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zur Erlangung eines

Masterabschlusses

(M.Sc. Machine Learning)

vorgelegt von

Jonathan Schmidt

Eberhard Karls Universität Tübingen
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Abstract

Mechanistic models with differential equations are a key component of scientific appli-
cations of machine learning. Recent work in probabilistic numerics has developed a new
class of solvers for ordinary differential equations (ODEs) that phrase the solution process
directly in terms of Bayesian filtering. This work continues this path in three different
directions. Firstly, we show that this allows such methods to be combined very directly,
with conceptual and numerical ease, with latent force models in the ODE itself. It then
becomes possible to perform approximate Bayesian inference on the latent force as well
as the ODE solution in a single, linear complexity pass of an extended Kalman filter /
smoother – that is, at the cost of computing a single ODE solution. Secondly, to extend
the probabilistic treatment to systems that also model spatial interactions, this work
develops a class of probabilistic algorithms for the numerical solution of nonlinear, time-
dependent partial differential equations (PDEs). Current state-of-the-art PDE solvers
treat the space- and time-dimensions separately, serially, and with black-box algorithms,
which obscures the interactions between spatial and temporal approximation errors and
misguides the quantification of the overall error. To fix this issue, we introduce a prob-
abilistic version of a technique called method of lines. The proposed algorithm begins
with a Gaussian process interpretation of finite difference methods, which then interacts
naturally with filtering-based probabilistic ODE solvers. Finally, tackling the computa-
tional efficiency of these methods, we explain the mathematical assumptions and detailed
implementation schemes behind solving high-dimensional ODEs with a probabilistic nu-
merical algorithm. This has not been possible before due to matrix-matrix operations
in each solver step but is crucial for scientifically relevant problems – most importantly,
the solution of discretized PDEs. All presented methods are evaluated on a range of test
problems.
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Kurzfassung

Mechanistische Modelle basierend auf Differentialgleichungen sind wesentlicher Bestand-
teil wissenschaftlicher Anwendungen maschinellen Lernens. Jüngste Arbeiten in pro-
babilistischer Numerik haben eine neue Klasse aus Lösungsverfahren für gewöhnliche
Differentialgleichungen (engl. ordinary differential equations, ODEs) entwickelt, welche
den Lösungsprozess direkt als Bayessches Filter-Problem formulieren. Die vorliegende
Arbeit setzt diesen Weg in drei verschiedene Richtungen fort. Erstens zeigen wir, dass
sich solche Methoden sehr direkt, mit konzeptioneller und numerischer Leichtigkeit, mit
Modellen von latenten Kräften in der ODE selbst kombinieren lassen. Dies ermöglicht ap-
proximative Bayessche Inferenz und die Lösung der ODE in einem einzigen Durchgang
eines erweiterten Kalman Filters / Smoothers mit linearer Komplexität – das heißt,
zu den Kosten der Berechnung einer einzigen ODE-Lösung. Zweitens wird in dieser
Arbeit eine Klasse probabilistischer Algorithmen für die numerische Lösung nichtlinea-
rer, zeitabhängiger partieller Differentialgleichungen (engl. partial differential equation,
PDE) entwickelt, um die probabilistischen Verfahren auf Systeme auszuweiten, die auch
räumliche Interaktionen modellieren. Moderne Lösungsverfahren für PDEs behandeln
die räumliche und zeitliche Dimension separat, seriell und mit undurchsichtigen Algo-
rithmen, was die Interaktionen zwischen räumlichen und zeitlichen Approximationen des
Fehlers verschleiert und die Quantifizierung des insgesamten Fehlers irreleiten. Um dieses
Problem zu beheben, stellen wir eine probabilistische Version der sogenannten Linien-
methode (engl. method of lines, MOL) vor. Der vorgeschlagene Algorithmus beginnt mit
einer Interpretation der Finiten-Differenzen-Methode als einen Gaußschen Prozess, wel-
cher dann auf natürliche Weise mit Filter-basierten probabilistischen Lösungsverfahren
für ODEs interagiert. Abschliessend, um sich der rechnerischen Effizienz dieser Metho-
den anzunehmen, erläutern wir die mathematischen Annahmen und detaillierten Imple-
mentierungsschemata hinter Lösungsverfahren für hochdimensionale ODEs mit einem
probabilistisch-numerischen Algorithmus. Dies war zuvor aufgrund von Matrix-Matrix-
Operationen in jedem Schritt des Lösungsverfahrens nicht möglich, ist jedoch unentbehr-
lich für wissenschaftlich relevante Probleme – allen voran die Lösung von diskretisierten
PDEs. Alle vorgestellten Methoden werden auf einer Reihe von Testproblemen evaluiert.
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1 Introduction

When developing machine learning methods for real-world problems, the question of how
to integrate prior knowledge into a model remains a crucial one. Practitioners are often
faced with a trade-off. On the one hand, the availability of data has been increasing
tremendously due to technical advances in the storage and acquisition of data. This
allows for many data-driven approaches to emerge and techniques to estimate unknown
quantities from observations continue to be developed and refined. On the other hand,
domain experts have to be equipped with a set of tools that allow them to incorporate
their knowledge meaningfully into the system. Since long before the advent of machine
learning, the natural sciences have been describing physical phenomena using differential
equations. Knowledge about a mechanistic system was cast into a set of equations, which
then could be analyzed. In recent years – especially with the continually increasing
availability of computational resources – these mechanistic systems have gained a massive
surge in popularity, especially in the context of machine learning (e.g. (Raissi et al., 2019;
Lu et al., 2021; Li et al., 2021; Chen et al., 2018; Gelbrecht et al., 2021)).

With increasing complexity of the mathematical descriptions of physical phenomena,
it quickly becomes tedious to analyze these systems. Therefore, numerical algorithms
are commonly used to compute the unknown state over time. These methods, however,
come with certain caveats. The more accurate a solution has to be, the more compute
power has to be invested to obtain that solution. However, especially when trying
to save some of that computational effort, numerical algorithms will always entail an
unavoidable numerical error. In the absence of analytical solutions, we acknowledge the
fact that the obtained approximations differ from the truth to some degree. At the same
time, the fact that this error can and should be quantified and provided to practitioners
that rely on numerical methods is often neglected.

This work revolves around probabilistic numerical (PN) (Hennig et al., 2015; Cock-
ayne et al., 2019; Wenger et al., 2021) algorithms for solving differential equations. In
particular, a central concept are probabilistic solvers that are based on Gaussian filtering
(Schober et al., 2019a; Tronarp et al., 2019; Kersting et al., 2020b; Krämer and Hennig,
2020, and more). These algorithms phrase forward simulations of ordinary differential
equations (ODEs) as state estimation in probabilistic state-space models, allowing for
quantification of the numerical error arising from the numerical approximation of the
solution. Section 2.4 will cover the concept in more detail. This work will build on this
concept in mainly three different directions.
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1 Introduction

1.1 Outline

The main part of this manuscript consists of three chapters that each present recent
publications that arose from the work on the present thesis. All of these build on
filtering-based probabilistic solvers for differential equations in different ways and all
aim to take steps towards making probabilistic inference in the context of dynamical
systems more practicable.

Combining multiple sources of information in state-space models Chapter 3
presents Schmidt et al. (2021), which makes use of the fact that filtering-based solvers
phrase forward simulations as probabilistic inference. The state-space model is extended
by additionally incorporating empirical knowledge into the state estimation process. To
mitigate between contradicting sources of information, a latent force is introduced that
acts on the vector field as a time-varying parameter process, adapting the mechanistic
system to fit the observed data. From another perspective, mechanistic knowledge in
the form of differential equations can guide an otherwise data-driven, non-parametric
model, especially in the absence of data, and correct predictions, where data cannot
be trusted as much. All in all, an algorithm is presented, that solves an ODE while
at the same time solving an inverse problem over a latent parameter process in linear
complexity in the number of time steps.

Well-calibrated probabilistic solvers for time-dependent PDEs When consid-
ering not only temporal but also spatial diffusion in a dynamical system, one has to
consider partial differential equations (PDEs). There exist methods to rewrite PDEs
as ODEs by discretizing the involved differential operator that describes spatial inter-
actions. These equations can then be treated by traditional or probabilistic numerical
ODE solvers. In order to provide a PDE solution that meaningfully quantifies numerical
error, it is important to not neglect the discretization of the differential operator. Other-
wise, solutions quickly become overconfident. Chapter 4 presents Krämer et al. (2021b),
which allows for tracking both the temporal and the spatial discretization error, when
solving PDEs with probabilistic ODE solvers.

Are probabilistic ODE solvers practicable in very high dimensions? Espe-
cially regarding the previous paragraph, it is important to raise the issue of computa-
tional efficiency. Even though the probabilistic ODE simulation can be computed at a
linear cost in the number of time steps, it remains cubic in the number of dimensions.
When discretizing a PDE on a large grid, the dimension of the state increases drasti-
cally very quickly. This final main chapter, Chapter 5, presents Krämer et al. (2021a). It
shows how appropriately encoded independence assumptions can speed up probabilistic
ODE solutions significantly. Different levels of simplifying assumptions lead to differ-
ently efficient and stable algorithms, culminating in a formulation of a popular explicit

2



1.1 Outline

probabilistic ODE solver that is also linear in the dimension of the state-space. This
renders the computation of ODE solutions in millions of dimensions possible, which is
necessary when treating discretized PDEs.

Notation

If not otherwise stated, this work will use lowercase letters (a, k, . . . ) for scalars, lowercase
boldface letters (x,v, . . . ) for vectors, and uppercase, boldface letters (A,C, . . . ) for
matrices. For random variables, we use the same convention but with upright letters
(e.g. x for vector-valued random variables).

3



2 Foundations

This chapter gives an overview of relevant foundational topics that are used through-
out this work. Chapters 3 to 5 propose methods that are mostly based on differential
equations models, the solution of which is regarded as a probabilistic numerical infer-
ence problem. Therefore, we introduce differential equations in Section 2.1 and discuss
inference in probabilistic state-space models in Section 2.2, in order to build upon these
foundations when deriving new methods. After briefly elaborating on linear systems
acting on stochastic processes in Section 2.3, Section 2.4 then introduces filtering-based
ODE solvers. Finally, Section 2.5 establishes basic concepts and notation for partial
differential equations. The respective foundational topics are vast fields of research on
their own and we will keep the overview necessarily compact here. Sections 2.1 and 2.3
are largely based on Särkkä and Solin (2019), whereas Section 2.2 closely follows Särkkä
(2013). Section 2.4 is taken from Krämer et al. (2021a) and Section 2.5 is adapted from
the introductory section in Krämer et al. (2021b).

2.1 Ordinary Differential Equations

Formulating mechanistic knowledge in the form of differential equations has been com-
mon practice in the natural sciences for a long time. In many applications – e.g. basic
physical systems like, for instance, a pendulum, planetary motion, the development of
populations of interacting species, the spread of infectious diseases, to name only a few
– one can specify the rate of change of system components that interact with each other,
but the actual quantities are unknown. Solving the differential equation for the unknown
function then possibly yields a concrete trajectory of the system dynamics. To make
these models more generally applicable and more descriptive, the equations are often
parametrized and the parameters can usually be assigned concrete interpretations (like
e.g. the length of the rod of a pendulum or the reproduction rate of a species).

This section will give a brief introduction to ordinary differential equations. We will
begin by defining some basic principles and briefly touch on challenges that arise when
solving more complex systems. Sometimes, we will employ different notations for the

derivative of a function. In general, f (i)(x) ≡ dif(x)
dxi

and for lower-order derivatives we

will sometimes write ẋ ≡ df(x)
dx

, ẍ ≡ d2f(x)
dx2

, and so forth.
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2.1 Ordinary Differential Equations

2.1.1 Definitions

An ordinary differential equation (ODE) is an equation of the form

x(ν)(t) = f(t, x(t), x(1)(t), . . . , x(ν−1)(t)), (2.1)

where the function x(t) is the unknown quantity to solve for, i.e. the solution of the
ODE. The function f is called the vector field and describes the dynamics of the system
that the ODE defines. The ODE in Equation (2.1) is of order ν, since ν is the highest-
order derivative that occurs in the equation. It is often possible to rewrite ODEs of
higher order as first-order ODEs by stacking the solution and the first ν − 1 derivatives
into a state vector. We write Equation (2.1) in state-space form as

d

dt


x(t)
x(1)(t)

...
x(ν−1)(t)


︸ ︷︷ ︸

state x(t)

=


x(1)(t)

...
x(ν−1)(t)

f(t, x(t), x(1)(t), . . . , x(ν−1)(t))

 . (2.2)

Example 1. ODE model for a pendulum with a rod of length L.

d

dt
θ(t) =

d

dt

(
θ(t)

θ̇(t)

)
=

(
θ̇

−µθ̇ − ( g
L

sin(θ)

)
. (2.3)

µ is a “resistance” parameter (air resistance, friction, etc.) and g ≈ 9.81 denotes the
gravity of Earth.

We will in the remainder of this work often write first-order ODEs, using bold-faced
notation for the state vector x(t), when talking about general ODEs.

Before elaborating on how to solve ODEs it is useful to first introduce the following
setup. Let

d

dt
x(t) = f(t,x(t)), x(t0) = x0, (2.4)

be an initial value problem (IVP) with a general vector field f . We consider the solution
of the IVP on a bounded time interval [t0, tmax]. Specifying initial conditions x(t0) = x0

pins down the starting point of the solution. If no such conditions are provided, the
ODE solution is only defined up to a set of additive constants. This is called the general
solution (Särkkä and Solin, 2019). It is also possible to specify terminal conditions
x(tmax), which gives a boundary value problem (BVP). Solving BVPs differs from solving
IVPs in many regards, and is out of scope for this work.

Even with given initial conditions, for general f it is not clear whether a solution
of Equation (2.4) exists and – if it exists – whether or not it is unique. Besides the
considered time interval and the initial conditions, the existence of a (unique) solution

5



2 Foundations
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Figure 2.1: Solving the same ODE with different initial conditions. Depicted are
two solutions of a pendulum ODE in state space (see Example 1). The directions (arrows)
and magnitudes (color) of the derivatives defined by the vector field f are shown in the
background. Depending on the initial value, the solutions can look completely differently.

depends largely on the vector field f . By integrating both sides of Equation (2.4) from
t0 to t, we obtain

x(t) = x0 +

∫ t

t0

f(τ,x(τ)) dτ. (2.5)

The appearance of the solution itself inside the vector field makes this problem extremely
hard and already suggests that only specific (categories of) ODEs are analytically solv-
able at all.

By the Picard-Lindelöf theorem, a unique solution of Equation (2.4) exists if the limit

lim
n→∞

ϕn(t) = x(t), (2.6)

exists, where ϕi(t), i = 1, 2, . . . are given by the Picard iteration

ϕ0(t) = x0

ϕi(t) = x0 +

∫ t

t0

f(τ,ϕi−1(τ)) dτ.
(2.7)

One can show that the Picard iteration converges to the unique solution (Equation (2.6))
if the vector field f(t,x(t)) is continuous in both arguments and Lipschitz-continuous in
the second argument (Särkkä and Solin, 2019).

We will now touch on an important category of ODEs, which will play a crucial role
throughout this work.
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2.1 Ordinary Differential Equations

2.1.2 Linear ODEs

An ODE is linear if the vector field is a linear combination of the involved derivatives,
i.e.

x(ν)(t) =

[
ν−1∑
q=0

aq(t)x
(q)(t)

]
+ b(t)u(t),

x(q)(t0) = x
(q)
0 , q = 0, . . . , ν − 1,

(2.8)

where u(t) is some input into the system that is independent of the derivatives. We
will proceed by writing these equations in state-space form, as well. For that, define the
companion matrix A and the matrix B

A(t) =


0 1 0 · · · 0
...

. . . 1
. . .

...
... · · · . . . . . . 0
0 · · · · · · · · · 1

a0(t) a1(t) · · · · · · aν−1(t)

 , B(t) =


0
...
...
0
b(t)

 (2.9)

We will call the matrices A and B system matrices. Equation (2.8) in state-space form
becomes

d

dt
x(t) = A(t)x(t) +B(t)u(t), x(t0) = x0 (2.10)

In order to write down a solution for this kind of ODE, we first define the transition
matrix Φ(t, s) of the ODE that has to fulfill the following properties:

∂

∂t
Φ(t, s) = A(t)Φ(t, s), (2.11)

∂

∂s
Φ(t, s) = −Φ(t, s)A(s), (2.12)

Φ(t, s) = Φ(t, τ)Φ(τ, s), (2.13)

Φ(t, s) = Φ−1(s, t), (2.14)

Φ(t, t) = I. (2.15)

In what Särkkä and Solin (2019) calls the integrating factor method, Equation (2.10)
is rearranged and multiplied with the transition matrix Φ(t0, t) to obtain

Φ(t0, t)
d

dt
x(t)−Φ(t0, t)A(t)x(t) = Φ(t0, t)B(t)u(t),

⇔ Φ(t0, t)
d

dt
x(t) +

∂

∂t
Φ(t0, t)x(t) = Φ(t0, t)B(t)u(t),

⇔ ∂

∂t
[Φ(t0, t)x(t)] = Φ(t0, t)B(t)u(t).

(2.16)

7



2 Foundations

The first step uses Equation (2.12). The final step uses the product rule for derivatives
“backward”.

Integrating both sides from t0 to t yields∫ t

t0

∂

∂τ
[Φ(t0, τ)x(τ)] dτ =

∫ t

t0

Φ(t0, τ)B(τ)u(τ) dτ,

⇔ Φ(t0, t)x(t)−Φ(t0, t0)︸ ︷︷ ︸
=I

x(t0) =

∫ t

t0

Φ(t0, τ)B(τ)u(τ) dτ,

⇔ Φ(t0, t)x(t) = x(t0) +

∫ t

t0

Φ(t0, τ)B(τ)u(τ) dτ,

⇔ x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, t0)Φ(t0, τ)B(τ)u(τ) dτ,

⇔ x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ.

(2.17)

Remark 2. A linear ODE with input u(t) implicitly defines a linear (to be precise:
affine) operator acting on u(t).

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ︸ ︷︷ ︸
linear mapping of u(t)

,

=: Sx0 [u] (t)

(2.18)

In most cases, the transition matrix has no known, closed-form expression. If this were
possible, linear ODEs could be solved analytically. It turns out that for constant system
matrices A and B there exists a general expression for the transition matrix, which
makes this class of differential equations quite interesting to study. In later chapters,
linear time-invariant systems will play a crucial role.

Linear Time Invariant ODEs

An ODE is linear and time-invariant (LTI) if it is linear and the system matrices are
constant over time, i.e.

d

dt
x(t) = Ax(t) +Bu(t). (2.19)
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2.1 Ordinary Differential Equations

Discarding the input Bu(t) for now, we insert this equation into the Picard iteration
from Equation (2.7). The explicit recursion becomes

ϕ0(t) = x0,

ϕ1(t) = x0 +

∫ t

t0

Ax0 dτ = x0 +A(t− t0)x0,

ϕ2(t) = x0 +

∫ t

t0

A (x0 +A(τ − t0)x0) dτ = x0 +A(t− t0)x0 +
(A(t− t0))2

2
x0,

...

ϕN(t) =

(
N∑
k=0

(A(t− t0))k

k!

)
x0.

(2.20)
The infinite recursion N →∞ is given by the matrix exponential

exp(A) =
∞∑
k=0

Ak

k!
. (2.21)

In particular, for LTI ODEs, the transition matrix Φ(t, s) is given by exp (A(t− s)),
and thus the solution of Equation (2.19) is

x(t) = exp (A(t− t0))x(t0) +

∫ t

t0

exp (A(t− τ))Bu(τ) dτ. (2.22)

The matrix exponential can be computed efficiently in many mathematical software
frameworks. This makes linear, time-invariant ODEs quite practicable. However, this
comes with the obvious limitation that dealing with LTI models is often insufficient when
studying physical systems in reality. When it comes to more complex systems, we have
to consider a different palette of tools, that of iterative, numerical algorithms.

2.1.3 Numerical Solutions of ODEs

In practice, it is often required to consider complex vector fields that describe ODEs
that do not have an analytical solution. Let

d

dt
x(t) = f(t,x(t)), x(t0) = x0 (2.23)

9



2 Foundations

be an IVP with a general (possibly nonlinear) vector field f and let ∆t > 0 be a small
time increment. Integrating both sides from t to t+ ∆t yields

x(t+ ∆t) = x(t) +

∫ t+∆t

t

f(τ,x(τ)) dτ. (2.24)

Assuming that we can compute the integral, it is possible to compute the ODE solution
at a discrete set of points T := (t1, . . . , tn). Unfortunately, in most cases, it is not known
how to compute the integral. Instead, numerical ODE solvers approximate the integral,
where the kind of approximation varies between different methods.

The arguably most simple method is to approximate∫ t+∆t

t

f(τ,x(τ)) dτ ≈ ∆t · f(t,x(t)), (2.25)

which is called explicit (or forward) Euler method (e.g., Särkkä and Solin, 2019). The
numerical ODE solution x̂(ti), where ti ∈ T, can then be computed as

x̂(ti) = x̂(ti−1) + ∆t · f(t, x̂(ti−1)), i = 1, . . . , n, (2.26)

starting at x̂(t0) = x0.

Remark 3. The time grid T does not have to be equispaced. If it is, the step size
∆t = ti − ti−1, i = 1, . . . , n is constant. There exist algorithms that choose the step
size adaptively based on (local) error estimates of the numerical ODE solution (Hairer
et al., 1993), in which the time grid is chosen while solving the ODE. Explicit Euler with
adaptive steps would then be written as

x̂(ti) = x̂(ti−1) + (∆t)i−1 · f(t, x̂(ti−1)), i = 1, . . . , n, (2.27)

which we omit for notational simplicity.

Due to its crude approximation, explicit Euler is not very practical for complex, real-
world problems. The step size has to be chosen extremely small in order to obtain rea-
sonable numerical ODE solutions, which leads to very expensive computations. In order
to decrease computational cost, there exist more elaborate algorithms that use more
complex approximations to the integral in Equation (2.24). This way, the computations
per step get slightly more complex while the number of steps needed to obtain good nu-
merical solutions decreases significantly. A popular example is the class of Runge-Kutta
methods (e.g., Hairer et al., 1993), which approximate the integral in Equation (2.24) by
a quadrature rule. The integration interval is partitioned into a number of intermediate
steps x̃1, . . . , x̃K at which the quadrature nodes and weights are chosen. For instance,
the fourth-order Runge-Kutta method (often abbreviated RK4) computes the solution
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2.1 Ordinary Differential Equations

steps as

x̃1 = x̂(ti−1), (2.28)

x̃2 = x̂(ti−1) +
∆t

2
f(ti−1, x̃1), (2.29)

x̃3 = x̂(ti−1) +
∆t

2
f(ti−1 +

∆t

2
, x̃2), (2.30)

x̃4 = x̂(ti−1) + ∆tf(ti−1 + ∆t, x̃3), (2.31)

x̂(ti) = x̂(ti−1),

+
∆t

6

(
f(ti−1, x̃1) + 2f(ti−1 +

∆t

2
, x̃2) + 2f(ti−1 +

∆t

2
, x̃3) + f(t+ ∆t, x̃4)

)
.

