
Master Thesis
Neural Information Processing

BackPACK for Residual and
Recurrent Neural Networks

Graduate Training Centre of Neuroscience

Faculty of Science
Faculty of Medicine

Eberhard Karls Universität Tübingen

Tim Schäfer

from Geislingen a.d. Steige, Germany

Tübingen, September 30, 2021



Thesis Advisor: Prof. Dr. Philipp Hennig
Methods of Machine Learning
Department of Computer Science

Second Reader: Prof. Dr. Zeynep Akata
Explainable Machine Learning
Cluster of Excellence – Machine Learning for Science

Disclosures:

� I affirm that I have written the thesis myself and have not used any
sources and aids other than those indicated.

� I affirm that I have not included data generated in one of my laboratory
rotations and already presented in the respective laboratory report.

City, Date Signature



i

Abstract

Neural networks are trained and analyzed with autodifferentiation engines like
PyTorch. These frameworks are limited to computing mini-batch gradients.
This restricts training algorithms as well as analysis for deep neural networks.
BackPACK offers an efficient and convenient implementation for computing
a set of additional quantities. However, residual and recurrent neural networks
are not supported. Expanding BackPACK to these architectures is the main
goal of this thesis. For this purpose, the required Jacobian-vector products are
calculated, the derived algorithms are implemented in BackPACK, and the
framework is adjusted to the new architectures. As a result, all torchvision
ResNets and a range of RNNs are supported. The benchmarks show that first
and second order quantities can be computed efficiently. Other projects like
Laplace and Cockpit will directly benefit from BackPACK’s improvements.
This enables more researchers to gain new insights and develop new analyzing
methods or training algorithms.



ii

Acknowledgements

I would like to thank Felix Dangel, who offered plenty of support. On a weekly
basis, he helped me to set goals and reach new levels of coding quality. I enjoyed
our discussions on theory and software design.

I would also like to thank my supervisor, Professor Philipp Hennig, who
guided this project with his expertise.

Finally, I would like to thank the whole Methods of Machine Learning group
for offering an awesome working environment. This includes both letting me
use their computers and also a rich social life. I enjoyed the conversations
during lunch and coffee/tea breaks.



Contents

1 Introduction 1

1.1 Background on Autodifferentiation . . . . . . . . . . . . . . . . 1

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 A Brief Introduction to BackPACK . . . . . . . . . . . . . . . 2

2 Additions to BackPACK 7

2.1 Complementing Modules for ResNets . . . . . . . . . . . . . . . 8

2.1.1 nn.BatchNorm . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 nn.AdaptiveAvgPool . . . . . . . . . . . . . . . . . . . . 9

2.1.3 SumModule . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Complementing Modules for RNNs . . . . . . . . . . . . . . . . 10

2.2.1 nn.RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 nn.LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 nn.Embedding . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 nn.CrossEntropyLoss . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Permute . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Other Contributions . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Full Backward Hook . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Allow retain graph=True . . . . . . . . . . . . . . . . . . 18

3 Converter function: Handling complex architectures 19

3.1 ResNet: Backpropagation in Graph . . . . . . . . . . . . . . . . 19

iii



iv CONTENTS

3.2 RNNs: Using PyTorch’s Modules . . . . . . . . . . . . . . . . 21

4 Achievements 25

4.1 Supported Architectures . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2 ResNets . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Tolstoi Char RNN . . . . . . . . . . . . . . . . . . . . . 30

4.2.3 Wide ResNet 16-4 . . . . . . . . . . . . . . . . . . . . . . 31

4.3 How to Use BackPACK . . . . . . . . . . . . . . . . . . . . . 32

5 Discussion and Outlook 35

5.1 BackPACK’s role and Improvements . . . . . . . . . . . . . . 35

5.2 Possible Applications . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography 39



Chapter 1

Introduction

1.1 Background on Autodifferentiation

Autodifferentiation engines help with the optimization of deep learning
architectures. For this task, engines like PyTorch (Paszke et al., 2019) and
Tensorflow (Abadi et al., 2015) grant efficient access to the gradient. An
inherent issue of the optimized gradient computation is the limitation this
means for the optimization algorithms. The most popular algorithms are
iterative first order methods (Goodfellow et al., 2016, p. 177) (Schneider et al.,
2019). These are for example SGD (Robbins and Monro, 1951), Momentum
(Polyak, 1964; Nesterov, 1983; Rumelhart et al., 1986), and Adam (Kingma
and Ba, 2015). Alternative approaches like second order methods are always
hindered by this lack of easy and efficient access to alternative quantities in
standard libraries. This problem can be overcome with BackPACK (Dangel
et al., 2019). It is an extension for PyTorch, that grants efficient access
to additional quantities. Projects like Cockpit (Schneider et al., 2021),
and Laplace (Daxberger et al., 2021) already use BackPACK. However,
BackPACK does not support many architectures. Especially, popular
architectures like ResNets (He et al., 2016), and RNNs (Rumelhart et al.,
1986), including LSTMs (Hochreiter and Schmidhuber, 1997; Sak et al., 2014)
are not supported. This master thesis has the goal of making these two
architectures available in BackPACK. As a result, related projects using
BackPACK automatically expand their support to these architectures as
well. Furthermore, it might motivate other researchers (within and outside of
the group) to try out BackPACK and related projects.

1



2 CHAPTER 1. INTRODUCTION

1.2 Thesis Structure

Section 1.3 gives some insights of how BackPACK works and how it interacts
with PyTorch.

Chapter 2 lists the code changes in BackPACK. This chapter’s purpose
is not only to show which theoretical considerations have been necessary, but
also to be a reference in case the code is unclear or a similar module should be
included in BackPACK. In the first part, section 2.1, it is explained which
modules of ResNets have been missing in BackPACK and how these have
been implemented. In the second part, section 2.2, we explain which RNN
modules are now included into BackPACK and which additional modules
have been created to support RNNs in BackPACK. For RNNs, this is the
major part. In section 2.3, other code contributions are listed, such as the
creation of tutorials, the update of the backward hook to the latest PyTorch
versions, and the allowance of the option retain graph.

Chapter 3 introduces the converter function that helps users to conveniently
use the new functionality with small code additions. For each of the
architectures, it is explained which exact conversions are performed. For
ResNets, explained in section 3.1, the handling of the branching computation
graph is explained. For ResNets, this is the major point of improvement in
this thesis that allows for a large variety of architectures. For RNNs, explained
in section 3.2, it is explained what the converter function does to conveniently
use BackPACK together with ResNets.

In chapter 4 we sum up the project’s results. Section 4.1 explains which
architectures are now supported in BackPACK. This support consists of
three parts. Firstly, we give an overview over which single modules have
BackPACK support. Secondly, which kind of RNN architectures, and thirdly,
which kind of ResNet architectures are now supported. After that, in section
4.2, benchmarks for the new architectures are presented to show that the new
architectures are efficiently accessible. The benchmarks consist of the setup
and results for Tolstoi Char RNN and a Wide ResNet. Section 4.3 gives a code
example. It shows that the code needed to use the new architectures with the
converter is minimal.

Finally, chapter 5 concludes with a discussion of the improvements that
have been made. Additionally, it lays out future applications for BackPACK.

1.3 A Brief Introduction to BackPACK

The basis of BackPACK is the PyTorch framework, where BackPACK is
built on top of it. PyTorch computes the basic gradients and if BackPACK
is used, several additional computations are performed. The explanations in



1.3. A BRIEF INTRODUCTION TO BACKPACK 3

this section how BackPACK interacts with PyTorch are based on Dangel
et al. (2019) and use the same notation and figures. For more details consult
Dangel et al. (2019).

Notation and forward pass Here, we assume that the whole neural
network is a concatenation of modules, indexed with i. The module i has
input {z(i−1)

n }Nn=1 and output {z(i)
n }Nn=1, with the number of samples N . The

module transforms the input with the transformation T
(i)

θ(i) , where θ
(i) denotes

the module’s parameters.

