , x3)∇> − ∇:(x0 , x3)∇> − ∇:(x1 , x2)∇> ,

where � is a parameterization between �(0) = x0 and �(1) = x1 , and
�′ is analogous for x2 and x3. This expression only requires a minor
manipulation of the derivations in Sec. 7.3 to be made computationally
feasible.

Functional analysis is a fundamental tool for solving ordinary or partial
differential equations [128], which are usually expressed in terms of
derivatives.

Commonly known as ODEs or PDEs.
[128]: Saitoh and Sawano (2016), Theory of
reproducing kernels and applicationsDue to the close connection between functional analysis

and gps it might be possible to provide data-driven solutions to above
mentioned differential equations [88] [88]: Lange-Hegermann (2018), ‘Algo-

rithmic linearly constrained Gaussian
processes’

. On a related note it would then
also be interesting to analyze effect of prior assumptions encoded in
the kernel such as smoothness or stationarity for the development of
algorithms.



Epilogue





1: A detail often neglected in the ML opti-
mization community.

Chapter8
Summary and Outlook

The goal of this thesis has been to tackle important aspects that relate
to the training of contemporary ML models. A central part has focused
on dealing with noise in stochastic optimization to make the parameter
updates more robust and speed up convergence of the underlying opti-
mization algorithm. The noise that arises due to subsampling has mainly
been dealt with as uncertainty in the form of a Gaussian likelihood based
on the application of the central limit theorem. This facilitated the use of
probabilistic methods to achieve the goals in three different ways. Each
of the preceding chapters provided a short overview of possible future
directions that are tuned to the content of the corresponding chapter.
Here we look at the larger picture to see what future directions emerge
from the combination of the chapters.

Chapters 5 and 6 focused on optimization from the more traditional
view of approximating curvature with a quadratic metric. Chapter 5
tried to scale an arbitrary underlying metric to improve the scale of the
prior distribution for the sake of optimization. In the absence of oracle
information a surrogate was introduced which was useful for determining
a suitable learning rate when training ML models, particularly deep
neural networks. The proposed update is applicable to a wide range
of popular optimization algorithms. While the resulting algorithm is
more expensive per-iteration than the fixed-step counterpart, it does
show empirical advantages and most importantly it avoids the outer-
loop learning rate tuning which therefore significantly reduces the total
cost of training a model.1 This is of particular importance since a
significant amount of energy and labor goes into tuning the learning
rate. The proposed scaling can also be extended to other forms of
Bregman divergences, which can be useful for parameter training in
other probabilistic models.

An important example is the KL-
divergence [87].
[87]: Kullback and Leibler (1951), ‘On in-
formation and sufficiency’

The general idea of treating the metric as
an underlying Gaussian distribution has since appeared in the work
of Khan and Rue [81] [81]: Khan and Rue (2021), The Bayesian

Learning Rule
, who further explored the connection between

computational algorithms as special forms of approximate Bayesian
inference. There is an interesting and potentially powerful connection
between the curvature of a problem and the Gaussian covariance matrix. A
principled approach to learning the mean and covariance is an interesting
line of research since solving a quadratic problem can be seen as locating
the mean of a Gaussian distribution.

Chapter 6 focused on learning a suitable metric, similar to qn methods
in the presence of noise. A computationally feasible algorithm was
proposed for a matrix-variate model with normal distributed noise. The
inference scheme relied on a general prior for the matrix and the posterior
mean was made symmetric by a cheap singular value decomposition. In
Sec. 6.11 a derivation of a posterior mean under symmetry constraints
was presented with all the necessary details. A more general solution to
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including symmetry knowledge in the model for the Hessian is hidden
in Ch. 7. It turns out that the structure observed in the Gram matrix for
gradients is the same that occur with a symmetry-encoding prior over
matrix elements [64]

[64]: Hennig (2015), ‘Probabilistic
interpretation of linear solvers’. Furthermore, there is an almost exact equivalence

between the gradient kernel used for linear algebra in Sec. 11

:(x0 , x1) =
1
2
((x0 − c)�(x1 − c))2 ,

and the symmetric matrix-variate normal distribution presented by
Hennig [64].

Restated here for convenience.

This is maybe not surprising since the matrix-variate model
assumes that there is a constant Hessian, which is also a property of
the above kernel. To make the equivalence complete one has to update
the observations used in Ch. 7 to use ∇ 5 (x0) − ∇ 5 (x1) instead of ∇ 5 (x0),
which can easily be done as outlined in Sec. 7.7. The work in Ch. 6
could be combined with the results of Ch. 5 but due to the chronological
order of publication it had to make due with a different learning rate
estimate.

A shortcoming of probabilistic linear algebra at its current stage is that
popular algorithms so far lack interpretation as a Kalman filter [77, 25]

[77]: Kalman and Bucy (1961), ‘New
results in linear filtering and prediction
theory’
[25]: Cockayne et al. (2019), ‘A Bayesian
conjugate gradient method’

.
That could allow cheaper inference and a natural transition from linear
algebra to optimization, potentially with noise. The recurrence formula
of cg and the tridiagonal structure uncovered by the related Lanczos
iteration [56] [56]: Golub and Van Loan (2012), Matrix

computations §10.1
seems to suggest that such an interpretation is possible. The

connection between gp inference and linear algebra highlighted above
might hold the key as it can assimilate both information of gradient and
Hessian-vector products required by cg.

