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Abstract

Riemannian manifolds provide a principled way to model nonlinear geometric struc-
ture inherent in data. A Riemannian metric on said manifolds determines geometry-
aware shortest paths and provides the means to define statistical models accordingly.
However, these operations are typically computationally demanding. To ease this
computational burden, we advocate probabilistic numerical methods for Rieman-
nian statistics. In particular, we focus on Bayesian quadrature (bq) to numerically
compute integrals over normal laws on Riemannian manifolds learned from data.
In this task, each function evaluation relies on the solution of an expensive initial
value problem. We show that by leveraging both prior knowledge and an active
exploration scheme, bq significantly reduces the number of required evaluations and
thus outperforms Monte Carlo methods on a wide range of integration problems. As
a concrete application, we highlight the merits of adopting Riemannian geometry
with our proposed framework on a nonlinear dataset from molecular dynamics.
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Zusammenfassung

Riemannsche Mannigfaltigkeiten bieten eine Möglichkeit zur systematischen Mod-
ellierung, wenn sich Daten durch eine nicht-lineare Struktur auszeichnen. Eine
Riemannsche Metrik auf solchen Mannigfaltigkeiten erlaubt die Berechnung von
kürzesten Wegen, welche die Geometrie respektieren, und zudem die Definition
geeigneter statistischer Modelle. Allerdings sind diese Operationen typischerweise
rechnenaufwändig. Um diese Rechenlast zu erleichtern, plädieren wir für probabilis-
tische numerische Methoden in der Riemannschen Statistik. Wir fokussieren uns
spezifisch auf Bayesianische Integration, mit der wir numerisch Integrale über normale
Dichtefunktionen auf durch Daten gelernten Mannigfaltigkeiten berechnen. In dieser
Problemstellung benötigt jede Funktionsauswertung die Lösung eines aufwändigen
Anfangswertproblems. Wir zeigen, dass Bayesianische Integration durch das Aus-
nutzen von Vorwissen und eine aktive Explorationsstrategie die Anzahl der benötigten
Auswertungen verringert und dadurch auf einer breiten Palette an Integrationsproble-
men bessere Leistung als Monte Carlo Methoden erbringt. Als konkrete Anwendung
demonstrieren wir den Nutzen Riemannscher Methoden (innerhalb unseres Ansatzes)
auf einem nicht-linearen Datensatz aus einer Molekulardynamik-Simulation.



iii

Acknowledgements

I am grateful for the continual support of my supervisors Alexandra Gessner (Bayesian
Quadrature) and Georgios Arvanitidis (Geometry). Both of their expertise was critical
for this project, a synthesis of their subject areas. They patiently guided me through
the process of writing a paper. I am thankful for all the inspiring coffee breaks with
Nina Effenberger, Jonathan Schmidt and Marvin Pförtner and I am indebted to
Rahel Gerrens for her encouragement. I also thank Nicholas Krämer, Agustinus
Kristiadi, and Dmitry Kobak for helpful discussions and Bernhard Schölkopf for
feedback. Finally, I thank Philipp Hennig and Jakob Macke for reviewing this.



iv



Contents

List of Figures vii

List of Tables ix

List of Abbreviations xi

1 Introduction 1

1.1 A Motivating Example: Adenylate Kinase . . . . . . . . . . . . . . . 2

1.2 The Concept of Space . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Riemannian Geometry 9

2.1 A Primer on Riemannian Geometry . . . . . . . . . . . . . . . . . . 9

2.2 Topological and Smooth Manifolds . . . . . . . . . . . . . . . . . . . 11

2.3 The Tangent Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Smooth Vector and Tensor Fields . . . . . . . . . . . . . . . . . . . . 13

2.5 Affine Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Riemannian Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 The Exponential and Logarithmic Maps . . . . . . . . . . . . . . . . 18

2.9 Integration on Riemannian Manifolds . . . . . . . . . . . . . . . . . . 18

2.10 Constructing Riemannian Manifolds from Data . . . . . . . . . . . . 19

2.11 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Riemannian Statistics 25

3.1 Probability Distributions on Manifolds . . . . . . . . . . . . . . . . . 25

3.2 The Riemannian Normal Distribution . . . . . . . . . . . . . . . . . 26

v



vi CONTENTS

3.3 The LAND Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Bayesian Quadrature 30

4.1 Vanilla BQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Warped BQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 WSABI on Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 DCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 BQ for LAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Further Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6.1 Logarithmic Maps Initialization . . . . . . . . . . . . . . . . . 35

4.6.2 Log-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Further LAND Improvements 36

5.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Solver Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 An Initialization Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Manifold Linesearch . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Experiments 41

6.1 Toy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Higher-Dimensional Toy Data . . . . . . . . . . . . . . . . . . . . . . 43

6.3 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.4 ADK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.5 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.6 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Discussion and Outlook 49

Bibliography 51



List of Figures

1.1 ADK conformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 ADK colored according to radius of gyration . . . . . . . . . . . . . 3

1.3 A normal distribution on adk data . . . . . . . . . . . . . . . . . . . 4

1.4 land teaser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 A “curved” vs. a “straight” line on adk . . . . . . . . . . . . . . . . 8

2.1 The applied manifold setting . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Exemplary data manifolds . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 The “swiss roll’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Curvature of data manifolds . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Curvature of manifolds with a single datum . . . . . . . . . . . . . . 23

3.1 Integrand on tangent space . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Posterior over gµ(v)N (v; 0,Σ) . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Initialization scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 Boxplot error comparison of bq and mc . . . . . . . . . . . . . . . . 42

6.2 Mean runtime comparison (for a single integration) . . . . . . . . . . 43

6.3 Comparison of bq and mc errors against runtime . . . . . . . . . . . 44

6.4 Model comparison on circle toy data. . . . . . . . . . . . . . . . . . 44

6.5 Further toy data land fits . . . . . . . . . . . . . . . . . . . . . . . . 45

6.6 Model comparison on three-digit mnist. . . . . . . . . . . . . . . . . 45

6.7 Comparison of Euclidean Gaussian vs. land on adk data . . . . . . 46

vii



viii LIST OF FIGURES



List of Tables

6.1 Mean exponential map runtimes . . . . . . . . . . . . . . . . . . . . 42

6.2 Architecture of the vae on mnist . . . . . . . . . . . . . . . . . . . . 45

6.3 Manifold and land optimization hyperparameters . . . . . . . . . . 47

ix



x LIST OF TABLES



List of Abbreviations

adk Adenylate Kinase
bq Bayesian Quadrature
bvp Boundary Value Problem
dcv Directional Cumulative Acquisition
fp Fixed-Point Geodesic Solver
gmm Gaussian Mixture Model
gp Gaussian Process
ivp Initial Value Problem
land Locally Adaptive Normal Distribution
mnist “mnist” Handwritten Digits Database
ode Ordinary Differential Equation
pca Principal Component Analysis
pnm Probabilistic Numerical Methods
rbf Radial Basis Function (Kernel)
spd Symmetric Positive Definite
vae Variational Auto-Encoder
vmd Visual Molecular Dynamics
wsabi Warped Sequential Active Bayesian Integration
wsabi-l Linearized wsabi
wsabi-m Moment-Matched wsabi

xi



xii LIST OF ABBREVIATIONS



Chapter 1

Introduction

The structure of space matters. This is what I have learned from this thesis in a
nutshell. Yet, in statistics and machine learning there is the ubiquitous and tacit
assumption of a Euclidean geometry, implying that distances can be measured along
straight lines. This flat space model is inadequate when data follows a nonlinear trend,
which is known as the manifold hypothesis. As a result, probability distributions
based on a flat geometry may poorly model the data and fail to capture its underlying
structure. Generalized distributions that account for curvature of the data space
have been put forward to alleviate this issue. In particular, Pennec [2006] proposed
an extension of the normal distribution on Riemannian manifolds such as the sphere.

The key strategy to use such distributions on general data manifolds is by
replacing Euclidean straight lines with continuous shortest paths, known as geodesics,
which respect the nonlinear structure of the data. This is achieved by introducing
a Riemannian metric in the data space that specifies how distance and volume are
distorted locally.

To this end, Arvanitidis et al. [2016] proposed a maximum likelihood estimation
scheme based on a data-induced metric to learn the parameters of a Locally Adaptive
Normal Distribution (land). However, it relies on a computationally expensive
optimization task that entails the repeated numerical integration of the unnormalized
density on the manifold, for which no closed-form solution exists. Hence we are
interested in techniques to improve the efficiency of the numerical integration scheme.

Probabilistic numerics [Hennig et al., 2015, Cockayne et al., 2019] frames com-
putations that are subject to noise and approximation error as active inference. A
probabilistic numerical routine treats the computer as a data source, acquiring evalu-
ations according to a policy to decrease its uncertainty about the result. Amongst
probabilistic numerical methods, we focus on Bayesian quadrature (bq) to compute
intractable integrals on data manifolds. Bayesian quadrature [O’Hagan, 1991, Briol
et al., 2019] treats numerical integration as an inference problem by constructing
posterior measures over integrals given observations, i.e., evaluations of the integrand.
Besides providing sound uncertainty estimates, the probabilistic approach permits
the inclusion of prior knowledge about properties of the function to be integrated,
and leverages active learning schemes for node selection as well as transfer learning
schemes, for example when multiple similar integrals have to be jointly estimated

1



2 CHAPTER 1. INTRODUCTION

[Xi et al., 2018, Gessner et al., 2019]. These properties make bq especially relevant
in settings where the integrand is expensive to evaluate, and make it a suitable tool
for integration on Riemannian data manifolds.

Contributions

• The uptake of Riemannian methods in machine learning is principally hindered
by prohibitive computational costs. We here address a key aspect of this
bottleneck by improving the efficiency of integration on data manifolds.

• We customize Bayesian quadrature to curved spaces by exploiting knowledge
about their structure. To this end, we introduce a tailored acquisition function
that minimizes the number of expensive computations by selecting informative
directions (instead of single points) on the manifold. Adopting a probabilistic
numerical integration scheme enables efficient exploration of the integrand’s
support under a suitable prior.

• We demonstrate accuracy and performance of our approach on synthetic and
real-world data manifolds, where we observe speedups by factors of up to 20.
In these examples we focus on the land model, which provides a wide range of
numerical integration problems of varying geometry and difficulty. We highlight
molecular dynamics as a promising application area for Riemannian machine
learning models. The results support the use of probabilistic numerical methods
within Riemannian geometry to achieve significant speedup.

As geometric methods with data-induced metrics are not (yet) well known in
the machine learning community, we begin with a motivating example, which will
guide the subsequent conceptual developments. This also includes a philosophical
introduction, which emphasizes that this framework has little to do with a priori
structured manifolds, such as spheres or hyperbolic spaces.

Remarks

• Most of this material has been published in [Fröhlich et al., 2021], so this
source is not cited further. As this project involved collaborators, some of the
sentences here I did not write myself.

• The geometric framework of data-driven metrics in machine learning has
been developed by Hauberg et al. [2012], Arvanitidis [2019] and is thus not a
contribution of this thesis.

• This thesis is best read on screen instead of in print due to colorful figures.

1.1 A Motivating Example: Adenylate Kinase

In molecular dynamics, biophysical systems are simulated on the atomic level. This
approach is useful to understand the conformational changes of a protein, that is,



1.1. A MOTIVATING EXAMPLE: ADENYLATE KINASE 3

Figure 1.1: adk in a closed, an intermediate and an open state. The intermediate state is
the representative mean resulting from the land model.

Figure 1.2: adk trajectory data (2,038 points), colored according to the radius of gyration, a
measure which indicates how open the protein is. This visually corroborates the analysis.

the structural changes it undergoes. A conformation is the spatial arrangement of
its constituent atoms. Here we consider the example of adenylate kinase (adk).
According to Seyler et al. [2015], “adk’s closed/open transition [..] is a standard test
case that captures general, essential features of conformational changes in proteins”.
This well-studied transition involves the movement of the LID and NMP domains
against the rather stable core domain. As a consequence, it can be described by
two angles θLID and θNMP . In Fig. 1.1, it is visible how the LID opens to the top,
whereas the NMP domain moves towards the bottom right (from this particular
perspective). In general, clustering conformations and finding representative substates
are scientifically interesting (see e.g., Papaleo et al., 2009, Wolf and Kirschner, 2013,
Spellmon et al., 2015, Tribello and Gasparotto, 2019). For the adk example, assume
that we want to find a mean state of the transition motion, which is well situated
between the closed and the open state.

We obtained adk trajectory data from Seyler et al. [2015] 1, specifically, the dims
variant, a dataset which comprises 200 trajectories and select a subset consisting of
trajectories 160− 200, which contain in total 2,038 data points. Each observation
consists of the Cartesian (x, y, z) coordinates for each of the 3,341 atoms, yielding a
10,023 dimensional vector. As is common in the field, we use principal component
analysis (pca) to extract the essential dynamics [Amadei et al., 1993]. A typical

1https://www.mdanalysis.org/MDAnalysisData/adk_transitions.html#
adk-dims-transitions-ensemble-dataset

https://www.mdanalysis.org/MDAnalysisData/adk_transitions.html##adk-dims-transitions-ensemble-dataset
https://www.mdanalysis.org/MDAnalysisData/adk_transitions.html##adk-dims-transitions-ensemble-dataset
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Figure 1.3: A normal distribution fitted to adk data, showing mean and eigenvectors.

assumption is that the trajectory actually takes place on a low-dimensional subspace
and thus it is sufficient and more instructive to analyze is there. Indeed, the first
two eigenvectors already explain 65% of the total variance and suffice to capture
the transition motion. Figure 1.2 shows the resulting projected data and provides a
visual argument for the low-dimensional hypothesis.