(2.32)

The range of numerical methods for ODEs is large and different algorithms suggest
themselves for different use cases. For the sake of brevity, the class of implicit methods
has not been addressed at all, here. The reader is referred to, e.g. , Wanner and Hairer
(1996) for more details. Large parts of this work will revolve around numerical algorithms
for solving differential equations systems. Numerical computations take on the task of
approximating an unknown quantity – in this case, an unknown function – which entails
an unavoidable error. Section 2.4 will introduce a probabilistic numerical method for
the solution of ODEs, which acknowledges this error and yields a posterior probability
distribution over every possible ODE solution under the assumed model.

2.1.4 The SIRD Model

This section introduces a specific mechanistic model that is based on a system of ODEs
and can be used to model the spread of an infectious disease within a population.
The SIRD model (e.g., Hethcote, 2000) formulates the transitions between susceptible,
infectious, recovered, and deceased people as

dS(t)

dt
= −β(t)S(t)I(t)

P
,

dI(t)

dt
=
β(t)S(t)I(t)

P
− γ(t)I(t)− η(t)I(t),

dR(t)

dt
= γ(t)I(t),

dD(t)

dt
= η(t)I(t),

(2.33)

governed by contact rate β(t) : [t0, tmax] → [0, 1], recovery rate γ(t) : [t0, tmax] → [0, 1],
and mortality rate η(t) : [t0, tmax]→ [0, 1] (Figure 2.2). S, I, R, and D evolve over time,
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2 Foundations

but the total population P (as the sum of the compartments) is assumed to remain
constant. This model will serve as an interesting showcase for experiments in later
sections. We thereby explicitly allow the parameters to be functions of time instead of
being constant over time, as is also often encountered in the literature. Chapter 3 will
evaluate a method that infers a latent force that represents time-varying ODE parameters
on an SIRD model modeling the COVID-19 pandemic.

Susceptible Infectious

Recovered

Deceased

β

γ

η

0 10 20 30 40 50 60 70 80

t

0

200

400

600

800

1000

x(
t)

S(t)

I (t)

R(t)

D(t)

Figure 2.2: The SIRD model. On the left side, the transition of individuals between
the compartments is depicted as a flow chart. The plot on the right shows the numerical
solution (RK4) of an exemplary SIRD ODE with constant parameters β(t) = 0.35, γ(t) =
0.07, η(t) = 0.0075 and a population of P = 1000.

2.2 Probabilistic Inference in State-Space Models

This section considers a commonly occurring setup in which one aims to estimate an
unknown state of a temporal process based on measurements thereof. We will approach
this problem solely from a Bayesian viewpoint, deriving general equations for Bayesian
filtering. The contents are mostly based on Särkkä (2013), to which the reader is referred
for more detailed derivations.

The overarching goal is to infer a posterior probability distribution of the form

p(x(t) | Y(τ)), (2.34)

where x(t) ∈ Rd is the unknown state at time t, and Y(τ) – roughly speaking – denotes
a history of observations (y(ti))

N
i=0, y(ti) ∈ Rk related to the state x up until the time

point τ . Depending on the time points t and τ , one can formulate mainly three different
goals:

1. t > τ : Prediction. Based on a history of observations, predict the future trajectory
of the state x.

2. t = τ : Filtering. Estimate the current state of x based on past observations.

3. t ≤ τ : Smoothing. Having available a trajectory of observations over the entire
considered time interval, estimate the state x on this interval.

12



2.2 Probabilistic Inference in State-Space Models

As before, let T = (t0, . . . , tN) denote a discrete set of time points. We will in the
following simplify the notation in the sense that a sequence of states or observations at
a consecutive sub-sequence of T will be denoted via a subscript of the form

xk = x(tk)

yk:l = (y(tk),y(tk+1), . . . ,y(tl−1),y(tl)) , for 1 ≤ k < l ≤ N.
(2.35)

In the following we will set up a probabilistic state-space model, defining dynamics of
the latent process and a measurement model under which said process is assumed to be
observed.

2.2.1 Probabilistic State-Space Models

In the Bayesian sense, we begin by defining a prior belief over the unknown quantity.
Concretely, let

p(xn | xn−1) (2.36)

denote the transition density, i.e. the stochastic dynamics of the latent process of interest.
Since Equation (2.36) formalizes our belief of how the latent process x unfolds over time,
it is also commonly called the dynamics model. It will turn out useful to consider only
dynamics models of the form of Equation (2.36), in which the distribution over a state
solely depends on the previous state. These processes are called Markovian, since they
fulfill the Markov property

p(xn | x0:n−1) = p(xn | xn−1). (2.37)

In general, we will use the term “Markov” as a short form for “first-order Markov”.

We proceed by defining a measurement model under which the latent process is as-
sumed to be observed, as

p(yn | xn). (2.38)

Together, Equations (2.36) and (2.38) define a probabilistic state-space model, for which

x0 . . . xi . . . xj . . .. . . xN

yi yj yN

Figure 2.3: Graphical model of the described probabilistic state-space model.
The Markov property can be read off from the chain-structure in x0:N .

a graphical model is provided in Figure 2.3. Besides the Markov property, from this
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model one can also read off the following properties:

p(xn | x0:n−1,y0:n−1) = p(xn | xn−1), (2.39)

p(xn | xn+1:N ,yn+1:N) = p(xn | xn+1), (2.40)

p(yn | x0:n,y0:n−1) = p(yn | xn). (2.41)

2.2.2 Bayesian Filtering and Smoothing

In order to compute the posterior from Equation (2.34), one could apply Bayes’ rule
using the state-space model equations. However, the posterior

p(x0:N | y0:N) =
p(y0:N) | x0:N)p(x0:N)

p(y0:N)
(2.42)

is in general intractable to compute. This section will derive a recursive formula that
makes use of the Markov property and the properties from Equations (2.39) to (2.41) in
order to compute the filtering posterior in an online fashion, at linear cost in the number
of data points.

General Bayesian Filtering Equations

The Bayesian filtering recursion can be split into two different steps: (i) the one-step-
ahead prediction and (ii) the measurement and correction (often: update) step. Let the
filtering distribution p(xn | y1:n) at time point tn be known. Then the prediction step
is computed as

p(xn+1 | y1:n) =

∫
p(xn+1,xn | y1:n) dxn (2.43)

=

∫
p(xn+1 | xn,y1:n)p(xn | y1:n) dxn (2.44)

=

∫
p(xn+1 | xn)︸ ︷︷ ︸
dynamics model

p(xn | y1:n)︸ ︷︷ ︸
filtering distribution

dxn. (2.45)

The prediction step can thus be computed as an integral involving only the transition
distribution (c.f. Equation (2.36)) and the filtering distribution at time tn, which we
assumed to be known. Equation (2.45) is known as the Chapman-Kolmogorov Equation.
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2.2 Probabilistic Inference in State-Space Models

Algorithm 1 Compute the Bayesian filtering posterior

Input: measurements y1:N , time grid (t0, . . . , tN).
Output: Filtering distribution p(xN | y1:N)
Initialize p(x0)
for n = 0, . . . , N − 1 do

Predict p(xn+1 | y1:n) =
∫
p(xn+1 | xn)p(xn | y1:n) dxn

Measure and correct p(xn+1 | y1:n+1) ∝ p(xn+1 | y1:n)p(yn+1 | xn+1)
(Normalize using Equation (2.49).

end for

The update step is then computed as

p(xn+1 | y1:n+1) = p(xn+1 | y1:n,yn+1) (2.46)

∝ p(xn+1 | y1:n)p(yn+1 | xn+1,y1:n) (2.47)

= p(xn+1 | y1:n)︸ ︷︷ ︸
prediction

p(yn+1 | xn+1)︸ ︷︷ ︸
measurement model

(2.48)

From Equation (2.46) to Equation (2.47), Bayes’ rule was applied, neglecting a normal-
ization factor that is required to obtain a valid posterior and can be computed as∫

p(xn+1 | y1:n)p(yn+1 | xn+1) dxn+1. (2.49)

In order to compute the filtering distribution, the update step uses only the prediction
step from Equation (2.45) and the measurement model (c.f. Equation (2.38)).

Algorithm 1 summarizes the Bayesian filtering algorithm in pseudocode.

Filtering in Linear Gaussian State-Space Models

Computing the normalized filtering posterior still involves complicated integrals in every
step of the filtering algorithm. For general prior measures and likelihood functions, this
is unavoidable. However, choosing linear Gaussian dynamics and measurements that
are assumed to be corrupted by additive Gaussian i.i.d. noise, turns every step into
closed-form Gaussian inference. This makes the algorithm computational very efficient.

Concretely, the following state-space model puts Equations (2.36) and (2.38) in con-
crete terms, by specifying linear Gaussian transitions and measurements as

xn ∼ N (Φn−1xn−1,Qn−1) , (2.50)

yn ∼ N (Hnxn,Rn) , (2.51)

for transition matrix Φn−1 ∈ Rd×d and process noise covariance Qn−1 ∈ Rd×d at time
tn−1, as well as measurement matrix Hn ∈ Rk×d and measurement noise covariance
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Rn ∈ Rk×k at time tn. The following derivations do work for more general, affine
transformations, which is neglected here to simplify notation. Due to Gaussians being
closed under multiplication, this setup preserves the possibility to operate purely on
Gaussians, which simplifies computation drastically. In particular, every step of the
filtering procedure can be carried out in closed form, using only linear algebra operations.

Letmn ∈ Rd andCn ∈ Rd×d denote mean vector and covariance matrix of the filtering
distribution at time point tn. We derive the moments of the Gaussian filtering distri-
bution at the subsequent step by substituting the general distributions in the Bayesian
filtering equations by Gaussians: For the prediction step we obtain

p(xn+1 | y1:n) =

∫
p(xn+1 | xn)p(xn | y1:n) dxn (2.52)

=

∫
N (xn+1; Φnxn,Qn)N (xn;mn,Cn) dxn (2.53)

=

∫
N
((

xn
xn+1

)
;

(
mn

Φnmn

)
,

(
Cn CnΦ

>
n

ΦnCn ΦnCnΦ
>
n +Qn

))
dxn (2.54)

= N
(
xn+1; Φnmn,ΦnCnΦ

>
n +Qn

)
(2.55)

=: N
(
xn+1;m−n+1,C

−
n+1

)
, (2.56)

where the joint distribution of Gaussian random variables and closed-form Gaussian
marginalization were used. The final step defines m−n+1 ∈ Rd and C−n+1 ∈ Rd×d as
the predicted mean and covariance at time point tn+1. The prediction distribution
is Gaussian, whereby mean and covariance are computed solely by linear and affine
transformations of the previous filtering moments.

For the update step, closed-form Gaussian inference can be used to obtain

p(xn+1 | y1:n) = N
(
xn+1;m−n+1,C

−
n+1

)
, (2.57)

p(yn+1 | xn+1,y1:n) = p(yn+1 | xn+1) = N (yn;Hn+1xn+1,Rn+1) , (2.58)

p(xn+1 | y1:n+1) = N (xn+1;mn+1,Cn+1) , (2.59)

where

mn+1 = m−n+1 +C−n+1H
>
n+1

(
Hn+1C

−
n+1H

>
n+1 +Rn+1

)−1 (
yn+1 −Hn+1m

−
n+1

)
,

(2.60)

Cn+1 = C−n+1 −C−n+1H
>
n+1

(
Hn+1C

−
n+1H

>
n+1 +Rn+1

)−1
Hn+1C

−
n+1. (2.61)

Equations (2.52) to (2.56) and Equations (2.57) to (2.61) give the Kalman filter equa-
tions, which combine the Bayesian filtering equations for linear Gaussian state-space
models. It is worth stressing that in this setting, all distributions remain Gaussian and
all operations are based on matrix-matrix and matrix-vector multiplication and addi-
tion. Both allow for simple and efficient implementation and hence render state-space
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Algorithm 2 Kalman filter

Input: measurements y1:N , time grid (t0, . . . , tN), initial filtering moments m0,C0.

Output: Filtering distributions
(
p(xi | y1:i) = N (xi;mi,Ci)

)N
i=1

Initialize N (x0;m0,C0)
for n = 0, . . . , N − 1 do

Predict

m−n+1 = Φnmn, (2.62)

C−n+1 = ΦnCnΦ
>
n +Qn. (2.63)

Measure and correct

rn+1 = yn+1 −Hn+1m
−
n+1, (2.64)

Sn+1 = Hn+1C
−
n+1H

>
n+1 +Rn+1, (2.65)

Kn+1 = C−n+1H
>
n+1S

−1
n+1, (2.66)

mn+1 = m−n+1 +Kn+1rn+1, (2.67)

Cn+1 = C−n+1 −Kn+1Sn+1K
>
n+1. (2.68)

p(xn+1 | y1:n+1) = N (mn+1,Cn+1)
end for

inference feasible even for many data points. Replacing the equations of Algorithm 1
accordingly yields the Kalman filter algorithm (Kalman, 1960) that is summarized in
Algorithm 2.

Remark 4. At every time point, the filtering distribution only contains data information
from past and present measurements. After having computed the filtering posterior it is
possible to obtain the smoothing posterior by carrying out another linear-time backward
pass. This posterior then incorporates the information from the entire set of measure-
ments at every time point. The smoothing-counterpart to the Kalman filter is called
Rauch-Tung-Striebel smoother and is defined as a backward recursion starting at the
final time step tN , at which the smoothing moments ξN = mN and ΛN = CN coincide
with the filtering moments. The equations are given as (Särkkä, 2013)

Gn−1 = Cn−1Φ
>
n−1 [Cn]−1 , (2.69)

ξn−1 = mn−1 +Gn−1

(
ξn −m−n

)
, (2.70)

Λn−1 = Cn−1 +Gn−1

(
Λn −C−n

)
G>n−1. (2.71)
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Filtering in Nonlinear Gaussian State-Space Models

In practice, it is often interesting to consider more general, nonlinear transitions. This
turns the state-space model defined in Equations (2.50) and (2.51) into

xn ∼ N (ϕ(xn−1),Qn−1) , (2.72)

yn ∼ N (h(xn),Rn) , (2.73)

for some transition function ϕ : Rd → Rd and measurement function h : Rd → Rk. While
this setting is interesting in much more general applications, it does not immediately
allow for efficient closed-form inference, as seen above.

The arguably most simple mitigation to this issue is to approximate the nonlinearities
by a first-order Taylor approximation, linearizing at the predicted mean, which yields
a linear Gaussian model again and standard Kalman filtering can be applied. This
procedure is known as the extended Kalman filter (EKF) (Jazwinski, 1970; Maybeck,
1982) and is summarized by the following equations (c.f. Equations (2.62) to (2.68))

m−n+1 = ϕ(mn), (2.74)

C−n+1 = [Dϕ(mn)]Cn [Dϕ(mn)]> +Qn, (2.75)

rn+1 = yn+1 − h(m−n+1), (2.76)

Sn+1 =
[
Dh(m−n+1)

]
C−n+1

[
Dh(m−n+1)

]>
+Rn+1, (2.77)

Kn+1 = C−n+1

[
Dh(m−n+1)

]>
S−1
n+1, (2.78)

mn+1 = m−n+1 +Kn+1rn+1, (2.79)

Cn+1 = C−n+1 −Kn+1Sn+1K
>
n+1, (2.80)

where for a general function f we let [Df(x)] denote the Jacobian matrix of f evaluated
at x. Plugging Equations (2.74) to (2.80) into Algorithm 2 yields the EKF algorithm.
The EKF is categorized under approximate Gaussian filtering algorithms, which consist
of further methods, as, for instance, the unscented Kalman filter (UKF) (Wan and Van
Der Merwe, 2000; Julier and Uhlmann, 2004). Another class of methods that can be
applied to the present setting are sequential Monte Carlo methods (Naesseth et al., 2019),
which are not restricted to Gaussian distributions, but hence are significantly more costly
to compute. This chapter refrains from going into detail about these and more available
inference algorithms since they are not relevant for the remainder of this work. For
details and a more exhaustive record of techniques for (approximate) state-space model
inference, we refer to Särkkä (2013).
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2.3 Linear Systems with Stochastic Input

This section takes up Section 2.1 in that it introduces linear systems in which we replace
the input u(t) by a stochastic process. Besides being interesting for modeling unknown
forces acting on a mechanistic system, this class of models will turn out to be useful
for efficient Gaussian approximations of ODE solutions in later sections. The contents
closely follow parts of Särkkä and Solin (2019).

2.3.1 Definitions

Definition 5. Let m : T → R be any function, k : T × T → R be a Mercer kernel
(Rasmussen and Williams, 2006). A Gaussian process x ∼ GP (m, k) is a stochastic
process such that every evaluation on a finite set of points t1:n = (t1, . . . , tn) ⊂ T is a
(multivariate) Gaussian distributed random variable x(t1:n) ∼ N (m(t1:n), k(t1:n, t1:n))

Definition 6. A Gaussian white noise process ẇ(t) on Rd fulfills the following properties

1. For time points t 6= t′, ẇ(t) and ẇ(t′) are independent.

2. The mapping t→ ẇ(t) is a Gaussian process with moments

E [ẇ(t)] = 0, (2.81)

C [ẇ(t), ẇ(t′)] = E
[
ẇ(t)ẇ>(t′)

]
= δ(t− t′)Γ, (2.82)

where δ denotes the Dirac delta and Γ is the spectral density of the white noise
process (Särkkä and Solin, 2019).

We proceed by introducing stochastic differential equations (SDEs),

d

dt
x(t) = f(t,x(t)) +B(t,x(t))ẇ(t), (2.83)

subject to Gaussian initial conditions

x(t0) ∼ N (m0,C0) , (2.84)

where the input ẇ(t) is a white noise process. Independence between x(t0) and ẇ is
always assumed.

Treatment of equations akin to Equation (2.83) differs fundamentally from ODEs with
deterministic input. Most of the solution theory discussed in Section 2.1 is not applicable
when it comes to SDEs, since the right-hand side is not continuous anymore due to the
white noise input. In order to properly work with SDEs, we first rewrite Equation (2.83)
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as an integral equation. Integrating both sides from t0 to t gives

x(t)− x(t0) =

∫ t

t0

f(τ,x(τ)) dτ +

∫ t

t0

B(τ,x(τ))ẇ(τ) dτ. (2.85)

The right integral cannot be defined as a Riemann integral, since the white noise process
under the integral is unbounded (Särkkä and Solin, 2019). Instead, it is commonly
considered to be an Itô integral. Inside the Itô integral, we replace the increment ẇ(t) dt
by a Brownian motion dw(t).

Definition 7. A Wiener process, or Brownian motion, w(t) is a continuous stochastic
process on Rd that fulfills the following properties:

1. For any 0 ≤ t1 < t2, the increment over the interval [t1, t2] is a zero-mean Gaussian
random variable

w(t2)−w(t1) ∼ N (0,Γ · |t2 − t1|),

where Γ is the diffusion matrix of the Brownian motion.

2. If 0 ≤ t1 < t2 < · · · < tn < ∞, then the increments w(tm)−w(tm−1), 1 ≤ m ≤ n
are mutually independent.

3. The process starts at the origin: w(0) = 0.

Rewriting the equation in differential form then yields

dx(t) = f(t,x(t)) dt+B(t,x(t)) dw(t). (2.86)

2.3.2 LTI SDEs and Gauss–Markov Processes

In this work, we solely consider linear time-invariant stochastic differential equations
(LTI SDEs) (Øksendal, 2003; Särkkä and Solin, 2019). Similar to Equation (2.19), they
take on the form

dx(t) = Ax(t) dt+B dw(t), x(t0) ∼ N (m0,C0), (2.87)

where the system matrices A and B are constant. A and B are often called the drift
matrix and the dispersion matrix, respectively.

From Remark 2 we know that the differential equation defines a linear operator acting
on its input. Since GPs are closed under linear operators (Rasmussen and Williams,
2006) and the input is a Wiener process (and thus, a GP), we know that the solution
of every linear SDE is a Gaussian process. Furthermore, it turns out that the solution
of Itô SDEs are GPs with the Markov property (Särkkä and Solin, 2019). We call these
processes Gauss–Markov processes. Examples include the Matérn, integrated Ornstein-
Uhlenbeck, and integrated Wiener processes. Gauss–Markov processes are particularly
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interesting since they imply a Gaussian transition density of the form

p(x(t) | x(s)) = N (x(t); Φ(t, s)x(s),Q(t, s)) , (2.88)

where the process noise covariance matrix Q(t, s) is given by

Q(t, s) =

∫ t

s

Φ(t, τ)BB>Φ>(t, τ) dτ (2.89)

This property of linear SDEs is extremely useful, since Equations (2.88) and (2.89) show
that they can be rewritten as a discrete transition model, which allows for efficient
state estimations. In particular, choosing Equation (2.87) as a prior over a latent pro-
cess, we can write down a probabilistic state-space model that has exactly the form of
Equations (2.50) and (2.51).

For LTI SDEs, the moments of the transition density are available in closed form
and can be computed for instance with matrix fraction decomposition (Stengel, 1994;
Axelsson and Gustafsson, 2015). Concretely, consider the solution to

∂

∂t
Ψ(t, s) =

(
A(t) B(t)B(t)>

0 −A(t)>

)
Ψ(t, s), Ψ(t, t) = I. (2.90)

Then

Φ(t, s) = Ψ11(t, s), (2.91)

Q(t, s) = Ψ12(t, s)Φ>(t, s). (2.92)

As we here only consider the time-invariant case, the solution Ψ(t, s) can be computed
with the matrix exponential as

Ψ(t, s) = Ψ(t− s) = exp

[(
A BB>

0 −A>
)

(t− s)
]
, (2.93)

and the moments of the transition density can be read off according to Equations (2.91)
and (2.92). Should the transition density only depend on the difference between the
time points, we will continue to write Φ(t− s) and Q(t− s), respectively.

2.4 Probabilistic ODE Solvers

Section 2.1.3 explained how to numerically solve complex ODEs that do not have a
known analytical solution. Thereby, we noticed that choosing a discrete time grid and
the approximation of the integral from one time point to the next (Equation (2.24))
introduces a numerical error. Even though it is possible to reduce this error by choosing
very small step sizes and elaborate approximations to the integral, it is never possible
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to avoid the error on a finite-precision computer with finite computation time. Proba-
bilistic numerics (PN) (Hennig et al., 2015; Cockayne et al., 2019; Wenger et al., 2021)
concerns itself with quantifying these computational errors by phrasing computation as
probabilistic inference. In this sense, probabilistic ODE solvers do not yield a trajectory
that approximates the ODE solution with a point estimate, but instead return a poste-
rior distribution over the solution, as shown in Figure 2.4. With Gaussian filtering (see
Section 2.2) we availed ourselves of a language in which to phrase the computation of
ODE solutions as probabilistic inference. This section sets up filtering-based probabilis-
tic ODE solvers (“ODE filters”) (Schober et al., 2019a; Tronarp et al., 2019; Kersting
et al., 2020b; Tronarp et al., 2021; Bosch et al., 2021; Krämer and Hennig, 2020).
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Figure 2.4: Probabilistic ODE solution of the Lotka-Volterra model (Lotka, 1978),
describing the interaction between the populations of two species (predator u(t) and prey
v(t)) over time. The shaded areas depict the respective 90% confidence interval and the
thin black lines are samples from the posterior solution. The example is adapted from the
documentation of the ProbNum library (Wenger et al., 2021).