One of the main strengths of the Bayesian approach to computation is
the possibility to encode prior knowledge which can both improve the
predictive capabilities and speed up the inference because less data is
required. Finding ways to include even more structure is a promising
future direction for the probabilistic linear algebra that made up the back-
bone of Ch. 6. There are plenty of opportunities when it comes to different
matrix structures [56]. Of particular interest is banded structure which
often appears in simulations where discretization of linear operators
lead to sparse banded matrices. This means that only matrix elements
up to a certain off-diagonal are populated.

General form of a :-diagonal matrix:

�8 9 =

{
08 9 if |8 − 9 | ≤ :

0 else

All other elements are 0,
often resulting in sparse matrices. Banded matrices frequently occur in
scientific computing when a stencil2

2: The 3-point stencil 1
2ℎ2 [1 − 2 1] for a

1-dimensional function indicates that

5 ′′(G) ≈ 1
ℎ2 ( 5 (G − ℎ) − 2 5 (G) + 5 (G + ℎ))

where ℎ is the length between the equidis-
tant evaluation points.is used to approximate derivatives

by finite differences or statistics when observations are assumed to be
Markovian3

3: A Markovian process compresses
gained knowledge resulting in many vari-
ables being conditionally independent. An
example is when the transition probability
of a state in a time series only depends on
the previous : states so ?(GC+1 | -1:C ) =
?(GC+1 | -C−::C ).

.

Stochastic optimization with application in ML is a difficult yet rapidly
evolving field with plenty of opportunities for improvement. By phrasing
computation as inference we have seen a principled way of dealing with
noise resulting from subsampling and drawn parallels between linear
algebra and optimization. The high-dimensional optimization problems
that arise in ML necessitates careful consideration of CPU and memory
requirements and sets it apart from more traditional problems. Although
each chapter of the thesis only advanced the state of knowledge in a
minor capacity I believe they have, as a whole, answered important
questions and identified new directions that will help future researchers
advance the field even further.



Bibliography

References in alphabetic order.

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al. ‘Tensorflow: A system for large-scale machine learning’. In: 12th USENIX symposium on operating
systems design and implementation (OSDI 16). 2016 (cited on page 12).

[2] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford, and
N. De Freitas. ‘Learning to learn by gradient descent by gradient descent’. In: Advances in neural
information processing systems. 2016 (cited on page 59).

[3] E. Angelis, P. Wenk, B. Schölkopf, S. Bauer, and A. Krause. ‘SLEIPNIR: Deterministic and Provably
Accurate Feature Expansion for Gaussian Process Regression with Derivatives’. In: arXiv preprint
(2020) (cited on page 80).

[4] L. Armĳo. ‘Minimization of functions having Lipschitz continuous first partial derivatives’. In: Pacific
Journal of mathematics 16.1 (1966) (cited on pages 33, 59).

[5] H. Asi and J. C. Duchi. ‘The importance of better models in stochastic optimization’. In: Proceedings of
the National Academy of Sciences 116.46 (2019) (cited on page 44).

[6] L. Balles and P. Hennig. ‘Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients’.
In: International Conference on Machine Learning. Proceedings of Machine Learning Research. PMLR,
2018 (cited on page 29).

[7] L. Balles, J. Romero, and P. Hennig. ‘Coupling Adaptive Batch Sizes with Learning Rates’. In: Conference
on Uncertainty in Artificial Intelligence. Association for Uncertainty in Artificial Intelligence, 2017 (cited
on pages 14, 64).

[8] S. Bartels, J. Cockayne, I. Ipsen, and P. Hennig. ‘Probabilistic Linear Solvers: A Unifying View’. In:
Statistics and Computing 29 (2019) (cited on pages 90, 91).

[9] A. G. Baydin, R. Cornish, D. M. Rubio, M. Schmidt, and F. Wood. ‘Online Learning Rate Adaptation
with Hypergradient Descent’. In: International Conference on Learning Representations. 2018 (cited on
pages 44, 53, 59).

[10] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. ‘Automatic differentiation in machine
learning: a survey’. In: Journal of machine learning research 18 (2018) (cited on page 12).

[11] T. Bayes. ‘An Essay towards Solving a Problem in the Doctrine of Chances.’ In: Philosophical Transactions
(1683-1775) 53 (1763) (cited on page 18).

[12] R. Bellman. ‘Dynamic Programming’. In: Science 153.3731 (1966) (cited on page 4).

[13] L. Berrada, A. Zisserman, and M. P. Kumar. ‘Training neural networks for and by interpolation’. In:
arXiv preprint arXiv:1906.05661 (2019) (cited on pages 50, 59).

[14] C. M. Bishop. Pattern recognition and machine learning. springer, 2006 (cited on pages 4, 11, 17, 19).

[15] R. Bollapragada, D. Mudigere, J. Nocedal, H.-J. M. Shi, and P. T. P. Tang. ‘A Progressive Batching
L-BFGS Method for Machine Learning’. In: ArXiv e-prints (2018) (cited on page 65).

[16] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004 (cited on pages 27,
30, 34, 35, 63).

[17] M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovi. ‘Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges’. In: arXiv preprint arXiv:2104.13478 (2021) (cited on pages 4, 14).

[18] T. Brown et al. ‘Language Models are Few-Shot Learners’. In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran
Associates, Inc., 2020 (cited on page 14).



[19] C. G. Broyden. ‘A class of methods for solving nonlinear simultaneous equations’. In: Mathematics of
computation 19.92 (1965) (cited on page 38).