Standard gradient computation First, we look at how PyTorch
computes the gradients in Figure 1.1. During the backward pass, the module
receives the gradient from its succeeding module. Then, two different Jacobians
are applied. On the one hand, the Jacobian wrt parameters is applied to the
backpropagated gradients and the result is saved as the parameter’s gradient
∇θ(i)L. On the other hand, the Jacobian wrt module’s input is applied to the
backpropagated gradients and the result is passed to the preceding module.
Note, that the gradient wrt the parameters is summed over the batch axis.
Standard training algorithms like Adam use this gradient to perform some
form of iterative step on the parameter and then delete it.

{z(i−1)
n }Nn=1

{z(i)
n }Nn=1

{∇z(i−1)
n

`n}Nn=1 {∇z(i)n
`n}Nn=1

∇θ(i)Lθ(i)

T
(i)

θ(i)

(
z
(i−1)
n

)
= z

(i)
n

Figure 1.1: Gradient computation in PyTorch for module i with N samples
(Dangel et al., 2019, Fig. 2)

Hooks as interface To compute additional quantities BackPACK makes
use of an interface provided by PyTorch. PyTorch allows for forward
and backward hooks to be installed on modules. These hooks are
executed right after the respective PyTorch routine. In the forward hook,
BackPACK saves quantities for later, like input and output. In the
backward hook, BackPACK uses these quantities to compute additional
things like individual gradients. Note that in this master thesis, the interface
that is used by BackPACK changed from register backward hook to
register full backward hook.

First order extensions For first order quantities like individual gradients
(illustrated in Figure 1.2), the additional operations are fairly simple. For



4 CHAPTER 1. INTRODUCTION

example, the BatchGrad extension (computing individual gradients) applies
the Jacobian wrt parameters onto the backpropagated gradients. This yields
the individual gradients {∇θ(i)ℓn}Nn=1. If one sums these quantities along the
batch axis one receives the gradient ∇θ(i)L. For first order extensions, each of
these module extensions acts independently. Therefore, this works even if not
all of the network’s modules are supported.

{z(i−1)
n }Nn=1

{z(i)
n }Nn=1

{∇z(i−1)
n

`n}Nn=1 {∇z(i)n
`n}Nn=1

{∇θ(i)n
`n}Nn=1

∇θ(i)Lθ(i)

T
(i)

θ(i)

(
z
(i−1)
n

)
= z

(i)
n

Figure 1.2: Individual gradient computation in BackPACK for module i with
N samples (Dangel et al., 2019, Fig. 4)

Second order extensions For second order quantities, additional steps are
required. Specifically, some quantities need to be passed from module to
module, illustrated in Figure 1.3 for the DiagGGN extension. The whole
extension is based around the idea that the loss function’s Hessian has a
factorization SnS

T
n = ∇2

f l(f(θ,xn),yn). In this case, all subsequent modules
can then calculate their GGN quantity using the recursive formula seen in the
figure. This requires that this additional information is passed from module
to module. Since PyTorch currently does not offer a native method for
passing the quantitiesBackPACK has to implement this itself. This structure
implies that every single module in the computation graph must be supported
in BackPACK.

{z(i−1)
n }Nn=1

{z(i)
n }Nn=1

{∇z(i−1)
n

`n}Nn=1 {∇z(i)n
`n}Nn=1

{[Jz(i)n fn]
>Sn}Nn=1

{[Jz(i−1)
n fn]

>Sn}Nn=1 {[Jθ(i) fn]>Sn}Nn=1

∇θ(i)Lθ(i)

T
(i)

θ(i)

(
z
(i−1)
n

)
= z

(i)
n

Figure 1.3: Second order quantities computation in BackPACK (Dangel
et al., 2019, Fig. 5)

ResNets and RNNs In principle this scheme can be transferred to ResNets
and RNNs because they also have this modular structure. However, there are
several challenges.



1.3. A BRIEF INTRODUCTION TO BACKPACK 5

� First, the modules required by the new architecture have to be supported.
This involves calculating the derivatives of the modular functions and
implementing them. The calculations are presented in section 2.1 and
2.2.

� Secondly, sometimes ResNets and RNNs have different input and output
format. How this is handled is explained in section 3.1 for ResNets and
section 3.2 for RNNs.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Additions to BackPACK

A large part of this thesis is code contribution to BackPACK. It consists of
more than 8.000 lines1. This chapter lays out the necessary calculations for
the code and other contributions that happened during the thesis.

Jacobian-vector products notation First of all, the basic modules that
are used in ResNets and RNNs must be added to BackPACK. To implement
these basic modules, the Jacobian vector products must be available for each
module. Here, I define the Jacobian as Jay as [Jay]ij =

∂yi

∂aj
. As the goal is to

compute Jacobian-vector products, we define a short notation for a product
up to node a with the vector M that should be multiplied: A = (Jay)

TM .
This notation has the convenient property that subsequent calculations can
reuse the product that is already calculated using the chain rule:

X = (Jxy)
TM = (Jxa)

T (Jay)
TM = (Jxa)

TA.

Shapes Assume that the module has input x and output y with respective
shapes shape in and shape out. Then the transposed Jacobian wrt the
input (Jxy)

T has shape (shape in, shape out). The vector/matrix M has
an additional free axis V to allow for efficient vectorization. So its shape is
(V, shape out). The resulting productX = (Jxy)

TM has shape (V, shape in).

Required Jacobian-vector products

� Transposed Jacobian wrt parameters Pθ = (Jθy)
TM : This is the

basic Jacobian that must be implemented for first order extensions, like
individual gradients.

1An exact count will be available in the github metrics with the next BackPACK release.
This is a rough approximation summing up code lines in pull requests. This line count
includes documentation, examples, and tests.

7



8 CHAPTER 2. ADDITIONS TO BACKPACK

� Transposed Jacobian wrt input X = (Jxy)
TM : This is the product that

is necessary for second order extensions, like the DiagGGN. It is used to
pass quantities back to the preceding module.

� Jacobian wrt input P = M(Jxy) (with shape of M : (V, shape in)):
This product is required for some special second order extensions, like
GGNMP.

2.1 Complementing Modules for ResNets

2.1.1 nn.BatchNorm

Before: only training mode, only 1d
After: both evaluation and training mode; 1d, 2d, and 3d
Code: PR 179 and PR 201

Forward pass in training mode The BatchNorm module can improve
training performance (Ioffe and Szegedy, 2015). It centralizes the batch data
using mean and variance of a dataset. During training, additionally to rescaling
the data, the statistics are learned and saved for evaluation. During evaluation,
these learned statistics are used for rescaling instead of the batch statistics.
The formula for training mode is (PyTorch Documentation BatchNorm2d)

y =
x− E[x]√
Var[x] + ϵ

∗ γ + β

with bias β, weight γ, and numerical stabalizer ϵ.

The details of calculations for training mode are explained in Kevin Zakka’s
blog, in Chris Yeh’s blog, and in Paul Fischer’s research project report.

Evaluation mode In the previously not supported evaluation mode,
because the statistics don’t depend on the data anymore, we rename them
to E[x] = µ and Var[x] = σ2. In the Jacobians, we can drop all terms that
stem from this dependency.

