
UNIVERSITY OF TÜBINGEN

MASTER THESIS

Dissecting BatchNorm: An Ablation Study on the
Core Components

Author:
Vanessa TSINGUNIDIS

Supervisor:
Andrés FERNÁNDEZ

Examiner:
Prof. Dr. Philipp HENNIG

Second Examiner:
Prof. Dr. Andreas GEIGER

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science (M.Sc.)

in the

Methods of Machine Learning Group
Department of Computer Science

October 30, 2023

https://uni-tuebingen.de/
https://0-scholar-google-com.brum.beds.ac.uk/citations?hl=en
https://scholar.google.it/citations?hl=en
https://scholar.google.it/citations?hl=en
https://uni-tuebingen.de/en/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/methods-of-machine-learning/start/
https://uni-tuebingen.de/en/faculties/faculty-of-science/departments/computer-science/department/

iii

Declaration of Authorship
I, Vanessa TSINGUNIDIS, declare that this thesis titled, “Dissecting BatchNorm: An
Ablation Study on the Core Components” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

v

UNIVERSITY OF TÜBINGEN

Abstract
Department of Computer Science

Master of Science (M.Sc.)

Dissecting BatchNorm: An Ablation Study on the Core Components

by Vanessa TSINGUNIDIS

Successfully training Deep Neural Networks (DNNs) is a complex task, primarily due
to their inherent intricacy and the multitude of factors that influence their perfor-
mance. Various methodologies have been introduced to aid this training process,
among which Batch Normalization (BatchNorm) has gained considerable attention.
While the advantages of BatchNorm are recognized, a clear consensus on the spe-
cific mechanisms driving these effects is still a subject of discussion, particularly
concerning the role and necessity of the learnable parameters, γ, and β.
This thesis seeks to shed light on the contributions of these parameters within the
BatchNorm method. Through a targeted ablation study, this work examines the dis-
tinct contributions of the learnable parameters in conjunction with the non-adaptive
normalization. This entails evaluating their impact on model performance along with
analyzing the evolution of γ and β throughout the training process across different
layers.
The empirical investigations in this work indicate that the non-adaptive normaliza-
tion in BatchNorm primarily improves model performance. The learnable parameters
could not significantly influence the training performance in the experiments with
the smaller convolutional architecture. However, in the context of the deeper Convo-
lutional Neural Netowk (CNN), both γ and β were observed to affect the convergence
speed and model accuracy significantly. Moreover, γ and β show changes in their
relative contribution to the training performance, depending on the depth of the
architecture and the position of the BatchNorm layers in the network. Our results
suggest that the success of BatchNorm cannot be attributed solely to the non-adaptive
normalization, or the learnable parameters, γ and β.

HTTPS://UNI-TUEBINGEN.DE/
https://uni-tuebingen.de/en/faculties/faculty-of-science/departments/computer-science/department/

vii

Acknowledgements
Firstly, I would like to thank my supervisor, Andrés Fernández, for his guidance,
patience, and consistent availability for many spontaneous chats, especially toward
the end. Also, I’d like to express my gratitude for your deep engagement in the topic
and for always providing ideas.
In addition, I want to thank Frank Schneider for the brainstorming sessions and
constructive feedback during the process.
Also, a big thanks to Philipp Hennig and the people in his lab, in particular, for
fostering a comforting and supportive environment, which is not at all given but a
result of their personal efforts.
Lastly, (although they probably won’t read this) infinite thanks to my friends and
family for your emotional support throughout writing this thesis and during the
whole period of completing this master’s degree.

ix

Contents

Abstract v

1 Introduction 1

2 Background 3
2.1 Neural Network Training . 3

2.1.1 Convolutional Neural Networks 4
2.1.2 ReLU Activation . 5
2.1.3 Parameter Initialization . 5
2.1.4 Regularization Methods . 6
2.1.5 Normalization in Deep Neural Networks 6

2.2 Batch Normalization . 7
2.2.1 Details on the Internal Computations 7
2.2.2 BatchNorm Layers . 10
2.2.3 On the Effects of BatchNorm . 11
2.2.4 On the Learnable Component in BatchNorm 13
2.2.5 Alternative Normalization Techniques 13

2.3 Summary . 15

3 Methods 17
3.1 On the Design of the Ablation Study . 17

3.1.1 Modifications of BatchNorm . 17
3.1.2 Experimental Setup . 18

3.2 Analysis of Performance Contributions 20
3.2.1 Performance Implications of BatchNorm Modifications 20
3.2.2 Robustness to Hyperparameter Setting 20
3.2.3 BatchNorm in the Last Layer . 21

3.3 Behavioral Analysis of the Learnable Parameters 21
3.3.1 Activity of Learnable Parameters. 21
3.3.2 Visualization of Learnable BatchNorm Parameters 21

4 Experiments 23
4.1 Results from the Ablation Study . 23

4.1.1 The Role of the Learnable Parameters 23
4.1.2 Similar Contribution Across Learning Rates 24
4.1.3 The Last Layer is a Special Case 27

4.2 Results from the Activity Analysis . 28
4.2.1 The Learnable Component Matters 28
4.2.2 The Learnable Component Does Not Matter 33
4.2.3 Summary of Results . 34