[20] C. G. Broyden. ‘The convergence of a class of double-rank minimization algorithms 1. general
considerations’. In: IMA Journal of Applied Mathematics 6 (1970) (cited on pages 39, 88).

[21] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. ‘A stochastic quasi-Newton method for large-scale
optimization’. In: SIAM Journal on Optimization 26.2 (2016) (cited on page 65).

[22] R. T. Q. Chen, D. Choi, L. Balles, D. Duvenaud, and P. Hennig. ‘Self-Tuning Stochastic Optimization
with Curvature-Aware Gradient Filtering’. In: Proceedings on "I Can’t Believe It’s Not Better!" at NeurIPS
Workshops. Vol. 137. Proceedings of Machine Learning Research. PMLR, 2020 (cited on page 47).

[23] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. ‘Learning phrase
representations using RNN encoder-decoder for statistical machine translation’. English (US). In:
Conference on Empirical Methods in Natural Language Processing (EMNLP 2014). 2014 (cited on page 16).

[24] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. ‘Fast and Accurate Deep Network Learning by
Exponential Linear Units (ELUs)’. In: International Conference on Learning Representations. 2016 (cited on
page 15).

[25] J. Cockayne, C. J. Oates, I. C. Ipsen, M. Girolami, et al. ‘A Bayesian conjugate gradient method’. In:
Bayesian Analysis 14 (2019) (cited on pages 60, 91, 100).

[26] J. Cockayne, C. J. Oates, T. J. Sullivan, and M. Girolami. ‘Bayesian probabilistic numerical methods’.
In: SIAM Review 61.4 (2019) (cited on page 5).

[27] R. T. Cox. ‘Probability, frequency and reasonable expectation’. In: American journal of physics 14.1 (1946)
(cited on page 17).

[28] Y. H. Dai and Y. Yuan. ‘A Nonlinear Conjugate Gradient Method with a Strong Global Convergence
Property’. In: SIAM Journal on Optimization 10.1 (1999) (cited on page 32).

[29] C. Darwin. On the origin of species, 1859. Murray, 1859 (cited on page 3).
[30] Y. N. Dauphin, H. de Vries, J. Chung, and Y. Bengio. ‘RMSProp and equilibrated adaptive learning

rates for non-convex optimization’. In: ICML workshop on Deep learning. 2015 (cited on page 59).
[31] W. C. Davidon. Variable metric method for minimization. 5990. Argonne National Laboratory, 1959 (cited

on page 38).
[32] A. Dawid. ‘Some matrix-variate distribution theory: Notational considerations and a Bayesian

application’. In: Biometrika 68.1 (1981) (cited on pages 65, 66).
[33] F. de Roos, A. Gessner, and P. Hennig. ‘High-Dimensional Gaussian Process Inference with Derivatives’.

In: International Conference on Machine Learning. Vol. 139. Proceedings of Machine Learning Research.
PMLR, 2021 (cited on pages 7, 8, 79).

[34] F. de Roos and P. Hennig. ‘Krylov Subspace Recycling for Fast Iterative Least-Squares in Machine
Learning’. In: arXiv preprint arXiv:1706.00241 (2017) (cited on pages 7, 8).

[35] F. de Roos and P. Hennig. ‘Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic
Optimization’. In: The 22nd International Conference on Artificial Intelligence and Statistics. Vol. 89.
Proceedings of Machine Learning Research. PMLR, 2019 (cited on pages 7, 8, 60, 63, 81).

[36] F. de Roos, C. Jidling, A. Wills, T. Schön, and P. Hennig. ‘A Probabilistically Motivated Learning Rate
Adaptation for Stochastic Optimization’. In: arXiv preprint arXiv:2102.10880 (2021) (cited on pages 6, 7,
43).

[37] J. Dennis and J. Moré. ‘Quasi-Newton methods, motivation and theory’. In: SIAM Review 19.1 (1977)
(cited on pages 37, 39, 65).

[38] J. Dennis Jr and R. B. Schnabel. ‘A view of unconstrained optimization’. In: Handbooks in operations
research and management science 1 (1989) (cited on page 27).

[39] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. ‘BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding’. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, 2019 (cited on page 14).



[40] J. Duchi, E. Hazan, and Y. Singer. ‘Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization’. In: Journal of Machine Learning Research (2011) (cited on page 59).

[41] V. Dumoulin and F. Visin. ‘A guide to convolution arithmetic for deep learning’. In: ArXiv e-prints
(2016) (cited on page 15).

[42] D. Duvenaud. ‘Automatic model construction with Gaussian processes’. PhD thesis. University of
Cambridge, 2014 (cited on pages 25, 26).

[43] J. L. Elman. ‘Finding structure in time’. In: Cognitive science 14.2 (1990) (cited on page 16).

[44] D. Eriksson, K. Dong, E. Lee, D. Bindel, and A. G. Wilson. ‘Scaling Gaussian process regression with
derivatives’. In: Advances in Neural Information Processing Systems. Vol. 31. 2018 (cited on pages 81, 87).

[45] R. Fletcher and C. M. Reeves. ‘Function minimization by conjugate gradients’. In: The Computer Journal
7.2 (1964) (cited on page 32).

[46] R. Fletcher. ‘A new approach to variable metric algorithms’. In: The computer journal 13 (1970) (cited on
pages 39, 88).

[47] R. Fletcher and M. J. Powell. ‘A rapidly convergent descent method for minimization’. In: The computer
journal 6.2 (1963) (cited on page 38).