2.4.1 Prior Model

The following is common for ODE filters and parallels the presentation by e.g. Schober
et al. (2019a).

Stochastic process prior on the ODE solution Let x := (xi)di=1 = (xi0, . . . ,x
i
ν)
d
i=1

solve the LTI SDE

dx(t) = Ax(t) dt+B dw(t), (2.94)

subject to Gaussian initial conditions

x(t0) ∼ N (m0,C0) (2.95)
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for some m0 and C0 := Γ⊗ C̆0. The SDE is driven by a d-dimensional Wiener process
w with diffusion Γ ∈ Rd×d and governed by the system matrices

A := Id ⊗ Ă, Ă :=
ν−1∑
q=0

eqe
>
q+1, B := Id ⊗ eν , (2.96)

where eq ∈ Rν+1 is the q-th basis vector. The zeroth component of x, (xi0)di=1, is an
integrated Wiener process. With such A and B, the q-th component (xiq)

d
i=1 models the

q-th derivative of the integrated Wiener process. The canonical prior process for prob-
abilistic ODE solvers are integrated Wiener processes (Schober et al., 2019b; Tronarp
et al., 2019; Bosch et al., 2021; Krämer and Hennig, 2020). Similar SDEs can be written
down for, e.g., the integrated Ornstein-Uhlenbeck process or the Matérn process (the
only differences would be additional non-zero entries in A). If Γ were diagonal, the
Kronecker structure in A and B would imply prior pairwise independence between xi

and xj, i 6= j.

Discretization Let T = (t0, ..., tN) be some time-grid with step-size hn := tn+1 − tn.
While for the presentation, we assume a fixed grid, practical implementations choose tn
adaptively. Reduced to T, due to the Markov property, the process x becomes

x(tn+1) | x(tn) ∼ N (Φ(hn)xn,Q(hn)) (2.97)

for matrices Φ(hn) and Q(hn), which are defined as

Φ(hn) = exp(Ahn), (2.98a)

Q(hn) =

∫ hn

0

Φ(hn − τ)BΓB>Φ(hn − τ)> dτ. (2.98b)

The definition of Φ(hn) uses the matrix exponential. Φ(hn) inherits the block diagonal
structure from A,

Φ := Id ⊗ Φ̆(hn), Φ̆(hn) = exp(Ăhn), (2.99)

and Q has a Kronecker factorization similar to C0,

Q(hn) := Γ⊗ Q̆(hn), (2.100a)

Q̆(hn) :=

∫ hn

0

Φ̆(hn − τ)eνe
>
ν Φ̆(hn − τ)> dτ. (2.100b)

23



2 Foundations

As detailed in Section 2.3.2, the discretization allows efficient extrapolation from tn to
tn+1. Let x(tn) ∼ N (mn,Cn). Then,

x(tn+1) ∼ N (m−n+1,C
−
n+1) (2.101)

with mean and covariance

m−n+1 = Φ(hn)mn, (2.102a)

C−n+1 = Φ(hn)CnΦ(hn)> +Q(hn). (2.102b)

For improved numerical stability, probabilistic ODE solvers compute this prediction in
square-root form, which means that only square-root matrices of Cn and C−n+1 are
propagated without ever forming full covariance matrices (Krämer and Hennig, 2020;
Grewal and Andrews, 2014).

2.4.2 Information Model

Information operator The information operator

I(x)(t) := ẋ(t)− f(t,x(t)), (2.103)

known as the local defect (Gustafsson, 1992), captures “how well (a sample from) x solves
the given ODE” – if this value is large, the current state is an inaccurate approximation,
and if it is small, x provides a good estimate of the truth. The goal is to make the defect
as small as possible over the entire time domain.

Artificial data The local defect I can be kept small by conditioning x on I(x)(t)
!

= 0
on “many” grid-points. Due to the regular prior and the regularity-preserving informa-
tion operator I, conditioning the prior on a zero-defect leads to an accurate ODE solution
(Tronarp et al., 2021). Altogether, the probabilistic ODE solver targets the posterior
distribution

p
(
x
∣∣∣ {I(x)(tn) = 0}Nn=0 ,x0(t0) = y0

)
. (2.104)

(Recall from Equation (2.94) that lower indices in x refer to the derivative, i.e. x0 is
the integrated Wiener process, and xq its q-th derivative.) We call the posterior in
Equation (2.104) the probabilistic ODE solution. Unfortunately, a nonlinear vector field
f implies a nonlinear information operator I. Thus, the exact posterior is intractable.

Linearization A tractable approximation of the probabilistic ODE solution is avail-
able through linearization. Linearizing f indirectly linearizes I, and the corresponding
probabilistic ODE solution arises via Gaussian inference. Let Dxf(t,x) be (an approx-
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imation of) the Jacobian of f with respect to x. One can approximate the ODE vector
field with a Taylor series

f(x) ≈ f̂ξ(x) := f(ξ) + Dxf(ξ)(x− ξ) (2.105)

at some ξ ∈ Rd. Let Eq := Id ⊗ eq be the projection matrix that extracts the q-th
derivative from the full state x. In other words, ẋ0 = E1x. Equation (2.105) implies a
linearization of I at some η ∈ Rd(ν+1),

I(x)(t) ≈ Îη(x)(t) := H(t)x(t) + b(t), (2.106)

with linearization matrices

H(t) := E1 −Dxf(t,E0η)E0, (2.107a)

b(t) := Dxf(t,E0η)E0η − f(t,E0η). (2.107b)

Îη is linear in x(t). Therefore, the approximate probabilistic ODE solution becomes

tractable with exact Gaussian filtering and smoothing once Îη is plugged into Equa-
tion (2.104) (Särkkä, 2013; Tronarp et al., 2019). As discussed in Section 2.2, at tn,
η is usually the predicted mean m−n , which yields the extended Kalman filter. Choos-
ing either (different) approximations of the Jacobian matrix Dxf , or using the exact,
full Jacobian, yields different filtering-based probabilistic ODE solving algorithms. We
consider three relevant versions:

1. EK0: Use the zero-matrix to approximate the Jacobian, Dxf ≡ 0, which has been
a common choice since early work on ODE filters (Schober et al., 2019a; Kersting
et al., 2020b), and implies a zeroth-order approximation of f (Tronarp et al., 2019).

2. EK1: Use the full Jacobian Dxf = ∇xf , which amounts to a first-order Taylor
approximation of the ODE vector field (Tronarp et al., 2019). In its general form,
the EK1 does not fit the assumptions made below and thus does not immediately
scale to high dimensions. Instead, we introduce the following variant:

3. Diagonal EK1: Use the diagonal of the full Jacobian, Dxf = diag(∇xf). This
choice conserves the efficiency of the EK0 to a solver that uses Jacobian informa-
tion. The diagonal EK1 is another minor contribution of the present work. The
EK1 is more stable than the EK0 (Tronarp et al., 2019).

Measurement and correction A probabilistic ODE solver step consists of an ex-
trapolation, measurement, and correction phase. Extrapolation has been explained in
Equations (2.101) and (2.102) above. Denote

x−n+1 := x(tn+1) ∼ N (m−n+1,C
−
n+1). (2.108)
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The measurement phase approximates

zn+1 := Îm−
n+1

(x−n+1)(tn+1) ≈ I(x−n+1)(tn+1) (2.109)

by exploiting H and b,

zn+1 ∼ N (zn+1,Sn+1), (2.110a)

zn+1 := H(tn+1)m−n+1 + b(tn+1), (2.110b)

Sn+1 := H(tn+1)C−n+1H(tn+1)>. (2.110c)

zn+1 will be used for calibration (details below). The extrapolated random variable is
then corrected as

xn+1 ∼ N (mn+1,Cn+1), (2.111a)

mn+1 := m−n+1 −C−n+1H(tn+1)>S−1
n+1zn+1, (2.111b)

Cn+1 := ΞC−n+1 Ξ>, (2.111c)

Ξ := I −C−n+1H(tn+1)>S−1
n+1H(tn+1). (2.111d)

The update in Equations (2.111c) and (2.111d) is the Joseph update (Bar-Shalom et al.,
2004). In practice, we never form the full Cn+1 but compute only the square-root matrix
by applying Ξ to the square-root matrix of C−n+1. It is not a Cholesky factor (because it
is not lower triangular), but generic square-root matrices suffice for numerically stable
implementation of probabilistic ODE solvers (Krämer and Hennig, 2020).

2.4.3 Square-Root Implementation of Probabilistic ODE
Solvers

The following details the square-root implementation of the transitions underlying the
probabilistic ODE solver. The whole section is taken from Supplement A in Krämer
et al. (2021a) and is a synopsis of the explanations by Krämer and Hennig (2020). See
also Grewal and Andrews (2014) for additional details.

Extrapolation

The extrapolation step

C−n+1 = Φ(hn)CnΦ(hn)> +Q(hn) (2.112)

does not lead to stability issues further down the line (i.e. in calibration/correction/s-
moothing steps) if carried out in square-root form. Square-root form means that in-
stead of tracking and propagating covariance matrices C, only square-root matrices
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C =
√
C
√
C
>

are used for extrapolation and correction steps without forming the full
covariance. This is possible by means of QR decompositions.
Note: To avoid a clash of notation, we will denote the QR-factors with non-boldface
letters Q and R. Recall that Q and R are reserved for the process noise covariance and
the measurement noise covariance, respectively.

The matrix square root
√
C−n+1 arises from

√
Cn through the QR decomposition of

Q

(
R
0

)
←
(√

CnΦ(hn)>√
Q(hn)>

)
,
√
C−n+1 ← R> (2.113)

because

R>R =

(
R
0

)>
Q>Q

(
R
0

)
(2.114)

=

(√
CnΦ(hn)>√
Q(hn)>

)>(√
CnΦ(hn)>√
Q(hn)>

)
(2.115)

= Φ(hn)CnΦ(hn)> +Q(hn). (2.116)

QR decompositions of a rectangular matrix M ∈ Rm×n, m > n costs O(mn2), which
implies that the covariance square-root correction costs O(d3ν3). The QR decomposition
is unique up to orthogonal row-operations (e.g. multiplying with±1). Probabilistic ODE
solvers require only any square-root matrix, so this equivalence relation can be safely
ignored – they all imply the same covariance.

Correction

The correction follows a similar pattern. Recall the linearized observation model

I(x) ≈ Î(x) = Hx + b (2.117)

where H contains the vector field information and (possibly) the Jacobian information.
There are two ways of performing square-root corrections: the conventional way, and the
way that is tailored to probabilistic ODE solvers, building on Joseph form corrections.

Conventional way Let
√
C− be a matrix square root of the current extrapolated

covariance (we drop the n+ 1 index for improved readability). Let 0n be the n× n zero
matrix, and 0n×m the n × m zero matrix. The heart of the square-root correction is
another QR decomposition of the matrix

Q

(
R11 R12

0d(ν+1)×d R22

)
←

(√
C−

>
H>

√
C−

>

0d(ν+1)×d 0d(ν+1)

)
(2.118)

27



2 Foundations

with R11 ∈ Rd×d, R12 ∈ Rd×d(ν+1), and R22 ∈ Rd(ν+1)×d(ν+1). The Rij matrices contain
the relevant information about the covariance matrices involved in the correction:

•
√
S = R>11 is the matrix square root of the innovation covariance

•
√
C = R>22 is the matrix square root of the posterior covariance

• K = R12(R11)−1 is the Kalman gain and can be used to correct the mean

This QR decomposition costs O(d3ν3) again, but the matrix involved is larger than
the stack of matrices in the extrapolation step (it has d more columns), so for high
dimensional problems, the increased overhead becomes significant. However, if only any
square-root matrix is desired, this step can be circumvented.

Joseph way Again, let
√
C− be the square-root matrix of the current extrapolated

covariance which results from the extrapolation step in square-root form. Next, the full
covariance is assembled (which goes against the usual grain of avoiding full covariance

matrices, but in the present case does the job) as C− =
√
C−
√
C−

>
. Since in the

probabilistic solver, C− is either a Kronecker matrix Id⊗C̆
−

or a block diagonal matrix
blockdiag((C−)1, ..., (C−)d), this is sufficiently cheap. The innovation covariance itself
then becomes

S = HC−H> (2.119a)

= (E1 −Df(x)E0)C−(E1 −Df(x)E0)> (2.119b)

= E1C
−E>1 −Df(x)E0C

−E>1 −E1C
−E>0 [Df(x)]> + Df(x)E0C

−E>0 [Df(x)]>

(2.119c)

which can be computed rather efficiently because EiC
−E>j only involves accessing el-

ements, not matrix multiplication. The only non-negligible cost here is multiplication
with the Jacobian of the ODE vector field (which is often sparse in high-dimensional
problems). Then, the Kalman gain

K = C−H>S−1 (2.120)

can be computed from S which implies that the covariance correction reduces to

√
C = (I −KH)

√
C− (2.121)

which is the “left half” of the Joseph correction. The resulting matrix is square, and a
matrix square root of the posterior covariance, but not triangular thus no valid Cholesky
factor. If the sole purpose of the square-root matrices is improved numerical stability,
generic square-root matrices suffice.
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2.4.4 Practical Considerations

Let us conclude with brief pointers to further practical considerations that are important
for efficient probabilistic ODE solutions.

• Initialization: The ODE filter state models a stack of a state and the first ν
derivatives. The stability of the probabilistic ODE solver depends on the accurate
initialization of all derivatives. The current state of the art is to use Taylor-
mode automatic differentiation (Krämer and Hennig, 2020; Griewank and Walther,
2008), whose complexity scales exponentially with the dimension of the ODE.
Instead, we initialize the solver by inferring

p(x(t0) | x0(τm) = x̂(τm),m = 0, ..., ν) (2.122)

on ν + 1 small steps τ0, ..., τν where the x̂(τm) are computed with e.g. a Runge–
Kutta method. This is a slight generalization of the strategy used by Schober
et al. (2019a) (also refer to Schober et al. (2014); Gear (1980)), in the sense that
we formulate this initialization as probabilistic inference instead of setting the first
few means manually.

• Error estimation: Comprehensive explanation of error estimation and step-size
adaptation is out of scope for the present work; we refer the reader to Schober
et al. (2019a) and Bosch et al. (2021).

2.5 Partial Differential Equations

Partial differential equations (PDEs) are a widely-used way of modeling physical in-
terdependencies between temporal and spatial variables. With the recent advent of
physics-informed neural networks (Raissi et al., 2019), neural operators (Lu et al., 2021;
Li et al., 2021), and neural ordinary/partial differential equations (Chen et al., 2018;
Gelbrecht et al., 2021), PDEs have rapidly gained popularity in the machine learning
community, too.

Let F , h, and g be given nonlinear functions and let Ω ⊂ Rd be a sufficiently well-
behaved domain with boundary ∂Ω. D shall be a differential operator. The goal is to
approximate an unknown function u that solves

∂

∂t
u(t, x) = F (t, x,u(t, x),Du(t, x)), (2.123)

for t ∈ [t0, tmax] and x ∈ Ω, subject to initial condition

u(t0, x) = h(x), x ∈ Ω, (2.124)
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and boundary conditions Bu(t, x) = g(x), x ∈ ∂Ω. The differential operator B is usually
the identity (Dirichlet conditions) or the derivative along normal coordinates (Neumann
conditions). Except for only a few problems, PDEs do not admit closed-form solutions,
and numerical approximations become necessary. This also affects machine learning
strategies such as physics-informed neural networks or neural operators, for example,
because they rely on fast generation of training data.

Definition 8. A differential operator that occurs in many interesting PDEs is the
Laplace operator (or Laplacian).

Dx = ∆x :=
d∑
i=1

∂2

∂x2
i

(2.125)

Example 9. Section 2.1.4 introduced the SIRD system of ODEs. When studying the
spread of infectious diseases across different regions, it is useful to specify prior mech-
anistic knowledge about the spatial diffusion of individuals between those regions. This
can, for instance, be accomplished by adding a diffusion term, similar to Gai et al. (2020)

∂S(t, x)

∂t
= −β(t, x)S(t, x)I(t, x)

P
+ ρS∆S(t, x),

∂I(t, x)

∂t
=
β(t, x)S(t, x)I(t, x)

P
− γ(t, x)I(t, x)− η(t, x)I(t, x) + ρI∆I(t, x),

∂R(t, x)

∂t
= γ(t, x)I(t, x) + ρR∆R(t, x),

∂D(t, x)

∂t
= η(t, x)I(t, x),

(2.126)

for some diffusion coefficients ρS, ρI , ρR. These types of models are going to be considered
briefly in Chapter 4.

2.5.1 Method of Lines

One common strategy for solving PDEs, called the method of lines (MOL; Schiesser,
2012), first discretizes the spatial domain Ω with a grid X := (x0, ..., xN), and then uses
this grid to approximate the differential operator D with a matrix-vector product

(Du)(t,X) ≈Du(t,X), D ∈ R(N+1)×(N+1), (2.127)

where we use the notation u(t,X) = (u(t, xn))Nn=0. Replacing the differential operator
D with the matrix D turns the PDE into a system of ODEs. Standard ODE solvers can
then numerically solve the resulting initial value problem.

A common choice for discretizing differential operators is the use of using finite-

30



2.5 Partial Differential Equations

difference approximations. The definition for the first-order derivative

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)

h
(2.128)

suggests that the true derivative function df(x)
dx

can be approximated by choosing a
finite step size h <∞ and evaluating the right-hand-side term. Constructing the Taylor
expansion of f(x + h) yields more finite-difference approximations that are accurate to
higher orders. Further, using the definitions of higher-order derivatives, one can derive
approximations for higher-order derivatives, as well (e.g. Table 1 in Fornberg (1988)).

As an example, consider the Laplacian from Definition 8 in one dimension. In order
to approximate the operator in the interior of X, IntX = (x1, . . . , xN−1), we construct
the matrix D∆ ∈ RN−1×N−1 that contains the finite-difference weights as rows. Here,
we assume that X consists of equispaced nodes with |xn − xn−1| = h, n = 1, . . . , N .
For the Laplacian this results in the following banded matrix

D∆ :=
1

h2
·


1 −2 1 0 0 . . . 0

0 1 −2 1 0
. . . 0

0 0 1 −2 1
. . . 0

...
. . . . . . . . . . . . . . .

...
0 . . . . . . . . . 1 −2 1

 (2.129)

This yields the approximation from Equation (2.127) for D = ∆ on the interior of
the discretization grid. Note that it is necessary to specify boundary conditions when
discretizing a differential operator (which is neglected here by only building the matrix
for the interior IntX). Chapter 4 will derive a probabilistic version of this method that
tracks the numerical error that arises from the approximation in Equation (2.127) and
provides details regarding the treatment of boundary conditions.
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3 Joint Inference in Probabilistic
State-Space Models

This chapter describes an algorithm that merges mechanistic knowledge in the form of
an ODE with a non-parametric model over the parameters controlling the ODE – a
latent force that represents quantities of interest. The algorithm then infers a trajec-
tory that is informed by the observations but also follows sensible dynamics, as defined
by the ODE, in the absence of observations. Algorithms for this purpose typically in-
volve repeated forward simulations in the context of, e.g., Markov-chain Monte Carlo or
optimization. The need for iterated computation of ODE solutions may demand sim-
plifications in the model to meet limits in the computational budget. The main insight
enabling our approach to this is that if probabilistic ODE solvers use the language of
(extended) Kalman filters, conditioning on observations and solving the ODE itself is
possible in one and the same process of Bayesian filtering and smoothing. Instead of
iterated computation of ODE solutions, a posterior distribution arises from a single for-
ward simulation, which has complexity equivalent to numerically computing an ODE
solution, once, with a filtering-based, probabilistic ODE solver (Tronarp et al., 2019).
Intuitively, one can think of this as opening up the black box ODE solver and acknowl-
edging that each task – solving the ODE and discovering a latent force – is probabilistic
inference in a state-space model.

3.1 Problem Setup

Let x : [t0, tmax]→ Rd be a process that is observed at a discrete set of time points
T obs
N := (tobs0 , ..., tobsN ) through a sequence of measurements y0:N := (y0, ...,yN) ∈ R(N+1)×k.

Assume that these measurements are subject to additive i.i.d. Gaussian noise, according
to the observation model

yn = Hx(tn) + εn, εn ∼ N (0,R), (3.1)

for n = 0, ..., N and matrices H ∈ Rk×d and R ∈ Rk×k. Further suppose that x(t)
solves the ODE

ẋ(t) = f(x(t);u(t)), (3.2)

and satisfies the initial condition x(t0) = x0 ∈ Rd. The vector field f : Rd × R` → Rd

is assumed to be autonomous, which is no loss of generality (e.g. (Krämer and Hennig,
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2020)) but simplifies the notation. The latent force u : [t0, tmax] → R` parametrizes f
and shall be unknown.

Section 2.1.4 introduces the SIRD model that can be used to describe the spread of
infectious diseases. This chapter will showcase the presented method on the COVID-19
pandemic, which is also commonly modeled using SIR-type models (e.g. (Giordano et al.,
2020)). In this context, the contact rate β(t) is the latent force and varies over time (in
the notation from Equation (3.2), β is u). A time-varying contact rate provides a model
for the impact of governmental measures on the dynamics of the pandemic. The experi-
ments in Section 3.4 isolate the impact of the contact rate on the course of the infection
counts, by assuming that γ and η are fixed and known. The method is by no means
restricted to inference over a single latent force, as will also be shown in Section 3.4.1.
In this SIRD setting, the goal is to infer an (approximate) joint posterior over β(t) and
the dynamics of S(t), I(t), R(t), and D(t) as well as to use the reconstructed dynamics
to extrapolate into the future. Sections 3.2 and 3.3 explain the conceptual details, Sec-
tion 3.4 evaluates the performance of the method and Section 3.5 distinguishes it from
related work.

3.2 Model

3.2.1 Prior

Let ν ∈ N. Define two independent Gauss–Markov processes u : [t0, tmax]→ R` and
x : [t0, tmax]→ Rd(ν+1) that solve the linear, time-invariant stochastic differential equa-
tions,

du(t) = Auu(t) dt+Bu dwu(t),

dx(t) = Axx(t) dt+Bx dwx(t),
(3.3)

with drift matrices Au ∈ R`×` and Ax ∈ Rd(ν+1)×d(ν+1), as well as dispersion matrices
Bu ∈ R`×s and Bx ∈ Rd(ν+1)×d. wu : [t0, tmax]→ Rs and wx : [t0, tmax]→ Rd are Wiener
processes. u and x satisfy the Gaussian initial conditions

u(t0) ∼ N (mu,Cu), x(t0) ∼ N (mx,Cx), (3.4)

defined by mu ∈ R`, Cu ∈ R`×`, mx ∈ Rd(ν+1), and Cu ∈ Rd(ν+1)×d(ν+1). u(t)
models the unknown function u(t) and can be any Gauss–Markov process that ad-
mits a representation as the solution of a linear SDE with Gaussian initial conditions.
x(t) = (x(0)(t), ...,x(ν)(t)) ∈ Rd(ν+1) models the ODE dynamics, in light of which we

require x(i)(t) = di

dti
x(0)(t) ∈ Rd, i = 0, ..., ν. In other words, the first element in x(t) is

an estimate for x(t), the second element is an estimate for d
dt
x(t), et cetera. Encoding

that the state x consists of a model for x(t) as well as its first ν derivatives imposes
structure on Ax and Bx (see e.g. (Kersting et al., 2020b)).

