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Abstract

Physics-informed neural networks (PINN) have shown great success in multiple
applications in solving PDE problems [Karniadakis et al., 2021] and have become
a well established part scientific machine learning. One ongoing area of research
is quantifying the different sources of uncertainty arising in different scientific ma-
chine learning methods. This work investigated whether we can capture the nu-
merical error of a PINN solution for a PDE problem using a probabilistic approch
in a setting with noise free input data. To make the computations tractable and
efficient we used Laplace approximations to infer the posterior and get uncertain-
ties over the outputs of our network. We begin by modifying the PINN approach
[Raissi et al., 2019] and constructing a probabilistic formulation of the PINN prob-
lem. For that we defined a corresponding prior over the weights and likelihood
functions. But computing the posterior p(θ | D) analytically is usually intractable.
We employ a Laplace approximation to efficiently approximate the posterior by a
Gaussian around the mode of our posterior θMAP . We improve our approximation
by tuning the hyperparameters of our probabilistic model (the variances of the
prior and likelihood) using the Laplace-approximated marginal likelihood. To get
uncertainty estimates over the PINN solution we approximate the posterior over
the network outputs p(u(x) | x,D) by linearizing the neural network around our
MAP estimate θMAP .

We then show that out method is able to accurately solve a PDE problem and ana-
lyze the uncertainties returned by our posterior. The uncertainties are reasonably
well calibrated and capture the numerical error of our method.
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Zusammenfassung

So genannte physics-informed neural networks (PINNs) haben in der nahen Ver-
gangenheit in verschiedenen Anwendungen großen Erfolg im Lösen partieller
Differentialgleichungen(PDE) gezeigt [Karniadakis et al., 2021]. Ein laufendes
Forschungsgebiet ist die Quantifizierung der verschiedenen Quellen von Un-
sicherheiten, die in verschiedenen Methoden im Forschungsbereich von SciML
auftreten. Diese Arbeit untersucht die Möglichkeit, den numerischen Fehler einer
PINN-Lösung für ein PDE-Problem mit Hilfe eines probabilistischen Ansatzes
in einer Umgebung mit rauschfreien Eingabedaten zu bestimmen. Dieser prob-
abilistische Ansatz ist oft analytisch nicht lösbar oder sehr rechenintensiv.
Um die Berechnung der a-posteriori-Wahrscheinlichkeit effizient zu gestalten,
haben wir Laplace-Approximationen verwendet, um diese Wahrscheinlichkeit zu
schätzen und Unsicherheiten über die Ausgaben unseres Netzwerks zu erhalten.
Zunächst formulieren wir den PINN-Ansatz [Raissi et al., 2019] probabilistisch
um. Dazu definieren wir eine entsprechende a-priori-Wahrscheinlichkeit über
die Gewichte und die Likelihood-Funktionen. Die Berechnung der a-posteriori-
Wahrscheinlichkeit p(θ | D) ist jedoch in der Regel analytisch nicht lösbar. Wir ver-
wenden eine Laplace-Approximation, um die a-posteriori-Wahrscheinlichkeit durch
eine Normalverteilung um den Modus dieser a-posteriori-Wahrscheinlichkeit θMAP

effizient zu approximieren. Um Unsicherheiten über die PINN-Lösung zu erhalten,
approximieren wir die Wahrscheinlichkeit über die Ausgaben p(u(x) | x,D) durch
Linearisierung des neuronalen Netzes um unsere MAP-Schätzung θMAP .

In unseren Experimenten zeigen wir, dass unsere Methode in der Lage ist, ein PDE-
Problem gut zu lösen, und analysieren die Unsicherheiten, die von der Methode
ausgegeben werden.
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Chapter 1

Introduction

1.1 Motivation

Partial differential equations (PDEs) have played an important role in modelling
and predicting the behaviour of many complex phenomena occuring in the real
world. They can be used to describe how physical, biological, mathematical or
engineering systems change over time and space. In physics, they are used to model
the behaviour of fluids, e.g. in the famous Navier-Stokes equations. In engineering
and material science they can be used to model and describe structures and to
analyze their properties. There are many different approaches to solving PDEs,
using both analytical methods and numerical algorithms. PDE problems can often
be very difficult to solve, as they involve multiple variables and partial derivatives
and often do not have a closed-form solution.

In recent years researchers have explored many approaches to modeling and
forecasting physical systems using various machine learning methods. In this field
of scientific machine learning, methods attempt to incorporate knowledge of phys-
ical systems into e.g. the learning process of a neural network. One approach to
incorporate prior knowledge of the physical principles of a dynamical system into
deep learning algorithms are so called physics-informed neural networks (PINNs)
[Raissi et al., 2019]. Here the underlying dynamics of a PDE are encoded into
the neural network training process using a modified loss term and automatic-
differentiation. This loss term then enforces the physical principles at a chosen
set of collocation points. PINNs have been shown to have perform well on var-
ious types of PDE problems [Karniadakis et al., 2021]. The PINN method can
be thought of as a numerical algorithm using collocation points. It returns an
approximate solution to a true underlying solution of the PDE problem. Usually
the true underlying solution to a PDE problem is not known. Thus, in addition
to the solution, we may also be interested in the quality of our solution, i.e. how

1



2 CHAPTER 1. INTRODUCTION

certain we can be about our solution. Sources that influence the uncertainty of the
solution in scientific machine learning are the architecture of the neural network,
the choice of hyperparameters, the chosen discretization of the data grid, as well
as the uncertainty inference algorithm itself [Psaros et al., 2022]. But depending
on the setting, the uncertainty might also be influenced by noisy data or stochas-
ticity in the PDE. Traditional numerical solvers for partial differential equations
try to find a solution to the problem, but it is often just an approximation with
an unknown numerical error. To apply the numerical solution (as the true under-
lying solution to the PDE problem is usually unknown) an estimate or guarantee
of the magnitude and distribution of the error is useful. In a probabilistic model
we can represent uncertain quantities like the measurements and by extension the
measurement errors as random variables and probability distributions. This ap-
proach is similar to the one usually employed in probabilistic numerical modeling.
Probabilistic numerics is a field of research that tries to pose numerical algorithms
and methods as problems of Bayesian inference [Hennig et al., 2022]. The PINN
approach is also comparable to a collocation based numerical algorithm for solv-
ing PDEs. In this thesis we introduce a probabilistic approach for PINNs in a
setting with noise free inputs and analyze the resulting uncertainty estimates. We
define a probabilistic model for the PINN problem and use Laplace approxima-
tions to make the computation of the uncertainty estimates tractable. We chose
Laplace approximations to infer the posterior, because they give good uncertainty
estimates while still being computationally efficient. They also do not infer with
the neural network training process and can be applied to all network architec-
tures. In addition to that, in contrast to other posterior inference algorithms, we
are able to approximate the full covariance of the posterior, and can subsequently
work with this covariance matrix. While other work was mostly concerned with
uncertainty quantification for noisy observations or stochastic partial differential
equations [Yang et al., 2020, Zhang et al., 2019, Psaros et al., 2022], in this work
we instead want to analyze the uncertainty estimates in a with noise-free inputs
and compare those estimates to the numerical error of the PINN solution. Next
we introduce some of the past approaches to quantify the uncertainty in PINNs,
both with Laplace approximations and other posterior inference methods.

Related Work

In [Yang et al., 2021], the authors introduce Bayesian PINNs (B-PINNs) by repre-
senting the PINN formulation in the Bayesian framework and defining an appropri-
ate prior and likelihood function. They then explore different posterior sampling
approaches to sample from the Bayesian posterior. In that work the setting is
different, as it mainly considers noisy inputs as sources of uncertainty. The meth-
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ods for posterior inference are also different, in the work they used Hamiltonian
Monte-Carlo and variational inference to estimate the uncertainties.

In the study [Psaros et al., 2022] the authors analyzed a wide range of posterior
inference methods (including Laplace approximations) for a wide range of scientific
machine learning settings. They considered many cases of uncertainty, including
noisy input data and stochastic PDEs. But they did not analyze the noise free
input setting we use in this work here. Their posterior inference method using
Laplace approximations is also less refined.

While [Izzatullah et al., 2022] use Laplace approximations to make the com-
putations in Bayesian PINNs fast and efficient, the work only tries to solve one
specific PDE problem. And while their method is similar to ours, they did not
analyze the performance of the method itself.