In this context, the advantage of using pca over a complicated non-linear method
such as t-sne is that pca is well understood, interpretable and comes with a (lossy)
inverse transform. See Tribello and Gasparotto [2019] for an overview on dimension-
ality reduction of protein trajectories. Using Cartesian coordinates has also been
criticized [Sittel et al., 2014]. Instead, backbone dihedral angles may be used. I use
Cartesian coordinates to keep the analysis simple, however.

To find a representative mean, a natural approach is to fit a 2D normal distri-
bution to the data. As the data evidently follows a nonlinear trend, this model is
inappropriate, however. The mean is placed outside the data and the eigenvectors of
the covariance do not align with the intrinsic nonlinearity (Figure 1.3).

This raises the question of what it is that is problematic about the familiar normal
distribution in this setting. As the maximum entropy distribution, characterized by
mean µ ∈ RD and covariance Σ ∈ RD×D, the normal distribution is a conceptually
well-founded generative model. Its density

p(x | µ,Σ) = 1
(2π) D

2 |Σ| 12
exp

(
−1

2(x− µ)ᵀΣ−1(x− µ)
)

(1.1)

is based on the Mahalanobis distance D(x) =
√

(x− µ)ᵀΣ−1(x− µ), which is essen-
tially the Euclidean distance after applying an affine transformation to remove shift
and correlation of the data. In the adk example, however, the Euclidean metric
should be considered inappropriate: a realistic trajectory from the closed to the open
state should follow the U-shape of the data, instead of crossing the no man’s land
inbetween. This is prior knowledge that we have about the data generating process.
For example, a protein clearly does not self-intersect, so we cannot expect all regions
of the data space to be meaningfully inhabitable.

A principled way to model this phenomenon is by introducing a Riemannian
metric, which curves the data space in such a way that shortest paths and distance
measurements, consequently, respect the data geometry. This allows an extension of
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Figure 1.4: A land on adk trajectory data. The conformation corresponding to the land
mean ( ) is visualized. The contours show the density on the manifold.

the normal distribution to data manifolds. Figure 1.4 shows the resulting fit of such
a Locally Adaptive Normal Distribution [Arvanitidis et al., 2016] on the adk data.

1.2 The Concept of Space:
Kant, Riemann, Einstein and Machine Learning

The typical textbook approach to differential and Riemannian geometry is to state
technical definitions of manifolds, charts, etc. without much motivation, relying
on pretheoretical intuitions about concrete manifolds like the sphere. Yet this
approach leaves many questions regarding the why unanswered and is at risk of
missing to demonstrate the scope of the implications. We will therefore begin with a
philosophico-historical digression on conceptions about space, making our way from
Kant and Riemann towards contemporary machine learning.

Whereas in the Newtonian worldview, space is an actual, mind-independent
entity, filled with objects that move in it, Leibniz conceptualized space as consisting
in relations of those objects. Kant radically departs from these ideas by placing
space in the realm of the subject’s intuition [Janiak, 2020, Jost, 2013], that is, space
is merely a feature through which we perceive objects [Stang, 2021], uninformative
of the nature of the objects in themselves. The idea that geometric statements
are synthetic a priori judgments is central to Kant’s doctrine of transcendental
idealism. Space is a priori in the sense that, according to Kant, it is possible to
imagine space devoid of objects, but impossible to imagine the absence of space itself.
This assertion of ontological priority removes geometry from the realm of empirical
investigation. Instead, geometry concerns our own representations of objects. Kant
further argues for the synthetic character of geometric statements. Consider the
exemplary postulate, which we meet again in Chapter 2, that the shortest distance
between two points is a straight line. This is a synthetic judgment, because the
quantitative concept of length is prima facie unrelated to the qualitative concept
of straightness, and thus this statement cannot be obtained by analytic reasoning
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alone [Jost, 2013]. Instead, it requires synthetic construction by the subject. So if
space is actually a non-empirical representation in the mind of the perceiving subject,
what makes Euclidean geometry the “right” one? Kant answers this by pointing out
that Euclidean space is the only kind which is intuitively accessible to humans. By
necessity, we conceive of space as three-dimensional Euclidean in nature. Whether we
follow this line of argumentation or not, one important lesson to take from Kant is to
consider the subjective component, for instance the inductive bias that is introduced
by the spatial preconceptions of a machine learning engineer.

Kant’s successor, J. Herbart, turns against the a priori conception of space and
instead proposed a grounding in sensory physiology [Gray, 2019]. Without innate
structural priors, space is constructed through experience, i.e., unconscious inference
about hidden causes in the world. This theory already hints at modern developments
in cognitive science within the Bayesian framework of predictive processing [Wiese
and Metzinger, 2017] and was an important influence on Riemann.

In his seminal habilitation lecture, Riemann [1854] goes even further than Herbart
and replaces the Kantian concept of space with a completely novel approach. Rie-
mann considers geometry an a posteriori matter: Euclidean space loses its unique
characteristic and instead, geometric judgments are hypotheses about the world,
subject to empirical validation and falsification. This already hints at the possibility
of doing (probabilistic) inference about space itself. Also, Riemann sees no reason
for a three-dimensional restriction and invented an abstract geometric metatheory.
The present framework of data-aware geometry in machine learning is best seen as
abandoning Kantian ideas and as an outcome of the philosophico-mathematical line
of work starting with Riemann.

Riemann sets out to question whether the postulates of Euclidean geometry are
necessary and thus seeks a more general understanding of geometry. Remarkably,
the lecture is almost devoid of formulae. He introduces the notion of a manifold in
an abstract fashion as follows:

Größenbegriffe sind nur da möglich, wo sich ein allgemeiner Begriff
vorfindet, der verschiedene Bestimmungsweisen zulässt. Je nachdem
unter diesen Bestimmungsweisen von einer zu einer andern ein stetiger
Uebergang stattfindet oder nicht, bilden sie eine stetige oder discrete
Mannigfaltigkeit; die einzelnen Bestimmungsweisen heissen im erstern
Falle Punkte, im letztern Elemente dieser Mannigfaltigkeit. [Riemann,
1854]

Magnitude-notions are only possible where there is an antecedent general
notion which admits of different specialisations. According as there exists
among these specialisations a continuous path from one to another or
not, they form a continuous or discrete manifoldness; the individual
specialisations are called in the first case points, in the second case
elements, of the manifoldness. (translated by Clifford, 2013)

Riemann further characterizes a manifold as allowing local coordinate assignment
(through charts, in modern jargon). For example, the surface of the earth can be
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described with multiple charts, together constituting an atlas. Riemann also makes
the import distinction between topology, describing only qualitative neighborhood
properties, and geometry, which requires imposing additional quantitative metric
structure. As opposed to Kant, this makes space an a posteriori concept subject
to empirical investigation, which carries significant meaning as opposed to New-
ton’s passive view. From a parsimonious set of assumptions, for instance that the
Pythagorean theorem is valid infinitesimally, Riemann then derives a form for the
metric tensor [Jost, 2013]. The metric, together with notions of curvature, turn out
to be intrinsic quantities. Although their description depends on choosing a specific
coordinate system, the objects themselves do not in the sense that they transform
according to general, predictable laws under a change of coordinates. This is the
subject matter of tensor calculus. A strength of this framework is that it realizes
the arbitrariness of coordinate descriptions, yet is still able to carve out substantial
invariants. In machine learning, we often have the situation that we cannot interpret
coordinates in an intrinsically meaningful way, for example in a latent space of a deep
generative model. Therefore we are interested in characterizing invariants, which are
unaffected by reparameterization.

Einstein elaborates on the Riemannian postulate that the structure of space is
intimately tied to its content and employs the mathematical tools to systematically
study applications and implications in physics. Whereas for Newton, objects under
gravitational influence move along curved paths in a passive space, in Einstein’s
general relativity the objects move along straight paths in a curved space [Jost, 2013].
This is an important point which deserves emphasis. The paths are straight, it is
only the case that they may not appear as such. Perhaps the statement also conjures
an inappropriate mental representation, in which the universe is just a Euclidean
space that is then embedded in a higher dimensional space with a distortion due to
gravity. However, the curvature is intrinsic. Unlike a sphere, which is typically seen
as embedded in a higher-dimensional Euclidean space, the universe cannot curve into
a higher dimension. It curves intrinsically.

Among the most important equations in physics are the Einstein-Field equations

Rµν −
1
2Rgµν + Λgµν︸ ︷︷ ︸
geometry

= κTµν︸ ︷︷ ︸
matter

,

which relate the curvature of spacetime, expressed by Rµν and R (see Chapter 2), to
its content: matter. Although it may look innocent, it is a groundbreaking idea to
equate geometry with matter, that is, to view them as two incarnations of a single
common core.

Einstein’s ideas offer a helpful analogy to what we attempt in machine learning.
We are here not investigating embedded manifolds with a priori structure such as
the sphere, but instead we consider intrinsic curvature due to the data itself. We
propose to jointly infer the geometry of the data space and a statistical model based
on the distribution of matter within the space, i..e, the data. Figure 1.5 shows two
different paths with the same endpoints on the adk data. Is one of them straight? Is
one of them the shortest path between the points? Answering these subtly different
questions requires knowledge of a lot of structure, which is hidden in the Figure. To
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Figure 1.5: A “curved” vs. a “straight” line on adk. The bottom path is computed as the
straightest and shortest path under a data-driven Riemannian metric.

a Kantian data scientist, the answer would be clear, as they would not question the
Euclidean assumption, or more precisely, they would state that it holds necessarily.
On the other hand, from the Riemannian perspective, this is a well-posed question.
The bottom path, which appears curved to a Euclidean observer, might very well be
a straight (and the shortest) path, as it follows the trend of the data in a meaningful
way. In contrast, the seemingly straight line at the top cannot meaningfully be
considered the shortest path, as it crosses no man’s land. Domain knowledge tells
us that this is dangerous, as the coordinates in this region without data may not
correspond to physically meaningful protein conformations and the path thus does
not represent a realistic trajectory between the closed and open state.

With this conceptual motivation at hand, we now turn to the technical side.
As we are interested in data-induced metrics, topology will only play a minor role
and we focus on geometrical aspects. This philosophical introduction also served to
emphasize that we consider the space itself, not merely embeddings of surfaces in
higher-dimensional spaces. Thus, the wrong example to have in mind is that of a
sphere or a torus. Instead, the general relativity metaphor of a dataverse, where
mass intrinsically curves the space, is a more suitable intuition to keep in mind in
the following.



Chapter 2

Riemannian Geometry

This chapter begins with a brief, intuitive summary of Riemannian geometry by
introducing the necessary objects and operations from the bird’s eye view. Thereafter
we zoom in and make a second, more rigorous pass on the concepts, yet still retaining
a structural approach to avoid getting lost in technical details. This exposition
primarily draws from the introductory lecture course on differential geometry and
relativity by Schuller [2015]. We will use plain face to denote objects (v), whereas
coordinate vector/matrix representations of the same objects are set in bold (v). We
sometimes switch freely between these viewpoints.

2.1 A Primer on Riemannian Geometry

In our applied setting, we view RD as a smooth manifold M with a changed notion
of distance and volume measurement as compared to the Euclidean case. This view
arises from the assumption that data have a general underlying nonlinear structure
in RD (see Fig. 2.1), and thus, the following discussion excludes manifolds with
structure known a priori, e.g., spheres and tori. In our case, the tangent space TµM
at a point µ ∈M is again RD, but centered at µ. This is a vector space that allows
to represent points of the manifold as tangent vectors v ∈ RD. Pictorially, a vector
v ∈ TµM is tangential to some curve passing through µ. Together, these vectors
give a linearized view of the manifold with respect to a base point µ.

A Riemannian metric is a positive definite matrix M : RD → RD×D+ that varies
smoothly across the manifold. Therefore, we can define a local inner product between
tangent vectors v,w ∈ TµM as 〈v,w〉µ = 〈v,M(µ)w〉, where 〈·, ·〉 is the Euclidean
inner product. This inner product makes the smooth manifold a Riemannian manifold
[do Carmo, 1992, Lee, 2018].

A Riemannian metric locally scales the infinitesimal distances and volume. Con-
sider a curve γ : [0, 1]→M with γ(0) = µ and γ(1) = x. The length of this curve
on the Riemannian manifoldM is computed as

L(γ) =
∫ 1

0

√
〈γ̇(t),M(γ(t))γ̇(t)〉 dt,

9
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M

Expµ(v) = x

Logµ(x) = v

Figure 2.1: A protein trajectory manifold. A subset of the geodesics is shown with respect
to a fixed point µ ( ). The background is colored according to the volume element

√
|M|

(Sec. 2.10) on a log scale. We omit a colorbar, since the values are not easily interpreted.
Darker color indicates regions with small metric, to which shortest paths are attracted. For
one geodesic ( ), we show the downscaled tangent vector and the Log and Exp operations.

where γ̇(t) = d
dtγ(t) ∈ Tγ(t)M is the velocity of the curve. The γ∗ that minimizes

this functional is the shortest path between the points. To overcome the invariance
of L under reparametrization of γ, shortest paths can equivalently be defined as
minimizers of the energy functional. This enables application of the Euler-Lagrange
equations, which result in a system of 2nd order nonlinear ordinary differential
equations (odes). The shortest path is obtained by solving this system as a boundary
value problem (bvp) with boundary conditions γ(0) = µ and γ(1) = x. Such a
length-minimizing curve is known as geodesic.