33



3 Joint Inference in Probabilistic State-Space Models

Let ∆t > 0. The transition densities of u and x are (Grewal and Andrews, 2014)

u(t+ ∆t) | u(t) ∼ N (Φu(∆t)u(t),Qu(∆t)),

x(t+ ∆t) | x(t) ∼ N (Φx(∆t)x(t),Qx(∆t)),
(3.5)

where transition matrices Φu(∆t) ∈ R`×` and Φx(∆t) ∈ Rd(ν+1)×d(ν+1), as well as the
process noise covariances Qu(∆t) ∈ R`×` and Qx(∆t) ∈ Rd(ν+1)×d(ν+1) are available in
closed form and can be computed as described in Section 2.3.2.

The class of Gauss–Markov priors inherits its wide generalizability from Gaussian pro-
cess models; recall that Gauss–Markov processes like u and x are Gaussian processes
with the Markov property. While not every Gaussian process with one-dimensional
input space is Markovian, a large number of descriptions of Gauss–Markov processes
emerge by translating a covariance function into an (approximate) SDE representation
(Särkkä and Solin, 2019, Chapter 12). For example, this applies to (quasi-)periodic,
squared-exponential, or rational quadratic kernels; in particular, sums and products of
Gauss–Markov processes admit a state-space representation (Solin and Särkkä, 2014;
Särkkä and Solin, 2019). Recent research has considered approximate SDE representa-
tions of general Gaussian processes in one dimension (Loper et al., 2020). With these
tools, prior knowledge over u or x can be encoded straightforwardly into the model.

3.2.2 Information Model

A functional relationship between the processes u(t), x(t) and the data y0:N emerges by
combining two likelihood functions: one for the observations y0:N (recall Equation (3.1)),
and one for the ordinary differential equation. The present section formalizes both. Let
T = T obs

N ∪ T ode
M be the union of the observation-grid T obs

N , which has been introduced in
Section 3.1, and an ODE-grid T ode

M := (tode0 , ..., todeM ) . The name “ODE-grid” expresses that
this grid contains the locations on which the ODE information will enter the inference
problem, as described below.

T obs
N contains the locations of y0:N , in light of which the first of two observation models

is

yn | x(tobsn ) ∼ N
(
Hx(0)(tobsn ),R

)
, (3.6)

for n = 0, . . . , N . This is a reformulation of the relationship between process x and
observations y0:N in Equation (3.1) in terms of x (instead of x, which is modeled by
x(0)). Including this first measurement model ensures that the inferred solution remains
close to the data points. T ode

M contains the locations on which u(t) connects to x(t)
through the ODE. Specifically, the set of random variables z0:M ∈ R(M+1)×d, defined as

zm | x(todem ),u(todem ) ∼ δ
(
x(1)(todem )− f

(
x(0)(todem ); u(todem )

))
, (3.7)
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where δ is the Dirac delta, describes the discrepancy between the current estimate of
the derivative of the ODE solution (i.e. x(1)) and its desired value (i.e. f(x(0); u)),
as prescribed by the vector field f . If the random variables z0:M realize small values
everywhere, x(0) solves the ODE as parametrized by u. This motivates introducing
artificial data points z0:M ∈ R(M+1)×d that are equal to zero, zm = 0 ∈ Rd, m =
0, ...,M . Conditioning the stochastic processes x and u on attaining this (artificial) zero
data ensures that the inferred solution follows ODE dynamics throughout the domain.
Figure 3.1 shows the discretized state-space model.

Data

ODE

x0 . . . xi . . . xj . . . xk . . . xT

zm zm′

yn yn′ yN

uj. . . . . .ui uk . . . uT. . .u0

Figure 3.1: Instance of the described state-space model, visualized as a directed
graphical model. Shaded variables are observed. Either only data, only mechanistic
knowledge, or both sources of information can be conditioned on during inference.

3.3 Algorithm and Implementation

3.3.1 Augmented State-Space Model

First, for the processes x and u, introduced in Section 3.2.1, an augmented state-space
model is defined. The dynamics of the processes are modeled by the stochastic differen-
tial equation

d

(
u(t)
x(t)

)
=

(
Au 0
0 Ax

)
︸ ︷︷ ︸

=:A

(
u(t)
x(t)

)
dt+

(
Bu 0
0 Bx

)
︸ ︷︷ ︸

=:B

d

(
wu(t)
wx(t)

)
, (3.8)

with Gaussian initial conditions(
u(t0)
x(t0)

)
∼ N

((
mu(t0)
mx(t0)

)
,

(
Cu(t0) 0

0 Cx(t0)

))
. (3.9)

The block-diagonal structure is due to the independent dynamics of the prior processes.
The drift matrices Au and Ax, as well as the dispersion matrices Bu and Bx depend
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on the choice of the respective processes u and x. The measurement models are given
in Equation (3.6) (for observed data) and in Equation (3.7) (for ODE measurements).

In the experiments presented in Sections 3.4.2 and 3.4.3 we model the latent contact
rate β(t) as a Matérn-3/2 process with characteristic length scale `q. Hence,

du(t) =

(
0 1

−
(√

3/`q
)2 −2

√
3/`q

)
︸ ︷︷ ︸

Au

u(t) dt+

(
0
1

)
︸︷︷︸
Bu

dwu(t). (3.10)

The SIRD counts are modeled as the twice-integrated Wiener process

dx(t) =

0 Id 0
0 0 Id
0 0 0


︸ ︷︷ ︸

Ax

x(t) dt+

 0
0
Id


︸ ︷︷ ︸
Bx

dwx(t), (3.11)

such that x =
(
x(0),x(1),x(2)

)>
models the SIRD counts and the first two derivatives.

Notice that Ax ∈ Rd(ν+1)×d(ν+1) and Bx ∈ Rd(ν+1)×d are block matrices. Id denotes
the d × d identity matrix. In the context of the experiments, d = 4 (S, I, R, and D)
and ν = 2 (twice-integrated Wiener process). More details on the use of integrated
Wiener processes in probabilistic ODE solvers can be found in, for instance, the work
by Kersting et al. (2020b).

3.3.2 Approximate Inference

Both x and u enter the likelihood in Equation (3.7) through a possibly nonlinear vector
field f . Therefore, the posterior distribution (recall z0:M = 0)

p
(
u(t),x(t) | z0:M = z0:M , y0:N = y0:N

)
(3.12)

is intractable, but can be approximated efficiently. Even though the problem is dis-
cretized, the posterior distribution is continuous (Särkkä and Solin, 2019, Chapter 10).
There are mainly two approaches to computing a tractable approximation of the in-
tractable posterior distribution in Equation (3.12): approximate Gaussian filtering and
smoothing (Särkkä, 2013), which computes a cheap, Gaussian approximation of this
posterior, and sequential Monte Carlo methods (Naesseth et al., 2019), whose approx-
imate posterior may be more descriptive, but also more expensive to compute. Like
the literature on probabilistic ODE solvers (Tronarp et al., 2019; Bosch et al., 2021),
this work uses approximate Gaussian filtering and smoothing techniques for their low
computational complexity.

The continuous-discrete state-space model inherits its nonlinearity from the ODE vec-
tor field f . Linearizing f with a first-order Taylor series expansion creates a tractable
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Algorithm 3 Compute the filtering distribution by conditioning on both y0:N and z0:M .

Input: data y0:N , time grid T = T obs
N ∪ T ode

M , vector field f , mx, Cx, mu, Cu

Output: Filtering distribution [Equation (3.13)]
Initialize x0 = N (mx,Cx) and u0 = N (mu,Cu) [Equation (3.4)]
for tj ∈ T do

Predict xj from xj−1 and predict uj from uj−1

if tj ∈ T obs
N then

update xj on yj [Equation (3.6)]
end if
if tj ∈ T ode

M then
linearize measurement model and update xj and uj on zj [Equation (3.7)]

end if
end for

inference problem; more specifically, it gives rise to the extended Kalman filter (EKF;
see Sections 2.2 and 2.4). Loosely speaking, if the random variable z is large in mag-
nitude, then x and u are poor estimates for the ODE and its parameter. An EKF
update, based on the first-order linearization of f , approximately corrects this misalign-
ment. If sufficiently many ODE measurements z0:M are available, a sequence of such
updates preserves sensible ODE dynamics over time. An alternative to a Taylor-series
linearization is the unscented transform, which yields the unscented Kalman filter (Wan
and Van Der Merwe, 2000; Julier and Uhlmann, 2004). The computational complexity
of both algorithms is linear in the number of grid points and cubic in the dimension of
the state-space. Detailed implementation schemes can be found, for instance, in Särkkä
(2013).

The EKF approximates the filtering distribution

p (u(t),x(t) | z0:m = z0:m,y0:n = y0:n, such that todem , tobsn ≤ t) . (3.13)

It describes the current state of the system given all the previous measurements and
allows updates in an online fashion as soon as new observations emerge. If desired, the
Rauch-Tung-Striebel smoother turns the filtering distribution into an approximation of
the full (smoothing) posterior (in Equation (3.12)). In doing so, all observations – that
is, measurements according to both Equation (3.6) and Equation (3.7) – are taken into
account for the posterior distribution at each location t. As special cases, this setup
recovers: (i) a Kalman filter/Rauch-Tung-Striebel smoother (Kalman, 1960) if the ODE
likelihood (Equation (3.7)) is omitted; (ii) an ODE solver (Tronarp et al., 2019), if
the data likelihood (Equation (3.6)) is omitted. In the present setting, however, both
likelihoods play an important role.

The procedure is summarized in Algorithm 3. The prediction step is determined by
the prior and is available in closed-form. As before, the predicted mean and covariance
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are given as

m−j = Φ(∆t)mj−1, (3.14)

C−j = Φ(∆t)Cj−1Φ(∆t)> +Q(∆t), (3.15)

for given initial conditions m0, C0. The prediction step is the same, for both tj ∈ T obs

and tj ∈ T ode.
Two different update steps are defined for two kinds of observations. When observing

data y0:N , i.e. tn ∈ T obs, the update step follows the rules of a standard Kalman filter.
Concretely, the updated mean mn and covariance Cn at time tn are computed as in
Equations (2.62) to (2.68)

rn = yn −Hm−n , (3.16)

Sn = HC−nH
> +R, (3.17)

Kn = C−nH
>S−1

n , (3.18)

mn = m−n +Knvn, (3.19)

Cn = C−n −KnSnK
>
n . (3.20)

The matrices H and R are defined as in Equation (3.6).
Recall the ODE measurement model from Equation (3.7), which we here denote as h,

as

h

((
u(t)
x(t)

))
= x(1) − f

(
x(0); u(t)

)
. (3.21)

At locations tm ∈ T ode, we condition on the ODE measurements z0:M . Recall that these
pseudo-observations are all zero. As in Equations (2.74) to (2.80),

rm = zm − h(m−m), (3.22)

Sm =
[
Dh(m−m)

]
C−m

[
Dh(m−m)

]>
+ λ2Id, (3.23)

Km = C−m
[
Dh(m−m)

]>
S−1
m , (3.24)

mm = m−m +Kmvm, (3.25)

Cm = C−m −KmSmK
>
m, (3.26)

where [Dh(m−m)] denotes the Jacobian of h at m−m. In the case of a Dirac likelihood (see
Equation (3.7)), λ2 = 0 holds. For numerical stability (especially for λ2 = 0) one can
instead implement square-root filtering (see, e.g., (Grewal and Andrews, 2014; Krämer
and Hennig, 2020)). All experiments in Section 3.4 use square-root filtering. The filter-
ing distribution can be turned into a smoothing posterior by running a backwards-pass
with a Rauch-Tung-Striebel smoother (e.g. (Särkkä, 2013)). The computational cost of
obtaining either, the filtering or the smoothing posterior, are both linear in the number
of grid points and cubic in the dimension of the state-space, i.e. O((N +M)(d3ν3 + `3)).
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Only a single forward-backward pass is required. If desired, the approximate Gaussian
posterior can be refined iteratively by means of posterior linearization and iterated Gaus-
sian filtering and smoothing, which yields the maximum-a-posteriori (MAP) estimate
(Bell, 1994; Tronarp et al., 2018). The experiments presented in Section 3.4 show how
a single forward-backward pass already approximates the MAP estimate accurately.

3.4 Experiments

This section describes three blocks of experiments. All experiments use a conventional,
consumer-level CPU. First, a range of artificial datasets is generated by sampling ODE
parameters from a prior state-space model and simulating a solution of the corresponding
ODE. Inference in such a controlled environment allows comparing to the ground truth,
thereby assessing the quality of the approximate inference. We consider three ODE
models to this end. Second, a COVID-19 dataset will probe the predictive performance
of the probabilistic model and the resulting approximate posterior distribution. Third,
some changes to the model from the COVID-19 experiments, for instance, ensuring
that the number of case counts must be positive, will improve the interpretability (for
example, of the credible intervals). Controlling the range of values that the prior state-
space can realize introduces additional nonlinearity into the model – which can also be
locally approximated by the EKF – and makes the solution more physically meaningful.

3.4.1 Simulated Environments

As a first test for the capabilities of the proposed method, we consider three simulated
environments. To this end, the training data is generated as follows. The starting point
is always an initial value problem with dynamics defined by a vector field f and a Gauss–
Markov prior over the dynamics x and the unknown parameters u of the vector field.
Then, (i) we sample the time-varying parameter trajectories from the Gauss–Markov
prior; (ii) we solve the ODE, as parametrized by the sampled trajectories from (i), using
LSODA (Hindmarsh and Petzold, 2005) with adaptive step sizes using SciPy (Virtanen
et al., 2020); (iii) we subsample the ground-truth solution on a uniform grid (which
will become T obs

N ) to generate artificial state observations y0:N ; (iv) we add Gaussian
i.i.d. noise to the observations.

The procedure described above generates both a ground truth to compare to and
a noisy, artificially observed data set. Given such a set of observations, Algorithm 3
computes a posterior distribution over the true trajectories under appropriate model
assumptions. In this posterior, we look for the proximity of the mean estimate to the
underlying ground truth; the closer, the better. We measure this proximity in the root-
mean-square error. Furthermore, the width of the posterior (expressed by the posterior
covariance) should deliver an appropriate quantification of the mismatch. We report the
χ2-statistic (Bar-Shalom et al., 2004), which suggests that the posterior distribution is
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well-calibrated if the χ2-statistic is close to the dimension d of the ground truth. Three
mechanistic models serve as examples.

Van-der-Pol The first of three test problems is the van-der-Pol oscillator (Gucken-
heimer, 1980). It has one parameter µ (sometimes referred to as a stiffness constant,
because for large µ, the van-der-Pol system is stiff). As a prior over the dynamics we
choose a twice-integrated Wiener process with diffusion intensity σ2

x = 300. The stiffness
parameter µ is modeled as a Matérn-3/2 process with lengthscale `u = 10 and diffusion
intensity σ2

u = 0.3. The posterior is computed on a grid from t0 = 0 to tmax = 25 units
of time with step size ∆t = 0.025.

Lotka-Volterra The Lotka-Volterra equations (Lotka, 1978) describe the change in
the size of two populations, predators and prey. There are four parameters, which
we call a, b, c, and d, which describe the interaction and death/reproduction rates of
the populations. As a prior over the dynamics we choose a twice-integrated Wiener
process with diffusion intensity σ2

x = 10. The four parameters are modeled as Matérn-
3/2 processes with lengthscales `ua = `ub

= `uc = `ud
= 40. The diffusion intensities are

σ2
ua

= σ2
uc

= 0.01 and σ2
ub

= σ2
ud

= 0.001. The posterior is computed on a grid from
t0 = 0 to tmax = 60 units of time with step size ∆t = 0.1.

SIRD As detailed in Section 3.1, the SIRD model is governed by a contact rate β(t).
Recall that we assume a time-dependent β to account for governmental measures in
reaction to the spread of COVID-19. The recovery rate γ and fatality rate η are fixed
at γ = 0.06 and η = 0.002, like they will be in the experiments with real data in
Sections 3.4.2 and 3.4.3 below. As a prior over the dynamics we choose a twice-integrated
Wiener process with diffusion intensity σ2

x = 50. The contact rate β is modeled as a
Matérn-3/2 process with lengthscale `u = 14 and diffusion intensity σ2

u = 0.1. The
posterior is computed on a grid from t0 = 0 to tmax = 100 units of time with step size
∆t = 0.1.

The model allows for straightforward restriction of parameter values by using link
functions. The natural support for the SIRD-contact rate is the interval [0, 1], but u(t),
as a Gauss–Markov process, takes values on the real line. A change in the basis of β(t)
with a logistic sigmoid function ϑ before it enters the likelihood fixes this misspecification.
Similarly, the Lotka-Volterra parameters are inferred in log-space to ensure positivity. It
is an appealing aspect of the EKF that these nonlinear transformations do not require
significant adaptation of the algorithm. Instead, the EKF treats it as merely another
level of linearization of Equation (3.7). Section 3.4.3 extends this to the state dynamics.

The results are shown in Figure 3.2.
On all test problems, the algorithm recovers the true states and the true latent force

accurately. The recovery is not exact, which shows how the Gaussian posterior is only
an approximation of the true posterior. The χ2-statistic for the van-der-Pol stiffness
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Figure 3.2: State recovery in simulated environments. The stiffness parameter of
the van-der-Pol oscillator (top row) and the Lotka-Volterra parameters (middle row) are
inferred accurately with appropriately high certainty. For the SIRD experiment (bottom
row), the uncertainty is high, where low case counts provide little information about the
latent contact rate. With more fluctuations in the observed counts, the approximated
contact rate displays more certainty.

parameter µ is 1.11, which lies in (0.0039, 3.8415), the 90% confidence interval of the
χ2 distribution with 1 degree of freedom. The root-mean-square error (RMSE) to the
truth is 0.14. The χ2-statistic for the Lotka-Volterra parameters is 8.06, which lies in
(0.7107, 9.4877), the 90% confidence interval of the χ2 distribution with 4 degrees of
freedom. The RMSE to the truth is 0.04 in log space and 0.018 in linear space. The χ2-
statistic for the contact rate β is 0.91, which lies in (0.0039, 3.8415), the 90% confidence
interval of the χ2 distribution with 1 degree of freedom. The RMSE to the truth is 0.2
in logit space and 0.033 in linear space.

3.4.2 COVID-19 Data

We continue with the SIRD model introduced in Section 2.1.4, now using data collected
in Germany over the period from January 22, 2020, to May 27, 2021. Throughout the
pandemic, the German government has imposed mitigation measures of varying severity.
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Together with seasonal effects, summer vacations, etc., they caused a continual change
in the contact rate. The next experiments aim to recover said contact rate (and the
SIRD counts) from the German dataset.

The Center for Systems Science and Engineering at the Johns Hopkins University pub-
lishes daily counts of confirmed (yconfirmed

n ), recovered (yrecovered
n ), and deceased (ydeceased

n )
individuals (Dong et al., 2020). One can transform this data to suit the SIRD model

In := yconfirmed
n −Rn −Dn, Rn := yrecovered

n , Dn := ydeceased
n . (3.27)

The counts In, Rn, and Dn are available for each day, starting with January 22, 2020.
Assuming a constant population over time, the numbers of susceptible individuals Sn
are always evident from the other quantities, thus left out of the visualizations. We fix
the population at P = 83 783 945, based on public record. We rescale the data to cases
per one thousand people (CPT).

As a prior over x(t), due to its popularity in constructing probabilistic ODE solvers
(Tronarp et al., 2019), we assume a twice-integrated Wiener process. β(t) is modelled
as a Matérn-3/2 process with length scale `q = 75 and diffusion intensity σ2

q = 0.05.
The state-space model is straightforwardly extendable to sums and products of (more)
processes (Solin and Särkkä, 2014; Särkkä and Solin, 2019). Inferring parameters that are
constant over time, however, is not straightforward due to potentially singular transition
models (Särkkä, 2013, Section 12.3.1).

As described in Section 3.4.1, the contact rate is inferred in logit space. We shift the
logistic sigmoid function such that it fulfills ϑ(0) = 0.1 in which case the stationary mean
u = 0 translates to a stationary mean ϑ(u) = β = 0.1 of the Matérn process that models
the contact rate. The recovery rate and mortality rate are considered known and fixed
at γ = 0.06 and η = 0.002 to isolate the effect of the inference procedure on recovering
the evolution of the contact rate u(t) = β(t). We set the mean of the Gaussian initial
conditions to the first data point that is available. The diffusion intensity of the prior
process x(t) is set to σ2

x = 10. The latent process u and all derivatives are initialized at
zero. Note that due to the logistic sigmoid transform, an initial value u0 = 0 amounts
to an initial contact rate β0 = 0.1.

In the present scenario, we cannot take the SIRD model as an accurate description
of the underlying data but merely as a tool that aids the inference engine in recovering
physically meaningful states and forces. In order to account for this model mismatch,
the Dirac likelihood from Equation (3.7) is relaxed towards a Gaussian likelihood with
measurement noise λ2 = 0.01. This equals the data observation noise and thus balances
the respective impact of either (misspecified) source of information. Intuitively, adding
ODE measurement noise reduces how strictly the vector field dynamics are enforced
during inference and therefore avoids overconfident estimates of β(t).

The mesh-size of the ODE is ∆t = 1/24 days, i.e. ODE updates are computed on
an hourly basis. The final 14 observations are excluded from the training set to serve
as validation data for evaluating the extrapolation behavior of the proposed method.
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3.4 Experiments
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Figure 3.3: Estimated counts of infectious cases and contact rate based on real
COVID-19 data. The case counts of infectious people are scaled to cases per thousand
(cpt). The uncertainty over the contact rate increases when the case counts are low. After
a single forward solve, the inferred mean is already close to the MAP estimate. The
shaded areas show the 95 % credible interval and the dotted black lines are samples from
the posterior.

Table 3.1: List of selected governmental measures imposed in Germany with the aim to
contain the spread of COVID-19. These events are depicted in Figures 3.3 and 3.4 (see
column ‘Mark’). Links to the sources are provided in Appendix A.

Mark Governmental Measures

1 Stringent contact restrictions, partial shutdown of public life
2 - 3 Continual relaxations of measures

4 Partial shutdown of public life (‘lockdown light’)
5 Hard lockdown, stringent contact restrictions
6 First nationwide decree of restrictions, intensification of measures

Figure 3.3 shows the results. The mean of the state x estimates the case counts ac-
curately in both interpolation and extrapolation tasks. The estimated contact rate
rapidly decreases around late March, remains low until fall, increases momentarily, and
is dampened again soon after. This aligns with a set of political measures imposed by
the government (compare Figure 3.3 to Table 3.1). The uncertainty over the estimated
contact rate is high in the early beginning when the case counts are still low. It then
increases again in summer and with the beginning of the extrapolation phase.