1.2 Outline

Chapter 2 introduces the two underlying concepts used in this work, physics-
informed neural networks and Laplace approximation. Next, Chapter 3 introduces
the method we have developed. Here we define the general problem formulation
and the underlying probabilistic model we constructed. The evaluation of the our
methods and the empirical results are presented in Chapter 4. The experiments
not only include the general evaluation of the effectiveness of the method but also
investigate the behaviour of the method for different models and collocation grids.
Finally we discuss the our findings and possible extensions in Chapter 5.
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Chapter 2

Foundations

In this work we want to quantify the numerical error of a PDE solution returned by
a physics-informed neural network. To this end we apply Laplace approximations
to physics-informed neural networks in setting with noise-free inputs. We then
analyse the uncertainty estimates of the posterior predictive distribution. In our
setting, this posterior should reflect other sources of uncertainty, coming from
model misspecification in the form of the architecture and hyperparameters of the
model, as well as the discretization used in the method itself.

This chapter first introduces and defines partial differential equations in Section
2.1. The rest of the chapter then describes the two foundations this work is based
on, physics-informed neural networks [Raissi et al., 2019] in Section 2.2 and Laplace
approximations and some extensions in Section 2.3.

5
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2.1 Partial Differential Equations

Partial differential equations (PDEs) are mathematical equations that involve at
least two variables and some of their partial derivatives. In the PDE literature
partial derivatives are usually denoted using a subscript notation:

ux :=
∂u(·)
∂x

, (2.1)

where u(·) denotes the underlying solution function.

A general PDE is an equation of the form

N (x, t, u, ut, ux1 , ux2 , ux1x2 , . . . ) = 0, (x, t) ∈ Ω, (2.2)

where u = u(t, x) : Ω → Rm is the unknown function that we are trying to solve
for, and the partial derivatives ux, ut, uxx, etc. represent the rates of change
of u with respect to the variables x and t in the spatio-temporal domain Ω (see
Borthwick [2017]). The operator N represents the specific form of the PDE, which
may involve constants or other terms that depend on the problem at hand. The
operator is often also denoted in the following way:

N [u](t, x). (2.3)

We need to further constraint the problem by imposing boundary conditions or
initial conditions (or both). They restrict the PDE at the boundary of the domain
or impose the starting configuration. Boundary conditions are commonly given in
the following form:

au+ b
∂u

∂x
= c, ∀x ∈ ∂Ω. (2.4)

They are called Neumann (a=0), Dirichlet (b=0), or Robin (c=0) boundary condi-
tions Jaun et al. [1999]. Another common form are periodic boundary conditions,
given like

u(xl) = u(xr), {xl, xr} ∈ ∂Ω. (2.5)

Sometimes initial conditions need to be imposed:

u(t = 0, x) = u0(x),∀x ∈ Ω. (2.6)

Solving the equation entails finding a solution function u(·, ·) that satisfies the
equation 2.2 and the initial or boundary conditions, if any are given. We call the
combination of a PDE and its corresponding boundary and/or initial conditions a
PDE problem.
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Example PDE problem We introduce a simple illustrative example PDE prob-
lem, adapted from [Barba and Forsyth, 2019]: One fundamental PDE problem is
the heat equation, in two-dimensions it is defined in the following way:

∂u

∂t
− (ν

∂2u

∂x2
1

+ ν
∂2u

∂x2
2

) = 0 (2.7)

The heat equation (also known as diffusion equation) models how heat transfers
and spreads in different materials and is important in many fields of science, in-
cluding physics, engineering, mathematics, and finance. In addition to the partial
differential equation we also impose Dirichlet boundary conditions:

u(t, x) = 1 for x1, x2 ∈ {−1, 1} (2.8)

and the initial condition

u(t = 0, x1, x2) =

{
2 for x1, x2 ∈ [−0.5, 0]

1 else
(2.9)

In Figure 2.1 we show both the initial condition of this PDE problem, as well as
a solution obtained after running a numerical solver to simulate 50 time steps.

(a) Initial Condition
(b) Solution after iterating simple numerical
solver for 50 time-steps

Figure 2.1: Simple diffusion equation in 2D

Partial differential equations are present in many applications and have been
thoroughly studied (see e.g. Evans [2010], Boyce et al. [2021]). Many approaches
to solve PDE problems analytically or to find properties of possible solutions have
been proposed. But those analytical approaches for solving PDEs are often not
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feasible or tractable, and there are multiple different numerical approaches to solve
them approximately [Morton and Mayers, 2005]. With the emergence of the field of
scientific machine learning, several approaches have been developed to leverage the
recent success of deep learning methods to solve PDEs. One such approach, which
tries to harness the power of neural networks as universal function approximators
to solve PDE problems, are so called physics-informed neural networks.

2.2 Physics-informed Neural Networks

The main idea of physics-informed neural networks [Raissi et al., 2019] is to in-
corporate knowledge about the dynamics of a system (i.e. the partial differential
equation) in addition to training data (e.g. measurements). The dynamics are
incorporated into the training of the neural network in the form of an additional
loss term, which can be thought of as a soft constraint. This enables us to learn a
potentially high-dimensional nonlinear function despite possibly using only a few
input data points. Notably the PDE constraints are imposed at a set of colloca-
tion points that can be selected freely, not unlike some traditional approaches to
numerically solve PDE problems.

Problem setup

We first introduce the problem setup for the so called forward problem in the
“continuous time model” case as described by Raissi et al. [2019]. The goal is to
compute a solution u(t, x) to a deterministic PDE problem:

ut +N [u] = 0, x ∈ Ω, t ∈ [0, T ]. (2.10)

Here N denotes a general (non-)linear differential operator, u(t, x) is the solution
function to the PDE and Ω ⊂ Rm the problem domain. Some PDE problems will
also require corresponding boundary and initial conditions to be fullfilled, which
are given separately depending on the problem at hand. A more general problem
setup will be defined in 3.1. Our goal is to infer a solution u(t, x) that satisfies
Equation 2.10 and the boundary or initial conditions, if any are given. We define
f(t, x) as the left-hand side in Equation 2.10:

f(t, x) := ut +N [u]. (2.11)

In the PINN aproach we approximate the latent solution to the PDE problem
u(t, x) with a deep neural network uθ(t, x) with parameters θ. We now call fθ(t, x)
the physics-informed neural network, as by applying the chain rule and differenti-
ating uθ(t, x) using automatic differentiation with regard to the inputs, we again
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obtain a neural network that shares its parameters with uθ(t, x). By constructing
an adequate loss function we can learn the shared parameters θ of both neural
networks that minimize this loss simultaneously. In the actual implementation
we will employ only one neural network uθ(t, x) and train it, the second network
fθ(t, x) is only encoded in the loss term. We can learn the shared parameters θ
of the two neural networks by minimizing the following sum of two mean-squared
error loss terms:

MSE = MSEu +MSEf (2.12)

with

MSEu :=
1

Nu

Nu∑
i=1

|u(tiu, xi
u)− ui|2 (2.13)

and similarly

MSEf :=
1

Nf

Nf∑
i=1

|f(tif , xi
f )− 0|2 = 1

Nf

Nf∑
i=1

|f(tif , xi
f )|2. (2.14)

Here {tiu, xi
u, u

i} denote boundary training data and also initial training data (if
available) and {tif , xi

f} denote the collocation points employed on fθ(t, x). Note
that MSEf is penalizing the deviation of fθ from zero, as enforced by the PDE in
equation 2.10. We can think of the loss MSEu as enforcing the target values ui

at the boundary and initial points, while the loss MSEf enforces the dynamics of
the PDE system or tries to limit the set of possible solutions to the ones satisfying
the PDE constraints at the collocation points. This combined loss term can now
be optimized using a gradient-based optimizer (neural-network training).

After learning, the resulting neural network uθ(t, x), our surrogate to the solu-
tion function u(t, x) can easily be queried with unseen data points and interpolates
on the whole domain.
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2.3 Laplace Approximation for Neural Networks

In recent years deep neural networks have shown great potential for various differ-
ent learning tasks. But in the most straightforward deep learning approach we can
not know how reliable the predictions of the model are. Bayesian neural networks
try to mitigate this by also estimating the uncertainty over the parameters of the
network. The following introduction is primarily derived from the exposition in
MacKay et al. [2003] and Daxberger et al. [2021].