[48] C. A. Floudas and P. M. Pardalos. Encyclopedia of Optimization. Springer Science & Business Media,
2008 (cited on page 3).

[49] E. J. Fuselier Jr. ‘Refined error estimates for matrix-valued radial basis functions’. PhD thesis. Texas
A&M University, 2007 (cited on page 83).

[50] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson. ‘GPyTorch: Blackbox Matrix-Matrix
Gaussian Process Inference with GPU Acceleration’. In: Advances in Neural Information Processing
Systems. Vol. 31. 2018 (cited on pages 81, 87).

[51] J. Gardner, G. Pleiss, R. Wu, K. Weinberger, and A. Wilson. ‘Product Kernel Interpolation for Scalable
Gaussian Processes’. In: The 21st International Conference on Artificial Intelligence and Statistics. Vol. 84.
Proceedings of Machine Learning Research. PMLR, 2018 (cited on page 81).

[52] M. Gibbs and D. MacKay. Efficient implementation of Gaussian processes. 1997 (cited on page 87).

[53] T. Glad and L. Ljung. Control theory. CRC press, 2014 (cited on page 77).

[54] G. Goh. ‘Why Momentum Really Works’. In: Distill (2017) (cited on page 29).

[55] D. Goldfarb. ‘A family of variable-metric methods derived by variational means’. In: Mathematics of
computation 24 (1970) (cited on pages 37, 39, 88).

[56] G. H. Golub and C. F. Van Loan. Matrix computations. Vol. 3. JHU Press, 2012 (cited on pages 64, 68, 69,
95, 100).

[57] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016 (cited on pages 12, 14, 59,
75).

[58] A. K. Gupta and D. K. Nagar. Matrix variate distributions. Vol. 104. CRC Press, 2018 (cited on page 66).

[59] R. Haelterman. ‘Analytical study of the least squares quasi-Newton method for interaction problems’.
PhD thesis. Ghent University, 2009 (cited on page 37).

[60] M. Hardt, B. Recht, and Y. Singer. ‘Train faster, generalize better: Stability of stochastic gradient
descent’. In: International Conference on Machine Learning. Proceedings of Machine Learning Research.
PMLR, 2016 (cited on page 44).

[61] K. He, X. Zhang, S. Ren, and J. Sun. ‘Deep Residual Learning for Image Recognition’. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016 (cited on pages 14, 54).

[62] H. Henderson and S. Searle. ‘The vec-permutation matrix, the vec operator and Kronecker products:
A review’. In: Linear & Multilinear Algebra 9 (1981) (cited on page 66).

[63] P. Hennig. ‘Fast Probabilistic Optimization from Noisy Gradients’. In: International Conference on
Machine Learning. Vol. 28. Proceedings of Machine Learning Research. PMLR, 2013 (cited on page 81).



[64] P. Hennig. ‘Probabilistic interpretation of linear solvers’. In: SIAM Journal on Optimization 25 (2015)
(cited on pages 7, 66, 67, 69, 78, 81, 90, 91, 100).

[65] P. Hennig and M. Kiefel. ‘Quasi-Newton method: A new direction’. In: Journal of Machine Learning
Research 14 (2013) (cited on pages 66, 81, 88).

[66] P. Hennig, M. A. Osborne, and M. Girolami. ‘Probabilistic numerics and uncertainty in computations’.
In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471.2179 (2015)
(cited on pages 5, 6, 60, 95).

[67] M. Hestenes and E. Stiefel. ‘Methods of conjugate gradients for solving linear systems’. In: Journal of
Research of the National Bureau of Standards 49.6 (1952) (cited on pages 31, 69, 91).

[68] N. Higham. ‘Computing a nearest symmetric positive semidefinite matrix’. In: Linear Algebra and its
Applications 103 (1988) (cited on page 70).

[69] S. Hochreiter. ‘The vanishing gradient problem during learning recurrent neural nets and problem
solutions’. In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6.02 (1998)
(cited on page 15).

[70] S. Hochreiter and J. Schmidhuber. ‘Long short-term memory’. In: Neural computation 9.8 (1997) (cited
on page 16).

[71] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. ‘Stochastic variational inference.’ In: Journal of
Machine Learning Research 14.5 (2013) (cited on page 64).

[72] P. Holderrieth, M. J. Hutchinson, and Y. W. Teh. ‘Equivariant Learning of Stochastic Fields: Gaussian
Processes and Steerable Conditional Neural Processes’. In: International Conference on Machine Learning.
Vol. 139. Proceedings of Machine Learning Research. PMLR, 2021 (cited on page 83).

[73] E. T. Jaynes. Probability theory: The logic of science. Cambridge university press, 2003 (cited on page 17).

[74] C. Jidling, N. Wahlström, A. Wills, and T. B. Schön. ‘Linearly constrained Gaussian processes’. In:
Advances in Neural Information Processing Systems 30 (2017) (cited on page 80).

[75] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, et al. ‘In-datacenter performance analysis of a tensor processing unit’. In: Proceedings of
the 44th annual international symposium on computer architecture. 2017 (cited on pages 12, 13).

[76] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates,
A. Zídek, A. Potapenko, et al. ‘Highly accurate protein structure prediction with AlphaFold’. In: Nature
596.7873 (2021) (cited on page 14).

[77] R. E. Kalman and R. S. Bucy. ‘New results in linear filtering and prediction theory’. In: (1961) (cited on
page 100).