If the experiment is taken as-is, the credibility intervals of the posterior over x(t)
include negative numbers (mostly where the case counts are low and the uncertainty
high, and when extrapolating). Of course, in a system that models counts of people
in different stages of a disease, negative numbers should be excluded altogether. The
proposed method provides straightforward means to address this issue. Section 3.4.3
explains the details.
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3 Joint Inference in Probabilistic State-Space Models

3.4.3 Nonnegative State Estimates

The following experiment evaluates how the proposed method performs in combination
with a state-space model that constrains the support of the dynamics. Concretely, let
x(t) model the logarithm of the SIRD dynamics and the respective derivatives. With a
slight abuse of notation, we will continue writing “x” even though it lives in a different
space than in the previous sections. The structure of the dynamic model is the same.
The diffusion intensity of the prior process x(t) is σ2

x = 0.05. The diffusion is not
comparable to the value in the previous section because the state dynamics moved to
log-space. Using d

dt
exp(x(t)) = exp(x(t))ẋ(t), the ODE likelihood becomes

zm |xode

m ,uode

m ,∼ N (ζ1 − f(ζ2; ζ3), λ2Id), (3.28)

with auxiliary quantities (recall the logistic sigmoid ϑ)

ζ1 := exp
(
x(0)(todem )

)
x(1)(todem ), ζ2 := exp

(
x(0)(todem )

)
, ζ3 := ϑ(u(todem )). (3.29)

The exponential function introduces an additional nonlinearity into the state-space
model, which necessitates smaller step-sizes for the ODE measurements (see below).

The observed case count data y0:N is transformed into the log-space, too, in which we
assume additive, i.i.d. Gaussian noise. On the one hand, transforming the measurements
into log-space implies that the measurement model for the counts remains linear; on the
other hand, it imposes a log-normal noise model (if viewed back in “linear space”). Log-
normal noise underlines how the estimated states cannot be negative. Again, we scale
the counts to cases per thousand.

As depicted in Figure 3.4, the reconstruction of the driving processes in this setting
yields results that at first glance, look similar to the previous experiment. The states
match the data points well. However, the extrapolation is more realistic in that the
credible intervals encode that negative values are impossible (which is due to the log-
transform). The mean of the recovered contact rate closely resembles the estimate of
the previous experiment. Again, upon implementation of strict governmental measures,
the uncertainty decreases, whereas in the context of relaxations, the uncertainty is high.

3.5 Related Work

Latent forces and ODE solvers The explained method closely relates to proba-
bilistic ODE solvers and latent force models (Alvarez et al., 2009), especially the kind
of latent force model that exploits the state-space formulation of the prior (Hartikainen
et al., 2012). The difference is that, in the spirit of probabilistic numerical algorithms,
the mechanistic knowledge in the form of an ODE is injected through the likelihood
function instead of the prior. A similar approach of linking observations to mechanistic
constraints has previously been used in the literature on constrained Gaussian processes
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Figure 3.4: Estimated case counts and contact rate, inferred in the logarithmic basis
on real COVID-19 and vaccination data. The case counts of infectious people are scaled to
cases per thousand (cpt). Again, the uncertainty of the contact rate increases where the
case counts are low. Now, the posterior credible interval is restricted to the positive reals.
The shaded areas show the 95 % credible interval and the dotted black lines are samples
from the posterior.

(Jidling et al., 2017) and gradient matching (Calderhead et al., 2009; Wenk et al., 2020).
Probabilistic ODE solvers have been used by Kersting et al. (2020a) for efficient ODE
inverse problem algorithms, but their approach is different to the present algorithm, in
which the need for iterated optimization or sampling is avoided altogether.

Monte Carlo methods (Markov-chain) Monte Carlo methods are also able to infer
a time-dependent ODE latent force from a set of state observations. Options that are
compatible with a setup similar to the present work would include sequential Monte
Carlo techniques (Naesseth et al., 2019), elliptical slice sampling (Murray et al., 2010),
or Hamiltonian Monte Carlo (Betancourt, 2017) (for instance realized as the No-U-
Turn sampler (Hoffman and Gelman, 2014)). The shared disadvantage of Monte Carlo
methods applied to the resulting ODE inverse problem is that the complexity of obtaining
a single Monte Carlo sample is of the same order of magnitude as computing the full
Gaussian approximation of the posterior distribution. In Section 3.5.1 we show results
from a parametric version of the SIRD-latent force model (using the No-U-Turn sampler
as provided by NumPyro (Phan et al., 2019)). This sampler requires thousands of
numerical ODE solutions, compared to the single solve of our method. This fact is
also reflected in the wall-clock time needed for both types of inference. While the
MCMC experiment in Section 3.5.1 takes in the order of hours, each experiment with

45



3 Joint Inference in Probabilistic State-Space Models

our approach takes under one minute to complete. In other words, the algorithm in the
present work poses an efficient yet expressive alternative to Monte Carlo methods for
approximate inference with dynamical systems.

3.5.1 Parametric Model for MCMC Sampling
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Figure 3.5: Estimated counts of infectious cases and contact rate. The estimates
are obtained from MCMC sampling in an SIRD model with a parametric function for the
contact rate β(t). The case counts of infectious people are scaled to cases per thousand
(cpt). The shaded areas show the 95 % credible interval and the dotted black lines are
samples from the posterior. Compared to the non-parametric approach presented in the
paper, the estimate over β(t) is very confident in general. The posterior mean closely
resembles the results obtained in Sections 3.4.2 and 3.4.3. The numbered markers in the
right plot are explained in Table 3.1 in the paper.

This section first introduces a functional form for β(t) that connects to the non-
parametric model introduced in Section 3.2. Then, a generative model for Markov-chain
Monte Carlo (MCMC) inference over the unknown parameters of β(t) is set up.

We establish a parametric model for the latent, time-varying contact rate in an SIRD
model in terms of Fourier features. In light of Mercer’s theorem and the fact that
stationary covariance functions have complex-exponential eigenfunctions (Rasmussen
and Williams, 2006, Chapter 4.3), this closely connects to the Matérn-3/2 process used
in Sections 3.4.2 and 3.4.3 (see also (Rahimi and Recht, 2008)).

Concretely, we proceed as follows. Let T denote a dense time grid. First, (i) compute
the kernel Gram matrix K on T, such that Kij = k(xi, xj) with xi, xj ∈ T. k is the
Matérn-3/2 covariance function. As in the experiments before, we set the characteristic
lengthscale to ` = 75. Then, (ii) compute the eigendecomposition of K. In order to
keep the dimensionality of the inference problem feasible, select r � |T| eigenvectors that
correspond to the r largest eigenvalues of K. In this experiment, we choose r = 25. (iii)
For each eigenvector, the strongest frequency component ω is determined by the discrete
Fourier decomposition. This yields a set of frequencies {ωi : i = 1, . . . , r}. Finally, the
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3.5 Related Work

parametric model is defined as the sum of parametrized Fourier features of the form

β(t) = ϑ

(
r∑
i=1

ai cos (2πωit) + bi sin (2πωit)

)
, (3.30)

where ϑ is the logistic sigmoid function as described in Section 3.4. We aim to compute
a posterior contact rate β(t) by MCMC inference over the coefficients ai and bi, i =
1, . . . , r. To this end, we define a prior over the parameter vector θ := (a1, b1, . . . , ar, br)

>

and a likelihood for the COVID-19 case counts y0:N with respect to θ.
In order to ensure non-negative case counts, as in Section 3.4.3, we assume log-

normally distributed measurements with i.i.d. noise

p(y0:N | θ) =
N∏
n=0

LogNormal
(
yn; log

(
x(θ)(tn)

)
, σ2I2r

)
, (3.31)

where σ2 is inferred from the data along with θ. x(θ)(tn) denotes the solution of the SIRD
system at time tn, parametrized by the vector of coefficients θ through the contact rate
from Equation (3.30). Notably, each evaluation of the likelihood involves numerically
integrating the SIRD system, which significantly increases the computational cost en-
tailed by the inference algorithm. This is done by NumPyro’s DOPRI-5 implementation
(Phan et al., 2019; Dormand and Prince, 1980).

The prior distributions over the Fourier-feature coefficients and over σ2 are chosen as

p(θ) = N (θ;µθ,Σθ) , p(σ2) = HalfCauchy(σ2; 0.01). (3.32)

The mean µθ of the prior over θ is set to a maximum-likelihood estimate by minimizing
the negative logarithm of Equation (3.31) with SciPy’s L-BFGS optimization algorithm
(Virtanen et al., 2020; Liu and Nocedal, 1989). The covariance is chosen as Σθ = 0.1·I2r.

The goal of the experiment is to compute a posterior over the coefficients θ (and the
measurement covariance σ2) that is comparable to the results obtained in Sections 3.4.2
and 3.4.3. Like before, recovery rate and fatality rate are assumed fixed and known
at γ = 0.06 and η = 0.002. We compute the posterior p(θ | y0:N) using NumPyro’s
implementation of the No-U-Turn sampler (Hoffman and Gelman, 2014).

Figure 3.5 shows the estimated number of infectious people and the contact rate
over time as inferred by the MCMC algorithm. The state estimate matches the data
points well and the uncertainty increases when extrapolating. Like in the experiments in
Sections 3.4.2 and 3.4.3, the final 14 observations serve as a validation set and the model
extrapolates 31 days into the future. The posterior mean closely resembles the results
obtained from our method. However, the uncertainty is lower in general, especially in
the beginning and over the summer months.
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4 Probabilistic Numerical Method
of Lines

So far, the dynamics formalized solely a temporal unfolding of the state vector. By
considering partial differential equations, we avail ourselves of the possibility to describe
the interaction of spatially related state components.

PN/1. Error/uncertainty ratio PN/2. Posterior mean MOL/2. Posterior mean MOL/1. Error/uncertainty ratio
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Figure 4.1: PNMOL fixes bad calibration of the MOL/ODE filter combination:
Posterior means and error/uncertainty ratios of PNMOL (left) and MOL with a conven-
tional PN solver (right) on a fine time grid (y-axis) and a coarse space grid (x-axis) for the
heat equation. The means are indistinguishable (*/2). PN w/ MOL is poorly calibrated
(error/uncertainty ratios ∼ 105; */1), but PNMOL acknowledges all inaccuracies.

Recall the setup from Section 2.5, in which we want to approximate an unknown
function u that solves

∂

∂t
u(t, x) = F (t, x,u(t, x),Du(t, x)), (4.1)

for t ∈ [t0, tmax] and x ∈ Ω, subject to initial condition

u(t0, x) = h(x), x ∈ Ω, (4.2)

and boundary conditions Bu(t, x) = g(x), x ∈ ∂Ω. In Section 2.5.1, we introduced the
method of lines, a technique that makes using numerical solving algorithms for ODEs
possible in order to solve PDEs. This approach has one central problem. Discretizing
the spatial domain, and only then applying an ODE solver, turns the PDE solver into a
pipeline of two numerical algorithms instead of a single algorithm. This is bad because
as a result of this serialisation, the error estimates returned by the ODE solver are un-
reliable. The solver lacks crucial information about whether the spatial grid consists of,
say, N = 4 or N = 107 points. As will be confirmed by the experiments in Section 4.6, it
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is intuitive that a coarse spatial grid puts a lower bound on the overall precision, even if
the ODE solver uses small time steps. But since this is not “known” to the ODE solver,
not even to a probabilistic one, it may waste computational resources by needlessly de-
creasing its step-size and may deliver (severely) overconfident uncertainty estimates (for
example, Figure 4.1). Such overconfident uncertainty estimates are essentially useless to
a practitioner, which complicates the usage of method of lines approaches within prob-
abilistic simulation of differential equations; for example, in the context of latent force
inference or inverse problems.

The present chapter provides a solution to this problem by revealing a way of tracking
spatiotemporal correlations in the PDE solutions while preserving the computational
advantages of traditional MOL through a probabilistic numerical solver. The error that
is introduced by approximating the differential operator D with a matrix D can be
quantified probabilistically, and its time-evolution acts as a latent force on the result-
ing ODE. The combined posterior over the PDE solution and the latent force can be
computed efficiently with a PN ODE solver. More specifically, we contribute:

� Probabilistic discretization: Sections 4.1 and 4.2 present a probabilistic technique
for constructing finite-dimensional approximations of D that quantify the dis-
cretization error. It translates an unsymmetric collocation methods (Kansa, 1990)
to the language of Gaussian process interpolation and admits efficient, sparse
approximations akin to radial-basis-function-generated finite-difference formulas
(Tolstykh and Shirobokov, 2003).

� Calibrated PDE filter: Building on the probabilistic discretization, Section 4.3
explains how the discretization and the ODE solver need not be treated as two
separate black-box entities. By applying the idea behind the method of lines to
a global Gaussian process prior, it becomes evident how the discretization un-
certainty naturally evolves over time. With a filtering-based probabilistic ODE
solver (“ODE filter”, c.f. Section 2.4), posteriors over the latent error process and
the PDE solution can be inferred in linear time, and without disregarding spatial
uncertainties like traditional MOL algorithms do.

Section 4.5 explains hyperparameter choices and calibration. Section 4.7 discusses con-
nections to existing work. Section 4.6 demonstrates the advantages of the approach over
conventional MOL. Altogether, PNMOL enriches the toolbox of probabilistic simulations
of differential equations by a calibrated and efficient PDE solver.

Note regarding notation This chapter will use non-boldface notation (e.g. x) for
sets or vectors containing spatial grid points, even though the major part of this work
uses boldface notation for vectors. This is to avoid notational confusion with the state
x of an ODE. The unknown function is here denoted u, instead of x.
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4 Probabilistic Numerical Method of Lines

4.1 PN Discretization

This section derives how to approximate a differential operator D by a matrix D. Let
ux(z) ∼ GP(0, γ2kx) be a Gaussian process on Ω with covariance kernel kx(z, z

′) and
output scale γ > 0. The presentation in Section 4.3 will assume a Gaussian process
prior u(t, x) ∼ GP(0, γ2kt ⊗ kx), thus the notation “ux” motivates ux as “the x-part of
u(t, x)”.

The objective is to approximate the PDE dynamics in a way that circumvents the
differential operator D,

f(t,X,ux(X)) ≈ F (t,X,ux(X), (Dux)(X)), (4.3)

that is, Dux disappears from Equation (4.1) because f replaces F . For linear differential
operators D, this reduces to replacing (Dux)(X) with a matrix-vector product Dux(X),
D ∈ R(N+1)×(N+1) (recall Equation (2.127)). D must not be present in the discretized
model, because otherwise, the PDE does not translate into a system of ODEs, and we
cannot proceed with the method of lines. But with an approximate derivative based
on only matrix-vector arithmetic, the computational efficiency of ODE solvers can be
exploited to infer an approximate PDE solution.

Since u is a Gaussian process, applying the linear operator D yields another Gaussian
process Dux ∼ GP(0,D2kx), where we abbreviate D2kx(z, z

′) = DD∗kx(z, z′) and D∗
is the adjoint of D (in the present context, this means applying D to z′ instead of z).
Conditioning ux on realisations of ux(X), and then applying D, yields another Gaussian
process with moments

m̂(z) = W X(z)ux(X), (4.4a)

K̂(z, z′) = γ2
[
(D2kx)(z, z

′)−W X(z)kx(X,X)W X(z′)>
]
, (4.4b)

W X(z) := (Dkx)(z,X)kx(X,X)−1. (4.4c)

Let ξx ∼ GP(0, γ2K̂). ξx is independent of ux, since K̂ only depends on D, kx, and X,
not on ux(X). Then,

W X(z)ux(X) + ξx(z) ∼ GP(0,DD∗kx) (4.5)

follows, which implies

p(Dux(·)) = p(W X(·)ux(X) + ξ(·)). (4.6)

In particular, when evaluated on the grid, we obtain the matrix-vector formulation of
the differential operator

(Dux)(X) = W X(X)ux(X) + ξx(X). (4.7)
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4.1 PN Discretization

Equation (4.7) yields Dux solely as a transformation of values of ux with known, additive
Gaussian noise ξx. Altogether, the above derivation identifies the differentiation matrix
D and the error covariance E

D := W X(X), E := K̂(X,X). (4.8)

If we know ux(X), we have an approximation to (Dux)(X) that is wrong with covariance
γ2E. The matrix E makes the approach probabilistic (and new).

There are two possible interpretations for D (and E). D appears in a method for
solving PDEs Dux = f with radial basis functions, called unsymmetric collocation, or
Kansa’s method (Kansa, 1990; Hon and Schaback, 2001; Schaback, 2007). A related
method, called symmetric collocation (Fasshauer, 1997, 1999), has been built on and
translated into a Bayesian probabilistic numerical method by Cockayne et al. (2017).
The following derivation shows that a translation is possible for the probabilistic dis-
cretization, respectively unsymmetric collocation, as well: Equation (4.6) explains

(Dux)(X) | ux(X), ξx ∼ δ [Dux(X) + ξx] (4.9a)

= N (Dux(X), γ2E). (4.9b)

In other words, D and E (respectively D and ξ) estimate Dux from values of ux at a set
of grid-points – just like finite difference formulas do. By construction, it is a Bayesian
probabilistic numerical algorithm. Cockayne et al. (2019) introduce a formal definition
of Bayesian and non-Bayesian probabilistic numerical methods. More specifically, they
define a probabilistic numerical method to be a tuple of an information operator and
a belief update operator. A PN method then becomes Bayesian if its output is the
pushforward of a specific conditional distribution through the quantity of interest. All
of those objects can be derived for the PN discretization of D. The same is true for the
boundary conditions explained in Section 4.4 but is omitted in the following. The proof
of the statement below mirrors the explanation why Bayesian quadrature is a Bayesian
PN method in Section 2.2 of the paper by Cockayne et al. (2019).

Proposition 10. The approximation of (Dux)(X) with D and E as in Equations (4.6)
and (4.8), using evaluations of ux at a grid, is a Bayesian probabilistic numerical method.

Proof. The prior measure is the GP prior GP(0, γ2kx) and defined over some separable
Banach space of sufficiently differentiable, real-valued functions. The information oper-
ator I[ϕ] := ϕ(X) evaluates a function ϕ at the grid X. The belief update restricts the
prior measure to the set of functions that interpolate ϕ(X) (this is standard Gaussian
process conditioning). The quantity of interest is the derivative Dux, which results in
the posterior distribution in Equation (4.4).

The limitations of the above probabilistic discretization are twofold. First, computa-
tion of the differentiation matrix D involves inverting the kernel Gram matrix kx(X,X).
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4 Probabilistic Numerical Method of Lines

For large point sets, this matrix is notoriously ill-conditioned (Schaback, 1995). Second,
computation – and application – of D is expensive because D is a dense matrix with as
many rows and columns as there are points in X. Since loosely speaking, a derivative
is a “local” phenomenon (other than e.g. computing integrals), intuition suggests that
Dux can be approximated more cheaply by exploiting this locality. This thought leads
to localized differentiation matrices and probabilistic numerical finite differences.

4.2 PN Finite Differences

The central idea of an efficient approximation of the probabilistic discretization is to
approximate the derivative of ux at each point xn in X individually. This leads to a
row-by-row assembly of D, which can be sparsified naturally and without losing the
ability to quantify numerical discretization/differentiation uncertainty.
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Figure 4.2: Discretize the Laplacian with a local and global approximation: The
target is the Laplacian D = ∆ of u(x) = sin(‖x‖2) (f). Left: Sparsity pattern of the
differentiation matrix and error covariance matrix for the localized approximation (a, b)
and the global approximation (c, d) on a mesh with N = 25 points. The approximation is
least certain at the boundaries. Centre: The root-mean-square error between ∆u and its
approximation decreases with an increased stencil size but the approximation breaks down
for larger stencils (e), likely due to ill-conditioned kernel Gram matrices. A maximum
likelihood estimate of the input scale r ∈ R of the square exponential kernel k(x, y) =
e−r

2‖x−y‖2 based on data ux(x) alone does not necessarily lead to well-conditioned system
matrices, nor does it generally imply a low RMSE (e). Right: Samples from the prior
GP ux for both length scales are shown next to the solution and the target function (f;
the colours match the colours in the RMSE plot). Increasing stencil sizes improves the
accuracy until stability concerns arise.

Write the matrix D as a vertical stack of N + 1 row-vectors, D = (d0, ...,dN)>, and
denote by en the n-th diagonal element of E, i.e. the variance of the approximation of
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4.3 PN Method of Lines

Dux at the n-th grid-point in X. Thus,

Dux(xn) | ux(X), ξx ∼ δ[d>nux(X) + ξx,n] (4.10)

with the scalar random variable ξx,n ∼ N (0, γ2en). If, in Equation (4.10), we replace
ux(X) by the values of ux at only a local neighbourhood of xn (a “stencil”),

xloc(n) = {xn−k, ..., xn, ..., xn+k}, (4.11)

the general form of Equation (4.10) is preserved, but dn consists of only 2k+1 elements,
with k � N ,

dn = (Dkx)(xn, xloc(n))kx(xloc(n), xloc(n))
−1 (4.12)

instead of N + 1 elements. The error en becomes

en := (D2kx)(xn, xn)− dnkx(xloc(n), xloc(n))d
>
n . (4.13)

If the coefficients in the new dn are all embedded intoD according to the indices of xloc(n)

in X, D becomes sparse and E becomes diagonal. More precisely, Dij 6= 0 if and only if
j ∈ loc(i). On a one-dimensional domain Ω, and with k = 1, D is a banded matrix with
bandwidth 3. Furthermore, due to the point-by-point construction, choosing k = N/2
implies that the original D from Section 4.1 is recovered; however, E remains diagonal.
The sparse approximation resolves many of the performance issues that persist with the
global approximation (Figure 4.2).

The sparsified differentiation matrix is known as the radial-basis-function-generated
finite difference matrix (Driscoll and Fornberg, 2002; Shu et al., 2003; Tolstykh and
Shirobokov, 2003; Fornberg and Flyer, 2015). The correspondence to finite-difference
formulas stems from the fact that if kx were a polynomial kernel and the mesh X were
equidistant and one-dimensional, the coefficients in D would equal the standard finite
difference coefficients (Fornberg, 1988). The advantage of the more general, kernel-based
finite difference approximation over polynomial coefficients is a more robust approxima-
tion, especially for non-uniform grid points and in higher dimensions (Tolstykh and
Shirobokov, 2003; Fornberg and Flyer, 2015). The Bayesian point of view does not only
add uncertainty quantification in the form of E but also reveals that a practitioner may
choose suitable kernels kx to include prior information into the PDE simulation.

4.3 PN Method of Lines

The previous two sections have been concerned with approximating the derivative of
a function, purely from observations of this function on a grid. Next, we use these
strategies to solve time-dependent PDEs. To this end, we combine the probabilistic dis-
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4 Probabilistic Numerical Method of Lines

cretization with an ODE filter. As opposed to non-probabilistic MOL, this combination
quantifies the leak of information between the space discretization and the ODE solu-
tion. Simply put, what is commonly treated as a pipeline of disjoint solvers, becomes
more of a single algorithm.