To perform computations on M we introduce two operators. The first is the
logarithmic map Logµ(x) = v, which represents a point x ∈M as a tangent vector
v ∈ TµM. This can be seen as the initial velocity of the geodesic that reaches
x at t = 1 with starting point µ. The inverse operator is the exponential map
Expµ(t · v) = γ(t) that takes an initial velocity γ̇(0) = v ∈ TµM and generates a
unique geodesic with γ(0) = µ and γ(1) = x. Note that Logµ(Expµ(v)) = v, and
also, ‖Logµ(x)‖2 = ‖v‖2 = L(γ). Computationally, the logarithmic map amounts to
solving a bvp, whereas the exponential map corresponds to an initial value problem
(ivp). For general data manifolds, analytic solutions of the geodesic equations do not
exist, so we rely on specialized approximate numerical solvers for the bvps; however,
finding shortest paths still remains a computationally expensive problem [Hennig
and Hauberg, 2014, Arvanitidis et al., 2019b]. In contrast, the exponential map as
an ivp is an easier problem and solutions are significantly more efficient.

We illustrate our applied manifold setting in Fig. 2.1, where we show geodesics
starting from a point µ, as well as the Log and Exp operators between µ and a
point x. Note that Figures {2.1,3.1,4.1} are in correspondence, that is, they illustrate
different aspects of the same setting. After this primer on Riemannian geometry, we
now introduce the concepts in more depth.
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2.2 Topological and Smooth Manifolds

At the set-level structure, we cannot talk about continuity of maps. For this, we
require a topology on the set. Such a topology defines which subsets are considered
as open sets. The intuition for this may be derived from open intervals of the real
numbers R.

Definition 1. A topology O on a set M is a collection of subsets of M such that
∅,M∈ O, with the requirement that O be closed under arbitrary union of elements
and finite intersections. We call (M,O) a topological space.

This allows a definition of continuous maps between topological spaces.

Definition 2. A map f :M−→ N is called continuous if preimages of open sets
are again open, i.e., U ∈ N open⇒ f−1(U) open, where “open” is to be understood
with respect to the, possibly different, topologies onM and N .

With the standard topology on RD, which is generated by the open balls B(x, r) =
{y ∈ RD : ‖x − y‖ < r} ∀x ∈ RD ∀r ∈ R+, this coincides with the familiar ε − δ
criterion for continuity.

Definition 3. A topological space (M,O) is a D-dimensional topological manifold if
it is Hausdorff1 and second-countable2 and can be covered with charts, defined locally
on open neighborhoods. Formally, we require
∀p ∈M : ∃U ∈ O : p ∈ U : ∃x : U ⊂M −→ x(U) ⊂ RD, where x is

• continuous with respect to the topology onM and the standard topology on RD

• invertible

• and its inverse x−1 is also continuous.

We call (U , x) a chart and x a chart map, which assigns a list of coordinates to
each point within its domain. An atlas is a collection of charts which covers the
whole manifold.

This is already sufficient topology for us, since we work with a particularly simple
setting: to keep the analysis tractable, given data inM = RD we inherit the standard
topology and work with the global identity chart x : RD −→ RD, x = id, which
directly covers the whole manifold. This also avoids a technical issue: if a manifold is
covered with multiple overlapping charts, one has to require transition maps between
those charts to be smooth, i.e., infinitely differentiable, in order to do calculus on the
manifold. Such a manifold is then called a smooth manifold. Since we have only one
chart, our topological manifold is immediately a smooth manifold. We write f ∈ C∞
for a smooth3 function and call an atlas fulfilling this condition a smooth atlas or
C∞-atlas.

1A topological space is Hausdorff if for any two points x, y there exist disjoint neighborhoods for
x and y, respectively. Thus two points can always be separated.

2A topological space is second-countable if it can be generated from a countable basis.
3To define smooth maps between two manifolds, one makes use of the chart maps to inherit the

familiar smoothness concept by pre- and postcomposition of the respective (inverse) chart maps.
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2.3 The Tangent Space

After this short excursion into topology, we now introduce the central construction
of differential geometry to enable calculus, the tangent space.

LetM be a smooth manifold, i.e., a setM together with a topology and a C∞
atlas. The idea of the tangent space is to construct a vector space at each point on
the manifold, where vectors correspond to directional derivatives of curves passing
through that point.

First, we define a helper vector space C∞(M) := {f : M −→ R | f ∈ C∞} of
smooth functions from a manifold into the reals, equipped with pointwise operations
(f ⊕ g)(p) = f(p) +R g(p) and (λ⊗ f)(p) = λ ·R f(p), ∀λ ∈ R .

Let γ : R −→M a smooth curve on the manifold. W.l.o.g. assume that γ(0) = p,
where p is our point of interest (otherwise reparameterize the curve).
Definition 4. The velocity of γ at p is the linear map v : C∞(M) ∼−→ R, where
f 7→ v(f) := (f ◦ γ)′(0). We denote linearity with ∼−→ and ′ is the familiar derivative
operator w.r.t. the curve parameter. Note that v implicitly depends on both γ and p.

Importantly, vectors are functions in differential geometry. The action of a
vector v on a function f yields a directional derivative vf := v(f). Why is such
a complicated construction necessary? The insight is that f ◦ γ : RD −→ RD is a
function for which we have the familiar notion of a derivative available, so we exloit
it to lift calculus to the manifold.
Definition 5. The tangent space TpM at a point p contains the velocities (tangent
vectors) of all curves passing through p. It is endowed with a vector space structure
using the pointwise operations (v1⊕v2)(f) = v1(f)+Rv2(f) and (λ⊗v)(f) = λ·Rv(f).

It can be checked that these operations are well-defined, so that their result is
again a tangent vector. Conceptually, what happens is that by choosing a chart,
we can exploit linearity of the familiar derivative and thereby induce a local vector
space structure on the manifold.

If we have a chart x : U ⊂ M −→ RD, we are interested in chart-dependent
components for a vector. To obtain them, we first consider the action of a tangent
vector on a function f ∈ C∞(M) :

v(f) := (f ◦ γ)′ (0)

=
(
(f ◦ x−1) ◦ (x ◦ γ)

)′
(0).

We now write this component-wise, using Einstein-summation convention. Repeated
indices are implicitly summed over. Furthermore, a summation index “up” is always
accompanied by an index “down”. We explore the reason for this later. From the
chain rule we obtain:

=
(
(x ◦ γ)′

)i (0) · (f ◦ x−1)′i(x(p))

=
(
(x ◦ γ)′

)i (0) ·
(
∂i(f ◦ x−1)

)
(x(p))

=: γ̇ix(0) ·
(
∂f

∂xi

)
p
,
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where we have the components in the first term and defined the suggestive shorthand
notation

(
∂
∂xi

)
=
(
(_ ◦ x−1)′

)i
, which still takes as argument a function f and a

point p. Now we can express a tangent vector at p (without acting on a function) in
the chart x as

v = γ̇ix(0) ·
(
∂

∂xi

)
p
.

It can be shown that
(

∂
∂xi

)
p
, ..,
(

∂
∂xi

)
p
constitute a basis, the chart-induced basis,

for TpU , where U ∈ M is the domain of the chart x. Furthermore, the vector
space dimension of the tangent space coincides with the topological dimension of the
manifold.

There is a natural correspondence between vectors and covectors, which are
linear maps from a vector space into the reals. In our case, the cotangent space
TpM∗ := {ϕ : TpM ∼−→ R}. The most important example is the differential df of a
function f ∈ C∞(M) at a point p, defined as (df)p : TpM ∼−→ R, v 7→ (df)p(v) := vf ,
which takes a vector v and then applies it to the function f to obtain the directional
derivative of f in the v direction. A basis for this space is given by (dx1)p, ..., (dxD)p,
where xi are the component functions. This basis is indeed a dual basis, because
(dxi)p

(
∂
∂xj

)
p

= δij .

The geometric treatment makes it clear that gradient and differential are not
the same object. While the gradient is a vector (corresponding to the direction of
greatest increase), the differential is a covector. In general, converting between them
is not as simple as transposing - this is only valid with a Euclidean metric structure.

Vectors and Covectors follow different transformation laws, when the basis is
transformed, for instance when changing from cartesian to polar coordinates. The
vector space basis transforms (by definition) following a covariant rule, where the
“co” indicates that it is the same direction as the basis transformation. On the other
hand, vector components transform contravariantly. Thus, vector components carry
an upper (contravariant) index, while the basis carries a lower (covariant) index.
In the “denominator”, the position is switched, so ∂

∂xi should be read as having
a lower index. For covectors, the opposite is true: the dual basis transforms in a
contravariant mode, whereas covector components are covariant. The intuition is
that, if we upscale the basis, we have to downscale the dual basis accordingly to keep
their relation intact.

2.4 Smooth Vector and Tensor Fields

To define shortest paths on smooth manifolds, we require the notion of a derivative
along a curve. As a prerequisite for this, we have to introduce tangent bundles and
vector fields, so we can talk about assigning a vector to each point on the manifold.

Definition 6. The tangent bundle of a smooth manifold is the disjoint union of all
tangent spaces on the manifold: TM := ⋃̇

TpM, which comes with the projection
π : TM −→M that assigns the base point on the manifold, i.e., v ∈ TpM 7→ p.
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The tangent bundle becomes a smooth manifold of dimension 2D by constructing
a smooth atlas that combines two pieces of data, the coordinates of the base point
and the coordinates of the tangent vector. Similarly, the cotangent bundle can be
defined as the union of all cotangent spaces.

A smooth vector field v then assigns a vector to each point on the manifold,
varying in a smooth fashion. Formally, it is a smooth section v : M −→ TM,
requiring π ◦ v = idM, where the smoothness property is to be understood with
respect to the smooth atlases onM and TM.

Definition 7. We define the set of smooth vector fields

Γ(TM) = {v :M−→ TM | v smooth vector field}, (2.1)

which can be made into a module over the ring (C∞(M),+, ·), where + and · are
point-wise operations defined in Section 2.3. Addition and scalar multiplication of
the module are also defined pointwise as follows

(v ⊕ ṽ)(f) := vf +C∞(M) ṽf ∀v, ṽ ∈ Γ(TM)
(g � v)(f) := g ·C∞(M) vf ∀g ∈ C∞(M), v ∈ Γ(TM)

with a new implicit application vf : M −→ R, p 7→ v(p)f , which takes care of
assigning a vector to the point p on the manifold. This definition can be extended to
accommodate general tensor fields.

Definition 8. An (p, q)-tensor field T is a C∞(M)-linear map

T : Γ(TM∗)× ..× Γ(TM∗)︸ ︷︷ ︸
p

×Γ(TM)× ..× Γ(TM)︸ ︷︷ ︸
q

∼−→ C∞(M)

Important examples that we will encounter are the metric tensor and curvature
tensors, which are all intrinsic quantities that characterize invariants of the manifold.

2.5 Affine Connections

We have seen that vectors and covectors, or more generally, tensors, follow well-
behaved transformation laws. These objects do not change intrinsically under a
change of chart, only their components do. Thus, for the derivative of a vector/tensor
field in the direction of another vector field, we require an intrinsic construction, that
respects the invariant semantics. This is achieved by choosing an affine connection,
also called a covariant derivative. For simplicity, we state the definition using vector
fields only.

Definition 9. A connection ∇ : Γ(TM)× Γ(TM) −→ Γ(TM) is a bilinear map
(v, u) 7→ ∇vu, which satisfies ∀w ∈ Γ(TM), f ∈ C∞(M)

∇fv+uw = f∇vw +∇uw
∇v(fu) = v(f)u+ f∇vu

∇v(u+ w) = ∇vu+∇vw,
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which are sensible requirements for a derivative notion. Importantly, it suffices if
v is defined along a curve instead of everywhere.

A connection is not uniquely determined by the smooth manifold structure.
Instead, there are D3 degrees of freedom to choose. Defining chart-dependent
coefficients Γ, called the Christoffel symbols

∇( ∂

∂xi

) ∂

∂xj
=: Γkij

∂

∂xk

which are D3 many functions Γkij : U −→ R, where U is the domain of the chart
x. These coefficient functions are not tensorial, so their transformation law is more
involved. Yet these symbols are often useful to simplify computations.

Using the Christoffel symbols together with the rules for the connection, the
covariant derivative can be written as

(∇vu)i = vm ·
(

∂

∂xm
ui
)

+ vm · un · Γinm

The significance of a connection lies in the fact that it defines a parallel transport,
which enables us to “glue” tangent spaces together.