A neural network can be defined as a function fθ(x) that maps an input x to an
output y. This mapping is non-linear and the function is parametrized by weights
θ. Standard neural network training corresponds to maximizing the likelihood
p(D | θ) at a set of data points D. In addition we also define a prior p(θ) over the
weights. By Bayes rule this yields the posterior

p(θ|D) =
p(D|θ)p(θ)

p(D)
. (2.15)

Computing the evidence term p(D) =
∫
θ
p(D|θ)p(θ)dθ is usually intractable and

we have to find an approximate solution. One simple approximation is maximum
a-posteriori (MAP) estimation with the data likelihoods over the dataset D and a
prior over the parameters θ. The maximum a-posteriori estimate of a function is
defined as:

θMAP = argmax
θ

log p(θ | D) = argmax
θ

log p(D | θ)p(θ). (2.16)

This estimate returns the single most likely parameter θ for the dataset and prior.
But this does not give us uncertainty estimates. Several methods have been de-
veloped to approximate the full posterior distribution. A common approach to
do this are Markov chain Monte Carlo (MCMC) methods. In these methods we
want to generate multiple Monte Carlo samples of the parameter θ using a Markov
chain with p(θ | D) as the stationary distribution. MCMC methods can be rel-
atively easy to implement and are possible to apply to any network architecture
and shape of target distribution. However, they can be computationally expensive,
and working with the full posterior distribution might not be straightforward or
possible. Another popular approach is variational inference. Here we approximate
the posterior p(θ | D) with another parameterized distribution q(θ | D) (this is
often a Gaussian). We learn the parameters of this distribution by optimizing
them wrt. the marginal likelihood to try to match the distributions. This process
is iterative and might be computationally expensive, but we are able to get a good
approximation.

Another approach are Laplace approximations [MacKay, 1992]. The goal of
using the Laplace approximation is to make the computation of the full posterior
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over the parameters θ tractable, by approximating the target distribution (the
posterior p(θ | D)) with a Gaussian approximate posterior distribution q(θ | D).
Some key advantages of the Laplace approximation are its ease of implementation
and its ability to approximate a wide range of distributions. In addition, it can be
applied post-hoc, after the neural network has been fully trained and can there-
fore be applied to pre-trained models. Compared to sampling-based approaches
or variational inference, the Laplace approximation is computationally lightweight
and can be implemented without modifying the neural network training procedure
or model architecture. The Laplace approximation for approximating the poste-
rior also returns an approximate full covariance matrix, which allows for a simpler
Bayesian interpretation of the method. Since the approximate posterior is Gaus-
sian, many computations reduce to linear algebra and we can analyze and try to
interpret the uncertainties by examining the covariance of the Gaussian. A draw-
back of the Laplace approximation is the potentially bad estimates, since we are
always only approximating the posterior with a Gaussian distribution. For some
target posterior distributions this local approximation can be arbitrarily bad.

To apply the Laplace approximation we first train a deep neural network to ob-
tain a maximum a-posteriori estimate. We then set the mean of the approximate
posterior Gaussian density as the mode of our unnormalized posterior distribu-
tion θMAP , this way the approximate posterior will match the value of the target
distribution at its mode.

We introduce short-hand notation for the numerator and denominator of our
posterior:

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

=:
h(θ)

Z
. (2.17)

Our first step is to approximate log h(θ) by a second-order Taylor expansion
around θMAP :

log h(θ) ≈ log h(θMAP )−
1

2
(θ − θMAP )

TΛ(θ − θMAP ), (2.18)

with Λ := −∇2 log h(θ)|θMAP
Note that the first order term −∇ log h(θ)(θ−θMAP )

is equal to zero at the mode θMAP .

Next we can approximate the evidence term by applying our approximation
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for h(θ) from equation 2.18 to the definition of Z:

Z =

∫
p(D|θ)p(θ)dθ =

∫
exp(log h(θ))dθ (2.19)

≈ exp(log h(θMAP ))

∫
exp

(
−1

2
(θ − θMAP )

TΛ(θ − θMAP )

)
dθ (2.20)

= h(θMAP )
(2π)

d
2

(det Λ)
1
2

. (2.21)

We can now combine both of those approximations and write down the full ap-
proximate posterior q(θ | D) :

p(θ | D) =
1

Z
h(θ) ≈ (det Λ)

1
2

(2π)
d
2

exp

(
−1

2
(θ − θMAP )

TΛ(θ − θMAP )

)
=: q(θ | D).

(2.22)

This approximate posterior has the form of a Gaussian density around the
mode of our target distribution:

q(θ | D) = N (θMAP ,Λ
−1). (2.23)

The Laplace approximation thus approximates our target distribution p(θ | D)
with a Gaussian, defined by the mode given by the MAP estimate θMAP obtained
by training our neural network, and the covariance matrix given by the inverse
Hessian Λ−1 computed at the MAP estimate.

2.3.1 The Hessian and Hessian approximations

To approximate the posterior using a Laplace approximation we need to compute
the Hessian of the prior and likelihood:

Λ := −∇2
θ log(p(D | θ)p(θ)) = ∇2

θL(D, θ). (2.24)

We have to compute this Hessian with regard to all parameters θ, which in princi-
ple is possible using automatic differentiation. But computing this Hessian and its
determinant is usually computationally expensive for many neural network archi-
tectures as we need to compute the second derivative with regard to all network
parameters. Instead we can approximate the Hessian in various different ways:

Fisher Information Matrix/Gauss-Newton Matrix A commonly used ap-
proximation of the Hessian Λ is the so called Fisher information matrix [Daxberger
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et al., 2021]. Here we approximate the Hessian using only first-order information,
i.e. the first-derivative of our loss terms.

F :=
N∑

n=1

Eŷ∼p(y|fθ(xn))

[
(∇θ log p(ŷ | fθ(xn))|θMAP

)(∇θ log p(ŷ | fθ(xn))|θMAP
)T
]
.

(2.25)
We can also use the generalized Gauss-Newton matrix to approximate the Hes-
sian Λ:

G :=
N∑

n=1

J(xn)
(
∇2

f log p(yn | f)|f=fθMAP
(xn)

)
J(xn)

T , (2.26)

with the Jacobian of the neural network J(xn) := ∇θfθ(xn)|θMAP
. For many com-

monly used likelihood functions those two approximations are equivalent.

If even this approximation is too computationally expensive we can use a block-
diagonal factorization of the Hessian like Kronecker-factored approximate curva-
ture [Ritter et al., 2018] or even an extremely simplified diagonal approximation
to the Hessian [Daxberger et al., 2021].

Last-Layer Laplace Both in the case of the full Hessian and the Fisher in-
formation matrix/Gauss-Newton matrix we still need to invert a square matrix
of the size of the parameters. If the neural network has many parameters, i.e.
if the dimensionality of θ is large, those approximations might also be compu-
tationally expensive. As an alternative we can make the computation tractable
by only considering uncertainty on a subset of the models weights, in particular
only the weights in the last-layer of the model, while using the MAP estimate for
the other weights [Kristiadi et al., 2020]. This can severely reduce the number
of parameters we have to consider. If the full Hessian is still not feasible when
estimating the uncertainty over the weights in the last layer we again can use one
of the approximations discussed above.

2.3.2 Hyperparameter optimization

Instead of just setting the variances to a fixed value a-priori, our method actually
allows us to choose hyperparameters that improve the performance of our method.
To improve the accuracy of the approximation it can be useful to optimize the
hyperparameters of the model [Immer et al., 2021a].

Suppose we have already obtained a θMAP estimate by training a neural net-
work, and have already calculated our first approximation q(θ | D), with a corre-
sponding Hessian Λ−1. In our model we have some hyperparameters that we have
implicitly assumed to be chosen in some way, in particular we can often choose
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the covariance of our prior and likelihoods. We optimize these hyperparameters
post-hoc, without retraining the neural network uθ(x). One way to do this is to
maximize the marginal likelihood of the Laplace-approximated posterior. One big
advantage of this method is that it doesn’t require additional validation data or a
hold-out dataset [Immer et al., 2021a].

The general marginal likelihood of our training data given a modelM is defined
as follows:

p(D | M) =

∫
p(u(x) | D,M)p(θ | M) dθ, (2.27)

where M encompasses all model hyperparameters (in particular the variance of
our prior and likelihood) and potentially other parts of the model such as the
architecture of the neural network.

We want to find the model hyperparameters that maximize the probability of
our training data:

M∗ = argmax
M

p(D | M) (2.28)

The Laplace-approximated (log-)marginal likelihood [Immer et al., 2021a] is given
by:

log p(D | M) ≈ log q(D | M) := log p(D | M)− 1

2
log | 1

2π
HθMAP

| (2.29)

= log h(θMAP )−
1

2
(θ − θMAP )

TΛ(θ − θMAP )−
1

2
log | 1

2π
HθMAP

|.
(2.30)

The log-determinant of the Hessian follows from inserting the Laplace approxi-
mated joint distribution p(D, θ | M) back into the marginal likelihood in Equa-
tion 2.27 and also serves as a regularization term to favor a Hessian with smaller
eigenvalues.