4.3.1 Spatiotemporal Prior Process

For any function ϕ = ϕ(t), let ϕ̄ be the stack of ϕ and its first ν derivatives, ϕ̄(t) :=
(ϕ(t), ϕ̇(t), ..., ϕ(ν)(t)). This abbreviation is convenient because some stochastic processes
(like the integrated Wiener or Matérn process) do not have the Markov property, but
the stack of state and derivatives does. The following assumption is integral for the
probabilistic method of lines.

Assumption 4.1. Assume a Gaussian process prior with separable covariance structure,

u = u(t, x) ∼ GP(0, γ2kt ⊗ kx) (4.14)

for some output-scale γ > 0.

Compared to the traditional method of lines, where the temporal and spatial dimen-
sions are treated independently and with black-box methods, Assumption 4.1 is mild:
albeit the covariance is separable, the algorithm still starts with a single, global Gaussian
process. Assumption 4.1 allows choosing temporal kernels that eventually lead to a fast
algorithm:

Assumption 4.2. Assume kt is a covariance kernel that allows conversion to a lin-
ear, time-invariant stochastic differential equation in the following sense: For any υ ∼
GP(0, γ2kt), ῡ solves the SDE

dῡ(t) = Aῡ(t) dt+B dw(t) (4.15)

subject to Gaussian initial conditions

ῡ(t0) ∼ N (m0, γ
2C0), (4.16)

for A, B, m0, and C0 that derive from kt, and for a one-dimensional Wiener process
w with diffusion γ2.

Assumption 4.2 is satisfied, for instance, for the integrated Wiener process or the
Matérn process; many more examples are given in Chapter 12 of the book by Särkkä and
Solin (2019). Assumptions 4.1 and 4.2 unlock the machinery of probabilistic ODE
solvers.

Next, we add spatial correlations into the prior SDE model. The following Lemma 11
will simplify the derivations further below (Solin, 2016).

54



4.3 PN Method of Lines

Lemma 11. Let kt be a covariance function that satisfies Assumption 4.2. Let M ∈
Rq×q be a matrix. For a process ϕ ∼ GP(0, γ2kt ⊗M ), ϕ̄ solves

dϕ̄(t) = (A⊗ I)ϕ̄(t) dt+ (B ⊗ I) dŵ(t), (4.17)

subject to Gaussian initial conditions

ϕ̄(t0) ∼ N (m0 ⊗ 1, γ2C0 ⊗M), (4.18)

where ŵ is a q-dimensional Wiener process with constant diffusion γ2M , and I ∈ Rq×q

is the identity. m0 ⊗ 1 is a vertical stack of d copies of m0.

Lemma 11 suggests that a spatiotemporal prior (Assumption 4.1) may be restricted
to a spatial grid without losing the computational benefits that SDE priors provide.
Abbreviate U(t) := u(t,X). Lemma 11 gives rise to an SDE representation for U(t)
by choosing M = kx(X,X). The same holds for the error model: Recall the definition
of the error covariance E from Equation (4.8) (or Equation (4.13) respectively, if the
localized version is used). ξ ∼ GP(0, γ2kt ⊗E) admits a state-space formulation due to
Lemma 11. Through

Du(t,X) + ξ(t) (4.19a)

∼ GP(0, γ2kt ⊗ [Dkx(X,X)D> +E]) (4.19b)

= GP(0, γ2kt ⊗ (DD∗kx)(X,X)]) (4.19c)

it is evident that ξ is an appropriate prior model for the time-evolution of the spatial
discretization error. This error being part of the probabilistic model is the advantage of
PNMOL over non-probabilistic versions.

4.3.2 Information Model

The priors over U and ξ become a probabilistic numerical PDE solution by conditioning
U and ξ on “solving the PDE” at a number of grid points as follows. Recall from
Equation (4.7) how Du(t,X) is approximated by Du(t,X) + ξ. The residual process

r(t) := U̇(t)− F (t,X,U(t),DU(t) + ξ) (4.20)

measures how well realisations of Ū and ξ̄ solve the PDE. U̇ and U are components
in Ū, therefore all operations are tractable given the extended state vectors Ū and ξ̄.
Conditioning Ū and ξ̄ on r(t) = 0 for all t yields a probabilistic PDE solution. However,
in practice, we need to discretize the time variable first in order to be able to compute
the (approximate) posterior.
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4 Probabilistic Numerical Method of Lines

4.3.3 Time-Discretisation

Let T := (t0, ..., tK) be a grid on [t0, tmax]. Define the time-steps hk := tk+1 − tk.
Restricted to the time grid,

Ū(tk+1) | Ū(tk) ∼ N (Φ(hk)Ū(tk), γ
2QU(hk)) (4.21a)

ξ̄(tk+1) | ξ̄(tk) ∼ N (Φ(hk)ξ̄(tk), γ
2Qξ(hk)) (4.21b)

with transition matrix

Φ(hk) := Φ̆(hk)⊗ I := exp(Ahk)⊗ I (4.22a)

and process noise covariance matrices

QU(hk) := Q̆(hk)⊗ kx(X,X) (4.23a)

Qξ(hk) := Q̆(hk)⊗E (4.23b)

Q̆(hk) :=

∫ hk

0

Φ̆(hk − τ)BB>Φ̆(hk − τ)> dτ. (4.23c)

Φ̆ and Q̆ can be computed efficiently with matrix fractions. Integrated Wiener pro-
cess priors, their time-discretizations, and practical considerations for implementation
of high-orders are discussed in the probabilistic ODE solver literature (e.g. Tronarp et al.,
2021; Krämer and Hennig, 2020). On the discrete-time grid, the information model reads

r(tk) | Ū(tk), ξ̄(tk) ∼ δ[U̇(tk)− F (t,X,U(tk),DU(tk) + ξ(tk))]. (4.24)

The complete setup is depicted in Figure 4.3.

Ū(t0) Ū(t1) . . . Ū(tk) . . .

r(t0) r(t1) . . . r(tk) . . .

ξ̄(t0) ξ̄(t1) . . . ξ̄(tk) . . .

θ

Figure 4.3: Graphical visualisation of PNMOL: The states ξ̄ and Ū are conditionally
independent given θ = (kx, kt,X,D, γ,T). The existence of the bottom row distinguishes
PNMOL from other PDE solvers. The dependencies between the ξ(tk), indicated by the
dashed lines, are optional; removing them improves the efficiency of the algorithm; details
are in Section 4.3.5.
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4.3.4 Inference

Altogether, the probabilistic method of lines targets

p
(
Ū, ξ̄

∣∣ [r(tk) = 0]Kk=0

)
(4.25)

which we will refer to as the probabilistic numerical PDE solution of Equation (4.1).
The precise form of the PN PDE solution is intractable because F (and therefore the
likelihood in Equation (4.24)) are nonlinear. It can be approximated efficiently with
techniques from extended Kalman filtering (Särkkä and Solin, 2019), which is based on
approximating the nonlinear PDE vector field F with a first-order Taylor series. Infer-
ence in the linearized model is feasible with Kalman filtering and smoothing. Särkkä and
Solin (2019) summarize the details, and Tronarp et al. (2019) explain specific consider-
ations for ODE solvers.

The role of ξ and its impact on the posterior distribution (i.e. the PDE solution) is
comparable to that of a latent force in the ODE (Alvarez et al., 2009; Hartikainen et al.,
2012; Schmidt et al., 2021). The coarser X is, the larger is E, respectively ξ. A large
ξ indicates how increasingly severe the misspecification of the ODE becomes. Unlike
traditional PDE solvers, inference according to the information model in Equation (4.24)
embraces latent discretization errors. It does so by an algorithm that shares similarities
with the latent force inference algorithm by Schmidt et al. (2021) (compare Figure 4.3
to Schmidt et al. (2021, Fig. 3)), but the sources of misspecification are different in both
works.

Inference of ξ is expensive because the complexity of a Gaussian filter scales as O(Kd3)
where d is the dimension of the state-space model. In the present case, d = 2N(ν + 1)
because for N spatial grid points, PNMOL tracks ν time-derivatives of U and ξ. Both
U and ξ are (N+1)-dimensional. If the only purpose of ξ is to incorporate a measure of
spatial discretization uncertainty into the information model of the PDE solver, tracking
ξ in the state space is not required, as long as we introduce another approximation.

4.3.5 White-Noise Approximation

Recall ξ ∼ GP(0, γ2kt⊗E), i.e. ξ is an integrated Wiener process in time and a Gaussian
N (0, γ2E) in space. One may relax the temporal integrated Wiener process prior to
a white noise process prior; that is, ξ(t) is independent of ξ(s) for s 6= t, and ξ(t) ∼
N (0, γ2E) for all t. The state-space realisation of a white noise process is trivial because
there is no temporal evolution (recall the dashed lines in Figure 4.3). To understand
the impact of E in the white-noise formulation on the information model, consider the
PDE vector field F (t, x,u(t, x),Du(t, x)). The central idea is to regard F as a function
of U and ξ, instead of u and Du, and linearize each nonlinearity with a first-order
Taylor series. The Dirac likelihood in Equation (4.24) then becomes a Gaussian with
the measurement noise E. This section derives this for linear and nonlinear PDEs.
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Linear PDEs

At first, we explain the general idea for a linear PDE

F (t, x,u(t, x),Du(t, x)) = Au(t, x) +BDu(t, x) (4.26)

for some coefficients A and B. If u is scalar-valued, A and B are scalars. If u is
vector-valued, A and B are matrices. We use bold-faced notation for the latter, more
general case. Du = Du + ξ allows for recasting the vector field F as a function of u
and ξ, instead of u and Du,

F̃ (t,U(t), ξ(t)) := F (t,X,U(t), ξ(t)) = AU(t) +BDU(t) +Bξ(t). (4.27)

Since this equation is linear in u and Du, thus also in U and ξ, there is no need for
Taylor-series approximation. The linear measurement model emerges as

rlinear(tk) | Ū(tk), ξ̄(tk) ∼ δ
[
U̇(tk)−AU(tk)−BDU(tk)−Bξ(tk)

]
. (4.28)

If the temporal evolution of ξ is ignored through replacing kt with a white-noise approx-
imation as in Section 4.3.5, Equation (4.28) becomes

rlinear(tk) | Ū(tk) ∼ N
(
U̇(tk)−AU(tk)−BDU(tk),BEB

>
)
. (4.29)

The same principle can be generalized to fully nonlinear problems as follows.

Nonlinear PDEs

Next, consider a fully nonlinear PDE vector field F (t, x,u(t, x),Du(t, x)). This general
setting includes semilinear and quasilinear systems of equations. As before, we discretize
the spatial domain using X, use Du = DU + ξ, rewrite

F̃ (t,U(t), ξ(t)) := F (t,X,u(t,X),Du(t,X) + ξ(t)), (4.30)

and infer the solution via F̃ . Since F̃ is nonlinear, we have to linearize it before proceed-
ing. Let ∇UF̃ be the derivative of F̃ with respect to U, and ∇ξF̃ be its ξ-counterpart.
We linearize F̃ at some η = (ηU,ηξ) ∈ R2(N+1),

F̃ (t,U(t), ξ(t)) ≈ F̃ (t,ηU,ηξ) +∇UF̃ (t,ηU,ηξ)(U(t)− ηU) +∇ξF̃ (t,ηU,ηξ)(ξ(t)− ηξ)
(4.31)

=: HUU(t) +Hξξ(t) + b(t). (4.32)

ηU and ηξ are commonly chosen as the predicted mean of ξ and U, which corresponds
to extended Kalman filtering (Särkkä and Solin, 2019). As a result of the linearization,
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the information model reads

rnonlinear(tk) | Ū(tk), ξ̄(tk) ∼ δ
[
U̇(tk)−HUU(tk)−Hξξ(tk)− b

]
, (4.33)

or, for the white-noise version,

rnonlinear(tk) | Ū(tk) ∼ N
(
U̇(tk)−HUU(tk)− b,HξEH

>
ξ

)
. (4.34)

Equations (4.33) and (4.34) are both linear in the states, and inference is possible with
Kalman filtering and smoothing.

Remark 12. In many practical applications, semi-linear PDEs are of special interest.
Concretely,

Fsemi(t, x, u,Du) := Du(t, x) + f(u(t, x)), (4.35)

for some nonlinear f and an additional spatial diffusion defined via D. In this special
case of nonlinear PDEs, Equation (4.24) becomes

rwhite(tk) | Ū(tk) ∼ N (ρ(Ū(t)), γ2E), (4.36a)

ρ(Ū(t)) := U̇(t)−DU(t)− f(U(t)). (4.36b)

The advantage of the white-noise approximation over the latent-force version is that
the state-space model is precisely half the size because ξ is not a state variable anymore.
Since the complexity of PNMOL depends cubically on the dimension of the state-space,
half as many state variables improve the complexity of the algorithm by a factor 23 = 8.
Arguably, γ2E entering the information model as a measurement covariance may also
provide a more intuitive explanation of the impact that the statistical quantification of
the discretization error has on the PDE solution: the larger E, the less strictly is a
zero PDE residual enforced during inference. The error covariance E regularizes the
impact of the information model, and, in the limit of E → ∞, yields the prior as a
PDE solution. Intuitively put, for E > 0, the algorithm puts less trust in the residual
information r(·) than for E = 0.

4.4 Boundary Conditions

So far, the existence of the boundary operator B was neglected, since it can be treated in
the same way as D. In order to complete the derivation, this section provides complete
formulas, including B.
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4.4.1 Discretized Boundary Conditions

To augment the PDE residual information with boundary conditions, we begin by dis-
cretizing B probabilistically; either with global collocation as in Section 4.1 or with PN
finite differences as in Section 4.2. Below, we show the former, because the latter be-
comes accessible with the same modifications from Section 4.2. Let ux ∼ GP(0, γ2kx).
Defining the differentiation matrix B and the error covariance R,

B := (Bkx)(X,X)kx(X,X)−1, R := (B2kx)(X,X)−Bkx(X,X)B>, (4.37)

we have access to boundary conditions: For any y ∈ RN+1,

p((Bux)(X) | ux(X) = y) ∼ N (By, γ2R) (4.38)

holds. For Dirichlet boundary conditions, B is the identity, thusB = IN+1 is the identity
matrix and R ≡ 0 is the zero matrix. For Neumann conditions, B is the discretized
derivative along normal coordinates, and R is generally nonzero (recall the explanation
in Section 4.5 of the cases in which the error matrix is zero). The derivation surrounding
Equation (4.38) above suggests how the present framework would deal with boundary
conditions that are subject to additive Gaussian noise.

4.4.2 Latent Force

Define the latent force ϑ = ϑ(t) ∼ GP(0, γ2kt ⊗R), which will play a role similar to ξ
but for the boundary conditions. ϑ inherits a stochastic differential equation formulation
from kt just like ξ does (recall Lemma 11). Denote the stack of ϑ and its first ν ∈ N
time-derivatives by ϑ̄. Let XB ⊂ X be the subset of boundary points in X. The full
information operator (i.e. an extended version of Equation (4.20)) includes Bu(t, x)|∂Ω =
g(x) as

rfull(t) :=

(
U̇(t)− F (t,X,U(t),DU(t) + ξ)

BU(t)− g(XB)− ϑ(t)

)
!

= 0. (4.39)

rfull depends on Ū, ξ̄, and ϑ̄. Conditioning (Ū, ξ̄, ϑ̄) on rfull(t) = 0 yields a probabilistic
PDE solution that knows boundary conditions. Notably, the bottom row in rfull is linear
in
(
Ū, ξ̄, ϑ̄

)
so there is no linearization required to enable (approximate) inference.

4.4.3 Comparison to MOL

Boundary conditions in PNMOL enter through the information operator, i.e. on the
same level as the PDE vector field F , which is different to conventional MOL: In MOL,
one only tracks the state variables in the interior of Ω, i.e. u(t,X\XB) because boundary
conditions can be inferred from the interior straightforwardly. For Dirichlet conditions,
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the boundary values are always dictated by g(XB). Let ∂
∂n

be the directional derivative
taken in the direction normal to the boundary ∂Ω. For Neumann conditions, for some
small λ > 0, we can approximate

∂

∂n
u(t, x) =

u(t, x)− u(t, x− λn)

λ
!

= g(x). (4.40)

This viewpoint suggests u(t, x) = λg(x)+u(t, x−λn) and λ can be chosen such that x−λn
is the nearest neighbor of x ∈ X. While tracking only the state values in the interior of
the domain has the advantage that the ODE system emerging from the method of lines is
smaller than for PNMOL (which perhaps explains why in Figure 4.4, PNMOL achieves
a lower error than MOL), MOL has two disadvantages: (i) non-deterministic boundary
conditions are not straightforward to include; (ii) the finite difference approximation
of Neumann conditions introduces errors. PNMOL does not face the first issue and
quantifies the error mentioned by the second issue.

4.5 Hyperparameters

4.5.1 Kernels

As common in the literature on probabilistic ODE solvers, we use temporal integrated
Wiener process priors (e.g. Tronarp et al., 2019; Bosch et al., 2021). In the experiments,
the order of integration is ν ∈ {1, 2}. Using low order ODE solvers is not unusual for
MOL implementations (Cash and Psihoyios, 1996). Spatial kernels need to be sufficiently
differentiable to admit the formula in Equation (4.8). In this work, we use squared
exponential kernels. Choosing their input scale is not straightforward (recall Figure 4.2;
we found r = 0.25 to work well across experiments). Other sufficiently regular kernels,
e.g. rational quadratic or Matérn kernels, would work as well. Polynomial kernels recover
traditional finite difference weights (Fornberg, 1988), but like for any other feature-
based kernel, k(x, y) = Φ(x)>Φ(y) holds, thus both summands in Equation (4.8) (and
in Equation (4.13)) cancel out. The discretization uncertainty E would be zero. In
this case, PNMOL gains similarity to the traditional method of lines combined with a
probabilistic ODE solver. (The boundary conditions would be treated slightly differently;
we refer to Section 4.4.)

4.5.2 Spatial Grid

The spatial grid can be any set of freely scattered points. Spatial neighbourhoods can, for
example, be queried from a KD tree (Bentley and Ottmann, 1979). For the simulations
in the present paper, we use equispaced grids. PNMOL’s requirements on the grid
differ from, for instance, finite element methods, in that there needs to be no notion of
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connectivity or triangulation between the grid points. PN finite differences only require
stencils; in light of the stability results in Figure 4.2, we choose them maximally small.

4.5.3 Output Scale

The output-scale γ calibrates the width of the posterior and can be tuned with quasi-
maximum likelihood estimation. Omitting the boundary conditions, this means (recall
r from Equation (4.24))

(γ̂)2 :=
1

(N + 1)(K + 1)

K∑
k=0

‖E[r(tk)]‖2
C[r(tk)]−1 , (4.41)

where the Mahalanobis norm ‖x‖A = x>Ax is used.
The mean E[r(tk)] and the covariance between the output-dimensions of r(·) at time tk,

C[r(tk)], emerge from the same Gaussian approximation that computes the approximate
posterior. Proving the validity of the estimator in Equation (4.41) parallels similar
statements for similar settings (Tronarp et al., 2019; Bosch et al., 2021; Krämer and
Hennig, 2021) and consists of two phases: (i) showing that the posterior covariances are
of the form Ck = γ2C̆k for some C̆k, k = 0, ..., K; (ii) deriving the maximum likelihood
estimators.

To show the first claim, recall the discrete-time transition of U and ξ from Equa-
tion (4.21) and the information model from Equation (4.24). Then, the fully discretized
state-space model is

Ū(t0) ∼ N (m0 ⊗ 1, γ2C0 ⊗ kx(X,X)) (4.42a)

ξ̄(t0) ∼ N (m0 ⊗ 1, γ2C0 ⊗E) (4.42b)

Ū(tk+1) | Ū(tk) ∼ N (Φ(hk)Ū(tk), γ
2QU(hk)) (4.42c)

ξ̄(tk+1) | ξ̄(tk) ∼ N (Φ(hk)ξ̄(tk), γ
2Qξ(hk)) (4.42d)

r(tk) | Ū(tk), ξ̄(tk) ∼ δ
(
U̇(tk)− F (t,X,U(tk),DU(tk) + ξ(tk))

)
. (4.42e)

All transitions have a process noise that depends multiplicatively on γ2. The Dirac
likelihood is noise-free. Therefore, the posterior covariance depends multiplicatively on
γ as well (which can be proved by an induction that is identical to the one in Appendix
C of the paper by Tronarp et al. (2019)).

To show the second claim, let a linearized observation model be given by

r(tk) | Ū(tk), ξ̄(tk) ∼ δ

(
H

(
Ū(tk)
ξ̄(tk)

)
+ b

)
(4.43)

for appropriate H and b (which are explained in Section 4.3.5). Now, the distribution
p(r(tk) | r(tk−1)) is Gaussian and thus fully defined by its mean E[r(tk)] and its covariance
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C[r(tk)]. The covariance C[r(tk)] is again of the form γ2S̆k for some S̆k because every
filtering covariance is, and the information operator is noise-free. Due to the prediction
error decomposition (Schweppe, 1965),

p(r(t0), ..., r(tK) | γ) = p(r(t0) | γ)
N∏
k=1

p(r(tk) | r(tk−1), γ). (4.44)

Recall that the dimension of r(tk) isN+1 because X consists ofN+1 grid points. Because
everything is Gaussian, the negative log-likelihood (as a function of x) decomposes into

− log p(x; r(t0), ..., r(tK) | γ) =
1

2

(
K∑
k=0

‖x− E[r(tk)]‖2
C[r(tk)]−1 − (K + 1)(N + 1) log γ2

)
.

(4.45)

Setting the γ-derivative of the negative log-likelihood to zero, i.e. maximizing it with
respect to γ, yields the MLE from Equation (4.41). Overall, the derivation is very similar
to those provided by Tronarp et al. (2019); Bosch et al. (2021) for ODE initial value
problems, and Krämer and Hennig (2021) for ODE boundary value problems.

4.6 Experiments

Quantify the global error We investigate how the PN method of lines impacts
numerical uncertainty quantification. As a first experiment, we solve a spatial Lotka-
Volterra model (Holmes et al., 1994), i.e. nonlinear predator-prey dynamics with spatial
diffusion, on a range of temporal and spatial resolutions. From the results in Figure 4.4, it
is evident how the spatial accuracy limits the overall accuracy. But also how traditional
ODE filters combined with MOL fail to quantify numerical uncertainty reliably. At
any parameter configuration, it is either the spatial or the temporal discretization that
dominates the error. Decreasing the time-step alone lets the error not only stagnate
but worsens the calibration because the ODE solver does not know how bad the spatial
approximation is.