Transposed Jacobian wrt parameters is the Jacobian wrt β and γ:

(Jγy)
T =

x− µ√
σ2 + ϵ

(Jβy)
T = I

https://github.com/f-dangel/backpack/pull/179
https://github.com/f-dangel/backpack/pull/201
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
https://kevinzakka.github.io/2016/09/14/batch_normalization/
https://kevinzakka.github.io/2016/09/14/batch_normalization/
https://chrisyeh96.github.io/2017/08/28/deriving-batchnorm-backprop.html#category.name
https://uni-tuebingen.de/securedl/sdl-eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpYXQiOjE2MzIyOTIxNTIsImV4cCI6MTYzMjM4MjE0OSwidXNlciI6MCwiZ3JvdXBzIjpbMCwtMV0sImZpbGUiOiJmaWxlYWRtaW5cL1VuaV9UdWViaW5nZW5cL0Zha3VsdGFldGVuXC9NYXROYXRcL0ZhY2hiZXJlaWNoZVwvSW5mb3JtYXRpa1wvTGVocnN0dWVobGVcL01ldGhNYXNjaExlcm5cL0Rva3VtZW50ZVwvVGhlc2VzXC9BYnNjaGx1c3NiZXJpY2h0X0Zpc2NoZXIucGRmIiwicGFnZSI6MTczNDc1fQ.02-T4fCfYlx8daLYwaCmpKTxraT1K7eoUn2up17QFms/Abschlussbericht_Fischer.pdf


2.1. COMPLEMENTING MODULES FOR RESNETS 9

Transposed Jacobian wrt input

(Jxy)
T =

γ√
σ2 + ϵ

2.1.2 nn.AdaptiveAvgPool

Before: no support for AdaptiveAvgPool[123]d
After: support for AdaptiveAvgPool[123]d if equivalent AvgPool[123]d exists
Code: PR 165 and PR 201

The AdaptiveAvgPool module (PyTorch Documentation AdaptiveAvgPool)
is a convenient version of the AvgPool module. The user can simply define
a target size instead of stride, kernel size, and padding. In torchvision
ResNets, it is only used to reduce the output to size (1,1). In this case, there
is an equivalent AvgPool module that does the same.

Equivalent AvgPool module More generally, it exists an equivalent
AvgPool module if in each dimension, the original dimension size is a multiple
of the target’s corresponding dimension size. The equivalent parameters in
each dimension are (stackoverflow post)

stride = (input size//output size)

kernel size = input size− (output size− 1) ∗ stride
padding = 0

It this way, for a lot of AdaptiveAvgPool modules, an equivalent AvgPool
module is determined and the derivatives are recycled.

Bug in AdaptiveAvgPool3d On a sidenote, since BackPACK tests its
derivatives and compares them to the PyTorch version, we found a bug
in PyTorch for AdaptiveAvgPool3d on CUDA. We reported this in the
PyTorch forum which led to a github issue and the PyTorch team quickly
fixed it in PyTorch pull request 60630. This fix will be available in future
releases.

2.1.3 SumModule

Before: no such module
After: custom module that does the same as built-in function add

Code: PR 202

In ResNets, because of their structure the built-in function add is repeatedly
used. However, for second order extensions, BackPACK requires that all

https://github.com/f-dangel/backpack/pull/165
https://github.com/f-dangel/backpack/pull/201
https://pytorch.org/docs/stable/generated/torch.nn.AdaptiveAvgPool2d.html
https://stackoverflow.com/a/55869581
https://discuss.pytorch.org/t/bug-report-autograd-grad-adaptiveavgpool3d-cuda/124614/4
https://github.com/pytorch/pytorch/issues/60524
https://github.com/pytorch/pytorch/pull/60630
https://github.com/f-dangel/backpack/pull/202


10 CHAPTER 2. ADDITIONS TO BACKPACK

operations must be modules. Therefore, the custom module SumModule is
introduced. It does just the same as a summation. Therefore, the derivatives
are straightforward: Identity in all cases.

2.2 Complementing Modules for RNNs

2.2.1 nn.RNN

Before: no support
After: supported
Code: PR 156, PR 158, and PR 159

Forward pass The forward pass of the RNN module is (PyTorch
documentation RNN)

ht = tanh(Wihxt + bih +Whhht−1 + bhh).

We rewrite this equation with parameter names V = Wih, W = Whh, b = bih,
and c = bhh

at = V xt + b+Wht−1 + c

ht = tanh(at).

This computation is visualized in Figure 2.1.

x0

a0

h0

V, b

tanh

x1

a1

h1

V, b

tanh
W, c

x2

a2

h2

V, b

tanh
W, c

x3

a3

h3

V, b

tanh
W, c

x4

a4

h4

V, b

tanh
W, c

x5

a5

h5

V, b

tanh
W, c

Figure 2.1: Computation graph of RNN module with six time steps.

Jacobian vector products and shapes The input x has shape
(N, T, input size). All hidden variables a and h have shape
(N, T, hidden size). Now, we derive the Jacobian-vector products listed at
the beginning of chapter 2. Goodfellow et al. (2016, pp. 384-6) compute the
gradient of the loss wrt these quantities and was used as a first orientation

https://github.com/f-dangel/backpack/pull/156
https://github.com/f-dangel/backpack/pull/158
https://github.com/f-dangel/backpack/pull/159
https://pytorch.org/docs/stable/generated/torch.nn.RNN.html
https://pytorch.org/docs/stable/generated/torch.nn.RNN.html


2.2. COMPLEMENTING MODULES FOR RNNS 11

for deriving the equations here. We calculate the product X = (Jxh)
TM . It

is calculated by passing partial products of the Jacobian and the matrix M
backwards. At the last time step t = T only the matrixM is passed backwards.
For all other time steps t, additionally, the quantities of the successive time
steps are considered.

Jacobian-vector product up to node a Here, we formulate the backward
pass wrt at. It can be formulated as a backward recursion:

AT = (JaT
hT )

TMT (2.1a)

At = (Jatht)
T
(
Mt + (Jhtat+1)

TAt+1

)
for t = T − 1, ..., 0. (2.1b)

In this formula, the required quantities are

(Jatht)
T = diag(1− h2

t )

(Jhtat+1)
T = W T .

Inserting this into equation 2.1 yields

AT = diag(1− h2
T )MT

At = diag(1− h2
t )(Mt +W TAt+1) for t = T − 1, ..., 0.

Transposed Jacobian wrt input The Jacobian of at wrt the input is

(Jxrat)
T = V T δtr.

Therefore, the Jacobian matrix product wrt the input is

Xt =
∑
r

(Jxrat)
TAr =

∑
r

V T δtrAr = V TAt

Transposed Jacobian wrt parameters The Jacobians of at wrt the
parameters are

(Jbat)
T = I

(JV at)
T = xt

(JWat)
T = ht−1

and the product is then

Pb =
∑
t

At

PV =
∑
t

xtAt

PW =
∑
t

ht−1At



12 CHAPTER 2. ADDITIONS TO BACKPACK

Jacobian wrt input For the product P = M(Jxh) of M with the Jacobian,
the order of computation is reversed. We first compute the Jacobian vector
product up to node at.

At = Mt(Jxtat)

Afterwards, we calculate the product with the Jacobian up to node h
recursively.

P0 = A0(Ja0h0)

Pt =
(
At + Pt−1(Jht−1at)

)
(Jatht) for t = 1, ..., T

Filling in the Jacobians yields the recursive formula to implement:

P0 = M0V diag(1− h2
0)

Pt = (MtV + Pt−1W ) diag(1− h2
t ) for t = 1, ..., T

2.2.2 nn.LSTM

Before: no support
After: supported
Code: PR 169 and PR 215

Forward pass The forward pass of the LSTM layer is defined as (PyTorch
documentation LSTM):

ĩfgot = Wihxt + bih +Whhht−1 + bhh

ifgot =
(
σ(ĩt) σ(f̃t) tanh(g̃t) σ(õt)

)
ct = ft · ct−1 + it · gt

ht = ot · tanh(ct)

Here, the shapes are similar to the RNN, but there are more hidden variables.
The hidden variables i, f , g, and o are sometimes handled as a single variable
ifgo for shorter notation. The computation is also visualized in Figure 2.2.

Transposed Jacobian matrix product until ˜ifgo First of all, we

compute the product up to the nodes ĩfgot. From this point on, the Jacobian
wrt the parameters and the inputs can be computed. For this purpose we list
all the products that must be computed to reach this step.

For each time step, we compute the product Ht:

HT = MT

Ht = Mt + (Jht ĩfgot+1)
T ˜IFGOt+1 for t = T − 1, ..., 0

https://github.com/f-dangel/backpack/pull/169
https://github.com/f-dangel/backpack/pull/215
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html


2.2. COMPLEMENTING MODULES FOR RNNS 13

x0

i0 f0 g0 o0

c0

h0

x1

i1 f1 g1 o1

c1

h1

Figure 2.2: LSTM computation graph with two time steps.