[78] M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur. ‘Gaussian Processes and Kernel
Methods: A Review on Connections and Equivalences’. In: Arxiv e-prints arXiv:1805.08845v1 (2018)
(cited on page 22).

[79] T. Karvonen, J. Cockayne, F. Tronarp, and S. Särkkä. ‘A Probabilistic Taylor Expansion with Applications
in Filtering and Differential Equations’. In: arXiv preprint arXiv:2102.00877 (2021) (cited on page 84).

[80] H. K. Khalil. Nonlinear systems. Prentice-Hall, 2002 (cited on page 77).

[81] M. E. Khan and H. Rue. The Bayesian Learning Rule. 2021 (cited on page 99).

[82] J. Kiefer and J. Wolfowitz. ‘Stochastic Estimation of the Maximum of a Regression Function’. In: 23.3
(1952) (cited on page 44).

[83] D. P. Kingma and J. Ba. ‘Adam: A Method for Stochastic Optimization’. In: International Conference on
Learning Representations. Ed. by Y. Bengio and Y. LeCun. 2015 (cited on pages 47, 48, 59, 64).

[84] A. N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung. 1933 (cited on page 17).

[85] A. Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. Citeseer, 2009 (cited on
pages 14, 74).



[86] A. Krizhevsky. ‘Learning multiple layers of features from tiny images’. MA thesis. Department of
Computer Science, University of Toronto, 2009 (cited on page 53).

[87] S. Kullback and R. A. Leibler. ‘On information and sufficiency’. In: The Annals of Mathematical Statistics
22.1 (1951) (cited on page 99).

[88] M. Lange-Hegermann. ‘Algorithmic linearly constrained Gaussian processes’. In: arXiv preprint
arXiv:1801.09197 (2018) (cited on page 96).

[89] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. ‘Gradient-based learning applied to document
recognition’. In: Proceedings of the IEEE 86.11 (1998) (cited on page 15).

[90] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi. ‘A survey of deep neural network
architectures and their applications’. In: Neurocomputing 234 (2017) (cited on page 15).

[91] D. J. Lizotte. ‘Practical Bayesian optimization’. PhD thesis. University of Alberta, 2008 (cited on
page 80).

[92] N. Loizou, S. Vaswani, I. Laradji, and S. Lacoste-Julien. ‘Stochastic Polyak step-size for SGD: An
adaptive learning rate for fast convergence’. In: arXiv preprint arXiv:2002.10542 (2020) (cited on pages 46,
50, 59).

[93] D. G. Luenberger. Introduction to linear and nonlinear programming. Vol. 28. Addison-wesley Reading,
MA, 1973 (cited on page 28).

[94] I. Macêdo and R. Castro. Learning divergence-free and curl-free vector fields with matrix-valued kernels.
IMPA, 2010 (cited on page 83).

[95] D. J. MacKay. Information theory, inference and learning algorithms. Cambridge university press, 2003
(cited on pages 11, 17).

[96] D. Maclaurin, D. Duvenaud, and R. P. Adams. ‘Autograd: Effortless gradients in numpy’. In: ICML
2015 AutoML workshop. Vol. 238. 2015 (cited on page 12).

[97] P. C. Mahalanobis. ‘On the generalized distance in statistics’. In: Proceedings of the National Institute of
India. National Institute of Science of India. 1936 (cited on pages 24, 28, 35).

[98] M. Mahsereci. ‘Probabilistic Approaches to Stochastic Optimization’. PhD thesis. University of
Tübingen, 2018 (cited on page 29).

[99] M. Mahsereci and P. Hennig. ‘Probabilistic line searches for stochastic optimization’. In: The Journal of
Machine Learning Research 18.1 (2017) (cited on pages 33, 44, 59, 95).

[100] C. C. Margossian. ‘A review of automatic differentiation and its efficient implementation’. In: Wiley
interdisciplinary reviews: data mining and knowledge discovery 9.4 (2019) (cited on page 13).

[101] J. Martens. ‘Deep learning via Hessian-free optimization’. In: International Conference on Machine
Learning. Proceedings of Machine Learning Research. PMLR, 2010 (cited on pages 32, 65).

[102] J. Martens. New insights and perspectives on the natural gradient method. 2020 (cited on page 47).

[103] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012 (cited on pages 17, 20).

[104] M. Mutny and A. Krause. ‘Efficient high dimensional Bayesian optimization with additivity and
quadrature Fourier features’. In: Advances in Neural Information Processing Systems 31 (2018) (cited on
page 80).

[105] V. Nair and G. E. Hinton. ‘Rectified linear units improve restricted boltzmann machines’. In: Icml. 2010
(cited on page 15).

[106] F. J. Narcowich and J. D. Ward. ‘Generalized Hermite interpolation via matrix-valued conditionally
positive definite functions’. In: Mathematics of Computation 63.208 (1994) (cited on page 83).

[107] S. G. Nash. ‘A survey of truncated-Newton methods’. In: Journal of computational and applied mathematics
124.1-2 (2000) (cited on page 32).

[108] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. ‘Reading Digits in Natural Images
with Unsupervised Feature Learning’. In: NIPS Workshop on Deep Learning and Unsupervised Feature
Learning. 2011 (cited on page 54).



[109] J. Nocedal and S. J. Wright. Numerical Optimization. second. New York, NY, USA: Springer, 2006 (cited
on pages 3, 27, 28, 30, 32, 33, 36, 37, 45, 51, 64).