Which error dominates? To further examine which one of either ∆x or ∆t dom-
inates the approximation, we consider a second example: a spatial SIR model (Exam-
ple 9). We investigate more formally how increasing either, the time-resolution vs. the
space-resolution, leads to a low overall error. The results are in Figure 4.5, and con-
firm the findings from Figure 4.4 above. Traditional PN ODE solvers with conventional
MOL are unaware of the true, global approximation error. PNMOL is not, despite being
equally accurate.
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Figure 4.4: Quantify the global error: Work vs. precision vs. calibration of PNMOL
in the latent-force version (blue) and the white-noise version (orange), compared to a
traditional PN ODE solver combined with conventional MOL (grey), on the spatial Lotka-
Volterra model. Two kinds of curves are shown: one for a coarse (dotted), and one for a fine
spatial mesh (solid). A reference is computed by discretizing the spatial domain with a ten
times finer mesh and solving the ODE with backward differentiation formulas. The RMSE
of both methods stagnates once a certain accuracy is reached, but PNMOL appears to reach
a slightly lower RMSE for ∆x = 0.2 (left, middle; perhaps due to different treatment of
boundary conditions; Section 4.4). The run time of PNMOL-white is comparable to that
of MOL, and the run time of PNMOL-latent is slightly longer (middle). The calibration
of PNMOL, measured in the normalized χ2-statistic of the Gaussian posterior (so that the
“optimum” is 1, not d), remains close to 1 but is slightly underconfident. With decreasing
time-steps, MOL is poorly calibrated.

4.7 Related Work

Connections to non-probabilistic numerical approximation have been discussed in Sec-
tions 4.1 and 4.2. Recall from there that the strongest connections are to unsymmet-
ric collocation (Kansa, 1990; Hon and Schaback, 2001; Schaback, 2007), radial-basis-
function-generated finite differences (Driscoll and Fornberg, 2002; Shu et al., 2003; Tol-
stykh and Shirobokov, 2003; Fornberg and Flyer, 2015), and collocation methods in
general. We refer to Fasshauer (2007); Fornberg and Flyer (2015) for a more compre-
hensive overview. The literature on the method of lines is covered by, e.g., Schiesser
(2012). Dereli and Schaback (2013); Hon et al. (2014) combine collocation with MOL.
None of the above exploits the correlations between spatial and temporal errors. The sig-
nificance of estimating the interplay of both error sources for MOL has been recognized
by Berzins (1988); Lawson et al. (1991); Berzins et al. (1991).

Cockayne et al. (2017); Owhadi (2015, 2017); Raissi et al. (2017, 2018) describe a
probabilistic solver for PDEs relating to symmetric collocation approaches from numer-
ical analysis. Chen et al. (2021) extend the ideas to nonlinear PDEs. Wang et al.
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Figure 4.5: Which error dominates? The relative RMSE is only small if both ∆t and ∆x
are small, which affects all solvers: PNMOL (top left) as well as traditional MOL combined
with PN ODE solvers (top right). PN w/ MOL is severely overconfident for large ∆x and
small ∆t (bottom right), while PNMOL delivers a calibrated posterior distribution (bottom
left).

(2021) continue the work of Chkrebtii et al. (2016) in constructing an ODE/PDE ini-
tial value problem solver that uses (approximate) conjugate Gaussian updating at each
time-step. Duffin et al. (2021) solve time-dependent PDEs by discretizing the spatial
domain with finite elements, and applying ensemble and extended Kalman filtering in
time. They build on the paper by Girolami et al. (2021). Conrad et al. (2017); Abdulle
and Garegnani (2021) compute probabilistic PDE solutions by randomly perturbing
non-probabilistic solvers. All of the above discard the uncertainty associated with dis-
cretizing D ≈ D. Some papers achieve ODE-solver-like complexity for time-dependent
problems (Wang et al., 2021; Chkrebtii et al., 2016; Duffin et al., 2021), while others
compute a continuous-time posterior (Cockayne et al., 2017; Owhadi, 2015, 2017; Raissi
et al., 2017, 2018; Chen et al., 2021). PNMOL does both.

The efficiency of the PDE filter builds on recent work on filtering-based probabilistic
ODE solvers (Schober et al., 2019a; Tronarp et al., 2019; Kersting et al., 2020b; Kersting
and Hennig, 2016; Bosch et al., 2021; Krämer and Hennig, 2020; Tronarp et al., 2021) and
their applications (Kersting et al., 2020a; Schmidt et al., 2021). Frank and Enßlin (2020)
apply an ODE filter to solve discretized PDEs. Similar algorithms have been developed
for other types of ODEs (Hennig and Hauberg, 2014; John et al., 2019; Krämer and
Hennig, 2021). The papers by Chkrebtii et al. (2016); Conrad et al. (2017); Abdulle and
Garegnani (2021), prominently feature ODEs.
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5 Probabilistic ODE Solutions in
Extremely High Dimensions

In Chapter 4 we learned how to phrase a PDE as an ODE in order to avail ourselves
of efficient ODE solvers. From a practical perspective, we thereby neglected the fact
that the discretized differential operator results in extremely large matrices – depending
on the chosen grid. Concretely, the matrix D ≈ D will have

∏N
n=0 dn entries for N

dimensions, and dn grid points in dimension n. As detailed in Chapter 4, it is crucial
for well-calibrated probabilistic PDE solutions that we do not neglect the error arising
from discretizing D. Therefore, it is necessary to make probabilistic ODE sovlers fast
and ready for extremely large systems, as arising from (PN)MOL-discretized PDEs.
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Figure 5.1: Simulating a high-dimensional ODE: Probabilistic solution of a dis-
cretized FitzHugh-Nagumo PDE model (Ambrosio and Françoise, 2009). Means (a-e)
and standard-deviations (f-j), t0 = 0 (left) to tmax = 20 (right). The patterns in the
uncertainties match those in the solution. The simulated ODE is 125k-dimensional.

This chapter discusses a class of algorithms that computes the solution of initial value
problems based on ODEs, of the form

d

dt
x(t) = f(t,x(t)), x(t0) = x0. (5.1)
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for all t ∈ [t0, tmax], x(t) ∈ Rd. Usually, f is nonlinear, in which case the solution of
Equation (5.1) cannot generally be derived in closed form and has to be approximated
numerically, as discussed in Section 2.1.3. We continue the work of PN algorithms for
ODEs. Like other filtering-based ODE solvers, the algorithm used herein translates nu-
merical approximation of ODE solutions to a problem of probabilistic inference. The
resulting (approximate) posterior distribution quantifies the uncertainty associated with
the unavoidable discretization error (Bosch et al., 2021) and provides a language that
integrates well with other data inference schemes (Kersting et al., 2020a; Schmidt et al.,
2021). The main difference to prior work is that we focus on the setting where the
dimension d of the ODE is high, that is, say, d � 100. (It is not clearly defined at
which point an ODE counts as high-dimensional, but d ≈ 100 is already a scale of prob-
lems in which previous state-of-the-art probabilistic ODE solvers faced computational
challenges.)

Motivation and impact High-dimensional ODEs describe the interaction of large
networks of dynamical systems and appear in many disciplines in the natural sciences.
The perhaps most prominent example arises in the simulation of discretized partial dif-
ferential equations (c.f. Chapter 4). There, the dimension of the ODE equals the number
of grid points used to discretize the problem (with e.g. finite differences; Schiesser, 2012).
More recently, ODEs gained popularity in machine learning through the advent of neu-
ral ODEs (Chen et al., 2018), continuous normalising flows (Grathwohl et al., 2018), or
physics-informed neural networks (Raissi et al., 2019). With the growing complexity of
the model, each of the above can quickly become high-dimensional. If such use cases
shall gain from probabilistic solvers, fast algorithms for large ODE systems are crucial.

Prior work and state-of-the-art Many non-probabilistic ODE solvers, for example,
explicit Runge–Kutta methods, have a computational complexity linear in the ODE
dimension d (Hairer et al., 1993). Explicit Runge–Kutta methods are often the default
choices in ODE solver software packages. Compared to the efficiency of the methods
provided by DifferentialEquations.jl (Rackauckas and Nie, 2017), SciPy (Virtanen et al.,
2020), or Matlab (Shampine and Reichelt, 1997), probabilistic methods have lacked
behind so far. Intuitively, ODE filters are a fusion of ODE solvers and Gaussian process
models – two classes of algorithms that suffer from high dimensionality. More precisely,
the problem is that probabilistic solvers require matrix-matrix operations at each step.
The matrices have O(d2) entries, which leads to O(d3) complexity for a single solver
step and has made the solution of high-dimensional ODEs impossible. ODE filters are
essentially nonlinear, approximate Gaussian process inference schemes (with a lot of
structure). As in the GP community (e.g. Quiñonero-Candela and Rasmussen, 2005),
the path to low computational cost in these models is via factorization assumptions.
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5 Probabilistic ODE Solutions in Extremely High Dimensions

Contributions Our main contribution is to prove in which settings ODE filters admit
an implementation in O(d) complexity. Thereby, they become a class of algorithms
comparable to explicit Runge–Kutta methods not only in estimation performance (error
contraction as a function of evaluations of f ; Kersting et al., 2020b; Tronarp et al.,
2021) but also in computational complexity (cost per evaluation of f). The resulting
algorithms deliver uncertainty quantification and other benefits of probabilistic ODE
solvers on high-dimensional ODEs (see Figure 5.1. The ODE from this figure will be
explored in more detail in Section 5.3). The key novelties of the present chapter are
threefold:

1. Acceleration via independence: A-priori, ODE filters commonly assume indepen-
dent ODE dimensions (e.g. Kersting et al., 2020b). We single out those inference
schemes that naturally preserve independence. Identification of independence-
preserving ODE solvers is helpful because each ODE dimension can be updated
separately. The performance implications are that a single matrix-matrix oper-
ation with O(d2) entries is replaced with d matrix-matrix operations with O(1)
entries. In other words, O(d) instead of O(d3) complexity for a single solver step.
This is Proposition 15.

2. Calibration of multivariate output-scales: A single ODE system often models the
interaction between states that occur on different scales. It is useful to acknowl-
edge differing output scales in the “diffusivity” of the prior (details below). We
generalise the calibration result by Bosch et al. (2021) to the class of solvers that
preserve the independence of the dimensions. This is Proposition 13.

3. Acceleration via Kronecker structure: Sometimes, prior independence assumptions
may be too restrictive. For instance, one might have prior knowledge of correlations
between ODE dimensions (Example 16 in Section 5.2). Fortunately, a subset of
probabilistic ODE solvers can exploit and preserve Kronecker structure in the
system matrices of the state space. Preserving the Kronecker structure brings over
the performance gains from above to dependent priors. This is Proposition 17.

Additional minor contributions are detailed where they occur. To demonstrate the scal-
ability of the resulting algorithm, the experiments in Section 5.3 showcase simulations of
ODEs with dimension d ∼ 107. Before reading the following sections, it is recommended
that the reader is familiar with Section 2.4, which introduces filtering-based probabilistic
ODE solvers and notation that is used hereafter.

5.1 Independent Prior Models Accelerate ODE

Solvers

This section establishes the main idea of the present chapter: probabilistic ODE solvers
are fast and efficient when the prior models each dimension independently.
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5.1 Independent Prior Models Accelerate ODE Solvers

5.1.1 Assumptions

Independent dimensions stem from a diagonal Γ.

Assumption 5.1. Assume that the diffusion Γ of the Wiener process in Equation (2.94)
is a diagonal matrix.

Assumption 5.1 implies that the initial covariance C0 (Equation (2.95)) is the Kro-
necker product of a diagonal matrix with another matrix, thus block diagonal. Assump-
tion 5.1 is not very restrictive; in prior work on ODE filters, Γ was always either Γ = γ2I
for some γ > 0 (Schober et al., 2019a; Tronarp et al., 2019; Kersting et al., 2020b; Bosch
et al., 2021; Tronarp et al., 2021; Krämer and Hennig, 2020), or diagonal (Bosch et al.,
2021).

5.1.2 Calibration

Tuning the diffusion Γ is crucial to obtain accurate posterior uncertainties. As an-
nounced in Section 2.4, the mathematical assumptions for calibrating Γ coincide with
the assumptions that lead to an efficient ODE filter. Thus, we discuss Γ before proving
the linear complexity of probabilistic solvers under Assumption 5.1.

Four approaches Recall the observed random variable zn (Equation (2.109)). ODE
filters calibrate Γ with quasi-maximum-likelihood-estimation (quasi-MLE): Consider the
prediction error decomposition (Schweppe, 1965),

p({zn}Nn=0) = p(z0)
N−1∏
n=0

p(zn+1 | zn) (5.2a)

≈ N (z0; z0,S0)
N−1∏
n=0

N (zn+1; zn+1,Sn+1). (5.2b)

Γ is a quasi-MLE if it maximises Equation (5.2b). The specific choice of calibration
depends on respective model for Γ, and reduces to one of four approaches: on the one
hand, fixing and calibrating a time-constant Γ versus allowing a time-varying Γ; on the
other hand, choosing a scalar diffusion Γ = γ2I versus choosing a vector-valued diffusion
Γ = diag(γ1, ..., γd). Roughly speaking, a time-varying, vector-valued diffusion allows
for the greatest flexibility in the probabilistic model. One contribution of the present
work is to extend the vector-valued diffusion results by Bosch et al. (2021) to a slightly
broader class of solvers (Proposition 13 below).

Time-varying diffusion Allowing Γ to change over the time-steps, all measurements
before time tn are independent of Γn. Under the assumption of an error-free previous
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5 Probabilistic ODE Solutions in Extremely High Dimensions

state (which is common for hyperparameter calibration in ODE solvers), a local quasi-
MLE for Γn = γ2

nI arises as (Schober et al., 2019a)

γ̂2
n :=

1

d
z>n
[
H(tn)Q(hn)H(tn)>

]−1
zn. (5.3)

This can be extended to a quasi-MLE for the EK0 with vector-valued Γn = diag(γ1
n, ..., γ

d
n)

(Bosch et al., 2021)

(γ̂in)2 := (zin)2/[H(tn)Q(hn)H(tn)>]ii, (5.4)

for all i = 1, ..., d. In this work, we generalise the EK0 requirement to Assumption 5.1
and a diagonal Jacobian.

Proposition 13. Under Assumption 5.1 and for diagonal Df(x), the estimators (γ̂in)i
in Equation (5.4) are quasi-MLEs.

Sketch of the proof. Two ideas are relevant: (i) a diagonal Jacobian implies a block
diagonal H(tn) and a diagonal H(tn)Q(hn)H(tn)> (which will be proved formally in
Proposition 15 below); (ii) the local evidence, i.e. the probability of N (zn,Sn) being
zero, decomposes into a sum over the coordinates. Maximising each summand with
respect to γin yields the claim.

Proposition 13 is a generalisation of the results by Bosch et al. (2021) in the sense
that Proposition 13 is not restricted to the EK0. A very similar case can be made for
time-constant diffusion.

Proposition 14. Under Assumption 5.1 and for diagonal Df(x), a quasi-maximum like-
lihood estimate for a vector-valued, time-constant diffusion model Γ = diag((γ1)2, ..., (γd)2)
is given by the estimator

(γ̂i)2 :=
1

N

N∑
i=1

(zin)2

[Sn]ii
, i = 1, . . . , d, (5.5)

where Sn := H(tn)Q(hn)H(tn)> is the diagonal covariance matrix of the measurement
zn (recall Section 2.4.2).

Proof. The proof is structured as follows. First, we show that an initial covariance

C0 = blockdiag((γ1)2C̆0, . . . , (γ
d)2C̆0) (5.6)
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5.1 Independent Prior Models Accelerate ODE Solvers

implies covariances

C−n = blockdiag
(
(γ1)2(C1

n)−, . . . , (γd)2(Cd
n)−
)
, (5.7a)

Cn = blockdiag
(
(γ1)2C1

n, . . . , (γ
d)2Cd

n

)
, (5.7b)

Sn = diag
(
(γ1)2s1

n, . . . , (γ
d)2sdn

)
. (5.7c)

Then, for measurement covariances Sn of such form, we can compute the (quasi) max-
imum likelihood estimate Γ̂. Because every covariance depends multiplicatively on γ,
calibration can happen entirely post-hoc.

Block-wise scalar diffusion Recall from Section 2.4.1 that the transition matrix and
the process noise covariance are of the form Φ(hn) = Id⊗Φ̆(hn) andQ(hn) = Γ⊗Q̆(hn).
Thus, for a diagonal diffusion Γ = diag((γ1)2, ..., (γd)2), both Φ(hn) and Q(hn) are block
diagonal. Assuming a block diagonal covariance matrix that depends multiplicatively
on γ,

Cn−1 = blockdiag
(
(γ1)2C1

n−1, . . . , (γ
d)2Cd

n−1

)
, (5.8)

the extrapolated covariance is also of the form

C−n = blockdiag
(
(γ1)2(C1

n)−, . . . , (γd)2(Cd
n)−
)
, (5.9a)

(Ci
n)− := Φ̆(hn)Ci

n−1Φ̆(hn)> + Q̆(hn), i = 1, . . . , d. (5.9b)

The diagonal Jacobian Df(x) implies a block diagonal linearization matrix

Hn = E1 −Df(x)E0 = blockdiag
(
H1

n, . . . ,H
d
n

)
, (5.10a)

H i
n := e1 − [Df(x)]i,ie0, i = 1, . . . , d. (5.10b)

The measurement covariance Sn is therefore given by a diagonal matrix and depends
multiplicatively on γ, as

Sn = HnC
−
nH

>
n = diag

(
(γ1)2s1

n, . . . , (γ
d)2sdn

)
, (5.11a)

sin := H i
n(Ci

n)−(H i
n)>, i = 1, . . . , d. (5.11b)

This implies a block diagonal Kalman gain

Ξn = I −C−nH(tn)>S−1
n H(tn) = blockdiag

(
Ξ1
n, . . .Ξ

d
n

)
, (5.12a)

Ξi
n := Iν+1 − (C−n )i(H i

n)>H i
n/s

i
n i = 1, . . . , d. (5.12b)
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Finally, we obtain the corrected covariance

Cn = blockdiag
(
(γ1)2C1

n, . . . , (γ
d)2Cd

n

)
, (5.13a)

Ci
n := Ξi

n(Ci
n)−(Ξi

n)> i = 1, . . . , d. (5.13b)

This concludes the first part of the proof.

Computing the quasi-MLE Now it is still left to compute the (quasi-) MLE Γ̂ =
diag((γ̂1)2, ..., (γ̂d)2) by maximizing the log-likelihood

log p(z1:N) = log
N∏
n=1

N (0; zn,Sn) . (5.14)

Since Sn = diag
(
(γ1)2s1

n, . . . , (γ
d)2sdn

)
is a diagonal matrix, we obtain

Γ̂ = arg max
Γ

N∑
n=1

logN (0; zn,Sn) (5.15a)

= arg max
Γ

d∑
i=1

(
−N log(γ̂i)2

2
−

N∑
n=1

(zn)2
d

2sin(γ̂i)2

)
. (5.15b)

By taking the derivative and setting it to zero, we obtain the quasi-MLE from Equa-
tion (5.5).

5.1.3 Complexity

Now, with calibration in place, we can discuss the computational complexity of ODE
filters under Assumption 5.1. The following proposition establishes that for diagonal
Jacobians, a single solver step costs O(d).

Proposition 15. Suppose that Assumption 5.1 is in place. If the Jacobian of the ODE is
(approximated as) a diagonal matrix, then a single step with a filtering-based probabilistic
ODE solver costs O(dν3) in floating-point operations, and O(dν2) in memory.

Proof. Let xn ∼ N (mn,Cn). Assume that Cn is block diagonal. We show that block
diagonality is preserved through a step, and since by Assumption 5.1, C0 is block diago-
nal, we do not lose generality. Recall Φ(hn) andQ(hn) from Equations (2.97) and (2.98).
Φ(hn) is block diagonal, and since Γn is diagonal, Q(hn) is block diagonal.

(i) Extrapolate the mean: The mean is extrapolated according to Equation (2.102a),
which costs O(dν2), because of the block diagonal Φ(hn). Each dimension is
extrapolated independently.
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5.1 Independent Prior Models Accelerate ODE Solvers

(ii) Evaluate the ODE: Next, H = H(tn+1) and b = b(tn+1) from Equation (2.107)
are assembled, which involves evaluating f and Df(x) at ξ := E0m

−
n+1 (E0 is

a projection matrix and can be implemented as array indexing, so ξ comes at
negligibily low cost). Df(x) = diag([Df(x)]1 , ..., [Df(x)]d) is a diagonal matrix,
therefore

H = blockdiag(H1, ...,Hd) (5.16)

is block diagonal with blocks

H i := e1 − e0 [Df(x)]i , i = 1, ..., d (5.17)

(recall the basis vectors eq from Equation (2.96)). The block diagonal H has been
pre-empted in Proposition 13 above.

(iii) Calibrate Γ: The cost of assembling the quasi-MLE for Γn+1 according to Equa-
tion (5.3) or Equation (5.4) is O(d), because the matrix to be inverted is diagonal.

(iv) Extrapolate the covariance: The covariance can be extrapolated dimension-by-
dimension as well, because Cn, Φ(hn), and Q(hn) are all block diagonal with
the same block structure: d square blocks with ν + 1 rows and columns; recall
Equation (2.102b). In reality, the matrix-matrix multiplication is replaced by a QR
decomposition; we refer to Section 2.4.3 for details on square-root implementation.
Using either strategy – square-root or traditional implementation – extrapolating
the covariance costs O(dν3) and C−n+1 is block diagonal.

(v) Measure: Computing the mean of zn+1 (recall Equations (2.109) and (2.110))
costs O(d). The covariance Sn+1 of zn+1 is diagonal, since H and C−n+1 are block
diagonal. Thus, assembling and inverting Sn+1 costs O(d).

(vi) Correct mean and covariance: The mean is corrected according to Equation (2.111b),
which – since Sn+1 is diagonal – costs O(dν). The covariance is corrected according
to Equations (2.111c) and (2.111d), the complexity of which hinges on the struc-
ture of Ξ (Equation (2.111d)): due to the block diagonal C−n+1, H , and Sn+1, Ξ is
block diagonal again, and correcting the covariance costs O(dν3). The square-root
matrix of Cn+1 arises by multiplying Ξ with the “left” square-root matrix of C−n+1.
The complexity remains the same (asymptotically, though QR decompositions cost
more than matrix multiplications).

All in all, ODE filter steps preserve block-diagonal structure in the covariances. The
expensive phases are the covariance extrapolation and correction in O(dν3) floating-
point operations. The maximum memory demand is O(dν2) for the block diagonal
covariances.
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While it may seem restrictive at first to use only the diagonal of the Jacobian, Propo-
sition 15 includes the EK0, one of the central ODE filters. The O(d) complexity puts the
EK0 and the diagonal EK1 into the complexity class of explicit Runge–Kutta methods.
Usually, ν < 12 holds (Krämer and Hennig, 2020).

5.2 EK0 Preserves Kronecker Structure

Scalar or diagonal diffusion may be too restrictive in certain situations.