Definition 10. We call a vector field u parallely transported along a smooth curve
γ : R −→M, λ 7→ γ(λ) with corresponding velocity v(λ) if ∇vu = 0.

In Euclidean space, parallely transporting a vector is trivial. On a manifold,
however, the intrinsic curvature will play a role in the result. A connection furthermore
lets us define a notion of a straight line on the manifold.

Definition 11. An affine geodesic is a curve which is parallely transported along
itself (or: autoparallel), obeying ∇vv = 0.

In practice, this amounts to solving an initial value problem, given a starting point
on the manifold and an initial velocity. While an affine geodesic may be considered
as a straight, we did not yet impose any metric structure and thus cannot measure
the length of such a curve.

2.6 Riemannian Metrics

To measure angles and the lengths of curves, we need to impose additional metric
structure on the smooth manifold, i.e., an inner product. This yields the concept of a
shortest path between to points, which then also allows us to make the identification
of straightest and shortest paths.

Definition 12. A Riemannian metric m : Γ(TM)×Γ(TM) ∼−→ C∞(M) is a smooth
symmetric positive definite (0, 2)-tensor field on M that assigns to vector fields v
and u a local inner product 〈v, u〉m = m(v, u) = m(v, u). Using the local matrix
representation M of m, we write vᵀMu.
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This definition makes the smooth manifold a Riemannian manifold. A metric
has a dually corresponding structure, which we may call the “inverse” metric tensor
m−1 : Γ(TM∗)× Γ(TM∗) ∼−→ C∞(M). This construction relies on the insight that
the metric provides a canonical isomorphism between the tangent and the cotangent
space:

Definition 13. The flat map [ : Γ(TM) −→ Γ(TM∗), [(v) := u 7→ m(v, u) can
be used to “lower” an index. We require that the inverse exists and define [−1 =: ].
With this at hand, we can set m−1(ω, σ) := ω(]σ).

As a corollary, we find that the gradient is related to the differential as follows:
gradf := ]df . Consequently, 〈gradf, v〉m = vf ∀v ∈ TpM. While the differential
is a covector field, the gradient is a vector field. In Euclidean space, the metric is
the Kronecker delta, represented by the identity matrix, and thus it is sometimes
confused whether the differential or gradient is a row or column vector. Note that
a row vector is actually a covector, whose transpose - in Euclidean geometry - is a
vector.

The Riemannian metric allows for a meaningful definition of the length of a curve
γ : R −→M, t 7→ γ(t) with tangent vectors vt as

L(γ) =
∫ 1

0

√
m(vt, vt) dt,

where the speed s =
√
m(vt, vt) of the curve is integrated locally. Intuitively, the

metric at each point stretches or shrinks the infinitesimal length ruler.

2.7 Geodesics

Definition 14. A geodesic is a curve γ : [0, 1] −→M, which is a stationary curve
of the length functional L. As such, it fulfills the Euler-Lagrange equations.

We are interested in the minimizers, i.e., shortest paths, although maximizers are
also geodesics. Working directly with the length functional is problematic, because
its solution can be arbitrarily reparameterized. Instead, we minimize curve energy to
ensure unit speed. For this, we move to the chart, where we can solve the resulting
differential equations. Here, we denote the coordinate matrix representation of the
metric at point p ∈M as M(p). The inverse metric m−1, represented by the matrix
inverse M−1(p), is by convention often denoted simply as M ij(p), but with upper
indices.

Definition 15. The energy or action functional of a curve γ with time derivative
γ̇(t) is defined as

E(γ) = 1
2

∫ 1

0
〈γ̇(t),M(γ(t))γ̇(t)〉︸ ︷︷ ︸

=:e

dt.

We abbreviate the inner product as e := 〈γ̇(t),M(γ(t))γ̇(t)〉. Let γi denote the
i-th coordinate of the curve γ at time t and Mik the metric component at row i and
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column k, if it is represented as a matrix. Applying the Euler-Lagrange equations to
the functional E results in a system of equations involving e

∂e

∂γk
= ∂

∂t

∂e

∂γ̇k
, for k ∈ 1, . . . , D.

which is a system of 2nd order differential equations. We first consider the left-hand
side

I := ∂e

∂γk
= 1

2
∂Mij

∂γk
γ̇iγ̇j ,

which holds due to independence of the coordinates. The right-hand side is

II := ∂

∂t

[
Mikγ̇

i
]

= ∂Mik

∂γj
γ̇iγ̇j +Mikγ̈

i.

We expand this using a small index rearrangement trick

II = 1
2
∂Mik

∂γj
γ̇iγ̇j + 1

2
∂Mjk

∂γi
γ̇iγ̇j +Mikγ̈

i.

This allows us to write I = II⇔ II− I = 0 as

Mikγ̈
i + 1

2

(
∂Mik

∂γj
+ ∂Mjk

∂γi
− ∂Mij

∂γk

)
γ̇j = 0.

the next step is to left multiply with the inverse metric tensor, which carries upper
indices, and plug in the Christoffel symbols, chosen here as follows

Γkij = 1
2M

kh
(
∂Mih

∂γj
+ ∂Mjh

∂γi
− ∂Mij

∂γh

)
, (2.2)

so we finally obtain the geodesic equations in the canonical form

γ̈k + Γkij γ̇j γ̇j = 0, for k ∈ 1, . . . , D. (2.3)

In this derivation, the metric has forced us to define the Christoffel symbols in a
certain way. In fact, when writing out the autoparallelity equation ∇vv = 0 given by
the affine connection, one arrives at the exact same form as Equation (2.3), except
that the Christoffel symbols remain “free” in this case. Identifying straight with
shortest curves thus amounts to choosing a specific connection in terms of the metric.

Definition 16. The Levi-Civita connection is the unique connection ∇ on a given
Riemannian manifoldM, which is

1. torsion-free: ∇XY −∇YX − [X,Y ] = 0,
with the Lie-Bracket [X,Y ]f := X(Y f)− Y (Xf).

2. and metric compatible: ∇m = 0.

Condition 1 can be intuitively stated as requiring that parallel transport along a
curve does not involve any twist. Condition 2 demands that parallel transport pre-
serves inner products. From this viewpoint, we now appreciate Kant’s understanding
that the identification of the straightness with the length-minimizing property is a
non-trivial, synthetic judgment.
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2.8 The Exponential and Logarithmic Maps

We assume our manifold to be geodesically complete [Pennec, 2006], which means
that geodesics can be infinitely extended, i.e., their domain is R. As a consequence,
we can define two geodesic operations on the whole tangent space.

Definition 17. The exponential map Expp on a Riemannian manifoldM at a point
p on the manifold takes an initial velocity v = γ′(0) and maps to the point x reached in
unit time along a geodesic. Formally, Expp : TpM−→M, v 7→ Expp(v) = γ(1) = x,
where γ : R −→M is a geodesic emanating from p, γ(0) = p.

The exponential map Expp(·) realizes a diffeomorphism4 in some open neighbor-
hood around p and thus it admits a smooth inverse in said neighborhood. However,
we assume this to be true on the whole manifold in practice to keep the analysis
tractable.

Definition 18. The inverse map, Logp, takes a point x on the manifold and maps
to the initial velocity v needed to reach x from p by following a geodesic. Formally,
Logp : M −→ TpM, x 7→ Logp(x) = v = γ′(0), where γ : R −→ M is a geodesic
emanating from p with γ(0) = p and γ(1) = x.

Computing an exponential map requires the solution of an initial value problem,
whereas the logarithmic map amounts to a more expensive and less robust boundary
value problem.

These maps induce the exponential chart, in which a point on the manifold is
mapped to the coordinates of Logp(x) = v in the tangent space, presupposing a
chosen basis for the tangent space. This allows to represent the manifold in terms of
the exponential map, thereby giving a linearized view of it. In this chart, geodesics
appear as straight lines going through the origin. Additionally, distance with respect
to p is preserved, ‖Logp(x)‖2 = ‖v‖2 = L(γ) [Pennec, 2006]. The Christoffel symbols
vanish and the metric at p, but not in any neighborhood of p, is the Kronecker delta.

Recall that tangent vectors are technically functions. To represent the tangent
space visually, we can use the exponential chart, which is in direct correspondence.
We will later also use this chart for integration. Furthermore, we use the suggestive
notation TpM to denote the exponential chart, since it allows us to view points on
the manifold in terms of tangent vectors. Moreover, we may also refer to a point
in the exponential chart as a tangent vector. It is clear from the context whether a
tangent vector v : C∞(M) ∼−→ R or a vector consisting of exponential coordinates
v ∈ RD is meant. For instance, integrating over the tangent space is not meaningful
in the vectors-as-functions view.

2.9 Integration on Riemannian Manifolds

To define probability distributions on manifolds, we are interested in measuring
volume. A natural way to establish a volume form on a Riemannian manifold is to
make use of the metric, instead of inventing a completely new object.

4An isomorphism between smooth manifolds.
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Recall that the metric tensor provides an inner product structure. In matrix
representation of local coordinates, Mij =: 〈 ∂

∂xi ,
∂
∂xj 〉m gives us a real number for the

inner product of the basis vectors, which are the partial derivatives. In our applied
setting, where we work with the identity chart and focus on diagonal metrics, we
have a simple interpretation: the scalar Mii specifies how to locally scale the familiar
partial derivative in the direction of the i-th coordinate axis.

In this sense, we can consider the symmetric positive definite (spd) matrix
M = AᵀA as a Gram matrix. The volume of the parallelepiped spanned by the basis
vectors is then |A| =

√
|M|. This motivates the definition of the Riemannian volume

form, expressed in local coordinates as dM =
√
|M| dx1 ∧ ... ∧ dxD. The dxi, called

1-forms, are the coordinate covector fields. The wedge product ∧ combines them to
obtain a differential form of degree D = dim(M), which is an alternating5 tensor
field. Differential forms of maximal degree are called volume forms and can be used
for signed integration. A volume form also defines a measure µ on the Borel6 sets U
as µ(U) =

∫
U dM. So we refer to dM as the Riemannian volume form or measure

interchangeably. Our applied setting is further simplified by the fact that we use a
global chart, otherwise a “partition of unity” of the manifold is required to account
for overlapping charts. Also, orientability would be a concern. Our exponential chart
covers the whole manifold by assumption and thus, we can equivalently integrate
there [Sommer et al., 2020], building on the insight RD ' TxM∫

M
f(x)dM =

∫
RD

f(Expx(v))M(Expx(v)) dv, (2.4)

where dv denotes the Lesbegue measure on RD. After having assembled the geometric
background, we now turn to the learning of data-driven metrics.

2.10 Constructing Riemannian Manifolds from Data

We shift our focus on the applied machine learning setting and thus the conversation
is about vectors and matrices as coordinate lists now. We implicitly assume the
standard topology on RD and the identity as the global chart map.

Intuitively, the Riemannian volume element or measure is a distortion of the
infinitesimal standard Lebesgue measure dx. For a meaningful metric this quantity is
small near the data and increases as we move away from them. This metric behavior
pulls shortest paths near the data.

There are broadly two unsupervised approaches to learn such an adaptive metric
from data. Given a dataset x1:N of N points in RD, Arvanitidis et al. [2016] proposed
a nonparametric metric to model nonlinear data trends as the inverse of a local
diagonal covariance matrix with entries

Mdd(x) =
(

N∑
n=1

wn(x)(xnd − xd)2 + ρ

)−1

, (2.5)

5A multilinear map means that switching any of its arguments changes the sign.
6The Borel σ-algebra is the smallest σ-algebra containing the open sets of a topology. A σ-algebra

is closed under countable unions, countable intersections and complements.
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(a) circle (b) mnist (c) adk (d) curly

Figure 2.2: Exemplary data manifolds. Data scattered in grey, background colored according
to the Riemannian measure on a log scale. Dark color corresponds to low values, light color to
high values. Colorbars omitted on purpose, as the values are not easily interpreted. Note that
the subplots do not share a common color scale. We use the kernel metric for circle, adk and
curly and the surrogate metric for mnist.

where the weights wn are obtained from an isotropic Gaussian kernel wn(x) =
exp

(
− ||xn−x||2

2σ2

)
. The lengthscale σ determines the curvature of the manifold, i.e.,

how fast the metric changes. The hyperparameter ρ controls the value of the metric
components that is reached far from the data, so the measure there is

√
|M| = ρ−

D
2 .

Typically, ρ is set to a small scalar to encourage geodesics to follow the data
trend. However, this metric does not scale to higher dimensions due to the curse of
dimensionality [Bishop, 2006, Ch. 1.4].

Another approach to metric learning relies on the pullback metric. Let F :M−→
N a smooth immersion, i.e., a smooth map with an everywhere injective derivative.
The map F induces a pushforward dFp : TpM −→ TF (p)N , defined by [Lebanon,
2012]

dFp(v)(g) = v(g ◦ F ) ∀g ∈ C∞(N ), (2.6)

which maps tangent vectors ofM to tangent vectors of N . Thus, if we have a metric
on N , we can use it to get the pullback metric onM as (F ∗m)p(v, u) = g(dFpv, dFpu).