We can now optimize the marginal log-likelihood with a gradient-based opti-
mizer like Adam [Kingma and Ba, 2014] until convergence. We do not need to
compute or invert the Hessian in each iteration, but we do need to compute a
log-determinant in each iteration of our optimization. This way the optimization
of the hyperparameters is still cheap computationally and needs to be done only
once. After computing the hyperparameters we can infer a predictive distribution
to query the network for new data points and get uncertainty estimates for them.

2.4 Predictive Distribution

Now that we approximated p(θ | D) and obtained our Laplace-approximated
posterior q(θ | D), we next want to approximate the predictive distribution
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p(u(x) | x,D) for potentially new and unseen data-points x.

A simple way to approximate the posterior predictive p(u | x,D) is to integrate
over K Monte Carlo samples from our approximated posterior q(θ | D):

p(u | x,D) = Eq(θ) [p(u | uθ(x)] (2.31)

=

∫
θ

p(u | uθ(x))N (θ; θMAP ,Λ
−1)dθ (2.32)

≈ 1

K

K∑
i=1

p(u | uθi(x)), θi ∼ N (θ; θMAP ,Λ
−1). (2.33)

This approach is common, as it can be applied in many cases and is simple to im-
plement. But this approach may be computationally expensive and might require
many samples to return an accurate posterior.

Alternatively we can approximate the posterior with a linearized model and
exploit some of the additional structure we obtained from our choice of approxi-
mation [Immer et al., 2021b]: We first linearize the neural network ouput around
θMAP and obtain the following approximation:

uθ(x) ≈ uθMAP
(x) + J(x)T (θ − θMAP ), (2.34)

where J(x) := ∇θuθ(x)
∣∣
θMAP

is the Jacobian matrix of the neural network outputs.

We want to find the marginal predictive distribution

p(u(x) | x,D) =

∫
p(u(x) | x, θ)p(θ | D)dθ. (2.35)

By using the approximation in Equation 2.34 we can compute this integral in
closed form:

p(u(x) | D) =

∫
δ(u(x)− uθ(x))q(θ | D)dθ (2.36)

≈ N (u(x) | uθMAP
(x), J(x)TΛ−1J(x)) (2.37)

Because the approximate posterior is Gaussian the marginal distribution over the
output is again Gaussian.

We have now shown how to approximated a posterior over the outputs p(u(x) |
x,D) for a general deep neural network. With this posterior we can estimate the
uncertainty of our network predictions along the whole problem domain.
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Chapter 3

Method

Our goal is to efficiently compute the uncertainty of the predictive distribution over
the network outputs p(u(x) | D). We can then compare the uncertainty estimate of
the predictive distribution with the numerical error of the PINN solution. Ideally
we want to reflect the magnitude and distribution of the numerical error of the
PINN solution in the posterior uncertainty estimate. Our first step now is to
rephrase the PINN problem statement (2.10) in a probabilistic way. With this
probabilistic model we can then infer the predictive uncertainty by estimating the
posterior predictive distribution. We employ a Laplace approximation to efficiently
estimate the posterior, as computing it exactly is usually not tractable.

3.1 Problem Statement

We consider a general partial differential equation of the following form:

F [u](x) = 0, x ∈ Ω, (3.1)

B[u](x) = 0, x ∈ ∂Ω, (3.2)

where u : Ω → Rm denotes an arbitrary solution function to the PDE, Ω ∈ Rd

specifies a bounded domain and ∂Ω denotes the boundary of the domain. F is
a general differential operator and B is a boundary condition operator. The goal
is to find a solution function u(x) that satisfies the two operators on the given
domain. In the following we use PINNs to solve the PDE problem, similar to
a numerical solver, by using a neural network uθ(x) with parameters θ to learn
a solution function that satisfies the PDE dynamics given by the operators in

Equations 3.1 and 3.2 at a discrete grid of collocation points {xf
i }

Nf

i=1 and {xb
i}

Nb
i=1.

17
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Enforcing the operators at the collocation points amounts to the following:

F [uθ](x
f
i ) = 0, (3.3)

B[uθ](x
b
i) = 0.

The discretization can be chosen arbitrarily, we can select the points both on the
boundary and inside the domain at which to enforce the corresponding operators.
This approach is very flexible and similar to some traditional numerical methods
for solving PDE problems. But a good discretization and a sufficient number
of collocation points is important for a good approximation to the PDE solution.
With this approach it is also possible to add more collocation points (e.g. in areas of
the domain where the estimated error is high) and adaptively refine the collocation
grid this way.

The problem setup introduced here is a little more general than the one intro-
duced in Section 2.2 as the formulation of the differential operator F [u](x) is less
restrictive. We also explicitly include the initial and boundary conditions in the
problem statement.

3.2 Overview of the Method

Next we give a short overview of the full method and how it corresponds to the
one given in Raissi et al. [2019].

In this work, in addition to approximating the solution function u(x) we are
also interested in computing a posterior distribution on the outputs of the solution
function u(x), given the PDE and boundary information D:

p(u(x) | D). (3.4)

In Section 3.4 we will introduce in more detail the way we construct this informa-
tion from the operators F and B.

This posterior over the outputs enables us to estimate the uncertainty at the
outputs at a point x. Ideally, we can construct a posterior distribution that accu-
rately captures the uncertainty of the PINN solution. In the setting we consider
we have no noise on the observations and no stochasticity in the PDE, so the pos-
terior should reflect other sources of uncertainty. In particular we are interested in
how the estimated uncertainty reflects the numerical error of the PINN solution.
Sources that influence the error of the PINN solution are the choice of hyperpa-
rameters, the architecture of the neural network, the chosen discretization of the
data grid, as well as the posterior inference algorithm itself [Psaros et al., 2022].

To compute the PINN solution the neural network is trained similarly to the
approach used in the original PINN paper. In our implementation of the method
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we compute the derived neural networks F [uθ](x) and B[uθ](x) using an automatic
differentiation framework and train a neural network with the usual deep learning
tools. We will use a short-hand notation to denote those neural networks:

fθ(x) := F [uθ](x), bθ(x) := B[uθ](x). (3.5)

After training we want to compute the posterior over the parameters p(θ | D). We
use Bayes’ theorem:

p(θ | D) =
p(D | θ)p(θ)

p(D)
. (3.6)

Since computing the posterior is usually intractable we approximate this posterior
using a Laplace approximation (see Section 2.3). Next we can infer p(u(x) | x,D)
using the Laplace-approximated posterior q(θ | D) to compute uncertainty esti-
mates on the outputs of the predictive of the solution function. To this end we then
linearize the neural network and approximate a Gaussian posterior p(u(x) | x,D).
This way the distribution over the network outputs is again Gaussian and we can
get variance values for each neural network output.

3.3 The prior

To do Bayesian inference over the network uθ we need to define a prior p(θ) over
the weights of the network. In this work we consider a Gaussian prior

p(θ) ∼ N (0, σ2
∗I). (3.7)

The basic idea of the method does not depend on this particular choice of prior
and it would also be possible to use a different prior over the weights if needed, but
the hessian of the different prior might not have such a nice, closed-form solution.

3.4 The likelihood model

So far the information about our PDE problem is still only encoded in the two op-
erators F and B. To do Bayesian inference we also need to define a data likelihood
p(D | θ).
We first discretize our domain by choosing data points {xf

i } and {xb
i}, the two sets

of collocation points for the two operators respectively. In our Bayesian setting we
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then relax the hard constraints (3.3) at the collocation points and instead model
them using zero-mean Gaussian distributions:

F [uθ](x
f
i ) = zfi , (3.8)

B[uθ](x
b
i) = zbi ,

with

zfi = fθ(x
f
i ) + ϵi, ϵi ∼ N (0, σ2

fI),

zbi = bθ(x
b
i) + ϵi, ϵi ∼ N (0, σ2

bI). (3.9)

We can think of the sets

Df = {xf
i , z

f
i }

Nf

i=1, (3.10)

Db = {xb
i , z

b
i}

Nb
i=1,

as tuples of (input, output) training data for our neural network. When learning
the network we set all

z
{f,b}
i = 0. (3.11)

Note that by construction Df and Db are independent and the single data points
are identically and independently distributed. In the following we will denote the
full data set as

D = Df ∪ Db. (3.12)

For the differential operator fθ we then get the likelihood:

p(zfi | xf
i , θ) = N (fθ(x

f
i ), σ

2
fI) (3.13)

=
1

σf

√
2π

exp

(
−(fθ(x

f
i )− zfi )

T I(fθ(x
f
i )− zfi )

2σ2
f

)
(3.14)