Additionally, for each time step, we compute the product Ct:

CT = (JcThT )
THT

Ct = (Jctht)
THt + (Jctct+1)

TCt+1 for t = T − 1, ..., 0

Furthermore, for each time step, we compute the product for the hidden
variables IFGOt:

It = (Jitct)
TCt

Ft = (Jftct)
TCt

Gt = (Jgtct)
TCt

Ot = (Jotct)
THt

And finally, for each time step, the product ˜IFGOt:

˜IFGOt = (J
ĩfgot

ifgot)
T IFGOt.

Now, all the intermediate products are defined. The Jacobians that are
required to compute these products are:

(Jht ĩfgot+1)
T = W T

hh

(Jctht)
T = ot · (1− tanh(ct)

2)

(Jctct+1)
T = ft

(Jitct)
T = gt

(Jftct)
T = ct−1

(Jgtct)
T = it

(Jotct)
T = tanh(ct)

(J
ĩfgot

ifgot)
T =

(
it(1− it) ft(1− ft) 1− g2

t ot(1− ot)
)



14 CHAPTER 2. ADDITIONS TO BACKPACK

Plugging it all together gives an algorithm for computing the Jacobian matrix

product up to node ˜IFGOt:

� Last time step:

HT = MT

CT = oT · (1− tanh(cT )
2)HT

� For all other time steps:

Ht = Mt +W T
hh

˜IFGOt+1

Ct = ot · (1− tanh(ct)
2)Ht + ftCt+1

It = gtCt

Ft = ct−1Ct

Gt = itCt

Ot = tanh(ct)Ht

˜IFGOt =
(
it(1− it) ft(1− ft) 1− g2

t ot(1− ot)
)
IFGOt

Transposed Jacobian wrt input Based on this intermediate result, we
can compute Xt

Xt = (Jxt ĩfgot)
T ĨFGOt

The required Jacobian is

(Jxt ĩfgot)
T = W T

ih.

That gives

Xt = W T
ihĨFGOt.

Transposed Jacobian wrt parameters For the parameters Wih, bih, Whh,
and bhh, the Jacobians are

(JWih
ĩfgot)

T = xt

(Jbih ĩfgot)
T = I

(JWhh
ĩfgot)

T = ht−1

(Jbhh ĩfgot)
T = I.



2.2. COMPLEMENTING MODULES FOR RNNS 15

Consequently, the final products are

PWih
=

∑
t

xt
˜IFGOt

Pbih =
∑
t

˜IFGOt

PWhh
=

T∑
t=1

ht−1
˜IFGOt

Pbhh =
∑
t

˜IFGOt

Transposed Jacobian wrt input Similarly to the calculations for the RNN
module it is the reversed order of computations. The implementation can be
seen in BackPACK.

2.2.3 nn.Embedding

Before: no support
After: supported
Code: PR 216

Forward pass The Embedding module is used to transform discrete input
into a continuous input. The forward pass is defined as (PyTorch
documentation Embedding)

y∗,h =
S∑

s=0

δ(x∗, s)Ws,h

with weightW , the number of embeddings S, number of embedding dimensions
H, and the input dimensions ∗. The term δ(x∗, s) is one if the discrete input x∗
matches the index s and zero otherwise. The input can have arbitrary shape
∗ and is integer in the range from 0 to S. The weight matrix W has shape
(S, embedding dim). Therefore, it maps each discrete input to a continuous
vector space, where y has the same shape as the input dimensions plus the
embedding dimension.

Because the input is discrete the Jacobian wrt input is not defined. The
only derivative to compute is wrt weight.

https://github.com/f-dangel/backpack/pull/216
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html


16 CHAPTER 2. ADDITIONS TO BACKPACK

Transposed Jacobian wrt parameter The only parameter is the weight
W . Therefore, we must compute the Jacobian J∗,h,t,k =

∂y∗,h
∂Wt,k

.

J∗,h,t,k =
S∑

s=0

δ(x∗, s)
∂Ws,h

∂Wt,k

= δ(x∗, t)δhk.

Therefore, the product of a matrix Mv,∗,h with the Jacobian is

Pv,t,k =
∑
∗,h

δ(x∗, t)δhkMv,∗,h

=
∑
∗

δ(x∗, t)Mv,∗,k

2.2.4 nn.CrossEntropyLoss

Before: supports only 2d
After: arbitrary number of additional axes
Code: PR 211

Multidimensional inputs A lot of times, the output of RNNs has shape
(N,C, T ), with number of samples N , number of categories C, and number of
time steps T . To compute the cross entropy loss of this output, BackPACK
must allow the module CrossEntropyLoss to have additional axes (like the
T -axis in this case). These additional axes are allowed due to the PyTorch
documentation on CrossEntropyLoss. Luckily, a reshape does the trick. This is
because CrossEntropyLoss treats the batch axis and additional axes similarly:
as independent samples. Therefore, those axes can be merged and the old
algorithms can be reused.

2.2.5 Permute

Before: function permute
After: custom module Permute
Code: PR 158

Forward pass In the previous section on multidimensional cross entropy
loss, we saw that the input must be of shape (N,C, T ). However, in reality,
the output of the network is of shape (N, T, C). To swap the last two axes we
require a Permute module. Its forward pass is

y = p(x)

where y is the output, x is the input, and p is the permutation of axes.

https://github.com/f-dangel/backpack/pull/211
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://github.com/f-dangel/backpack/pull/158


2.3. OTHER CONTRIBUTIONS 17

Transposed Jacobian wrt input The product X = (Jxy)
TM of the

Jacobian with the matrix is just the same permutation. Note that the first axis
is assumed to be the vectorized axis of the matrix M , so it remains unchanged.

X = (M [0], p(M [1 :]))

Jacobian wrt input However, the product P = M(Jxy) with the
transposed Jacobian is the inverse permutation.

P = (M [0], p−1(M [1 :]))

2.3 Other Contributions

2.3.1 Tutorials

Custom module example tutorial explains how users can add modules to
BackPACK. This comes in handy if users are missing modules and don’t
want to wait for BackPACK to support those.

Residual networks tutorial explains how to use BackPACK with
ResNets. It lays out three approaches. First, it explains that for first order
extensions it works out of the box. Secondly, it shows how BackPACK
internally uses its custom modules to construct a ResNet. Thirdly, it explains
how to use the converter function to have convenient transformation to a
BackPACK-compatible network.

2.3.2 Full Backward Hook

Before: use register backward hook (deprecated since torch 1.8.0)
danger of not working with future PyTorch releases

After: use register full backward hook

Code: PR 194

Deprecation of register backward hook The hook BackPACK used is
deprecated since torch 1.8.0 and is going to be deleted. This is an issue because
BackPACK relies on hooks, even for first order extensions. Therefore,
BackPACK was in immediate danger of not working anymore. Thus, it
is important to use the new function instead of the deprecated one.

https://docs.backpack.pt/en/development/use_cases/example_custom_module.html
https://docs.backpack.pt/en/development/use_cases/example_resnet_all_in_one.html
https://github.com/f-dangel/backpack/pull/194


18 CHAPTER 2. ADDITIONS TO BACKPACK

Replacing backward hook Simply replacing the hook does not work
immediately. To make the new hook work, BackPACK must change the way
it saves the quantities that are passed backwards. Previously, BackPACK
used the input tensors to pass these to the preceding module. However, with
the new hook, those pointers are not reliable anymore. Instead, the new hook
uses the gradient tensors to pass the computed quantities to the preceding
module.

Future register full backward hook is used from torch 1.9.0 onwards.
We decided against using it from 1.8.0 onwards, because the hook does not
trigger reliably in its initial release. We now expect BackPACK to work with
future PyTorch releases even if register backward hook is removed.

2.3.3 Allow retain graph=True

Before: always retain graph=False

After: retain graph option

Code: PR 217

Some users wish to do several backward passes and therefore require the option
retain graph=True. Previously, BackPACK ignored this option and deleted
its saved quantities no matter what. This is an unexpected behaviour since
users know the option retain graph=True and expect a second backward pass
to work. With the addition of this option, they can now do several backward
passes.

https://github.com/f-dangel/backpack/pull/217


Chapter 3

Converter function: Handling
complex architectures

3.1 ResNet: Backpropagation in Graph

Background ResNets have been introduced by He et al. (2016). Since then,
these architectures had success in computer vision. For example, Tai et al.
(2017) showed that ResNets can achieve superior accuracy with much less
parameters on single-image super-resolution compared to large deep neural
networks.