[110] E. Noether. ‘Invariante Variationsprobleme’. ger. In: Nachrichten von der Gesellschaft der Wissenschaften
zu Göttingen, Mathematisch-Physikalische Klasse 1918 (1918) (cited on page 4).

[111] M. A. Osborne, R. Garnett, and S. J. Roberts. ‘Gaussian processes for global optimization’. In:
International conference on learning and intelligent optimization. Vol. 3. 2009 (cited on page 80).

[112] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. ‘Automatic differentiation in PyTorch’. In: NIPS-Workshops. 2017 (cited on page 74).

[113] A. Paszke, S. Gross, F. Massa, and et. al. ‘PyTorch: An Imperative Style, High-Performance Deep
Learning Library’. In: Advances in Neural Information Processing Systems (NeurIPS). 2019 (cited on
pages 12, 52).

[114] B. Pearlmutter. ‘Fast exact multiplication by the Hessian’. In: Neural computation 6.1 (1994) (cited on
pages 31, 65, 72).

[115] Polak, E. and Ribiere, G. ‘Note sur la convergence de méthodes de directions conjuguées’. In: R.I.R.O.
3.16 (1969) (cited on page 32).

[116] B. Polyak. Introduction to Optimization. 1987 (cited on pages 43, 44, 46, 47, 49, 59).

[117] B. T. Polyak. ‘Some methods of speeding up the convergence of iteration methods’. In: USSR
Computational Mathematics and Mathematical Physics 4.5 (1964) (cited on pages 29, 64).

[118] J. Quinonero-Candela and C. E. Rasmussen. ‘A unifying view of sparse approximate Gaussian process
regression’. In: The Journal of Machine Learning Research 6 (2005) (cited on page 24).

[119] C. E. Rasmussen. ‘Gaussian processes to speed up hybrid Monte Carlo for expensive Bayesian integrals’.
In: Seventh Valencia international meeting. Vol. 7. Bayesian Statistics. 2003 (cited on page 80).

[120] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006 (cited
on pages 12, 17, 22–26, 74, 79, 81).

[121] M. Riedmiller and H. Braun. ‘Rprop-a fast adaptive learning algorithm’. In: Proc. of ISCIS VII). Citeseer.
1992 (cited on page 51).

[122] H. Robbins and S. Monro. ‘A stochastic approximation method’. In: The Annals of Mathematical Statistics
22.3 (1951) (cited on pages 14, 44, 46, 64).

[123] M. Rolinek and G. Martius. ‘L4: Practical loss-based stepsize adaptation for deep learning’. In: Advances
in Neural Information Processing Systems (NeurIPS). 2018 (cited on pages 53, 59, 60).

[124] H. H. Rosenbrock. ‘An Automatic Method for Finding the Greatest or Least Value of a Function’. In:
The Computer Journal 3 (1960) (cited on pages 51, 92).

[125] S. Ruder. An overview of gradient descent optimization algorithms. Tech. rep. arXiv:1609.04747, 2016 (cited
on page 59).

[126] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. ‘Learning representations by back-propagating
errors’. In: nature 323.6088 (1986) (cited on page 13).

[127] Y. Saad and M. Schultz. ‘GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systems’. In: SIAM Journal on scientific and statistical computing 7.3 (1986) (cited on page 69).

[128] S. Saitoh and Y. Sawano. Theory of reproducing kernels and applications. Springer, 2016 (cited on page 96).

[129] S. Särkkä and A. Solin. Applied stochastic differential equations. Vol. 10. Cambridge University Press, 2019
(cited on page 25).

[130] T. Schaul, S. Zhang, and Y. Lecun. ‘No More Pesky Learning Rates’. In: International Conference on
Machine Learning. Proceedings of Machine Learning Research. PMLR, 2013 (cited on page 59).

[131] R. M. Schmidt, F. Schneider, and P. Hennig. ‘Descending through a Crowded Valley - Benchmarking
Deep Learning Optimizers’. In: International Conference on Machine Learning. Vol. 139. Proceedings of
Machine Learning Research. PMLR, 2021 (cited on pages 28, 40, 47).



[132] F. Schneider, L. Balles, and P. Hennig. ‘DeepOBS: A Deep Learning Optimizer Benchmark Suite’. In:
International Conference on Learning Representations. 2019 (cited on page 52).

[133] B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization, optimization,
and beyond. MIT press, 2002 (cited on pages 17, 25).

[134] N. Schraudolph, J. Yu, and S. Günter. ‘A stochastic quasi-Newton method for online convex optimiza-
tion’. In: Artificial Intelligence and Statistics. 2007 (cited on page 65).

[135] D. F. Shanno. ‘Conditioning of quasi-Newton methods for function minimization’. In: Mathematics of
computation 24 (1970) (cited on pages 39, 88).

[136] J. Shawe-Taylor, N. Cristianini, et al. Kernel methods for pattern analysis. Cambridge university press,
2004 (cited on pages 25, 26).

[137] J. R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Tech. rep.
1994 (cited on page 31).

[138] E. Solak, R. Murray-Smith, W. Leithead, D. Leith, and C. E. Rasmussen. ‘Derivative Observations in
Gaussian Process Models of Dynamic Systems’. In: Advances in Neural Information Processing Systems.
Vol. 15. 2003 (cited on page 80).

[139] A. Solin, M. Kok, N. Wahlström, T. B. Schön, and S. Särkkä. ‘Modeling and interpolation of the ambient
magnetic field by Gaussian processes’. In: IEEE Transactions on robotics 34 (2018) (cited on page 80).