The full likelihood for the data set Df can now be written as

p(Df | θ) =
N∏
i=1

1

σf

√
2π

exp

(
∥(fθ(xf

i )− zfi )∥2

2σ2
f

)
, (3.15)

because the data points are independent and identically distributed. We construct
a similar likelihoods for the boundary condition operator bθ:

p(zbi | xb
i , θ) = N (b(xb

i), σ
2
bI), (3.16)

p(Db | θ) =
N∏
i=1

1

σb

√
2π

exp

(
∥(bθ(xb

i)− zbi )∥2

2σ2
b

)
(3.17)
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Because we assume independent and identically distributed data points we can
write down the total likelihood that encompasses both operators in the following
way:

p(D | θ) iid
= p(Df | θ) p(Db | θ) (3.18)

3.5 Maximum Likelihood Estimation

Our next step is now to maximize this data likelihood p(D | θ). The maximum
likelihood estimate for a parameter θ is defined as

θ̂ = argmax
θ

log p(D | θ). (3.19)

Optimizing this is equivalent to minimizing the negative log-likelihood

L(θ) = − log p(D | θ). (3.20)

For the likelihoods defined for our problem setup this results in the following:

argmax
θ

p(D | θ) = argmin
θ

− log p(D | θ)

= argmin
θ

− (log [p(Df | θ)] + log [p(Db | θ)])

= argmin
θ

− log

[
N∏
i=1

1

σf

√
2π

exp

(
∥(fθ(xf

i ))∥2

2σ2
f

)]

− log

[
N∏
i=1

1

σb

√
2π

exp

(
∥(bθ(xb

i))∥2

2σ2
b

)]

= argmin
θ

Nf∑
i=1

(
fθ(x

f
i )
)2

+

Nb∑
i=1

(
bθ(x

b
i)
)2

= argmin
θ

1

Nf

Nf∑
i=1

(
fθ(x

f
i )
)2

+
1

Nb

Nb∑
i=1

(
bθ(x

b
i)
)2

In the case of σf = σb = 1 this exactly corresponds to the PINN loss formulation
in Equation 2.10:

MSE :=
1

Nf

Nf∑
i=1

(
fθ(x

f
i )
)2

+
1

Nb

Nb∑
i=1

(
bθ(x

b
i)
)2

(3.21)
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3.6 MAP Inference

Our overarching goal is computing the full posterior distribution p(θ | D), including
the prior p(θ) this posterior is of the form

p(θ | D) =
p(D | θ)p(θ)∫
θ
p(D | θ)p(θ)

∝ p(D | θ)p(θ). (3.22)

As a first step we can find the most likely parameter under the posterior. This is
called the maximum a-posteriori (MAP) estimate of a function and is defined as:

θMAP = argmax
θ

log p(θ | D) = argmax
θ

log p(D | θ)p(θ) (3.23)

For our choice of likelihoods and prior the MAP can be computed in the following:

argmax
θ

p(D | θ) = argmin
θ

− log[p(D | θ)p(θ)]

= argmin
θ

− log p(Df | θ)− log p(Db | θ)− log p(θ)

= argmin
θ

Nf∑
i=1

(
fθ(x

f
i )
)2

+

Nb∑
i=1

(
bθ(x

b
i)
)2

+
1

2
σ−2
∗ ∥θ∥2.

The choice of our Gaussian prior on the parameters θ above corresponds to the
weight decay regularizer r(θ), widely used for neural training:

r(θ) =
1

2
σ−2
∗ ∥θ∥2 = − log p(θ). (3.24)

3.7 Laplace Approximation for PINNs

Section 2.3 introduced the general approach of the Laplace approximation to ap-
proximate a target distribution with a Gaussian. In the next step we apply the
discussed method, adapted to our problem setup.

We are interested in computing the posterior

p(θ | D) =
p(D | θ)p(θ)∫
θ
p(D | θ)p(θ)

:=
1

Z
h(θ). (3.25)

Computing this posterior exactly is often impossible, as solving the integral

p(D) =

∫
θ

p(D | θ)p(θ) (3.26)
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is intractable. We now approximate the posterior using a Laplace approximation
(as described in Section 2.3) after optimizing and obtaining a MAP estimate θMAP

for p(θ | D). We first use a second order Taylor expansion around the mode of our
target distribution θMAP :

log h(θ) ≈ log h(θMAP )−
1

2
(θ − θMAP )

TΛ(θ − θMAP ) (3.27)

= log [p(Df | θMAP )p(Db | θMAP )p(θMAP )]−
1

2
((θ − θMAP )

TΛ(θ − θMAP ))

(3.28)

= [log p(Df | θMAP ) + log p(Db | θMAP ) + log p(θMAP )] (3.29)

− 1

2
((θ − θMAP )

TΛ(θ − θMAP )), (3.30)

with the Hessian

Λ = −∇2 [log p(Df | θMAP ) + log p(Db | θMAP ) + log p(θMAP )] |θMAP
(3.31)

= −∇2 log p(Df | θMAP )|θMAP
−∇2 log p(Db | θMAP )|θMAP

−∇2 log p(θMAP )|θMAP
,

(3.32)

and

log h(θMAP ) =
N∑
i=1

log

 1√
2πσ2

f

+

(
fθMAP

(xf
i )

TfθMAP
(xf

i )

2σ2
f

)

+
N∑
i=1

log

(
1√
2πσ2

b

)
+

(
bθMAP

(xb
i)

T bθMAP
(xb

i)

2σ2
b

)
+

1

2
σ−2
∗ ∥θ∥2.

The Hessian for our combined likelihood can be computed as a sum of Hessians
of the individual likelihood terms. Applying this approximation to the evidence
term Z results in:

Z ≈ exp(log h(θMAP ))

∫
exp

(
−1

2
(θ − θMAP )

TΛ(θ − θMAP )

)
dθ (3.33)

= h(θMAP )
(2π)

d
2

(det Λ)
1
2

. (3.34)

With these two results we can now write down the full approximate posterior:

p(θ | D) =
1

Z
h(θ) ≈ (det Λ)

1
2

(2π)
d
2

exp

(
−1

2
(θ − θMAP )

TΛ(θ − θMAP )

)
. (3.35)
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This is the Gaussian density q(θ | D) := N (θ; θMAP ,Λ
−1).

We compute the Hessian −∇2 [log h(θMAP )] |θMAP
using automatic differention.

If that is intractable we can use one of the approximations discussed in 2.3.1. The
Hessian of the Gaussian prior p(θ) = N (θ; 0, σ2

∗I) has a nice closed form solution:
∇2p(θ) = −σ2

∗I.

3.8 Optimizing the hyperparameters

As we have already shown the proposed method corresponds exactly to the defi-
nition of PINNs used in Raissi et al. [2019] for the case of σ2

f = σ2
b = 1. Instead of

just setting the variances to a fixed value a-priori, we need to select different hyper-
parameters that improve the performance of our method and make the uncertainty
estimates more accurate. We have already obtained a θMAP estimate by training
a neural network, and have already calculated a first approximation q(θ | D), with
the corresponding Hessian Λ−1. Now want to optimize the prior hyperparameters,
i.e. the prior variance σ2

∗, and the variance used in the two likelihood functions
for the discretized differential operators σ2

f and σ2
b . Note that since we treat the

MAP optimization of θ and the Laplace approximation as two separate steps we
can choose any prior variance for the Laplace approximation, independent of the
weight decay parameter employed in neural network training. We already intro-
duced the Laplace-approximated (log-)marginal likelihood in Equation 2.29. For
our problem setup we get the following log-marginal likelihood:

log p(D | M) ≈ log q(D | M) := log p(D | M)− 1

2
log | 1

2π
HθMAP

| (3.36)

= log h(θMAP )−
1

2
(θ − θMAP )

TΛ(θ − θMAP )−
1

2
log | 1

2π
HθMAP

|,
(3.37)
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with

log h(θMAP ) = log [p(Df | θMAP )p(Db | θMAP )p(θMAP )]

=

Nf∑
i=1

log

 1√
2πσ2

f

+

(
−fθMAP

(xf
i )

TfθMAP
(xf

i )

2σ2
f

)

+

Nb∑
i=1

log

(
1√
2πσ2

b

)
+

(
−bθMAP

(xb
i)

T bθMAP
(xb

i)

2σ2
b

)
+

1

2
σ−2
∗ ∥θ∥2

= Nf (− log
(√

2πσ2
f

)
)− 1

2σ2
f

MSEf +Nb(− log

(√
2πσ2

b

)
)

− 1

2σ2
b

MSEb +
1

2
σ−2
∗ ∥θ∥2. (3.38)

This is our training objective for the hyperparameter optimization for the three
parameters σ2

∗, σ
2
f and σ2

b . In our offline, post-hoc setting we can now iteratively
optimize those hyperparameters by minimizing this negative log-marginal distri-
bution until convergence.