Example 16. Consider a spatio-temporal Gaussian process model u(t, x) ∼ GP(0, γ2kt⊗
kx), where kt is the covariance kernel that directly corresponds to an integrated Wiener
process prior (Särkkä and Solin, 2019). Such a spatiotemporal model could be a useful
prior distribution for applying an ODE solver to problems that are discretized PDEs,
because kx encodes spatial dependency structures. Restricted to a spatial grid X :=
{x1, ..., xG}, u(t,X) satisfies the prior model in Equations (2.94) and (2.95)1, but with
Γ = γ2kx(X,X) (Solin, 2016), which is usually dense.

5.2.1 Assumptions

Despite the lack of independence in Example 16, fast ODE solutions remain possible
with the EK0. In the remainder of this section, let Γ = γ2Γ̆ for some matrix Γ̆ and
some scalar γ. Calibrating the scalar γ allows preserving Kronecker structure in the
system matrices that appear in an ODE filter step (Proposition 17 below). Tronarp
et al. (2019) show how for Γ = γ2Γ̆, a time-constant quasi-MLE γ̂ arises in closed form
and also, that the posterior covariances all look like Cn = γ2C̆n: calibration can happen
entirely post-hoc.

Constraints The following statement about linear complexity of ODE filters is only
valid under two constraints: one can ignore (i) the quadratic costs of multiplying the
posterior covariances with the quasi-MLE, and (ii) the cubic costs of solving a linear
system involving Γ. The matrices Φ,Q,C0 are all Kronecker products of a Rd×d (“left”)
and a Rν×ν factor (“right”). The first constraint is thus avoided by scaling the “right”
Kronecker factor of the covariances with γ2 in O(ν2). (ODE filters preserve Kronecker
structure; see below.) The second one becomes the following assumption.

Assumption 5.2. Assume that the inverse of Γ is readily available and cheap to apply;
that is, the quantity x>Γ−1x can be computed in O(d).

Naturally, Assumption 5.2 holds for diagonal or at least sufficiently sparse matrices Γ.
There are also settings in which Assumption 5.2 holds even if Γ is dense. For instance,
if Γ is the covariance of a Gauss–Markov random field, the sparsity structure in Γ−1

1Technically, the stack of x and its ν derivatives does.
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implies adjacency of grid nodes (Lindgren et al., 2011; Sidén and Lindsten, 2020). In
Example 16 with a spatial Matern kernel, for example, inverse Gram matrices can be
approximated efficiently using the stochastic partial differential equation formulation
(Lindgren et al., 2011).

5.2.2 Computational Complexity

Under Assumption 5.2, a single EK0 step costs O(d):

Proposition 17. Under Assumption 5.2, and if a time-constant diffusion model Γ =
γ2Γ̆ is calibrated via γ, a single step of the EK0 costs O(ν3 + dν2) floating point opera-
tions, and O(dν + d2 + ν2) memory.

Proof. The proof parallels that of Proposition 15. It hinges on computing everything
only in the “right” factor of each Kronecker matrix.

Let xn ∼ N (mn,Cn). Assume Cn = Γ ⊗ C̆n which is no loss of generality, because
such a Kronecker structure is preserved through the ODE filter step as shown below.

(i) Extrapolate mean: The mean extrapolation costs O(dν2) like in the proof of Propo-
sition 15.

(ii) Evaluate the ODE: Evaluation of H and b is essentially free – recall that we only
consider the EK0 in this setting, which uses the projection H(tn) = E1. Matrix
multiplication with H consists of a projection, which costs O(1).

(iii) Calibrate: Calibration of a time-constant γ2 costs O(d) under Assumption 5.2.

(iv) Extrapolate covariance: In the time-constant diffusion model, Q(hn) and Cn are
both Kronecker matrices and share the left Kronecker factor: Γ. Thus, the ex-
trapolation of the covariance can be carried out “in the right Kronecker factor”,
which costs O(ν3) in traditional as well as square-root implementation. Denote

the extrapolated covariance by C−n+1 := Γ⊗ C̆
−
n+1.

(v) Measure: RecallH(tn) = E1 = I⊗e1. The mean of the measured random variable
zn ∼ N (zn,Sn) comes at negligible cost. The covariance

Sn+1 = H(tn+1)C−n+1H(tn+1)> = Γ⊗
[
e1C̆

−
n+1e

>
1

]
(5.18)

requires a single element in C̆
−
n+1. The Kalman gain

K := C−n+1H(tn+1)>S>n+1 = I ⊗ K̆, (5.19)

with K̆ := e1C̆
−
n+1/

[
e1C̆

−
n+1e

>
1

]
involves dividing the first row of C̆

−
n+1 by a

scalar. Its cost is O(ν + 1).
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(vi) Correct mean and covariance: The mean is corrected in O(dν2) as in the proof of
Proposition 15. Due to the Kronecker structure in K, the “left” Kronecker factor
of Cn+1 must be Γ again. Therefore, we need to correct only the “right” Kronecker
factor in O(ν3).

All in all, under the assumption of cheap calibration, a single step with the EK0 costs
O(dν2) and the expensive steps are (as before) the covariance extrapolation and the
covariance correction. The total memory costs are the requirements of storing Γ, the
mean(s) in O(νd), and the “right” Kronecker factor(s) in O(ν2).

Proposition 17 can be extended to time-varying diffusion if one tracks γ in the “right”
Kronecker factor instead of the “left” one. Since this obfuscates the notation, we refer
the reader to Krämer et al. (2021a, Supplement D). The quadratic O(d2) memory re-
quirement is entirely due to the cost of storing Γ – if Γ or its inverse are banded matrices,
for instance, it reduces to O(dν + ν2).

5.3 Empirical Evaluations

5.3.1 ODE Problems

Experiments will be conducted on different ODE problems with different properties. We
begin by introducing each of them below.

Lorenz96 The Lorenz96 model describes a chaotic dynamical system for which the
dimension can be chosen freely (Lorenz, 1996). It is given by a system of N ≥ 4 ODEs

ẋ1 = (x2 − xN−1)xN − x1 + F, (5.20a)

ẋ2 = (x3 − xN)x1 − x2 + F, (5.20b)

... (5.20c)

ẋi = (xi+1 − xi−2)xi−1 − xi + F i = 3, . . . , N − 1, (5.20d)

... (5.20e)

ẋN = (x1 − xN−2)xN−1 − xN + F, (5.20f)

with forcing term F = 8, initial values x1(0) = F + 0.01 and x>1(0) = F , and time span
t ∈ [0, 30].

Pleiades The Pleiades system describes the motion of seven stars in a plane, with
coordinates (xi, yi) and masses mi = i, i = 1, . . . , 7 (Hairer et al., 1993, Section II.10).
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It can be described with a system of 28 ODEs

ẋi = vi (5.21a)

ẏi = wi (5.21b)

v̇i =
∑
j 6=i

mj(xj − xi)/rij, (5.21c)

ẇi =
∑
j 6=i

mj(yj − yi)/rij, (5.21d)

where rij = ((xi − xj)2 + (yi − yj)2)
3/2

, for i, j = 1, . . . , 7. It is commonly solved on the
time span t ∈ [0, 3] and with initial locations

x(0) = [3, 3,−1,−3, 2,−2, 2], (5.22a)

y(0) = [3,−3, 2, 0, 0,−4, 4], (5.22b)

v(0) = [0, 0, 0, 0, 0, 1.75,−1.5], (5.22c)

w(0) = [0, 0, 0,−1.25, 1, 0, 0]. (5.22d)

FitzHugh–Nagumo PDE Let ∆ =
∑d

i=1
∂2

∂x2i
be the Laplacian. The FitzHugh–

Nagumo partial differential equation (PDE) is (Ambrosio and Françoise, 2009)

∂

∂t
u(t, x) = a∆u(t, x) + u(t, x)− u(t, x)3 − v(t, x) + k, (5.23a)

∂

∂t
v(t, x) =

1

τ
(b∆v(t, x) + u(t, x)− v(t, x)) (5.23b)

for x ∈ [0, 1]× [0, 1] ⊆ R2, some parameters a, b, k, τ , and initial values u(t0, x) = h0(x),
v(t0, x) = h1(x). In our experiments, we chose a = 208 · 10−4, b = 5 · 10−3, k = −5 ·
10−3, τ = 0.1. As initial values, we used random samples from the uniform distribution
on (0, 1). We solve it from t0 = 0 to tmax = 20. To turn the PDE into a system of ODEs,
we discretized the Laplacian with central, second-order finite differences schemes on a
uniform grid. The mesh size of the grid determines the number of grid points, which
controls the dimension of the ODE problem.

Van der Pol The Van der Pol system is often employed to evaluate the stability of
stiff ODE solvers (Wanner and Hairer, 1996). It is given by a system of ODEs

ẋ1(t) = x2(t), ẋ2(t) = µ
((

1− x2
1(t)
)
x2(t)− x1(t)

)
, (5.24)

with stiffness constant µ > 0, time span t ∈ [0, 6.3], and initial value x(0) = [2, 0].
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5.3.2 Experiments
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Figure 5.2: Runtime of a single ODE filter step: Run time (wall-clock) of a single
step of ODE filter variations on the Lorenz96 problem (a) for increasing ODE dimension
and ν = 2, 4, 6 (b-d). The traditional implementations cost O(d3) per step, the diagonal
EK1 and diagonal EK0 are O(d) per step, just like the Kronecker version of the EK0. The
Kronecker EK0 is significantly faster than the diagonal version(s).

A single ODE filter step We begin by evaluating the cost of a single step of the
ODE filter variations on the Lorenz96 problem. This is a chaotic dynamical system
and recommends itself for the first experiment, as its dimension can be increased freely.
We time a single ODE filter step for increasing ODE dimension d and different solver
orders ν ∈ {2, 4, 6}. The results are depicted in Figure 5.2. The traditional EK0 and
EK1 become infeasible due to their cubic complexity in the dimension. The diagonal
EK1 and the diagonal EK0 exhibit their O(d) cost. The Kronecker EK0 is cheaper than
the independence-based solvers. A step with the Kronecker EK0 takes ∼1 second for a
16 million-dimensional ODE on a generic, consumer-level CPU. Altogether, Figure 5.2
confirms Propositions 15 and 17.

A full simulation Next, we evaluate whether the performance gains for a single ODE
filter step translate into a reduced overall runtime (including step-size adaptation and
calibration) on a medium-dimensional problem: the Pleiades problem (Hairer et al.,
1993). It describes the motion of seven stars in a plane and is commonly solved as
a system of 28 first-order ODEs. The results are in Figure 5.3a. Pleiades reveals the
increased efficiency of the ODE filters. The probabilistic solvers are as fast as Radau,
only by a factor ∼10 slower than SciPy’s RK45 (Virtanen et al., 2020), but 100 times
faster than their reference implementations. (It should be noted that the ODE filters
use just-in-time compilation for some components, whereas SciPy does not.)
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Figure 5.3: Evaluating the runtime of fast ODE filters.
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5 Probabilistic ODE Solutions in Extremely High Dimensions

A high-dimensional setting To evaluate how well the improved efficiency translates
to extremely high dimensions, we solve the discretized FitzHugh-Nagumo PDE model
on high spatial resolution (which translates to high dimensional ODEs). The results are
in Figure 5.3b. The main takeaway is that ODEs with millions of dimensions can be
solved probabilistically within a realistic time frame (hours), which has not been possible
before. GPUs improve the runtime for extremely high-dimensional problems (d� 105).

Stability of the diagonal EK1 How much do we lose by ignoring off-diagonal ele-
ments in the Jacobian? To evaluate the loss (or preservation) of stability against the
A-stable EK1 (Tronarp et al., 2019), we solve the Van der Pol system (Guckenheimer,
1980). It includes a free parameter µ > 0, whose magnitude governs the stiffness of the
problem: the larger µ, the stiffer the problem, and for e.g. µ = 106, Van der Pol is a
famously stiff equation. The results are in Figure 5.4. We observe how the diagonal EK1
is less stable than the reference EK1 for increasing stiffness constant, but also that it is
significantly more stable than the EK0, for instance. It is a success that the diagonal
EK1 solves the van der Pol equation for large µ.
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6 Discussion and Conclusion

This work presented advances in probabilistic numerical methods for simulation of dy-
namical systems that describe temporal and spatial interactions of its components.
Thereby, we (i) investigated how different sources of information can be incorporated
naturally into a system, (ii) how spatial diffusion can be added while keeping track of
temporal and spatial discretization error using similar mechanisms and (iii) how to com-
pute solutions in this framework efficiently, such that these methods can be applied in
practice, keeping the computational expenses feasible for practitioners.

By coupling mechanistic and data-driven inference, the algorithm presented in Chap-
ter 3 builds on the core premise of probabilistic numerics – that computation itself is
a data source that does not differ, formally, from observational data. Information from
observations and mechanistic knowledge (in the form of an ODE) can thus be described
in the same language of Bayesian filtering and smoothing. This removes the need for an
outer loop over multiple forward solves and thus drastically reduces the computational
cost. Our experimental evaluation corroborates that the resulting approximate poste-
rior is close to the ground truth and drastically reduces computational cost over Monte
Carlo alternatives. It faithfully captures multiple sources of uncertainty from the data,
numerical (discretization) error, and epistemic uncertainty about the mechanism. In
particular, concerning the presented experiment on real COVID-19 data, a natural next
line of thought goes towards spatial diffusions, which was not considered in this chapter.
To take a step towards probabilistic numerical simulations of spatio-temporal dynam-
ics models, Chapter 4 presented probabilistic strategies for discretizing time-dependent
PDEs, and for making use of the resulting quantification of spatial discretization uncer-
tainty in a probabilistic ODE solver. We discussed practical considerations, including
sparsification of the differentiation matrices, keeping the dimensionality of the state space
low, and hyperparameter choices. Altogether, and unlike traditional PDE solvers, the
probabilistic method of lines unlocks quantification of spatio-temporal correlations in an
approximate PDE solution, all while preserving the efficiency of adaptive ODE solvers.
This makes it a valuable algorithm in the toolboxes of probabilistic programs and differ-
ential equation solvers and may serve as a backbone for latent force models, inverse prob-
lems, and differential-equation-centric machine learning. When working with discretized
PDEs it quickly became apparent that probabilistic ODE solvers have to lose their cubic
computational complexity with regard to the dimensionality of the state-space model.
Instead, for probabilistic ODE solvers to capitalize on their theoretical advantages, their
computational cost has to come close to that of their non-probabilistic point-estimate
counterparts (which benefit from decades of optimization). High-dimensional problems
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6 Discussion and Conclusion

are one obstacle on this path, which we tackled in Chapter 5. We showed that inde-
pendence assumptions in the underlying state-space model, or preservation of Kronecker
structures, can bring the computational complexity of a large subset of known ODE fil-
ters close to non-probabilistic, explicit Runge–Kutta methods. As a result, probabilistic
simulation of extremely large systems of ODEs is now possible, opening up opportu-
nities to exploit the advantages of probabilistic ODE solvers on challenging real-world
problems. This entire work revolved around two concepts that are both cornerstones of
modern machine learning: numerical computation and statistical inference. Notably, we
have never drawn a clear boundary between these concepts. Rather, by treating mech-
anistic and empirical knowledge with the same tools, this work continued to blur the
line between forward and inverse problems. Simulation of complex dynamical systems
and discovering latent forces therein amount to surprisingly similar tasks, that of sta-
tistically inferring unknown quantities of interest. First steps have been made to tackle
large-scale, complex spatio-temporal models while upholding this mindset.

Outlook

The incredibly versatile and elegant language that probabilistic state estimation in state-
space models provides, first and foremost, suggests a plethora of applications. This
thesis aims at providing some groundwork on the way to establishing PN methods in
the sciences and for making them accessible to practitioners – out of the conviction
that they provide a tangible benefit. However, in this regard, there is still a long way
to go. The range of tremendously relevant questions is vast: climate, geophysics, fluid
dynamics, politics, economics, to name only a few areas of research – all of these rely on
mathematical descriptions of complex dynamics in order to make predictions. Identifying
latent forces acting on these systems is of special interest in real-world applications,
especially when aiming to draw conclusions from and make decisions based on predictions
of the model at hand. The overarching goal is to create and provide a concise language
in which domain knowledge can be captured and integrated meaningfully into a model.
Probabilistic state-space models and Gaussian filtering are a good step in this direction,
due to their computational and conceptual ease. Overcoming the need for an outer loop
around the numerical simulation of large-scale systems makes an agile way of working
with these models feasible. The price to be paid is that of making approximations like
linearity or Gaussianity. Studying different approximate inference techniques based on
the presented state-space models (especially the particle filter (Särkkä, 2013; Naesseth
et al., 2019) comes to mind) might yield fruitful results. Implementing these methods
robustly and computationally feasible on large-scale models bears challenges on its own.

Another interesting direction might be the combination of parametric and nonpara-
metric methods, in which the state-space model becomes but one part of a larger model.
Optimization or sampling routines around a numerical simulation could be built around
a probabilistic solver instead, thus sampling or optimizing (lower-dimensional) quanti-
ties in the model while the probabilistic ODE solution and the simultaneous latent-force
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inference are refined along the way.
In general, the probabilistic spatial discretization for PDEs in Chapter 4 leaves a lot of

interesting directions open. Firstly, this method involves many hyperparameters, which
significantly impact the outcome and are at the same time difficult to interpret and
hence to choose. In particular, the respective covariance functions of the prior spatio-
temporal GP could be investigated further and different models could be applied to
different scenarios to assess the potential of more elaborate priors. One could proceed
to think about a method that uses spatial uncertainty to adaptively refine the spatial
discretization grid wherever the uncertainty suggests a resolution that is too coarse.
What exactly such adaptive mesh-refinement could look like in this setting is left to the
reader’s imagination here, but further investigations are called for.

To conclude, we hope that this work and the presented methods pave the way towards
a more prominent use of probabilistic numerical algorithms in practical applications.
State estimation from data using probabilistic state-space models and approximate in-
ference is not a new idea and has been around for decades. However, we believe that
recent advances in PN began to uncover tremendous potential by unifying numerical
computation and statistical inference under one language. We hope that this sparks the
interest of the reader in using these methods or even continuing this path by doing their
own research.
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Krämer, N. and Hennig, P. (2021). Linear-time probabilistic solutions of boundary value
problems. arXiv preprint arXiv:2106.07761.
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Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse approxi-
mate Gaussian process regression. Journal of Machine Learning Research, 6(65):1939–
1959.

Rackauckas, C. and Nie, Q. (2017). DifferentialEquations.jl—a performant and feature-
rich ecosystem for solving differential equations in Julia. Journal of Open Research
Software, 5(1).

Rahimi, A. and Recht, B. (2008). Random features for large-scale kernel machines. In
NeurIPS 2008.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017). Machine learning of linear
differential equations using Gaussian processes. Journal of Computational Physics,
348:683–693.

89



Bibliography

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2018). Numerical Gaussian processes
for time-dependent and nonlinear partial differential equations. SIAM Journal on
Scientific Computing, 40(1):A172–A198.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational Physics, 378:686–
707.

Rasmussen, C. and Williams, C. (2006). Gaussian Processes for Machine Learning. MIT
Press.
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Särkkä, S. and Solin, A. (2019). Applied Stochastic Differential Equations. Cambridge
University Press.

Schaback, R. (1995). Error estimates and condition numbers for radial basis function
interpolation. Advances in Computational Mathematics, 3(3):251–264.

Schaback, R. (2007). Convergence of unsymmetric kernel-based meshless collocation
methods. SIAM Journal on Numerical Analysis, 45(1):333–351.

Schiesser, W. E. (2012). The Numerical Method of Lines: Integration of Partial Differ-
ential Equations. Elsevier.

Schmidt, J., Kraemer, N., and Hennig, P. (2021). A probabilistic state space model for
joint inference from differential equations and data. In NeurIPS 2021.

Schober, M., Duvenaud, D. K., and Hennig, P. (2014). Probabilistic ODE solvers with
Runge–Kutta means. NeurIPS 2014.
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smoothing in nonlinear and non-Gaussian systems using conditional moments. IEEE
Signal Processing Letters, 25(3):408–412.
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A Sources for governmental
measures in Germany

This section provides the sources used to list the governmental measures in Table 3.1.
In order to provide reliable sources, we refer to the official press releases, as published
by the German government. For each policy change, we provide a very brief idea of
the imposed measures and official sources by the German government (only available in
German language).

March 22, 2020 (Mark 1)

Citizens are urged to restrict social contacts as much as possible and the formation of
groups is sanctioned in public spaces as well as at home.

https://www.bundesregierung.de/breg-de/themen/coronavirus/besprechung-der-

bundeskanzlerin-mit-den-regierungschefinnen-und-regierungschefs-der-laender-vom-

22-03-2020-1733248

https://www.bundesregierung.de/resource/blob/975226/1733246/

e6d6ae0e89a7ffea1ebf6f32cf472736/2020-03-22-mpk-data.pdf?download=1

May 6, 2020 (Mark 2)

The government puts the federal states in charge of appropriately relaxing the imposed
measures. Different states handle the situation differently, according to the respective
incidences (‘hotspot strategy’ ).

https://www.bundesregierung.de/breg-de/aktuelles/pressekonferenzen/pressekonferenz-

von-bundeskanzlerin-merkel-ministerpraesident-soeder-und-dem-ersten-buergermeister-

tschentscher-im-anschluss-an-das-gespraech-mit-den-regierungschefinnen-und-

regierungschefs-der-laender-1751050

October 7, 2020 (Mark 3) and October 14, 2020

The population is again urged to restrict contacts if possible.
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https://www.bundeskanzlerin.de/bkin-de/aktuelles/telefonschaltkonferenz-des-chefs-

des-bundeskanzleramts-mit-den-chefinnen-und-chefs-der-staats-und-senatskanzleien-

der-laender-am-7-oktober-2020-1796770

One week later, new light restrictions are imposed. The number of people allowed in
social gatherings is limited, according to local incidences.
https://www.bundesregierung.de/resource/blob/997532/1798920/

9448da53f1fa442c24c37abc8b0b2048/2020-10-14-beschluss-mpk-data.pdf?download=1

November 2, 2020 (Mark 4)

Partial shutdown of public life (‘lockdown light’ ). Across the country, the number of
people allowed in social gatherings is limited to ten, where the number of households
present must not exceed two. Most of public services are closed or offered only virtually,
if possible.
https://www.bundesregierung.de/breg-de/aktuelles/videokonferenz-der-bundeskanzlerin-

mit-den-regierungschefinnen-und-regierungschefs-der-laender-am-28-oktober-2020-

1805248

December 16, 2020 (Mark 5)

Across the country, the number of people allowed in social gatherings is limited to five,
where the number of households present must not exceed two. Except for stores of
systemic importance, the retail sector is mostly shut down.
https://www.bundesregierung.de/resource/blob/997532/1827366/

69441fb68435a7199b3d3a89bff2c0e6/2020-12-13-beschluss-mpk-data.pdf?download=1

April 23, 2021 (Mark 6)

The aforementioned measures were mostly governed and implemented by the respective
federal states. On April 22, 2021, the German government decides on a nationwide
decree of measures to come into effect on the following day (April 23, 2021). Depending
on the seven-day incidence, curfews, contact restrictions, and a shutdown of large parts
of public life are imposed.
https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3 Downloads/

Gesetze und Verordnungen/GuV/B/4 BevSchG BGBL.pdf
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Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig und nur mit
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