Architecture A building block of ResNets can be seen in Figure 3.1. In
this block, the computation graph branches out at x. In one branch, x goes
through a transformation F (x). In the other branch the result is kept. At the
end of the block, these two branches are summed up.

Figure 3.1: Building block of ResNet (He et al., 2016, Fig. 2)

19



20 CHAPTER 3. CONVERTER FUNCTION

Challenges. ResNets are challenging for BackPACK because they branch
out as shown in Figure 3.1. For first order extensions, PyTorch takes care of
backpropagating quantities through the branches. However, in second order
extensions, BackPACK must define how to propagate quantities through the
graph. This yields two major challenges:

� Accumulation function: When the computation graph branches out, this
means for the backward pass that the backpropagated quantities have to
be accumulated. So far, BackPACK did just overwrite the old result.
However, BackPACK must define a correct accumulation function.

� SumModule: The operation that merges these branches again, usually is
a summation. This summation is a built-in function and not a PyTorch
module. Therefore, BackPACK cannot extend it in a natural way.

Accumulation function Figure 3.2 that PyTorch’s internal variables
like the gradients are summed up automatically. However, BackPACK’s
additional quantities must be handled explicitly. In this case, for the DiagGGN
extension, the quantities from the different branches are summed up.

{z(i−1)
n }Nn=1

{z(i)
n }Nn=1

{∇z
(i−1)
n

ℓn}Nn=1 {∇z
(i)
n
ℓn}Nn=1

{[Jz
(i)
n fn]

⊤Sn}Nn=1
{[Jz

(i−1)
n fn]

⊤Sn}Nn=1 {[Jθ(i)fn]
⊤Sn}Nn=1

∇θ(i)Lθ(i)

T
(i)

θ(i)

(
z
(i−1)
n

)
= z

(i)
n

{z(i)
n }Nn=1

{z(i)
n }Nn=1

{∇z
(i−1)
n

ℓn}Nn=1

{∇z
(i−1)
n

ℓn}Nn=1

{[Jz
(i)
n fn]

⊤Sn}Nn=1

{[Jz
(i)
n fn]

⊤Sn}Nn=1

∑
∑

Figure 3.2: Backpropagation in a ResNet in a ResNet branch.

SumModule The second challenge of not being able to extend the
built-in function add is solved by the introduction of the custom module
SumModule. For this custom module, all the necessary derivatives are defined
in BackPACK.

Converter function In principle, implementing these two aspects makes
BackPACK support ResNets. However, the resulting interface is not very
user-friendly. To achieve BackPACK support, the user must rewrite her



3.2. RNNS: USING PYTORCH’S MODULES 21

ResNets using the custom modules. This would mean a lot of work, especially
for large networks like the ones provided in torchvision. This stands in contrast
with the goal of BackPACK to be easy to use. Probably, a lot of researchers
would shy away from using BackPACK under such circumstances. This is
why a converter function is introduced.

The converter function provides an easy interface to make the model
BackPACK-compatible. To use it, the user must set use converter=True

in extend(). In this case, the computation graph is analyzed with the help of
torch.fx. Afterwards, the converter function makes several transformations:

� Built-in function add to SumModule

� Function flatten to module Flatten

� Set all modules to normal mode (instead of inplace, which does not work
with backward hooks)

� Remove multiple usages of same module: This happens in ResNets most
of the time with activation functions like ReLU. Because BackPACK
cannot handle this repeated usage it creates a copy of the module.

As a result the computation graph consists exclusively of modules, and is
therefore BackPACK-supported.

3.2 RNNs: Using PyTorch’s Modules

Architecture Yu et al. (2019) review recent developments in RNN
architectures. RNNs are commonly used for sequential data, such as video,
audio, and text. According to the authors, the research on recurrent
neural networks is now focused on LSTMs, introduced by Hochreiter and
Schmidhuber (1997). This is a consequence of the success LSTMs have had in
areas such as speech recognition. For example, He and Droppo (2016) propose
a generalized LSTM layer that includes ideas from DNNs and achieve better
results than both conventional DNNs and simple LSTMs. Another example is
Hsu et al. (2016) who introduce skip connections between LSTM layers which
is a similar approach like in residual networks. However, a recent comparison
between RNN architectures by Shewalkar (2019) shows that simpler RNNs like
GRUs can achieve similar accuracy with less training effort.

Challenges The recurrent structure poses several problems to be solved in
BackPACK:

� Supporting modules: The first challenge is that the RNN modules from
PyTorch don’t have BackPACK support.

https://pytorch.org/vision/stable/_modules/torchvision/models/resnet.html


22 CHAPTER 3. CONVERTER FUNCTION

� ReduceTuple: The second challenge lies in the interface of these modules.
Their forward pass returns a tuple, consisting of the hidden states from
the last layer, as well as all hidden states of the last time step. This
is different from most other modules that return a single tensor. Most
applications only use one of the returned tensors, namely the hidden
states of the last layer. However, the selection within the tuple is an
operation that must be supported in BackPACK.

� Loop over module: The third challenge is to support loops over the same
module. Currently, looping over a single module has two issues. During
the forward loop, the saved input and outputs are overwritten. During
the backward pass, the computed quantities from the previous iteration
are overwritten.

Supporting modules Supporting PyTorch’s RNN modules involves the
computations laid out in section 2.2.1 and 2.2.2 and these are implemented.
However, the resulting formulas involve the hidden states. Unfortunately, for
computing the derivatives, the quantities that BackPACK is able to retrieve
from the forward pass are insufficient. Therefore, BackPACK must perform
an additional forward pass before the backward pass. However, considering
that the most expensive operation is the actual backward pass it is still fine,
especially compared to computing e.g. individual gradients with a for-loop.

ReduceTuple Selecting from the output tuple one entry is a process most
users are not aware of. It is implicitly done with the built-in getitem function.
The new custom module ReduceTuple does just the same as getitem, but
has BackPACK support. The user must use this equivalent custom module
instead of the built-in getitem function. In this way, BackPACK supports
tuple selection.

Loop over module Looping over the same module is not possible in the
scope of this thesis. The aforementioned obstacles are impossible to overcome
in BackPACK’s current structure.

The difficulties around saving the computed quantities can be solved for
some extensions. For example, for computing the individual gradients, a
routine that sums up the existing and new quantities leads to the correct
behaviour. However, for other extensions, like variance, it is impossible to
determine the new variance. The reason is that the variance we would like
to calculate is Varn({

∑
t ∇θ

(i)
t
ℓn}Nn=1) (where θ

(i)
t denotes the parameter for

each time step although they don’t depend on time steps). Contrasting to
this, in each time step, we only have access to Varn({∇θ

(i)
t
ℓn}Nn=1). One could



3.2. RNNS: USING PYTORCH’S MODULES 23

think that summing up the variances from each time solves the issue, but the
following equation for variance holds only for uncorrelated random variables.

Varn({
∑
t

∇
θ
(i)
t
ℓn}Nn=1) ̸=

∑
t

Varn({∇θ
(i)
t
ℓn}Nn=1)

But certainly, the variances of gradients from different time-steps are strongly
correlated.

The difficulties around saving the quantities from the forward pass could
also be solved. However, this would require a change how these quantities
are saved. Additionally, it would require the user to determine the number of
iterations. This is a major inconvenience and would lead to users shying away
from this feature.

Converter function As mentioned before, creating a BackPACK-
supported RNN involves using BackPACK’s custom functions and limiting
oneself to single-layer RNNs. This effort cannot be expected from all users
and would limit the spread and usage of BackPACK. Similarly to ResNets,
the converter function makes it possible to support as many architectures as
possible. The important conversions are:

� ReduceTuple: The converter changes how the output is reduced. It
replaces getitem with BackPACK’s custom module ReduceTuple,
which does just the same in the form of a module.