This idea can be applied to generative models so as to capture the geometry of
high-dimensional data in a low-dimensional latent space [Tosi et al., 2014, Arvanitidis
et al., 2018]. Assume a dataset y1:N ∈ RD′ with latent representation x1:N ∈ RD
and D′ > D, such that yn ≈ g(xn) where g is a stochastic function with Jacobian
Jg(x) ∈ RD′×D. Then, the pullback metric M(x) = E[Jᵀg(x)Jg(x)] is naturally
induced in the latent space, which enables the computation of lengths that respect
the geometry of the data manifold in RD′ . Even though this metric reduces the
dimensionality of the problem and can be learned directly from the data by learning
g, it is computationally expensive to use due to the Jacobian.

To mitigate this shortcoming, we7 propose a surrogate Riemannian metric.
Consider a Variational Auto-Encoder (vae) [Kingma and Welling, 2014, Rezende
et al., 2014] with encoder qφ(x|y) = N (x | µφ(y), diag(σ2

φ(y))), decoder pθ(y|x) =
N (y | µθ(x),diag(σ2

θ(x))) and prior p(x) = N (x | 0, ID), with deep neural networks
7This contribution is due to G. Arvanitidis.
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Figure 2.3: The “swiss roll’, an intrinsically flat 2D manifold embedded in 3D.

as the functions that parametrize the distributions. Then, the aggregated posterior is

qφ(x) =
∫
RD′

qφ(x | y)p(y) dy ≈ 1
N

N∑
n=1

qφ(x | yn), (2.7)

where the integral is approximated from the training data. This is a Gaussian mixture
model that assigns non-zero density only near the latent codes of the data. Thus,
motivated by Arvanitidis et al. [2020] we define a diagonal Riemannian metric in the
latent space as

M(x) = (qφ(x) + ρ)−
2
D · ID. (2.8)

This metric fulfills the desideratum of modeling the local behavior of the data in the
latent space and it is more efficient than the pullback metric. The variance σ2

φ(·)
of the components is typically small, so the metric adapts well to the data, which,
however, may result in high curvature.

In Figure 2.2, four exemplary data manifolds are displayed, with the background
colored according to the Riemannian measure. Further information about the
construction of these data manifolds is in Chapter 6.

2.11 Curvature

That we consider curvature of the data space itself is an important feature of this
approach, which differentiates it from manifold-learning approaches assuming a flat
manifold, such as isomap [Tenenbaum et al., 2000]. For instance, the famous swiss
roll, depicted in Figure 2.3, is actually intrinsically flat, i.e., without curvature.

Gauss had already discovered in his Theorema Egregium that curvature of a
surface is a intrinsic, independent of how it is embedded in a higher-dimensional space.
This insight was elaborated on by Riemann and Ricci, who devised more expressive
formulations of curvature. The derivations are quite technical, so we refer the reader
to standard literature [Lee, 2018] and keep it brief here. The Riemann tensor measures
the extent to which the covariant derivative fails to commute. Formally, it is defined
as

Riem(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The Ricci tensor is obtained by taking the trace

R(X,Y ) = tr(Z 7→ Riem(Z,X)Y ),
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(a) circle (b) mnist (c) adk (d) curly

Figure 2.4: Ricci scalar curvature of exemplary data manifolds, colored on a symmetric
logarithmic color scale. Dark color corresponds to negative curvature, light color to positive
curvature. Colorbars omitted on purpose, as the values are not easily interpreted. As a reference,
the curvature far from the data is 0, as the constant color suggests. Note that the subplots do
not share a common color scale. In densely populated areas, there is negative or low positive
curvature (dark color).

of which we can again take the trace to obtain the Ricci scalar curvature, which gives
us a single number that averages the curvature over all possible directions:

R = trR(·, ·). (2.9)

Intuitively, Ricci curvature measures volume growth along the flow of neighbouring
geodesics. Positive curvature means that these geodesics accelerate towards each
other, i.e., the second derivative of their separation is negative; contrariwise, negative
curvature makes geodesics deviate away from each other.

To compute the Ricci curvature, we use the following coordinate expression:

Rij =
∂Γaij
∂xa

−
∂Γaaj
∂xi

+ ΓaabΓbij − ΓaibΓbaj

=− 1
2

(
∂2Mij

∂xaxb
+ ∂2Mab

∂xixj
− ∂2Mib

∂xjxa
− ∂2Mjb

∂xixa

)
Mab

+ 1
2

(1
2
∂Mac

∂xi
∂Mbd

∂xj
+ ∂Mic

∂xa
∂Mjd

∂xb
− ∂Mic

∂xa
∂Mjb

∂xd

)
MabM cd

− 1
4

(
∂Mjc

∂xi
+ ∂Mic

∂xj
− ∂Mij

∂xc

)(
2∂Mbd

∂xa
− ∂Mab

∂xd

)
MabM cd,

so finally, using the inverse metric to contract indices, we get the Ricci scalar

R = M ijRij .

To check the correctness of the implementation, we use the sphere, which has
known positive scalar curvature 2

R2 .
It is instructive to begin studying the curvature of data manifolds by looking

at the simplest case first: that of a single datum. Figure 2.5 shows the situation
for the kernel metric (σ = 0.1) as well as the surrogate metric (σ = 0.08). Note
that the surrogate metric is essentially the kernel metric with equal σ for all data,
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(a) Kernel metric (b) Surrogate metric

(c) Kernel metric (d) Surrogate metric

(e) Kernel metric (f) Surrogate metric

Figure 2.5: The top row compares the Riemannian measure for the kernel metric (σ = 0.1)
and the surrogate metric (σ = 0.08), with a single data point at the origin (white diamond).
The middle and bottom rows show the corresponding Ricci scalar curvature, with geodesics
emanating radially from two different fixed points. The angles of the initial tangent vectors
(w.r.t. the Euclidean inner product) are equally spaced between 0 and 2π. It is clearly visible
that negative curvature causes geodesics to spread out, whereas positive curvature causes
them to close in. Light color indicates positive curvature, dark color negative curvature. The
“background” curvature away from the data is always 0. Each plot has an own colorscale,
omitted due to difficult interpretability.
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where only the weights wn are kept and the second term in the formula is dropped,
so the metric becomes Mdd(x) =

(∑N
n=1

1
Zwn(x) + ρ

)− 2
D Arguably the surrogate

metric has a more meaningful profile, as it monotonically increases away from the
datum at the origin. This is also reflected in the curvature, where the kernel metric
displays a rather complex “butterfly” shape that unnecessarily introduces a more
complicated curvature landscape. Actually we are more interested in a third order
quantity, the change of curvature. As of now, this is just a speculation, but we
expect the robustness and speed of the geodesic computations to depend not only on
the curvature itself, but on how fast the curvature changes, as this means that the
geodesics will be very “wiggly”, resulting in an unstable ode system.

Figure 2.4 shows the Ricci scalar curvature of our data manifolds. As expected, the
curvature is negative in areas which is densely populated, although the kernel metric
does show unwanted “canyon” effects, where a region of high data concentration is
neighboured by two walls of high negative curvature. This is well visible in the left
tail of the adk U-shape. For mnist we used the variance estimates of a variational
auto-encoder (Section 6.3) for σ, which are typically very low, so that the curvature
landscape is very fragmented, which results in unstable geodesic computations.

We also experimented with “t-SNE inspired” metric learning. Since the weights
wn are Gaussian, we can consider the perplexity 2H of the resulting probability
distribution over neighbours [see Van der Maaten and Hinton, 2008 for details] and
then choose σi for each datum individually, so as to achieve a desired perplexity. The
hope was that this would improve the curvature landscape, yet it turns out difficult
to choose a sensible perplexity value. In densely populated regions, this metric tends
to overfit (↓ σ), whereas it behaves rather nicely in sparsely populated regions (↑ σ),
which might improve the robustness of geodesic computations. Still, this could be an
interesting direction for future research.



Chapter 3

Riemannian Statistics

3.1 Probability Distributions on Manifolds

The definitions are from Pennec [2006], a concise introduction to Riemannian statistics,
with a focus on manifolds with a priori structure, however.

Definition 19. Let (Ω,B(Ω), P ) be a probability space with Borel algebra B(Ω)
(Footnote 6) and P a measure on that algebra, with P (Ω) = 1. A random point x on
the Riemannian manifoldM is a measurable function x : Ω −→M.

From this, we can define a probability density function p with respect to the
Borel σ-algebra ofM, where in our case we inherit the standard topology from RD.

Definition 20. The random point x : Ω −→M has density p if it satisfies
P (x ∈ U) =

∫
U p(·)dM under the constraint P (M) =

∫
M p(·)dM = 1.

Furthermore, the concept of mean and variance can be generalized to Riemannian
manifolds by Fréchet’s formulation. Interestingly, the variance is conceptually prior
to the mean in this approach.

Definition 21. The Fréchet variance of a random point x with density p(·) with
respect to a fixed point y is defined as

σ2
x(y) = E

[
dist(y, x)2

]
=
∫
M
‖Logy(z)‖22p(z)dM

Definition 22. A Fréchet mean of the random point x with density p(x) is every of
the possibly multiple minimizer of the variance

µ = arg min
y∈M

[
σ2
x(y)

]
While in theory, multiple Fréchet means might exist, in practice one finds local

minima (Karcher means) by gradient descent on the function (22). For some data
manifolds, for instance data sampled from a circle with noise, the optimization
landscape will be almost flat, whereas for others it will be convex.

25
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3.2 The Riemannian Normal Distribution

Assume that we place the constraints of knowing mean and covariance (see below) of
a random point. We express this in the exponential chart centered at some µ ∈M:∫

TµM
vp(Expµ(v))M(Expµ(v)) dv = 0∫

TµM
vvᵀp(Expµ(v))M(Expµ(v)) dv = Σ,

where Σ is an SPD matrix. Under these constraints, Pennec [2006] theoretically
derived the Riemannian normal distribution as the maximum entropy distribution
on a Riemannian manifoldM. The density onM is expressed using the mean µ
and the precision Γ as:

p(x ∈M | µ,Γ) = 1
C(µ,Γ) exp

(
−1

2
〈

Logµ(x),Γ−1 Logµ(x)
〉)

.

This is reminiscent of the familiar Euclidean density, but with a Mahalanobis distance
based on the nonlinear logarithmic maps. Analytic solutions for the normalization
constant C can be given only for certain manifolds that are known a priori, like the
sphere or the torus, since this requires analytic solutions for the logarithmic and
exponential maps.

Why did we bother to use the precision in the density instead of the perhaps
more intuitive covariance matrix, which was used to express the constraint in the
chart? On a Riemannian manifold, the covariance is defined to be

ΣM = E
[
Logµ(x) Logµ(x)ᵀ

]
= 1
C(µ,Γ)

∫
M

Logµ(x) Logµ(x)ᵀ exp
(
−1

2
〈

Logµ(x),Γ Logµ(x)
〉)

dM(x),

so in general, we have ΣM 6= Γ−1. However, we will simply denote Σ = Γ−1 in what
follows, as the “tangent space covariance” is arguably more intuitive, even if it is not
actually the covariance for this distribution. We here introduce the notation dM(x)
to make the dependence of the measure on the point x visible.

While this distribution has useful applications on a priori structured manifolds, for
instance on the manifold of positive symmetric definite matrices in medical imaging
[Said et al., 2017], we here consider this distribution on data-driven manifolds.

3.3 The LAND Model

Arvanitidis et al. [2016] extended the Riemannian normal distribution to general
data manifolds (see Fig. 1.4) where the Riemannian metric is learned as discussed
in Sec. 2.10. In this case, M = RD and TµM = RD, so Σ ∈ RD×D+ . Given a
dataset x1:N assumed to be i.i.d., the log-likelihood of the Locally Adaptive Normal
Distribution (LAND) mixture can be stated as [Arvanitidis et al., 2016]
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TµM

Figure 3.1: The function gµ on the tangent space, i.e., in the exponential chart, of the
adk manifold. The origin 0 ( ) corresponds to the point µ on the manifold from which the
exponential maps are computed. Contours of the integration measure N (v; 0,Σ) are in light
gray. Logarithmic maps Logµ(xn) of the data are scattered in white. The background is colored
according to the volume element on a log scale.

L =
K∑
k=1

N∑
n=1

rnk

[1
2〈Logµk

(xn),Σ−1
k Logµk(xn)〉+ log (C(µk,Σk))− log(πk)

]
(3.1)

where πk is the weight of the kth component, with the constraint∑K
k=1 πk = 1 and

rnk = πkp(xn|µk,Σk)∑K

l=1 πlp(xn|µl,Σl)
is the responsibility of the kth component for the nth datum.

The maximum likelihood solution can be obtained by non-convex optimization,
alternating between gradient descent updates of µ and Σ and cycling through the
components k.

The normalization constant is computed using a naïve Monte Carlo scheme as

C(µ,Σ) =
∫
M

exp
(
−1

2〈Logµ(x),Σ−1 Logµ(x)〉
)

dM(x), (3.2)

=
√

(2π)D|Σ|
∫
TµM

gµ(v)N (v; 0,Σ) dv,

where gµ(v) =
√
|M(Expµ(v))| gives the tangent space view on the volume element.

An example of gµ is depicted in Fig. 3.1. Instead of having to solve bvps for the
logarithmic maps, we now integrate on the Euclidean tangent space, where we solve
significantly faster exponential maps (ivps).