Notably, in our setup optimizing the hyperparameters σf and σb is comparable
to choosing weights wf , wb for a weighted MSE loss function:

MSE =
wf

Nf

Nf∑
i=1

|f(tif , xi
f )|2 +

wb

Nb

Nb∑
i=1

|b(tib, xi
b)|2. (3.39)

Multiple papers [Wang et al., 2021, 2022] proposed adaptive weighting techniques
to mitigate different problems in PINN training. We can think of the hyperpa-
rameter optimization by maximizing the marginal likelihood as another approach
to choose the weights.

3.9 Summary of the full Method

The full method now entails first training a neural network using a gradient based
optimizer (e.g. the widely used optimizer Adam [Kingma and Ba, 2014]). Next
we use a Laplace approximation to get our approximate posterior q(θ | D). We
can then tune our models hyperparameters σ2

∗, σ
2
f and σ2

b by minimizing the neg-
ative Laplace-approximated marginal log-likelihood until convergence. Lastly we
linearize the neural network to compute the posterior over the network outputs
p(u(x) | x,D). Simplified pseudocode for the full method is described in Algo-
rithm 1.
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Algorithm 1 Bayesian Physics-informed Neural Networks

Require:
Neural network uθ; number of epochs T0 for MAP calculation

1: Initialize θ0
2: Generate training set D by choosing collocation points for F [u],B[u];
3: Train the neural network uθ(x) for T0 iterations, by optimizing L(D; θ)
4: Laplace Approximation: q(θ | D) ≈ N (θt, (∇2L(D; θ)|θt)−1)
5: Optimize the log-marginal likelihood log p(D | σ2

∗, σ
2
f , σ

2
b ) until convergence

6: Approximate posterior: p(u(x) | x,D) ≈ N (u(x) | uθMAP
(x), J(x)TΛ−1J(x))

7: return θMAP ; q(u(x) | x,D) ▷ Return the MAP estimate and the posterior

In this algorithm the loss function used training the neural network is

L(D; θ) =

Nf∑
i=1

(
fθ(x

f
i )
)2

+

Nb∑
i=1

(
bθ(x

b
i)
)2

+
1

2
σ−2
∗ ∥θ∥2. (3.40)

And the loss function for optimizing the hyperparameters is the Laplace approxi-
mated log-marginal likelihood

log p(D | σ2
∗, σ

2
f , σ

2
b ) = log h(θMAP )−

1

2
(θ − θMAP )

TΛ(θ − θMAP )−
1

2
log | 1

2π
HθMAP

|,
(3.41)

with log h(θ) as in Equation 3.38.



Chapter 4

Experimental Results

In this section we present the results and interpretation of different experiments.
We evaluate the method we developed in Chapter 3 on the Burgers’ equation, a
non-linear hyperbolic partial differential equation. We analyse the quality of the
PINN solution for the PDE, as well as the ability of the posterior variance to
capture the numerical error and compare those results for different densities of
collocation grid points. Next we analyze the ability of the posterior to capture
sources of uncertainty in the PINN solution, like missing data in large regions of
the domain or temporal extrapolation. Our aim is to show that our method is able
to accurately solve a PDE problem and return reasonable uncertainty estimates
over the outputs.

In Section 4.1 we first introduce the evaluation metrics used to asses the perfor-
mance of the solution and the calibration of the returned uncertainties. Section 4.2
defines the PDE problem we analyzed in our experiments. Next, Section 4.3 gives
some background on the technical details of our implementation of the method. In
Section 4.4 we analyse the performance of our method in solving the PDE problem.
Section 4.5 then presents the uncertainties returned by our method and examines
some properties of them. Next, in Section 4.6 we showcase some experiments
where we apply our method in a setting where large regions of the domain are
not covered with collocation points. We do not expect our method to be able to
accurately solve the PDE problem in this setting, but we want to verify that our
posterior captures the uncertainty. Finally, Section 4.7 summarizes our results.
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4.1 Evaluation metrics

4.1.1 Performance metrics

To evaluate the accuracy of the PINN solution, we will compare the approximate
PINN solution uθ(x) returned by our method with a reference solution on a dense
grid of evaluation points {xi}Ni=1. The evaluation grid we use has 25600 data points.
In scientific machine learning many different metrics can be employed [Takamoto
et al., 2022]. We use the root-mean-square-error (RMSE) as a measure to capture
the global performance of the accuracy of our method. For the Burgers’ equation
a large part of the domain is fairly easy to solve, but the shock at x ≈ 0 is very
difficult to model, and must be solved very accurately, as small deviations can lead
to large errors.

RMSE :=

√√√√ 1

N

N∑
i=1

(uθ(xi)− u∗
i )

2 (4.1)

4.1.2 Calibration

Having obtained a posterior p(u(x) | x,D) we are now interested in quantifying
the accuracy of our posterior, as well as comparing the predicted error estimates
to the actual numerical error of the PINN solution.

To asses how well our predictive posterior captures the numerical error of our
PINN solution we need to analyze the uncertainties returned by the posterior. Cal-
ibration measures how well the predicted distribution captures the true underlying
data distribution.

In our model the true values of the solution of the PDE problem u∗
i are Gaussian

distributed around the predicted solution of our model uθ(xi):

u∗
i ∼ N (uθ(xi), σ

2
i ), (4.2)

where σ2
i is the variance at the data point xi given by the approximate posterior:

p(u(xi) | D) = N (uθ(xi); J(xi)
TΛ−1J(xi)) = N (uθ(xi);σ

2
i I). (4.3)

With this, the deviation of the solution is a zero-mean Gaussian:

(u∗
i − uθ(xi)) ∼ N (0, σ2

i ). (4.4)

Next we normalizing with the standard deviation to get the standard normal dis-
tribution:

(u∗
i − uθ(xi))

σi

∼ N (0, 1). (4.5)
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Then by definition the square of this standard normal random variable is dis-
tributed chi-squared with one degree of freedom:

Q :=
(uθ(xi)− u∗

i )
2

σ2
i

∼ χ2
1. (4.6)

This is also the squared error of our solution, normalized with the variance of the
posterior.

We will use this quantity to analyze how well the uncertainty of our posterior
is calibrated. If our posterior is perfectly calibrated, i.e. our model captures the
data uncertainty well, the quantity Q should be exactly at the mean of the χ2

distribution, which corresponds to the degrees of freedom, in our case E(χ2
1) = 1.

However, we can assume that our predicted solution has some numerical error,
so this will almost never be the case. If Q << 1, we say that our posterior
is underconfident in this region, since the squared error of the PINN solution is
much smaller than the estimated error of the posterior. On the other hand, if
Q >> 1, we say that our posterior is overconfident in this region because the
squared error of the PINN solution is much larger than the estimated error. For
values of Q ≈ 1 we assume that our posterior is reasonably well calibrated. As an
indication of how close to the mean we are, we can use the confidence intervals of
the chi-squared distribution.

We can compute confidence intervals for different confidence levels and then
check whether the quantity Q lies within them for the points in our evaluation
grid. At points where Q is less than the left endpoint of the interval we call our
posterior underconfident, and at points where Q is greater than the right endpoint,
we call the posterior overconfident.

4.2 Problem description: Burgers’ equation

To illustrate the problem statement and to introduce one of the problems consid-
ered in the experiments, we introduce the Burgers’ equation.

This is a nonlinear convection-diffusion equation . The Burgers’ equation is a
simplification of the incompressible Navier-Stokes equation that omits the pressure
term and inherits many properties of the Navier-Stokes equation [Frisch and Bec,
2001]. When the parameter ν is very small this equation becomes numerically
challenging to solve because a small ν can lead to shocks. Because of its challenging
nature, its similarities to the incompressible Navier-Stokes equations and possible
analytical solution it is still a widely used equation for testing and benchmarking
numerical algorithms.
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In its most general form the Burgers’ equation in one spatial dimension is
defined as follows:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (4.7)

Here x denotes the space and t the time dimension. The solution function u(x, t)
denotes the speed of the fluid along the space dimensions at each time point. The
parameter ν denotes the viscosity of the fluid.

In the following we will consider the following PDE problem, i.e. the Burgers’
equation with ν = 0.01

π
, u(0, x) = sin(πx) as the initial state at t = 0 and with

Dirichlet boundary conditions:

ut + uux − (0.01/π)uxx = 0, x ∈ [−1, 1], t ∈ [0, 1],

u(0, x) = −sin(πx),

u(t,−1) = u(t, 1) = 0.

In figure 4.1 we show a reference solution to the Burgers’ equation with the
above parameterization.