� Multi-layer RNNs: They are split into multiple RNNs with a
single layer each. In PyTorch, with multiple layers, it is
also possible to implicitly define intermediate dropout layers by
giving a positive dropout probability. This is also handled by
the converter function by adding these intermediate dropout layers
explicitly. For example a module nn.LSTM(5, 10, num layers=2,

dropout=0.2) would be converted to nn.Sequential(nn.LSTM(5,10),

nn.Dropout(0.2), nn.LSTM(10,10)).

� Permute: Convert functions permute and transpose to the new custom
module Permute.



24 CHAPTER 3. CONVERTER FUNCTION



Chapter 4

Achievements

4.1 Supported Architectures

BackPACK is based on modules. Therefore, it is essential which modules
have BackPACK support. We have created two tables illustrating which
modules are generally supported and what has changed between the master

branch and the development branch (September 2021). These changes are not
necessarily part of this thesis.

Modules with parameters Table 4.1 lists the modules with parameters
and which extensions can be used with them. From these modules, the
BatchNorm, RNN, LSTM, and Embedding module have been a focus of this
thesis. The detailed changes can be looked up in section 2.1 and 2.2. As can
be seen in the table there have been major improvements for these modules.

The extensions are sorted in groups. The first order extensions BatchGrad,
BatchL2Grad, Variance, and SumGradSquared are listed first. These
extensions can be run independently of whether the rest of the neural network
is supported. The rest of the extensions are second order extensions and require
the whole network to be supported by BackPACK, including the modules
without parameters.

Modules without parameters The modules without parameters are
listed in table 4.2. The first order extensions are left out because they
don’t require any computations by these modules. However, for second
order extensions it is essential that every single module has a BackPACK
extension. This is especially important for the two loss functions MSELoss
and CrossEntropyLoss.

25



26 CHAPTER 4. ACHIEVEMENTS

Module B
a
tc
h
G
ra

d

B
a
tc
h
L
2
G
ra

d

V
a
ri
a
n
ce

S
u
m
G
ra

d
S
q
u
a
re
d

B
a
tc
h
D
ia
g
G
G
N
E
x
a
ct

B
a
tc
h
D
ia
g
G
G
N
M

C

D
ia
g
G
G
N
E
x
a
ct

D
ia
g
G
G
N
M

C

D
ia
g
H
e
ss
ia
n

B
a
tc
h
D
ia
g
H
e
ss
ia
n

G
G
N
M

P

H
M

P

K
F
A
C

K
F
L
R

K
F
R
A

P
C
H
M

P

Conv1d
Conv2d
Conv3d
BatchNorm1d
BatchNorm2d
BatchNorm3d
RNN
LSTM
Linear
Embedding

Table 4.1: Modules with parameters and which BackPACK extension are
supported. Already supported modules in the master branch are highlighted
in green, not supported modules are highlighted in red, and newly supported
modules are highlighted in blue.

4.1.1 RNNs

Supported Architectures BackPACK supports several RNNs, including
the Char-RNN from DeepOBS (Schneider et al., 2019) that is used for learning
the Tolstoi dataset. At its core, the Char-RNN consists of a two-layer LSTM.
An implementation in tensorflow can be found in the DeepOBS framework.
During the master thesis, we wrote the required files for PyTorch and they
will soon be added to DeepOBS. To reach this result, we have implemented
core RNN modules, additional modules, and custom modules.

Core RNN modules From the wide range of RNN models, a lot of them
use PyTorch’s RNN modules (RNN, GRU, LSTM, RNNCell, GRUCell, and
LSTMCell). As shown in table 4.1 the RNN, and LSTM module have support
in the most commonBackPACK extensions. The GRUmodule is complexity-
wise in between RNN and LSTM and can be added if necessary. The cell
versions could easily be supported, since they are just simpler versions of the
other modules. However, to be useful, they must be included in a for-loop and
this structure is incompatible with BackPACK.



4.1. SUPPORTED ARCHITECTURES 27

Module B
a
tc
h
D
ia
g
G
G
N
E
x
a
ct

B
a
tc
h
D
ia
g
G
G
N
M

C

D
ia
g
G
G
N
E
x
a
ct

D
ia
g
G
G
N
M

C

D
ia
g
H
e
ss
ia
n

B
a
tc
h
D
ia
g
H
e
ss
ia
n

G
G
N
M

P

H
M

P

K
F
A
C

K
F
L
R

K
F
R
A

P
C
H
M

P

MaxPool1d
MaxPool2d
MaxPool3d
AvgPool1d
AvgPool2d
AvgPool3d
AdaptiveMaxPool1d
AdaptiveMaxPool2d
AdaptiveMaxPool3d
AdaptiveAvgPool1d
AdaptiveAvgPool2d
AdaptiveAvgPool3d
ELU
LeakyReLU
ReLU
SELU
Tanh
Softmin
Softmax
Softmax2d
Identity
Dropout
MSELoss
CrossEntropyLoss
Flatten

Table 4.2: Modules without parameters and which BackPACK second
order extension are supported. Already supported modules in the master branch
are highlighted in green, not supported modules are highlighted in red, and
newly supported modules are highlighted in blue.



28 CHAPTER 4. ACHIEVEMENTS

Additional modules Embedding and multi-dimensional CrossEntropyLoss
are required for RNNs. These are now supported in BackPACK

Custom modules Furthermore, for the functions getitem, transpose, and
permute there is a BackPACK custom module equivalent. This is necessary
to run second order extensions. For example the output of a RNN module that
is a tuple is now reduced with the help of the ReduceTuple module instead of
the getitem-function. The transpose and permute functions are needed to
swap category and time axis before the loss.

4.1.2 ResNets

Supported Architectures All ResNets from torchvision are supported.
These models include networks like resnet18 (He et al., 2016) and WideResNets
(Zagoruyko and Komodakis, 2016). Especially the Wide ResNet 16-4
implemented in DeepOBS (Schneider et al., 2019) is supported. The
components required to reach this coverage are the ResNet modules, handling
branches, and introducing the converter function.

ResNet modules BatchNorm and AdaptiveAvgPool are modules that are
used in ResNets but were previously incompatible with BackPACK. These
modules are now supported to the extent required. BatchNorm works for all
dimensions and in evaluation mode. AdaptiveAvgPool works for the required
target sizes.

Branches The inplace summation x+=submodel(x) is at the core of residual
networks. It means that the computation graph branches out and merges
later with the summation. BackPACK can handle both the branching and
the merging. The branching is handled implicitly without any user action
required. The merging is handled with the SumModule instead of the built-in
add function. This requires the user to use the SumModule.

Converter function The converter function is easy to use and takes care
of all of these aspects.

4.2 Benchmarks

It is important to benchmark the new architectures in BackPACK, because
we want to offer a solution that is applicable to realistic architectures and
computes efficiently.



4.2. BENCHMARKS 29

4.2.1 Setup

Airspeed velocity The benchmarks are produced with airspeed velocity
(asv). The tool is originally intended for benchmarking a project over its
lifetime. In this way, developers are able to notice drops in performance
and can identify the commits that are to blame for it. This master thesis
looks exclusively at the current state and benchmarks architectures that are
representative for ResNets and RNNs.

Measurements The benchmark measures the time that one forward and one
backward pass takes. Before the test, the architecture is loaded together with
dummy data. The architecture is extended and converted with BackPACK’s
extend() function. After this preparation, the forward and the backward pass
is performed and its time is measured. Finally, everything can be deleted and
the next test is run. Luckily, there already existed a framework written for
benchmarking BackPACK with asv. This framework has been adjusted to
the new architectures and BackPACK’s extended functionality.

Architectures

� Wide ResNet 16-4 from Schneider et al. (2019). This network was
introduced by Zagoruyko and Komodakis (2016).

� Character RNN with two LSTM layers from Schneider et al. (2019). This
architecture is used to learn the Tolstoi data set, which is simply the book
War and Peace by Leo Tolstoi. The task is to predict the next character
in the text from the previous characters.