The normalization constant is needed to estimate maximum likelihood parameters
µ and Σ. For this, we use gradient descent in an alternating fashion, keeping µ fixed
while optimizing Σ and vice versa. Note that C(µ,Σ) acts as a regularizer, keeping µ
near the data manifold and penalizing an overestimated Σ. Moreover, the constant
enables the definition of a mixture of lands.

The mc estimator for this integral requires the evaluation of a large number
of exponential maps and is ignorant about known structure of the integrand. We
replace mc by bq to drastically reduce the number of these costly evaluations needed
to retain accuracy. Our foremost goal is to speed up numerical integration on data
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manifolds since exponential maps are, albeit faster than the bvps, still relatively slow.
The runtime of exponential maps depends on the employed metric (see Sec. 2.10)
and on other factors such as curvature or curve length.

For µ, we use the steepest descent direction as in Arvanitidis et al. [2016]

dµk
L =

N∑
n=1

rnk Logµk
(xn)− Zk ·Rk

Ck(µk,Σk)

∫
Tµk
M

vgµk
(v)N (v; 0,Σk) dv, (3.3)

where the vector-valued integral stems from bq and Rk = ∑N
n=1 rnk and we have

the Euclidean normalization constant Zk =
√

(2π)d|Σk|. To compute the descent
direction for the covariance, we begin with the first term of L

∇Σk

(
N∑
n=1

rnk

[1
2〈Logµk

(xn),Σ−1
k Logµk(xn)〉

])

= −1
2

N∑
n=1

rnkΣ−ᵀk Logµk(xn) Logµk(xn)ᵀΣ−ᵀk .

For the gradient of the normalization constant, the second term of L, with respect
to the covariance, we get ∇Σk

log(C(µk,Σk)) =

= 1
C(µk,Σk)

∫
M
∇Σk

exp
(1

2〈Logµk
(x),Σ−1 Logµk

(x)〉
)

dMx

= 1
2 · C(µk,Σk)

∫
M

Σ−ᵀk Logµk
(x) Logµk

(x)ᵀΣ−ᵀk exp
(
−1

2〈Logµk
(x),Σ−1 Logµk

(x)〉
)

dMx

= 1
2 · C(µk,Σk)

∫
Tµk
M

Σ−ᵀk vvᵀgµk
(v)Σ−ᵀk exp

(
−1

2〈v,Σ
−1v〉

)
dv.

(3.4)
Taking this together, we obtain the gradient

∇Σk
L =− 1

2

N∑
n=1

rnkΣ−ᵀk Logµk(xn) Logµk(xn)ᵀΣ−ᵀk

+ Rk
2 · C(µk,Σk)

∫
Tµk
M

Σ−ᵀk vvᵀgµk
(v)Σ−ᵀk exp

(
−1

2〈v,Σ
−1v〉

)
dv,

(3.5)

where the matrix-valued integral again stems from bq. We optimize with gradient
descent and a deterministic manifold linesearch (Section 5.4) as a subroutine, which
adaptively chooses its step lengths.

In sum, the optimization process is as follows: we cycle through the components
K. After taking a single steepest-direction step for µk, we perform two gradient
descent steps for Σk, each of which may use up to 4 steps in the linesearch subroutine
to satisfy a sufficient decrease criterion. Pseudocode for the land optimization is
provided in Alg. 1.
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Algorithm 1 land mixture main loop
Input: data x1:N , manifold M with Exp and Log operators, max. number of
iterations tmax,
initial stepsize α1

µ ∈ R, gradient tolerance ε∇µ , likelihood tolerance εL
Output: estimates (µk,Σk, Ck, πk)1:K
Initialize land parameters

(
µ1
k,Σ

1
k, C1

k , π
1
k

)
1:K

, t← 1.
repeat
Expectation step: rnk = πkp(xn|µk,Σk)∑K

l=1 πlp(xn|µl,Σl)
Maximization step:
for k = 1 to K do

Compute Ctk(µt
k,Σ

t
k)

Compute dµk
L(µt

k,Σ
t
k) using Eq. (3.3)

if ||dµk
L|| < ε∇µ then

Continue
end if
µt+1
k ← Expµt

k
(αtµdµk

L)
Compute Logµt+1

k
(x1:N )

Compute Ct+1
k (µt+1

k ,Σt
k)

Σt+1
k ← updateΣt

k
using Alg. 2

πtk = 1
N

∑N
n=1 rnk

end for
if Lt+1 < Lt then
αt+1

µ ← 1.1 · αtµ {optimism}
else
αt+1

µ ← 0.75 · αtµ {pessimism}
end if
t← t+ 1

until ||Lt+1 − Lt|| ≤ εL or t = tmax



Chapter 4

Bayesian Quadrature

Bayesian quadrature (bq) is a probabilistic approach to integration that performs
Bayesian inference on the value of the integral given function evaluations and prior
assumptions on the integrand (e.g., smoothness). The probabilistic model enables
a decision-theoretic approach to the selection of informative evaluation locations.
bq is thus inherently sample-efficient, making it an excellent choice in settings where
function evaluations are costly, as is the case in Eq. (3.2) where evaluations of the
integrand rely on exponential maps. The key strategy for the application of bq in
a manifold context is to move the integration to the Euclidean tangent space. We
review vanilla bq and then apply adaptive bq variants to the integration problem in
Eq. (3.2).

4.1 Vanilla BQ

Bayesian quadrature seeks to compute otherwise intractable integrals of the form

C =
∫
RD

f(v)π(v) dv, (4.1)

where f(v) : RD → R is a function that is typically expensive to evaluate and π(v)
is a probability measure on RD. A Gaussian process (gp) prior is assumed on the
integrand to obtain a posterior distribution on the integral by conditioning the
gp on function evaluations. Such a gp is a distribution over functions with the
characterizing property that the joint distribution of a finite number of function
values is multivariate normal [Rasmussen and Williams, 2006]. It is parameterized
by its mean function m(v) and covariance function (or kernel) k(v, v′), and we write
f ∼ GP(m, k). The choice of kernel allows incorporating prior knowledge about the
function, for example smoothness and lengthscale, and thereby specifies the inductive
bias of the gp. After observing data D at input locations V = v1:M and evaluations
f = f(v)1:M , the posterior is

mD(v) = m(v) + k(v,V)k(V,V)−1 (f −m(V)) ,
kD(v, v′) = k(v, v′)− k(v,V)k(V,V)−1k(V, v′).

(4.2)

30
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Due to linearity of the integral operator, the random variable C representing our
belief about the integral follows a univariate normal posterior after conditioning
on observations, with posterior mean E [C | D] =

∫
mD(v)π(v) dv and variance

V [C | D] =
∫
kD(v, v′)π(v)π(v′) dv dv′. For certain choices of m, k and π, these

expressions have a closed-form solution [Briol et al., 2019].

4.2 Warped BQ

The integration task we consider is Eq. (3.2), where the integration measure on
the tangent space TµM is Gaussian of the form π(v) = N (v; 0,Σ). To encode
the known positivity of the integrand g := gµ(v) > 0, we model its square-root
by a Gaussian process. Let f =

√
2(g − δ), where δ > 0 is a small scalar and

f ∼ GP(m, k). Consequently, g = δ + 1
2f

2 is guaranteed to be positive. Assume
noise-free observations of f as f =

√
2(g(V)− δ). Inference is done in f -space and

induces a non-Gaussian posterior on g.

4.3 WSABI on Manifolds

To overcome non-Gaussianity, Gunter et al. [2014] proposed an algorithm dubbed
warped sequential active Bayesian integration (wsabi). wsabi approximates g by a
gp either via a local linearization on the marginal of g at every location v (wsabi-l)
or via moment-matching (wsabi-m). The approximate mean and covariance function
of g can be written in terms of the moments of f as

m̃D(v) = δ + 1
2mD(v)2 + η

2kD(v, v),

k̃D(v, v′) = η

2kD(v, v′) +mD(v)kD(v, v′)mD(v′),
(4.3)

where η = 0 for wsabi-l and η = 1 for wsabi-m. For suitable kernels, these
expressions permit closed-form integrals for bq. Chai and Garnett [2019] discuss
these and other possible transformations. Kanagawa and Hennig [2019] showed that
the algorithm is consistent for δ > 0.

In the present setting, wsabi offers three main advantages over vanilla bq and
mc: First, it encodes the prior knowledge that the integrand is positive everywhere.
Second, for metrics learned from data, the volume element typically grows fast and
takes on large values away from the data. This makes modeling g directly by a gp
impractical, especially when the kernel encourages smoothness. The square-root
transform alleviates this problem by reducing the dynamic range of f compared
to that of g. Finally, wsabi yields an active learning scheme that adapts to the
integrand in that the utility function explicitly depends on previous function values.
Gunter et al. [2014] proposed uncertainty sampling as to which the next location is
evaluated at the location of largest uncertainty under the integration measure. The
wsabi objective is the posterior variance of the unwarped gp scaled with the squared
integration measure
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u(v) = k̃D(v, v)π(v)2, (4.4)

which we optimize to sequentially select the next tangent vector for evaluation of the
exponential map and thus g.

4.4 DCV

In our manifold setting, the acquisition function is defined on the tangent space.
Exponential maps yield intermediate steps on straight lines in the tangent space, as
moving along a geodesic does not change the direction of the initial velocity, only
the distance traveled. As a result, after solving Expµ(α · r) for a unit vector r, we
get evaluations of the integrand at other locations βr, 0 < β < α, essentially for
free. Because the ivp is solved already, only g has to be evaluated at the respective
location, which is cheap once the exponential map is computed.

This observation motivates rethinking the scheme for sequential design to select
good initial directions instead of fixed velocities for the exponential map. We propose
to select these initial directions such that the cumulative variance along the direction
on the tangent space is maximized, and multiple points along this line with large
marginal variance are then selected to reduce the overall variance. The modified
acquisition function, i.e., the cumulative variance along a straight line, can be written
as

ū(r) =
∫ ∞

0
u(βr) dβ =

∫ ∞
0

k̃D(βr, βr)π(βr)2 dβ, (4.5)

The new acquisition policy arises from optimizing ū for unit tangent vectors r. We
call the acquisition function from Eq. (4.5) directional cumulative variance (dcv).
While it does have a closed-form solution, that solution costs O(M4) to evaluate in
the number M of evaluations chosen for bq. We resort to numerical integration to
compute the objective and its gradient. This is feasible because these are multiple
univariate integrals that can efficiently be estimated from the same evaluations. Once
an exponential map is computed, we use the standard wsabi objective to sample
multiple informative points along the straight line α · r. For simplicity, we use dcv
only in conjunction with wsabi-l.

The derivative of the dcv acquisition function is
∂

∂r ū(r) =
∫ ∞

0
βπ(βr)

[
2k̃D(βr, βr) ∂

∂βrπ(βr) + π(βr) ∂

∂βr k̃D(βr, βr)
]

dβ. (4.6)

Since the integration measure is Gaussian, i.e., π(βr) = N (βr; 0,Σ), its derivative is
∂

∂βrπ(βr) = −π(βr)Σ−1βr. (4.7)

The derivative of the variance of the warped GP is
∂

∂βr k̃D(βr, βr) = ∂

∂βr
[
mD(βr)2kD(βr, βr)

]
= 2mD(βr)kD(βr, βr) ∂

∂βrmD(βr) + ∂

∂βrkD(βr, βr)mD(βr)2.

(4.8)
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The derivative of the dcv acquisition function is significantly more costly to evaluate
than the objective, because it requires predictive gradients of the underlying GP.
Instead of using a quadrature routine like scipy.quad, which would evaluate the
integral for every dimension sequentially, we use Simpson’s rule on 50 evenly spaced
points between 0 and αmax (defined below). Since these are multiple univariate
integrals of a smooth function, the errors are practically negligible.

The scalar αmax simultaneously constitutes an upper bound for the integration
and the length of the exponential map. A bound is reasonable since longer exponential
maps are slower to compute and the integration measure concentrates the mass near
the center, so very far-away locations become irrelevant. For a sensible bound, we
use the chi-square distribution:

〈α · r,Σ−1α · r〉 = χ2
p (4.9)

by choosing a high value p = 99.5%, we make sure that there is no significant amount
of mass outside of this isoprobability contour. Note that this limit applies only to
the computation of exponential maps and the collection of observations, not to the
main quadrature itself.

Since r is constrained to lie on the unit hypersphere, we employ manifold gradient
descent with a linesearch subroutine. Conveniently, the linesearch only evaluates the
objective and not its gradient, which saves a significant amount of time. Overall,
optimizing this acquisition function is costly, however. For completeness, we briefly
describe the geometry of the unit (hyper)sphere. If the tangent space of our data
manifold is TµM = RD, then a direction in this tangent space is a point on SD−1,
which we represent as a unit norm vector in RD. For a point x on the sphere and
a tangent vector ξ, which lies in the plane touching the sphere tangentially, the
exponential map is Expx(ξ) = cos(‖ξ‖2)x + sin(‖ξ‖2) ξ

‖ξ‖2
. However, the optimizer

uses a cheaper retraction map Retrx(ξ) = x+ξ
‖ξ‖2

instead of the exponential map to
take a descent step. To obtain the gradient on the manifold, the Euclidean gradient
is orthogonally projected onto the tangent plane.