[140] A. Solin and S. Särkkä. ‘Hilbert space methods for reduced-rank Gaussian process regression’. In:
Statistics and Computing 30 (2020) (cited on page 80).

[141] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. ‘On the importance of initialization and momentum
in deep learning’. In: International Conference on Machine Learning. Proceedings of Machine Learning
Research (2013) (cited on pages 29, 47, 59).

[142] A. R. Tej, K. Azizzadenesheli, M. Ghavamzadeh, A. Anandkumar, and Y. Yue. ‘Deep Bayesian
Quadrature Policy Optimization’. In: arXiv preprint (2020) (cited on page 81).

[143] L. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, 1997 (cited on pages 64, 69).
[144] G. E. Uhlenbeck and L. S. Ornstein. ‘On the theory of the Brownian motion’. In: Physical review 36.5

(1930) (cited on page 25).
[145] A. Van der Sluis and H. A. van der Vorst. ‘The rate of convergence of conjugate gradients’. In: Numerische

Mathematik 48.5 (1986) (cited on page 32).
[146] A. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics.

Cambridge University Press, 1998 (cited on page 64).
[147] C. Van Loan. ‘The ubiquitous Kronecker product’. In: Journal of Computational and Applied Mathematics

123 (2000) (cited on page 68).
[148] C. F. Van Loan. ‘The ubiquitous Kronecker product’. In: Journal of computational and applied mathematics

123 (2000) (cited on pages 82, 84).
[149] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, . Kaiser, and I. Polosukhin.

‘Attention is all you need’. In: Advances in neural information processing systems. 2017 (cited on page 16).
[150] S. Vaswani, F. Kunstner, I. Laradji, S. Y. Meng, M. Schmidt, and S. Lacoste-Julien. ‘Adaptive Gradient

Methods Converge Faster with Over-Parameterization (and you can do a line-search)’. In: arXiv preprint
arXiv:2006.06835 (2020) (cited on pages 33, 49, 59).

[151] S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, and S. Lacoste-Julien. ‘Painless stochastic
gradient: Interpolation, line-search, and convergence rates’. In: Advances in Neural Information Processing
Systems. 2019 (cited on pages 44, 59).

[152] S. Vĳayakumar and S. Schaal. ‘Locally Weighted Projection Regression: Incremental Real Time
Learning in High Dimensional Space’. In: International Conference on Machine Learning. Proceedings of
Machine Learning Research. PMLR, 2000 (cited on page 72).

[153] J. F. Vincent, O. A. Bogatyreva, N. R. Bogatyrev, A. Bowyer, and A.-K. Pahl. ‘Biomimetics: its practice
and theory’. In: Journal of the Royal Society Interface 3.9 (2006) (cited on page 3).



[154] M. Wahde. Biologically inspired optimization methods: an introduction. WIT press, 2008 (cited on page 3).

[155] J. Wenger and P. Hennig. ‘Probabilistic Linear Solvers for Machine Learning’. In: Advances in Neural
Information Processing Systems. 2020 (cited on pages 81, 91).

[156] A. Wills and T. Schön. ‘Stochastic quasi-Newton with adaptive step lengths for large-scale problems’.
In: ArXiv e-prints (2018) (cited on pages 65–67).

[157] A. Wills and T. Schön. ‘Stochastic quasi-Newton with line-search regularization’. In: arXiv preprint
(2019) (cited on pages 33, 76, 81, 95).

[158] A. G. Wills and T. B. Schön. ‘On the construction of probabilistic Newton-type algorithms’. In:
Conference on Decision and Control. Vol. 56. IEEE. 2017 (cited on page 81).

[159] A. Wilson and H. Nickisch. ‘Kernel interpolation for scalable structured Gaussian processes (KISS-GP)’.
In: International Conference on Machine Learning. Proceedings of Machine Learning Research. PMLR,
2015 (cited on page 81).

[160] P. Wolfe. ‘Convergence conditions for ascent methods’. In: SIAM review 11.2 (1969) (cited on page 33).

[161] P. Wolfe. ‘Convergence conditions for ascent methods. II: Some corrections’. In: SIAM review 13.2 (1971)
(cited on page 33).

[162] M. A. Woodbury. Inverting modified matrices. Statistical Research Group, 1950 (cited on pages 39, 86).

[163] J. Wu, M. Poloczek, A. G. Wilson, and P. Frazier. ‘Bayesian optimization with gradients’. In: Advances
in Neural Information Processing Systems. 2017 (cited on page 80).

[164] J. Wu, W. Hu, H. Xiong, J. Huan, V. Braverman, and Z. Zhu. ‘On the noisy gradient descent that
generalizes as sgd’. In: International Conference on Machine Learning. Proceedings of Machine Learning
Research. PMLR, 2020 (cited on page 44).

[165] S. Zagoruyko and N. Komodakis. ‘Wide Residual Networks’. In: Proceedings of the British Machine
Vision Conference (BMVC). BMVA Press, 2016 (cited on page 54).



Notation

The next list describes several symbols that are used within the body of the document.