Procedure

� Checkout schaefertim/backpack-benchmark on github (private but we
grant access on request) and setup the project.
In the future, this repository will probably be merged into
f-dangel/backpack-benchmark on github

� Prepare machine: close all applications actively using CPU.

� run new benchmarks with
asv run --launch-method=spawn --bench=time.*(tolstoi char rnn|svhn wrn)

Machine The machine used for the benchmarks has the following
specifications:

� RAM: 2 x 16 GiB: DIMM DDR4 Synchronous 2400 MHz (0,4 ns)

https://github.com/airspeed-velocity/asv
https://github.com/schaefertim/backpack-benchmark
https://github.com/f-dangel/backpack-benchmark


30 CHAPTER 4. ACHIEVEMENTS

� L1 cache 384KiB, L2 cache 1536KiB, L3 cache 12MiB

� CPU: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz

� GPU: Nvidia TU102 [GeForce RTX 2080 Ti Rev. A] (11 GB memory,
1350 MHz)

� motherboard: Z390 I AORUS PRO WIFI-CF

Baselines The benchmarks involve several baselines:

� torch: PyTorch without using BackPACK

� torch+extend: using BackPACK but without any extensions

� torch-BatchGrad-forLoop: individual gradients with PyTorch with a
for-loop. The problems have batch size 128. Therefore, in the worst case,
this is 128 times slower than torch.

4.2.2 Tolstoi Char RNN

Figure 4.1 shows the benchmark of the Tolstoi Character RNN problem from
DeepOBS (Schneider et al., 2019). The baseline is chosen as only running torch.
The other baseline torch+extend is quite similar and differs only because of the
small absolute values. For this network, most extensions produce a significant
overhead. The BatchGrad extension is approximately 20 times slower than
the baseline. However, this is still faster than the alternative of computing
individual gradients with a for-loop. For the other first order extensions
(BatchL2Grad, SumGradSquared, Variance) a similar argument holds. The
increased time effort of Variance compare to the BatchGrad extension is
surprising because these two extension should have a very similar overhead.
This implies that there might still be issues with the efficiency of the code. The
DiagGGNExact extension takes about 120 times more time than the baseline.
This is partly because its computation time scales with the number of free axis
in the loss. In this particular architecture, the loss is multi-dimensional cross
entropy loss with batch and time axis as the free axes. Therefore, this problem
scales very badly for this extension. Nonetheless, the DiagGGN can now be
computed in feasible time.

Possible improvements These runtimes are sufficient but not as convincing
as we would have hoped. There are some possibilities for improvements:

� Currently, in LSTMs, BackPACK computes a full forward and
backward pass for each Jacobian wrt the parameters and the input.



4.2. BENCHMARKS 31

to
rc
h

to
rc
h+
ex
te
nd

Ba
tc
hG
ra
d

Ba
tc
hL
2G
ra
d

Su
m
G
ra
dS
qu
ar
ed

Va
ria
nc
e

to
rc
h-
Ba
tc
hG
ra
d-
fo
rL
oo
p

D
ia
gG
G
N
M
C

D
ia
gG
G
N
Ex
ac
t

0

0.2

0.4

0.6

0.005 0.003

0.093
0.106

0.284

0.589

0.170

0.128

0.590
ti
m
e
[s
]

tolstoi char rnn,cuda
baseline

Figure 4.1: Benchmark Tolstoi Character RNN

These five runs can be reduced to a single run up to the product ĨFGO
as was seen in section 2.2.2. However, this requires significant changes
to BackPACK’s core but could reduce the overhead by a factor of five.

� In the default LSTM implementation the time axis is the first axis, but
most RNNs use the option batch first=True. We don’t expect any
speed-up from changing this, but it might be the source of inefficiencies.

� There could also be other reasons that need to be tracked down with
careful time measurements. The increased time consumption by the
Variance extension is an indicator that other parts might be inefficient.

4.2.3 Wide ResNet 16-4

Figure 4.2 shows the benchmark of Wide ResNet 16-4 (Zagoruyko and
Komodakis, 2016) from DeepOBS (Schneider et al., 2019).

Compared to the baseline, the BatchGrad extension takes approximately
seven times longer. This is fast compared to the twelve times longer the
alternative computation with the for-loop takes. The other first order
extensions take approximately the same time as the BatchGrad extension.
Only the DiagGGNExact extension takes significantly more time (30 times



32 CHAPTER 4. ACHIEVEMENTS

to
rc
h

to
rc
h+
ex
te
nd

Ba
tc
hG
ra
d

Ba
tc
hL
2G
ra
d

Su
m
G
ra
dS
qu
ar
ed

Va
ria
nc
e

to
rc
h-
Ba
tc
hG
ra
d-
fo
rL
oo
p

D
ia
gG
G
N
M
C

D
ia
gG
G
N
Ex
ac
t

0

0.2

0.4

0.6

0.8

1

1.2

0.041 0.044

0.307

0.130

0.278

0.508 0.494

0.138

1.234
ti
m
e
[s
]

svhn wrn,cuda
baseline

Figure 4.2: Benchmark ResNet

longer than baseline). This puts the DiagGGN into a feasible range and makes
it useful for applications.

4.3 How to Use BackPACK

Figure 4.3 shows a code example of BackPACK with the converter. In the
example, ResNet-18 (He et al., 2016) is loaded alongside some random input
data similar to the imagenet data (Krizhevsky et al., 2009). The example
consists of one forward and one backward pass. In the backward pass two
additional quantities are computed in addition to the standard gradient:

� Variance (first order quantity)

� DiagGGN (second order quantity)

For the Variance extension, the standard BackPACK code is sufficient
because it is a first order extension. For the DiagGGNExact extension, we
must additionally use the converter because it is a second order extension.

Result The new required code for RNNs and ResNets is only
use converter=True. This is a minimal addition and grants access to a



4.3. HOW TO USE BACKPACK 33

X, y = torch.rand(32, 3, 224, 224, device="cuda"),

torch.randint(10, (32,), device="cuda")

model = torchvision.models.resnet18(num classes=10).to("cuda")

model = extend(model.eval(), use converter=True)

lossfunc = extend(CrossEntropyLoss())

loss = lossfunc(model(X), y)

with backpack(Variance(), DiagGGNExact()):

loss.backward()

for param in model.parameters():

print(param.grad)

print(param.variance)

print(param.diag ggn exact)

Figure 4.3: Code example for usage of BackPACK with the converter.
Standard BackPACK code is highlighted in blue, converter is highlighted in
red.

wide range of new networks. Current users of BackPACK are easily able
to adapt this approach. Additionally, new users might be attracted by the
new architectures available.



34 CHAPTER 4. ACHIEVEMENTS



Chapter 5

Discussion and Outlook

5.1 BackPACK’s role and Improvements

BackPACK’s goal PyTorch computes exclusively the batch gradient.
BackPACK wants to be a tool for researchers to try out and realize
alternative approaches. Some of these approaches are laid out further below.

Strengths and weaknesses BackPACK offers convenient yet efficient
access to additional quantities. This is achieved in the very few lines of code
that must be added to use BackPACK and the converter. That BackPACK
is very efficient in general and superior to naive PyTorch workarounds like
the BatchGrad-forLoop has been shown by Dangel et al. (2019) and for the
new architectures in section 4.2. The weakness of BackPACK is its small
project size compared to PyTorch. This implies that BackPACK does not
cover the full range of architectures and also that there is sometimes room for
improvement in efficiency. Due to its small project size, BackPACK must
take the flexible approach of fixing these holes on request.

Improvements in master thesis There have been major improvements
to BackPACK during the master thesis. The main goal was to extend
its coverage to ResNets and RNNs. This goal has been reached: ResNets
have a wide range of support, especially common networks like those offered
in torchvision. For RNNs, there are many different approaches. The core
models that are based on LSTM modules are now supported. For example, the
Character RNN that operates on the Tolstoi dataset (Schneider et al., 2019)
is now supported. For both architecture classes this is a solid foundation.
On this basis, many applications like possible training algorithms can prove
their usefulness. If they prove to be useful on these common architectures,
BackPACK can also be improved. This improvement can be either to cover
more architectures or it can be to further improve its efficiency.