Optimizing the dcv acquisition function is costly as it requires posterior mean
predictions and predictive gradients of the gp inside the integration. Furthermore,
confining observations to lie along straight lines implies that bq may cover less
space given a fixed number of function evaluations. Therefore, dcv will be useful
in settings where exponential maps come at a high computational cost. Fig. 4.1
compares posteriors arising from standard wsabi-l using uncertainty sampling
(simply referred to as wsabi-l) and dcv.

4.5 BQ for LAND

The known smoothness of the metric tensor makes the square exponential kernel
(rbf) a suitable choice in most cases. However, for high-curvature manifolds, in
particular in two dimensions, we found the Matérn-5/2 kernel to be slightly more
stable, so we use it throughout instead of the rbf. Due to the strong smoothness
prior, the rbf sometimes favored unreasonably small lengthscales.
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TµM TµM

wsabi-l dcv

TµM TµM

wsabi-l dcv

Figure 4.1: Posterior mean (top row) and variance (bottom row) over gµ(v)N (v; 0,Σ). We
compare wsabi-l using uncertainty sampling (left) and dcv (right). Observed locations
are scattered in white. The linear color scale represents the posterior magnitude. Visibly,
dcv collects observations along straight lines emerging from the origin and thus has reduced
exploration capability.

Depending on the employed Riemannian metric, we can set the constant prior
mean of g to the known measure far from the data (Sec. 2.10). This amounts to the
prior assumption that wherever there are no observations yet, the distance to the
data is likely high.

The land optimization process requires the sequential computation of one integral
per iteration as the parameters of the model get updated in an alternating manner.
In general, elaborate schemes as in Xi et al. [2018] and Gessner et al. [2019] are
available to estimate correlated integrals jointly. However, our integrand gµ does not
depend on the covariance Σ of the integration measure π. Therefore, exponential
maps remain unaltered when only the covariance Σ changes from one iteration to
the next while the mean µ remains fixed. bq can thus reuse the observations from
the previous iteration and only needs to collect a reduced number of new samples to
account for the changed integration measure. This node reuse enables tremendous
runtime savings.

Since we use the Matérn-5/2 kernel and we require further integrals for the
land objective gradients, we use the gp as an emulator of the function we wish to
model; that is, we do not calculate integrals analytically, but use extensive Monte
Carlo (mc) sampling on top of the gp, which implies evaluating the posterior mean
at the locations randomly drawn from the integration measure. To compute the
integral without loss of precision, we use S = 30,000 samples to estimate the integrals.
The time overhead and the approximation error of this procedure are negligible in
practice.
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We optimize the marginal likelihood of the gp with respect to the hyperparameters
and use their final values to initialize the next iteration, since during the optimization
the function changes smoothly from each step to the next. This information is not
shared across the K components, but kept separately.

Our implementation of bq builds upon the bayesquad python library [Wagstaff
et al., 2018], which is available at https://github.com/OxfordML/bayesquad.

4.6 Further Considerations

4.6.1 Logarithmic Maps Initialization

When a mean µk changes in an iteration, the logarithmic maps Logµk
(xn) are

computed for all data points. This suggests the possibility of using these tangent
vectors to initialize the bq routine. Implementing the possibility to do so requires
some care, for example due to possibly failing geodesic computations. Furthermore,
it is more economical to use only a subset of inducing points of the datasets, as
otherwise the O(N3) gp computations will be too expensive. The inducing points are
chosen by running K-means (e.g., K = 20) and then selecting the nearest datapoints.
The metric at the inducing points can then be evaluated and stored when initializing
the model. Overall, we found no significant improvement from this procedure, as
many of the data points are not of real value to bq when fitting a mixture model.
The procedure could be adapted to take only points with significant responsibility
w.r.t. the considered mean into account, but this would further complicate things
for perhaps little gain. Consequently, we decided not to use this procedure for the
experiments.

4.6.2 Log-Transform

An alternative to the square-root transform is the logarithmic transform, as suggested
by Chai and Garnett [2019]. We added this possibility, along with wsabi-m to the
bayesquad library, without analytic expressions for the complicated approximate
integrals, however. We found the transform to be too extreme as it introduced
artefacts, therefore ended up not using it further.

https://github.com/OxfordML/bayesquad
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Further LAND Improvements

5.1 Code

A significant part of this thesis in terms of time investment was a reimplementation
of the land model in a modular fashion. The main class is the LandMixture, which
has methods to initialize and fit the model, keeping track of most of the information.
An object of this class further requires an instance of a LandOptimizer, where both
a manifold optimizer and vanilla gradient descent are available for the covariance
update. Secondly, an object of the LandQuadrature class is required, which can be
either MCQuadrature or BQuadrature. These classes are responsible for storing reuse
information and for the integral computation. BQuadrature uses the BQWrapper
class as a mediator with the bayesquad library. The BQWrapper constructs the gp
with the specified parameters (kernel etc.) and contains the acquisition loop. Since
the land model is a complex computational pipeline with multiple error sources,
we use extensive logging, so that each integration problem from a land fit can be
reconstructed and visualized. Overall, debugging (playing with the solvers, looking
at plots of the iterations, etc.) constitutes at least half of the total time investment
of this thesis project.

5.2 Solver Chaining

To solve the geodesic equations, we combine two solvers, which have different strengths
and weaknesses. By chaining them together, we obtain a more robust computational
pipeline.

First, we make use of the fast and robust fixed-point solver (fp) introduced
by Arvanitidis et al. [2019a]. This solver pursues a gp-based approach that avoids
the often ill-behaved Jacobians of the geodesic ode system. However, the resulting
logarithmic maps are subject to significant approximation error, depending on the
curvature of the manifold. The parameters of this solver are as follows:

36
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Parameter Value Description
itermax 1000 maximum number of iterations
N 10 number of mesh nodes.
tol 0.1 tolerance used to evaluate solution correctness.
σ 10−4 noise of the gp.

For mnist, we set itermax = 500, and tol = 0.2, since this high-curvature manifold
easily leads to failing geodesics.

The second solver we employ is a precise, albeit less robust one. This is the bvp
solver available in the module scipy.integrate.solve_bvp. On high-curvature
manifolds, this solver often fails (especially for long curves) and takes a significant
amount of time to run. When it succeeds, however, the logarithmic maps are reliable.
For this solver, we set the maximum number of mesh nodes to 100 and the tolerance
to 0.1. We empirically found that choosing a high maximum number of mesh nodes
(e.g., 500) can lead to high runtimes for failing geodesic computations.

To obtain fast and robust geodesics, these solvers may be chained together, i.e.,
we initialize the bvp solver with the fp solution, which is often worth the extra
effort for speedup and improved robustness. For initialization, we use 20 mesh nodes,
evenly spaced on the fp solution. If the fp solver already failed, it is very unlikely
for the bvp solver to succeed, so we abort the computation.

Furthermore, we exploit previously computed bvp solutions: assume we want
to compute Logµt

(x). We search for past results Logµ∗t
(x), with t∗ < t, t∗ =

arg min ‖µt−µt∗‖ and ‖µt−µt∗‖ < εd, where we choose εd = 0.5. Since we compute
logarithmic maps for data points x1:N , which do not change during land optimization,
we can use them as hash keys in a dictionary, where we store the solutions. Looking
up the solution is then linear in the number of previous land iterations. If such a
solution is found, the fp is skipped and the solution is used to directly initialize the
bvp solver.

For the exponential maps, we use scipy.integrate.solve_ivp with a tolerance
of 10−3.

5.3 An Initialization Scheme

As the land optimization, especially with respect to the means, is computationally
demanding, it is worth investing some effort in a good mean initialization.

A first, simple approach is to use a Euclidean Gaussian mixture model to initialize
the means. However, this can easily place means far from the data, which makes
both geodesic computations and the integration susceptible to failure.

We here propose a more complex, yet still relatively inexpensive initialization
scheme. First, we build a Euclidean k-NN graph of the data and then reweigh
the edges by their Riemannian lengths (by integrating the local length along the
Euclidean straight line). We use this graph to approximate geodesic distances.
Assume K = 1, so we need only one initial mean. A reasonable way is to choose
the datum which minimizes the total (squared) distance to all other data. In the
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(a) circle (K = 2) (b) curly (K = 1) (c) 2-circles (K = 3)

Figure 5.1: Visualization of the initialization scheme, showing the cluster means ( ). Data
colored qualitatively to show the most responsible component.

case of squared distance, this is an empirical estimate for the Karcher mean, the
Riemannian center of mass.

For the case K > 1, we first partition the graph by running spectral clustering.
For this, we compute an affinity matrix with a Gaussian kernel (with fixed lengthscale
ρ = 1) on the Riemannian graph distances. Then we select the means by considering
the resulting clusters separately.

Empirically I found that this heuristic scheme leads to good initial locations of
the means (see Figure 5.1), so that only few iterations of the land optimization are
required. However, it requires the graph to be fully connected. If it is not, k may be
increased or “dummy” edges added.

5.4 Manifold Linesearch

Arvanitidis et al. [2016] decomposed the precision Σ−1
k = AᵀA for unconstrained

optimization using gradient descent. We opt for a more principled approach by
exploiting geometric structure of the symmetric positive definite (spd) manifold, to
which the covariance is confined. More specifically, we use the bi-invariant metric
[Bhatia, 2009], one of several possible choices. Under this metric, geodesics from
A to B may be parameterized as γ(t) = A

1
2
(

A−
1
2 B

1
2 A−

1
2
)t

A
1
2 , 0 ≤ t < 1, and

the distance from A to B is d(A,B) =
∥∥∥log A−

1
2 B

1
2 A−

1
2

∥∥∥
2
. The name stems from

the fact that this distance is invariant under multiplication with any invertible
square matrix Ξ, i.e., d(A,B) = d(Ξ · A,Ξ · B). For manifold gradient descent,
we calculate the Euclidean gradient ∇Σk

and then project it onto the manifold
by calculating 1

2Σk

(
∇Σk

+∇ᵀ
Σk

)
Σk. We optimize with gradient descent and a

deterministic manifold linesearch as a subroutine, which adaptively chooses its step
lengths. This procedure as well as the spd manifold are conveniently available in the
Pymanopt [Townsend et al., 2016] library. We provide pseudocode for the covariance
update in Alg. 2.

While we still need an initial step size, this hyperparameter is not important, as
the linesearch then quickly adapts to the scale of the search landscape. In practice,
we observe a faster and more robust optimization when using the linesearch, as
opposed to vanilla gradient descent on the decomposed precision matrix.

As we have now assembled the whole optimization process, it is pertinent to give
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the optimization hyperparameters of the optimizer, which are as follows:

Parameter Value Description
tmax - update each component tmax times.
α1

µ - initial stepsize for mean updates.
ε∇µ - tolerance for mean gradients
εL 2 likelihood tolerance
tmax,Σ 4 max. Σ linesearch steps.
α1 1.0 initial step size (Σ linesearch).
c0 0.5 sufficient decrease factor (Σ linesearch).
c1 0.5 contraction factor (Σ linesearch)

Cells with unspecified values (-) imply that the value of the respective parameter
is not equal across all experiments and problems. Experiment-specific parameter
details are in Table 6.3.
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Algorithm 2 land updateΣk
on the symmetric positive definite manifold S+

Input: Covariance Σt
k, mean µk, max. linesearch iterations tmax,Σ, last stepsize

αk, initial stepsize α1 = 1.0,
sufficient decrease factor c0 = 0.5, contraction factor c1 = 0.5
Output: Σt+1

k , αk (for reuse)

{define the exp. map on the S+ manifold, where X is an spd matrix and Ξ is a
tangent vector, i.e., a symmetric matrix}
Function Exp+

X(Ξ):
return X

1
2 exp

(
X−

1
2 ΞX−

1
2
)

X
1
2 , where exp denotes the matrix exponential.

EndFunction
{define the norm of a vector Ξ in the tangent space of X ∈ S+}
Function

(
‖ · ‖+X

)
(Ξ):

X← LLᵀ {cholesky decomposition}
return ‖L−1ΞL−ᵀ‖2

EndFunction

for i = 1 to 2 {outer gradient descent loop} do
Compute (or retrieve from cache) L(Σt

k)
Compute (or retrieve from cache) Euclidean gradient ∇Σt

k
L(Σt

k) using Eq. (3.5)

Obtain manifold gradient: g := ∇Σt
k;S+ = 1

2Σt
k

(
∇Σt

k
+∇ᵀ

Σt
k

)
Σt
k

if αk is None or αk = 0 then
αk ← α0

‖g‖
end if
Σt+1
k ← Exp+

Σt
k

(−αk · g)
Compute Ck(µk,Σt+1

k )
Evaluate land objective L(Σt+1

k )
{Linesearch subroutine}
j ← 1
while L(Σt+1

k ) > L(Σt
k)− c0 · αk · ‖g‖2 and j ≤ tmax,Σ do

{while no sufficient decrease, contract}
αk ← αk · c1
Σt+1
k ← Exp+

Σt
k

(−αk · g)
Compute Ck(µk,Σt+1

k )
Evaluate land objective L(Σt+1

k )
j ← j + 1

end while
if L(Σt+1

k ) > Lt(Σt
k) then

αk ← 0
end if
if j 6= 2 then
αk = 1.3 · αk {optimism}

end if
t← t+ 1

end for
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Experiments

We test the methods (wsabi-l, wsabi-m, dcv) on both synthetic and real-world
data manifolds. Our aim is to show that Bayesian quadrature is faster compared to
the Monte Carlo baseline, yet retains high accuracy. The experiments focus on the
land model to illustrate practical use cases of Riemannian statistics. Furthermore,
the iterative optimization process yields a wide range of integration problems of
varying difficulty. In total, our experiments comprise 43,920 bq integrations.