Figure 4.1: Burgers’ Equation. Each point (t,x) on this grid represents the refer-
ence solution u(t,x).
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4.3 Implementation details

We implemented 1 the method discussed in Chapter 3 in Python using PyTorch
[Paszke et al., 2019] for our neural network and as a auto-differentiation framework.
All experiments are reproducible with the provided code. A very simple neural
network architecture is sufficient for this setup. The model we used has three
hidden layers with 16 nodes each. We used hyperbolic tangent activation functions,
in our tests other activation functions performed much worse. The training scheme
was optimized for the case of N = 215 collocation points. The model was trained
for 50000 iterations using the Adam optimizer [Kingma and Ba, 2014] with a fixed
learning rate α = 10−3 and a weight decay parameter of r = 10−2. We computed
the Hessians for our likelihood terms using ASDL [Osawa, 2020], for our simple
experimental setup we did not need to use any of the approximations discussed in
Section 2.3.1. However, our implementation also features the Fisher information
matrix as an approximation to the Hessian. We had to use a pseudo-inverse to
invert the Hessian in the Laplace approximation because the sum of the Hessians
of the likelihoods was ill-conditioned. We optimized the hyperparameters of our
likelihoods and priors by optimizing the marginal likelihood until convergence,
again using Adam.

4.4 Performance of PINN solution

In this section, we evaluate the performance of our PINN approach for solving
PDE problems. We compare the accuracy of the solution of our PINN method
and a reference solution to the Burgers’ equation, which we introduced in 4.2. For
each experiment, we set up an equidistant grid over the entire domain. We use
different numbers of grid points to test the performance of the method for different
discretizations. In both traditional numerical solvers and general neural network
training we would expect our performance to improve with more grid points. We
run our method and train a neural network with the setup described in Section
4.3 for each grid.

Figure 4.2 shows the RMSE of the PINN solution compared to the reference
solution for the different grids. As expected, the error of the solution decreases with
a denser grid of collocation points. As can be seen, the PINN solution for Nf = 213

has the lowest RMSE for this choice of grid and training setup. The increased error
for more grid points beyond this point can be attributed to insufficient training,
as the training setup was optimized for Nf = 213 collocation points. The quality
and convergence of the solution also depends on the random initialization of the

1https://github.com/aken0/laplacePINNs

https://github.com/aken0/laplacePINNs
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Figure 4.2: RMSE for different equidistant grids.

network weights. While the absolute value of the error does not seem to decrease
much (only by about a factor of 6), the quality of the solutions improves a lot.
This can be attributed to the properties of the Burgers’ equation, as propagating
the initial condition along the whole time dimension already achieves a reasonable
RMSE.

To gain an overview over the quality and differences of the solutions we take a
look at the solution functions returned by our method. In Figure 4.3 we show the
PINN solution and underlying grid points for four selected grids, with 22, 24, 26

and 210 points respectively. The solution for Nf = 24 is already quite good, it is
able to capture the general dynamics of the system. In Figure 4.4 we also show the
squared error of the PINN solution and our reference solution for the same grids.
Note that the scale of colorbars is different for the different solutions. For all
employed grids the solution struggles to accurately model the shock at x ≈ 0, even
the best solutions had some error there. But the solutions with more grid points
achieve a better approximation to the reference solution. In our tests, we also
observed that a more powerful neural network architecture with a correspondingly
modified training setup showed even better performance.
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Figure 4.3: Solutions for equidistant grid. The grids have 22, 24, 26 and 210 points
respectively. The solution on the top-left fails to capture the PDE dynamics. The
solution on the bottom right is a good approximation to the reference solution.

4.5 Calibration of uncertainty

In this section we evaluate the quality and calibration of our predicted uncertainty
estimate using the metric introduced in 4.1.

Figure 4.5 displays the squared error of the PINN solution and the estimated
posterior variance for the same grid. The distribution or shape of the error is
reflected in the posterior, i.e. the variance is large in regions of the domain where
the error is also large. At the same time the variance is low in areas where the
numerical error is also low. Our posterior captures the large error at the shock
for values of x ≈ 0. But the scale of posterior variance is different from the error.
This scale mostly affects the values at x ≈ 0.

4.5.1 Confidence intervals

In Section 4.1.2 we introduced the chi-squared distributed quantity Q. To measure
how well the posterior variance captures the numerical error we now analyse how
Q relates to the chi-square confidence intervals for each point in our evaluation
grid. We calculate the quantity Qi for each point xi in our evaluation grid, using
the PINN solution uθ(xi) at that point and the corresponding reference solution
u∗
i . We then determine for each point xi whether Qi lies below, above or within
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Figure 4.4: Squared Errors for equidistant grid. The grids have 22, 24, 26 and 210

points.

the confidence interval. Points at which Qi is greater than the right endpoint of
the interval are shown in red. In those areas the posterior is overconfident. If Qi

is smaller than the left endpoint of the interval, we show the point in blue, here
the posterior is underconfident. We first inspect the 95% confidence interval. For
the chi-square distribution with one degree of freedom it is

CI95% = [9.82× 10−4, 5.024]. (4.8)

In Figure 4.6 we show the quantity Qi for each point of the evaluation grid. We
use the same four training grids used in Section 4.4. For Nf = 22 the posterior
is overconfident almost everywhere. While the PINN solution for Nf = 24 was
already quite good, the posterior at the same grid is still overconfident in a large
area of the domain. For Nf = 210 the posterior is overconfident mainly along
the shock of the Burgers’ equation. It is also underconfident in areas close to the
boundary. Next we can also calculate the 99% confidence interval for the same
grids. The interval is given as

CI99% = [3.93× 10−5, 7.879]. (4.9)

Compared to the 95% interval less regions of the posterior are outside the inter-
val, for all grids. With Nf ≥ 29 grid points our posterior looks well calibrated.
While the experiments with less grid points were already able to approximate the
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Figure 4.5: Squared Error and posterior variance for selected grid. Left: The
squared error of the PINN solution. Right: The posterior variance returned by our
method for the same grid. The distribution of the error is similar, but the scale is
different.

underlying solution function to a good degree, adding more collocation points fur-
ther improved the calibration of the posterior. This behaviour is inversed at some
point, as further collocation points caused the posterior to be underconfident in
larger regions of the domain. To further quantify how well calibrated our method
is can use a different type of calibration plot.

4.5.2 Calibration plots

If we take a look at the confidence interval plots in the last section we notice that
our predictions are both overconfident and underconfident in different regions of
the same posterior. This is fine because even if our model would perfectly coincide
with the χ2 distribution, some points might lie outside the confidence interval. For
example, if our posterior is well calibrated, at a 95% confidence level roughly 95%
of the points in the posterior grid should lie within the confidence interval. We
now calculate the area of the region of the predicted posterior uncertainty that lies
outside the confidence interval to see how much we deviate from this. We calculate
this area for multiple confidence levels, i.e. for all percentiles.

We can contrast the expected area outside any confidence region and the actu-
ally observed area outside this confidence region. The closer those two quantities
are, the better the calibration of our posterior. In Figure 4.8 on the left we first
plot the expected confidence level compared to the actually observed confidence
level (represented by the blue line). Ideally these values coincide, this is repre-
sented by the black line. On the right in Figure 4.8 we represent the difference
of the observed and expected confidence level as a heatmap. This makes it easier
to compare the calibration plots for different experiment setups. Instead we could
also use the area under the curve and compress this heatmap into a single number,
but that way some information is lost. In Figure 4.9 we construct those calibra-
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Figure 4.6: 95% confidence interval for equidistant grids. The grids have 22, 24, 26

and 210 points. At points in red the posterior is overconfident, at points in blue
underconfident.

tion heatmaps for the 14 equidistant grids used earlier. For the grids with up to
Nf ≤ 25 collocation points the calibration is very bad, as was already noted in the
section above. The posterior has the best calibration for Nf = 27 and Nf = 214

collocation points.
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Figure 4.7: 99% confidence interval for equidistant grids. The grids have 22, 24, 26

and 210 points. At points in red the posterior is overconfident, at points in blue
underconfident.

Figure 4.8: Calibration Plot. Observed area outside the confidence interval com-
pared to the expected area for all percentile confidence levels (equidistant grid with
214 collocation points).
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Figure 4.9: Calibration heatmap for different grids. For the 14 equidistant grids
we showcase the calibration heatmap introduced above.
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4.6 Missing collocation data

If we enforce the dynamics of the system given by our PDE problem only on a
partial area of the domain we cannot expect good results. But if our posterior
is well calibrated we would expect it to reflect the uncertainty that arises from
missing data in large areas of the problem domain. To test this behaviour we
can restrict the area of our equidistant discrete grid of collocation points in both
dimensions of the Burgers’ equation we defined.