General

0, 1, 2, . . . Scalar: lowercase

a , b, c, . . . Vector: boldface lowercase

G, H, I , . . . Matrix: boldface uppercase

� Dimension of parameters

# Number of data points

" Number of observations/matrix rank

D Data set consisting of # input-output pairs D = {G8 , H8}#8=1

ℬ Batch of data set

5 General scalar function ℝ� → ℝ

ℓ Loss function ℝ� → ℝ of single datum

ℛ General regularization term ℝ� → ℝ

ℒ (Regularized) Empirical loss
∑
8 ℓ8()) +ℛ())

ℒℬ Empirical loss of a batch

ℒD ℒD = ℒ is usually the empirical loss of the training set

N Normal distribution

& Normal distributed corruption

∇ Gradient operator: vector with partial derivative w.r.t. each input dimension.

gC Gradient of a scalar function at iteration C

vC General step direction of optimizer

� Momentum scale for Momentum updates and Adam

mC Momentum term for accumulating first moment of gradients

) D-dimensional parameters to be optimized

)∗ Optimal parameters

N Hessian matrix of scalar function consisting all second-order partial derivatives

�C Step length/learning rate at iteration C



] Covariance/metric matrix

� General distance matrix

O Identity matrix

XC Noise covariance (also 'C in scalar observation)

5 Feature matrix

) Local quadratic estimate

Symbols used in Ch. 5

5̄ Local surrogate function

) Quadratic part of local surrogate function

5 ★ Minimum of local surrogate function

Δ 5 Estimate of f ()C) − 5 ★

d Local variable in quadratic surrogate function

)̂C Random variable for inference

)★
C Local minimizer so 5̄ ()★ = 5 ★

MC Diagonal matrix for accumulating second moment of gradients used by RMSProp and AdaGrad

\C Diagonal matrix used by Adam

Symbols used in Ch. 6

Γ Antisymmetric projection operator

�0 Scalar noise parameter

� Difference between observation and prediction _ − N0Y

� Scalar covariance of noise matrix

K Noise matrix

M Gram matrix Y>]Y ⊗,

N< Estimate of Hessian after < = " observations

V Preconditioning matrix

Y Search direction employed by matrix-variate model _ = NY

^ Solution to equation (M + X) vec(^ ) = vec(�)

_ Observation of matrix-variate model _ = NY ∈ ℝ�×"

⊗ Kronecker product between two matrices (G ⊗ H)8 9 ,:; = G8:H 9;

5 Feature vector for parametric regression



ℎ0 Scalar mean parameter

F0 Scalar covariance parameter

Symbols used in Ch. 7

ℒ Linear operator

GP Gaussian process

ℳ Linear operator

M Matrix of gradient observations

Q′ %Q(A)/%A

Q′′ %2Q(A)/%A2

^ Input variable of data set (^ = {G8}#8=1)

x Multidimensional single data point

_ All target values of data set _ = {H8}#8=1

:(·, ·) Kernel function

 x∗- Kernel covariance between new point x∗ and training set -

 -- Kernel matrix evaluated at points in -

H Target value





Alphabetical Index

Adagrad, 47
Adam, 47, 48
automatic differentiation, 5, 12

Bayes’ theorem, 4, 18
BFGS, 39, 88
Broyden’s method, 38

central limit theorem, 18, 43
CIFAR-10, 53, 74
CIFAR-100, 54
computational graph, 12
condition number, 28, 64, 71
conditional distribution, 19
conjugate gradients, 31
conjugate prior, 20
constrained optimization, 76
convolutional layer, 15, 54, 74
covariance matrix, 20
curse of dimensionality, 4

deep learning, 14, 74
DeepOBS, 52
dense layer, 15
DFP, 38
Dirac distribution, 66
dot product kernel, 25, 83

empirical risk minimization, 4, 12, 43, 63
epistemic uncertainty, 5

F-MNIST, 53
feature matrix, 22
first-order optimization, 28
fully-connected layer, 15, 74

Gaussian distribution, 18
Gaussian process, 22, 81
gradient descent, 28

Hessian, 27, 30, 45, 88
Hessian-vector product, 31
homoscedastic, 22
Hypergradient descent, 53

ill-conditioned, 29
interpolation, 50
isotropic, 24

kernel function, 23
kernel matrix, 23

Kronecker product, 66, 82

L-BFGS, 40
L4 optimizer, 53
learning rate, 32
likelihood, 4, 21
linear operator, 82
loss function, 11
Lyapunov equation, 77

Mahalanobis distance, 28, 35
marginal distribution, 19
Matérn kernel, 24
matrix inversion lemma, 39, 68
matrix-variate normal distribution, 66
max-pooling, 16, 74
mini-batch, 13
MNIST, 53, 73
momentum, 29, 47

natural parameters, 18
Newton step, 30, 45
nonlinearity function, 15, 74
normal distribution, 18

overfitting, 13

parametric regression, 22
Polyak step, 46
posterior distribution, 4, 21
preconditioning, 33, 64, 71
prior distribution, 4, 21
probabilistic numerics, 5
product rule, 18

Quasi-Newton, 36, 65
quasi-Newton algorithm, 88

RBF kernel, 25, 92
recurrent layer, 16
regularization, 74
RMSprop, 47
Rosenbrock function, 51, 92
rotation-invariant, 25

SARCOS, 72
secant equation, 36
second-order optimization, 29
shift-invariant, 24
stationary kernel, 24, 84
stochastic gradient descent, 46
subsampling, 13



sum rule, 18
supervised learning, 4, 11
surrogate function, 30, 50
SVHN, 54
symmetric and positive definite, 30

symmetric rank-1, 38

Taylor expansion, 30, 44

unconstrained optimization, 27, 88
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