For different manifolds, we conduct two kinds of experiments: First, we fit the
land model and record all integration problems arising during the optimization
procedure. This allows us to compare the competitors on the whole problem, where
bq can benefit from node reuse. We fix the number of acquired samples for bq and
generate boxplots from the mean errors on the whole land fit for 16 independent runs
(Fig. 6.1). Due to the alternating update of land parameters during optimization,
either the integrand or the integration measure changes over consecutive iterations.
We let wsabi-l and wsabi-m actively collect 80 in the former and 10 samples
additionally to the reused ones in the latter case; for dcv, we fix 18 and 2 exponential
maps, respectively, and acquire 6 points on each straight line. Integration cost for
bq is thus highly variable over iterations. Allocating a fixed runtime would not be
sensible as bq benefits from collecting more information after updates to the mean,
a time investment that is over-compensated in the more abundant and—due to node
reuse—cheap covariance updates. We choose sample numbers so as to allow for
sufficient exploration of the space with practical runtime. For mc, we allocate the
runtime budget of the mean slowest bq method on that particular problem in order
to compare accuracy over runtime. Mean runtimes for single integrations, averaged
on entire land fits, are shown in Fig. 6.2 and mean exponential map runtimes, as
computed by mc, are reported in 6.1.

Secondly, we focus on the first integration problem of each land fit in detail and
compare the convergence behavior of the different bq methods and mc over wall
clock runtime (Fig. 6.3). We use the kernel metric (Sec. 2.10) when not otherwise
mentioned. In the plot legends, we abbreviate wsabi-l/wsabi-m with w-l/w-m,
respectively.

As the ground truth, we obtained S = 40,000 mc samples on each integration
problem. Since obtaining a large number of exponential maps is computationally

41
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Figure 6.1: Boxplot error comparison (log scale, shared y-axis) of bq and mc on whole land
fit for different manifolds. For mc, we allocate the runtime of the mean slowest bq method.
Each box contains 16 independent runs.

Table 6.1: Mean exponential map runtimes in milliseconds, obtained by averaging over mc
runtimes on the entire land fit.

circle circle 5d mnist adk circle 3d circle 4d curly 2-circles

60 50 238 68 32 45 62 36

extremely expensive, we subsampled from this pool of ground truth samples when mc
samples were required in the experiments, instead of running mc again. For example,
in the “error vs. runtime” experiment, we calculated the mean mc runtime per
sample from the ground truth pool of this particular problem and then subsampled
as many samples as the given runtime limit affords. For the boxplot experiments, we
averaged the mc runtimes over the whole land fit and always obtained the same
number of samples per integration. The mc runtime practically corresponds to the
runtime of the exponential maps, since the overhead is minimal.

6.1 Toy Data

We generated three toy data sets and fitted the land model with pre-determined
component numbers. Fig. 6.4 compares the resulting land fit to the Euclidean
Gaussian mixture model (gmm) on a circle manifold with 1000 data points. Fig. 6.5
show the other synthetic data sets, one with a curly shape (curly) and a superposition
of two circles (2-circles).
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Figure 6.2: Mean runtime comparison (for a single integration) of the bq methods. Errorbars
indicate 95% confidence intervals w.r.t the 16 runs on each land fit. The reported runtimes be-
long to the boxplots in Fig. 6.1. The higher-dimensional circle datasets have been abbreviated
as c.

6.2 Higher-Dimensional Toy Data

With increasing number of dimensions, new challenges for metric learning and geodesic
solvers appear. With the simple kernel metric, almost all of the volume will be far
from the data as the dimension increases, a phenomenon which we observe already in
relatively low dimensions. Such metric behavior can lead to pathological integration
problems, as the integrand may then become almost constant. In this experiment,
we embed the circle toy data in higher dimensions by sampling random orthonormal
matrices. After projecting the data, we add Gaussian noise εi ∼ N (0, σ2 = 0.01) and
standardize.

6.3 MNIST

We trained a Variational Auto-Encoder on the first three digits of mnist using the
surrogate metric (Sec. 2.10) and found that the land is able to distinguish the three
clusters more clearly than a Euclidean Gaussian mixture model, see Fig. 6.6. The
land favors regions of higher density, where the vae has more training data. In
this experiment, the gain in speed of bq is even more pronounced, since exponential
maps are slow due to high curvature. mc with 1000 samples achieves 2.78% mean
error on the whole land fit with a total runtime of 6 hours and 56 minutes, whereas
dcv (18/2 exponential maps) achieves 2.84% error within 21 minutes; a speedup by
a factor of ≈ 20.

Technical Details We sampled 5,504 random data points from the first three
digits of mnist [LeCun et al., 1998], which were preprocessed by normalizing them
feature-wise to [−1,+1] using sklearn.preprocessing.MinMaxScaler. We trained
a simple Variational-Autoencoder (VAE) to embed the 784 dimensional input in a
latent space of dimension 2. The architecture uses separate encoders µφ, σφ and
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Figure 6.3: Comparison of bq and mc errors against runtime (vertical log scale, shared legend
and axes) for different manifolds, on the first integration problem of the respective land fit.
Shaded regions indicate 95% confidence intervals w.r.t. the 30 independent runs.

decoders µθ, σθ. The architecture is summarized in Table 6.2 We trained the network
for 200 epochs using adam with a learning rate of 10−3. The resulting latent codes
were used to construct the surrogate metric, with ρ = 0.001, such that the measure
far from the data is 1000. The small variances cause high curvature, which makes the
integration tasks challenging and geodesic computations slow. To fit the land, we
used 250 subsampled points to lower the amount of time spent on bvps. In contrast,
the gmm was fitted on the whole 5,504 points. Note that Fig. 6.6 shows this training
data.

(a) land (b) gmm

Figure 6.4: Model comparison on circle toy data.
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(a) curly (b) 2-circles

Figure 6.5: Further toy data land fits

(a) land (b) gmm

Figure 6.6: Model comparison on three-digit mnist.

Encoder/Decoder Layer 1 Layer 2 Layer 3
µφ 128 (tanh) 64 (tanh) 2 (linear)
σφ 128 (tanh) 64 (tanh) 2 (softplus)
µθ 64 (linear) 128 (linear) 784 (linear)
σθ 64 (linear) 128 (linear) 784 (softplus)

Table 6.2: Architecture of the vae on mnist. The columns contain the neuron count of the
fully connected layers and the activation functions in parantheses.
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Figure 6.7: Comparison of the Euclidean Gaussian vs. land mean and eigenvectors on adk
data. Data is colored according to the radius of gyration, a measure indicating how “open” the
protein is, providing a visual argument for the manifold hypothesis.

6.4 ADK

The dataset, as well as the preprocessing, are described in Section 1.1. The land
is a suitable model on this data, as it can be used to visualize the conformational
landscape and generate realistic samples. Plausible interpolations (trajectories)
between conformations may be conceived of as geodesics under the Riemannian
metric.

We model the adk manifold with high curvature and large measure far from
the data to account for the knowledge that realistic trajectories lie closely together
(σ = 0.035 and ρ = 10−5). This makes for a challenging integration problem, since
most mass is near the data boundary due to extreme metric values.

A single-component land yields a representative state for the transition between
the closed and open conformation. Whereas the Euclidean mean falls outside the
data manifold, the land mean is reasonably situated. Plotting the eigenvectors of
the covariance matrix makes it clear that the land captures the intrinsic dimensions
of the data manifold (Fig. 6.7) and that the mean interpolates between the closed and
open state (Fig. 1.1). Our aim here is to demonstrate that molecular dynamics is an
exciting application area for Riemannian statistics and sketch potential experiments,
which are then for domain experts to design.

6.5 Interpretation

We find that bq consistently outperforms mc in terms of speed. Even on high-
curvature manifolds with volume elements spanning multiple orders of magnitudes,
such as mnist and adk, the gp succeeds to approximate the integrand well. Among
the different bq candidates, we cannot discern a clear winner, since their performance
depends on the specific problem geometry and exponential map runtimes. dcv
performs especially well when geodesic computations are costly, such as for mnist.
We note that geodesic solvers and metric learning are subject to new challenges in
higher dimensions, which merit further research effort.
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Parameter circle circle 3d circle 4d circle 5d mnist adk curly 2-circles

σ 0.1 0.25 0.25 0.25 - 0.035 0.2 0.15
ρ 0.001 0.01 0.0316 0.063 0.001 0.00001 0.01 0.01
K 2 2 2 2 3 1 1 3
tmax 7 4 4 4 7 7 7 7
α1

µ 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3
ε∇µ 0.01 0.01 0.01 0.01 0.015 0.01 0.01 0.01
integrations 67 39 40 34 105 36 33 111

Table 6.3: Manifold and land optimization hyperparameters and resulting number of integra-
tion problems.

6.6 Technical Details

All experiments were run in a cloud setting on 8 virtual CPUs. We restricted the
core usage of blas linear algebra subroutines to a single core, so as not to create
interference between multiple processes.

Optimization Hyperparameters In Table 6.3, we report the relevant hyperpa-
rameters for the metrics (σ, ρ), which were used to construct the manifolds, and
those optimization parameters which are not equal across all problems.

DCV Parameters The gradient descent is allowed a maximum of 15 steps in the
“error vs. runtime experiment”, whereas in the boxplot experiment we decrease this
number to 5, as this experiment focuses more on speed given a fixed number of
samples. The linesearch may use up to 5 steps. We set the optimism of the linesearch
to 2.0 and the initial stepsize to 1.0. If a descent step has norm less than 10−10, the
optimization is aborted.

After an exponential map is computed according to dcv, we discretize the resulting
straight line in the tangent space into 30 evenly spaced points and sequentially select
6 points using the standard wsabi objective, updating the gp after each observation.

Boxplot Experiments (Fig. 6.1) These experiment were conducted on whole
land fits, with 16 independent runs for each of the 3 bq methods. From Table 6.3,
we can easily calculate the total number of runs as 48 · (67 + 39 + 40 + 34 + 105 +
36 + 33 + 111) = 22,320.

Error vs. Runtime Experiments (Fig. 6.3) We evenly space 30 runtime limits
between 5 and 65 seconds using np.linspace(5., 65., 30). For each of these
runtime limits, we let each bq method run 30 times. bq will stop collecting more
samples as soon as the runtime limit is reached. After this, however, it will take
some more time to finalize, as an ongoing computation is not interrupted. We then
record the actually resulting runtimes and average over the 30 runs. These averages
are then used for the x-axes of the plots, whereas the mean relative error is on the
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y-axes. In total, each bq method thus has 900 runs on each problem. The 8 plots,
4 in the main paper and 4 in the supplementary, contain 3 · 900 · 8 = 21,600 runs.
Together with the boxplot experiments, we obtain 21,600 + 22, = 43,920 bq runs,
that is, 14,640 for each of the 3 methods.

In Fig. 6.3(c), we removed 4 extreme dcv outliers, where seemingly the gp
“broke”. This amounts to 4

21,600 = 0.01852% of the bq runs in the 8 plots.



Chapter 7

Discussion and Outlook

Riemannian statistics is the appropriate framework to model real data with nonlinear
geometry. Yet, its wide adoption is hampered by the prohibitive cost of numerical
computations required to learn geometry from data and operate on manifolds. In
this work, we have demonstrated on the example of numerical integration the great
potential of probabilistic numerical methods (pnm) to reduce this computational
burden. pnm adaptively select actions in a decision-theoretic manner and thus handle
information with greater care than classic methods, e.g., Monte Carlo. Consequently,
the deliberate choice of informative computations saves unnecessary operations on
the manifold.

We have extended Bayesian quadrature to Riemannian manifolds, where it
outperforms Monte Carlo over a large number of integration problems owing to its
increased sample efficiency. Beyond known active learning schemes for bq, we have
introduced a version of uncertainty sampling adapted to the manifold setting that
allows to further reduce the number of expensive geodesic evaluations needed to
estimate the integral.

Numerical integration is just one of multiple numerical tasks in the context of
statistics on Riemannian manifolds where pnm suggest promising improvements. The
key operations on data manifolds are geodesic computations, i.e., solutions of ordinary
differential equations. Geodesics have been viewed through the pn lens, e.g., by
Hennig and Hauberg [2014], but still offer a margin for increasing the performance
of statistical models such as the considered land.

Once multiple pnm are established for Riemannian statistics, the future avenue
directs towards having them operate in a concerted fashion. As data-driven Rie-
mannian models rely on complex computation pipelines with multiple sources of
epistemic and aleatory uncertainty, their robustness and efficiency can benefit from
modeling and propagating uncertainty through the computations.

All in all, we believe the coalition of geometry- and uncertainty-aware methods
to be a fruitful endeavor, as these approaches are united by their common intention
to respect structure in data and computation that is otherwise often neglected.
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