35



36 CHAPTER 5. DISCUSSION AND OUTLOOK

Project future The BackPACK project is very much alive and set up to
be around in the future. It is used by the community (300 stars, 30 forks
and multiple issues, such as questions and feature requests). Furthermore,
BackPACK previously was in danger of not working with new PyTorch
releases. This was because the core function register backward hook

is deprecated and going to be deleted in favor of the new function
register full backward hook. This change of functions required several
changes to BackPACK’s core and secured the future of BackPACK. It
is now expected to work with the next PyTorch releases.

5.2 Possible Applications

Here, we lay out some of the possible use cases for BackPACK. With
BackPACK, these ideas are easier and faster to realize with potentially better
results because of BackPACK’s efficiency.

Training algorithms A major application are training algorithms. So far,
the most successful training algorithms are purely based on the gradient.
There are other ideas like using the natural gradient (Amari, 1998). The
natural gradient is the gradient in the function space instead of the parameter
space. This requires computation of the Fisher-matrix or approximations of it.
Khan and Rue (2021) argue that this kind of optimization is the only efficient
approach and currently popular algorithms are relaxations of this method.
Dangel et al. (2019) show that these kind of algorithms can be implemented
in BackPACK and the results are competitive with standard algorithms.

With BackPACK other training approaches are also possible. For
example, hyperparameters can be implicitly determined from the additional
quantities, yielding hyperparameter-free optimization. There are plenty
of possibilities in this direction that can be tried out with the help of
BackPACK.

Training observation Cockpit (Schneider et al., 2021) is a project
that uses BackPACK. It offers many instruments to observe and visualize
quantities during training. Therefore, it can ”improve troubleshooting the
training process, reveal new insights, and help develop novel methods and
heuristics”. This project will directly benefit from the implementation of RNNs
and ResNets.

Robustness Other approaches try to improve robustness with additional
quantities. For example Yao et al. (2018) use the largest eigenvalue of the
Hessian matrix as a proxy of how sensitive the network is to adversarial attacks.



5.2. POSSIBLE APPLICATIONS 37

Minimizing this eigenvalue leads to a robust network. BackPACK can help
this attempt by having efficient access to the Hessian or approximations of it.

Uncertainty measurement Laplace (Daxberger et al., 2021) can compute
uncertainty measurements that are computationally cheap and competitive
with other approaches. It uses BackPACK to compute different curvature
approximations. This project also benefits from the increased range of
architectures.

Future It is very uncertain which of these applications will emerge as
successfully leveraging BackPACK. In this process, BackPACK will
support researchers to try out new ideas and competitively compare them to
standard approaches. The project will be shaped after the needs of the users
and additional functionality will be added on request. Supporting ResNets
and RNNs is a huge step for increasing the amount of applications and making
BackPACK attractive to more researchers.



38 CHAPTER 5. DISCUSSION AND OUTLOOK



Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. (2015), ‘TensorFlow:
Large-scale machine learning on heterogeneous systems’. Software available
from tensorflow.org.

Amari, S.-I. (1998), ‘Natural gradient works efficiently in learning’, Neural
computation 10(2), 251–276.

Dangel, F., Kunstner, F. and Hennig, P. (2019), ‘Backpack: Packing more into
backprop’, CoRR abs/1912.10985.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M. and
Hennig, P. (2021), ‘Laplace redux - effortless bayesian deep learning’, CoRR
abs/2106.14806.

Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep learning, MIT press.

He, K., Zhang, X., Ren, S. and Sun, J. (2016), Deep residual learning for image
recognition, in ‘Proceedings of the IEEE conference on computer vision and
pattern recognition’, pp. 770–778.

He, T. and Droppo, J. (2016), Exploiting lstm structure in deep neural
networks for speech recognition, in ‘2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP)’, IEEE, pp. 5445–5449.

Hochreiter, S. and Schmidhuber, J. (1997), ‘Long short-term memory’, Neural
Computation 9(8), 1735–1780.

Hsu, W.-N., Zhang, Y., Lee, A., Glass, J. et al. (2016), ‘Exploiting depth
and highway connections in convolutional recurrent deep neural networks
for speech recognition’, Cell 50, 1.

39



40 BIBLIOGRAPHY

Ioffe, S. and Szegedy, C. (2015), Batch normalization: Accelerating deep
network training by reducing internal covariate shift, in ‘International
conference on machine learning’, PMLR, pp. 448–456.

Khan, M. E. and Rue, H. (2021), ‘The bayesian learning rule’, arXiv preprint
arXiv:2107.04562 .

Kingma, D. P. and Ba, J. L. (2015), Adam: A method for stochastic gradient
descent, in ‘ICLR: International Conference on Learning Representations’,
pp. 1–15.

Krizhevsky, A., Hinton, G. et al. (2009), ‘Learning multiple layers of features
from tiny images’.

Nesterov, Y. E. (1983), ‘A method for solving the convex programming problem
with convergence rate o(1/k2)’, Dokl. Akad. Nauk SSSR 269, 543–547.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A.,
Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J. and Chintala, S. (2019), Pytorch: An imperative
style, high-performance deep learning library, in H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox and R. Garnett, eds, ‘Advances
in Neural Information Processing Systems 32’, Curran Associates, Inc.,
pp. 8024–8035.

Polyak, B. T. (1964), ‘Some methods of speeding up the convergence of
iteration methods’, Ussr computational mathematics and mathematical
physics 4(5), 1–17.

Robbins, H. and Monro, S. (1951), ‘A stochastic approximation method’, The
annals of mathematical statistics pp. 400–407.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986), ‘Learning
representations by back-propagating errors’, nature 323(6088), 533–536.

Sak, H., Senior, A. W. and Beaufays, F. (2014), ‘Long short-term memory
based recurrent neural network architectures for large vocabulary speech
recognition’, CoRR abs/1402.1128.

Schneider, F., Balles, L. and Hennig, P. (2019), DeepOBS: A deep learning
optimizer benchmark suite, in ‘International Conference on Learning
Representations’.

Schneider, F., Dangel, F. and Hennig, P. (2021), ‘Cockpit: A Practical
Debugging Tool for Training Deep Neural Networks’.



BIBLIOGRAPHY 41

Shewalkar, A. (2019), ‘Performance evaluation of deep neural networks applied
to speech recognition: Rnn, lstm and gru’, Journal of Artificial Intelligence
and Soft Computing Research 9(4), 235–245.

Tai, Y., Yang, J. and Liu, X. (2017), Image super-resolution via deep recursive
residual network, in ‘Proceedings of the IEEE conference on computer vision
and pattern recognition’, pp. 3147–3155.

Yao, Z., Gholami, A., Lei, Q., Keutzer, K. and Mahoney, M. W.
(2018), ‘Hessian-based analysis of large batch training and robustness to
adversaries’, arXiv preprint arXiv:1802.08241 .

Yu, Y., Si, X., Hu, C. and Zhang, J. (2019), ‘A review of recurrent
neural networks: Lstm cells and network architectures’, Neural computation
31(7), 1235–1270.

Zagoruyko, S. and Komodakis, N. (2016), ‘Wide residual networks’, arXiv
preprint arXiv:1605.07146 .


	Introduction
	Background on Autodifferentiation
	Thesis Structure
	A Brief Introduction to BackPACK

	Additions to BackPACK
	Complementing Modules for ResNets
	nn.BatchNorm
	nn.AdaptiveAvgPool
	SumModule

	Complementing Modules for RNNs
	nn.RNN
	nn.LSTM
	nn.Embedding
	nn.CrossEntropyLoss
	Permute

	Other Contributions
	Tutorials
	Full Backward Hook
	Allow retain_graph=True


	Converter function: Handling complex architectures
	ResNet: Backpropagation in Graph
	RNNs: Using PyTorch's Modules

	Achievements
	Supported Architectures
	RNNs
	ResNets

	Benchmarks
	Setup
	Tolstoi Char RNN
	Wide ResNet 16-4

	How to Use BackPACK

	Discussion and Outlook
	BackPACK's role and Improvements
	Possible Applications

	Bibliography