4.6.1 Missing collocation points in space

Figure 4.10: Squared Error for partial spatial grid. The grids have 22, 25, 29 and
210 points.

We first examine the setting where there is missing data in the spatial dimen-
sion. For this we restrict the collocation grid used for learning the network to
values x > 0. We expect the model to learn the solution accurately in the area
with grid points, and expect the model to perform much worse in areas without
training data. Note that we still use the boundary data for x = −1 for this ex-
periment. In Figure 4.10 we show four grids with missing collocation points in the
spatial dimension and the squared error of the PINNs trained on those grids. In
parts of the domain with grid points the PINN is able to solve the PDE problem.
But in areas with missing points the error is large, even if we employ many grid
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Figure 4.11: 95% confidence interval for partial spatial grid. The grids have
22, 25, 29 and 210 points. At points in red the posterior is overconfident, at points
in blue underconfident. For Nf ≥ 25 we see clear structure in the plots, we are
underconfidents in areas with data, and overconfident in the others.

points. Figure 4.11 shows the Qi for the same grids and an underlying 95% confi-
dence interval. Again, areas where Qi is smaller than the left interval endpoint are
colored blue, areas where it is bigger than the right endpoint are red. We can see
that for Nf = 22 grid most of the posterior is overconfident. But already in the
case of Nf = 25 collocation points, we see some clear structure in the plot: In the
region of the domain where we had training data the posterior is underconfident,
while the region without data is almost entirely overconfident. Our method is able
to return some sensible uncertainty estimates. [text]

4.6.2 Extrapolation in Time

Next we also examine the setting where we limit the collocation data in the time
dimension, t < 0.5. We still use the boundary data for t > 0.5 for this experiment.
This is significantly harder to solve for PDE problems in general, and the Burgers’
equation in particular. The most difficult part to solve in the Burgers’ equation is
the shock close to x = 0 for t → 1. Without data our method need to extrapolate
this region, which is not possible. Without collocation points in that area we
cannot expect our method to solve the problem accurately, but we still want to
verify whether the posterior reflects this uncertainty.

In Figure 4.12 we show four grids with missing collocation points in the time
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Figure 4.12: Solution for partial time grid. The grids have 22, 26, 28 and 210 points.

dimension and the solution returned by our PINN. In parts of the domain with
grid points the PINN is able to solve the PDE problem to a similar degree as in
the full grid setting in Section 4.4. This is also reflected in the squared error for
the same grids in Figure 4.13. But in the region of the domain without collocation
points our method fails to extrapolate and the method is unable to model the PDE
dynamics.

Figure 4.14 shows the Qi for the same grids and an underlying 95% confidence
interval. We can see that for Nf = 22 grid most of the posterior is overconfident.
Opposed to the experiments with missing collocation data in the spatial dimension
our posterior does not show such clear structure. For the grids with Nf > 25

collocation points more regions of the posterior are outside the confidence interval,
but those regions do not correspond to the ones where data is missing.

From these two experiments we can conclude that our method is able to return
sensible uncertainty estimates in some cases, but it failed in the case where the
method has to extrapolate in time. But this is usually not relevant for time
dependant PDE problems.
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Figure 4.13: Squared Error for partial time grid. The grids have 22, 26, 28 and 210

points.

Figure 4.14: 95% confidence interval for partial time grid. The grids have 22, 26, 28

and 210 points. At points in red the posterior is overconfident, at points in blue
underconfident. Opposed to the case with missing spatial data, no clear structure
is visible.
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4.7 Summary

We showed that our method is able to solve the Burgers’ equation. By construction
it is able to interpolate the solution function trained on a set of colloation points.
The PINN learning part of the method can be further refined by using more refined
neural network architectures or other enhancements for neural network training.
The general method does not interfere with the neural network training and is still
able to return uncertainty estimates for more complicated architectures.

We also analyzed the uncertainty estimates of our posterior. In our tests the
method is able to provide reasonable uncertainty estimates if a sufficient number of
training points are used. The method is also able to correctly model uncertainties
resulting from missing data in large regions of the domain. Thus, the entire method
is capable of providing both an accurate approximation and reasonable uncertainty
estimates over the model outputs.

The reported experiments were all based around equidistant grids. But this
choice of grid may not be optimal , in some of our experiments modified grids
performed much better, e.g. grids with more points close to the shock of the
Burgers’ equation. But in general, it can be difficult to choose a good grid for
a PDE problem, especially when the underlying solution function is unknown.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

Physics-informed neural networks (PINN) have shown great success in multiple
applications [Karniadakis et al., 2021] and have become a well established part
scientific machine learning. An ongoing area of research is quantifying the different
sources of uncertainty that arise in different scientific machine learning methods.
In this work, we investigated whether we can capture the numerical error of a
PINN solution for a PDE problem using a probabilistic approach in a setting with
noise free input data. To make the computation tractable and efficient, we used
Laplace approximations to infer the posterior and obtain uncertainties over the
outputs of our network. We begin by modifying the PINN approach [Raissi et al.,
2019] and constructing a probabilistic formulation of the PINN problem. To do
this, we defined a prior over the weights and appropriate likelihood functions.
However, computing the posterior p(θ | D) analytically is usually intractable. We
use a Laplace approximation to efficiently approximate the posterior by a Gaussian
around the mode of our posterior θMAP . We improve our approximation by tuning
the hyperparameters of our probabilistic model (the variance of the prior and
the likelihood) using the Laplace-approximated marginal likelihood. To obtain
uncertainty estimates over the PINN solution we approximate the posterior over
the network outputs p(u(x) | x,D) by linearizing the neural network around our
MAP estimate θMAP .

We then tested our method to find out how well it performs in solving PDE
problems. In our experiments the PINN solution of our method is able to accu-
rately solve the PDE with a simple network architecture. Next we examined the
uncertainty estimates returned by our method. We show that our posterior is rea-
sonably well calibrated and that the returned uncertainty estimates are sensible.
To do this we analyzed both the uncertainties in a normal learning setting that one

45
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might use to solve the PDE, as well as in settings where large regions of the domain
are missing data. The uncertainty due to missing data in the spatial dimension
in large areas of the domain is well reflected in our posterior. We conclude that
our method is both able to solve PDE problems accurately, and return sensible
uncertainty estimates over the solution.

In our construction the uncertainty inference does not hinder the performance
of the PINN solution. Our proposed method does not require any modifications
to the neural network learning process itself. In this way, possible improvements
in the learning process and more powerful architectures can be exploited without
having to modify the posterior inference algorithm. With our method, we obtain
a good approximate solution to the PDE problem, and get computationally cheap
uncertainty estimates of the numerical error on top of it.

5.2 Extensions and Future Work

PINNs have been shown to be have great performance in many real-world applica-
tions [Karniadakis et al., 2021]. We believe that incorporating cheap, reasonable
uncertainty estimates, that can be computed on top of these solutions without
modifying the training process, can add further utility to these methods. Since
in real-world PDE problems the underlying solution function is usually unknown,
an estimate of the numerical error can improve confidence in the result. In the
reported experiments, we used only a simple neural network architecture and fixed
hyperparameters. To fully evaluate the method, we also need to run the method
on more powerful neural network architectures. We can also compare the quality
of our uncertainty estimates and the efficiency of our method with other recent
developments in scientific machine learning for solving PDE problems, by applying
these methods to our noise free input setting. While the PDE problem we ana-
lyzed in this work is not straightforward to solve (see Section 4.2), we also need
to test the method on different PDE problems. In particular, higher-dimensional
PDE problems are of interest, as we might need to make further modifications to
accurately solve them. If we try to solve more complicated PDE problems, we
may also to employ a more powerful neural network structure, as well as find hy-
perparameters for the training procedure. We can use the Laplace-approximated
marginal likelihood to help us choose a fitting model [Immer et al., 2021a], by
comparing the likelihood functions for different choices of model architecture and
hyperparameters. If we have a system that provides observations of the PDE at
certain time steps, e.g. sensor data in a real world PDE, we can also incorporate
this data into the PINN learning process with an additional data loss term. Since
we can efficiently compute uncertainty estimates with the Laplace approximation
we can also incorporate these uncertainties into the learning process. In this active
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learning setting we could adaptively add collocation points during the training loop
in regions of the domain where the posterior shows high uncertainty. This could
improve the performance of the PINN solution and lead to a better calibrated
posterior.
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mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem
Wortlaut oder dem Sinne nach anderen Werken entnommen sind, durch Angaben
von Quellen als Entlehnung kenntlich gemacht worden sind. Diese Masterar-
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