5 Discussion and Outlook 37

x

Bibliography 39

A Additional Experiments 43
A.1 Varying Number and Positioning of BatchNorm Layers 43

A.1.1 Cifar10 3C3D . 43
A.1.2 Cifar100 3C3D . 47
A.1.3 Cifar100 ALL-CNN-C . 51

B Network Architectures 55
B.1 Network Architectures . 55

xi

List of Figures

2.1 Illustration of the change of distributions across the feature dimensions
of an input xi through the BatchNorm transformation. (a) illustrates
distributions of the input before BatchNorm, (b) the normalized distri-
butions after the non-adaptive normalization with µB and σ2

B , and (c)
the change in the distributions that can be induced by either γ or β. . . 9

2.2 Normalization methods. Each subplot shows a feature map tensor
with m as the batch axis, d as the channel axis and (q, w) as the spatial
axes. The pixels in blue are normalized by the same mean and vari-
ance, computed by aggregating the values of these pixels. Illustration
adapted from Wu et al. (2018). 15

3.1 BatchNorm Layer Implementation. Illustration of a convolutional
layer with BatchNorm. Max pooling is only applied in the 3C3D.
Apart from that, the structure is similar for both architectures. 19

3.2 Parameter Visualization. Example of a contour plot for analyzing the
learnable parameters of BatchNorm at a specific layer. The vertical axis
denotes the training steps, the horizontal axis the feature dimensions,
and the values of the respective parameter are denoted by the color scale. 22

4.1 Training loss and accuracy for all three models and all modifications
of BatchNorm along with the Vanilla version • and original BatchNorm
• serving as baselines. 24

4.2 Training loss and accuracy for the CIFAR-10 3C3D model trained for
100 epochs, a batch size of 128, and learning rates varying in the order
of magnitude (0.022× 10−1 and 0.022× 101). 25

4.3 Training loss and accuracy for the CIFAR-100 3C3D model trained for
350 epochs with a batch size of 256, and learning rates vary in the order
of magnitude (0.166× 10−1 and 0.166× 101). 26

4.4 Training loss and accuracy for the CIFAR-100 ALL-CNN-C model trained
for 350 epochs with a batch size of 256 and learning rates varying in
the order of magnitude (0.166× 10−1 and 0.166× 101). 26

4.5 Training loss and accuracy for the CIFAR-100 ALL-CNN-C model with
BatchNorm at the last layer, for all modifications of BatchNorm trained
with SGD for 350 epochs with a batch size of 256 and a learning rate of
0.166. The Vanilla version of the model • and the original BatchNorm
version • serve as lower and upper baselines for the comparison of
performance contributions, respectively. 27

4.6 Course of β values across all eight BatchNorm layers of the CIFAR-100
ALL-CNN-C model, trained for 350 epochs with a learning rate of 0.166
and a batch size of 256. Note that (A) and (B) have different colorscales. 29

4.7 Course of γ values across all eight BatchNorm layers of the CIFAR-100
ALL-CNN-C model, trained for 350 epochs with a learning rate of 0.166
and a batch size of 256.. Note that (A) and (B) have different colorscales. 30

xii

4.8 Course of β values of all BatchNorm layers of the CIFAR-100 ALL-CNN-C

model, with BatchNorm at the last layer, trained for 350 epochs with a
learning rate of 0.166 and a batch size of 256. 31

4.9 Course of γ values across all bn layers of the CIFAR-100 ALL-CNN-C

model, with BatchNorm at the last layer, trained for 350 epochs with a
learning rate of 0.166 and a batch size of 256. 32

4.10 Course of β values across all five BatchNorm layers of the CIFAR-10
3C3D model, trained for 100 epochs with a learning rate of 0.022 and a
batch size of 128. Note that (A) and (B) have different colorscales. . . . 33

4.11 Course of γ values across all five BatchNorm layers of the CIFAR-10
3C3D model, trained for 100 epochs with a learning rate of 0.022 and a
batch size of 128. Note that (A) and (B) have different colorscales. . . . 34

4.12 Course of β values across all five BatchNorm layers of the CIFAR-100
3C3D model trained for 350 epochs with a learning rate of 0.166 and a
batch size of 256. Note that (A) and (B) have different colorscales. . . . 34

4.13 Course of γ values across all eight BatchNorm layers of the CIFAR-100
3C3D model trained for 350 epochs with a learning rate of 0.166 and a
batch size of 256. Note that (A) and (B) have different colorscales. . . . 35

A.1 Training loss and accuracy for the Cifar10 3C3D model with one Batch-
Norm layer, trained for 100 epochs with a batch size of 128, and a
learning rate of 0.022 from Table 3.1. 43

A.2 β of the Cifar10 3C3D model with one BatchNorm layer. In (A) and (B),
BatchNorm is placed after the first layer. In (C) and (D), BatchNorm is
placed at the penultimate layer. 43

A.3 γ of the Cifar10 3C3D model with one BatchNorm layer. In (A) and (B),
BatchNorm is placed after the first layer. In (C) and (D), BatchNorm is
placed at the penultimate layer. 44

A.4 Training loss and accuracy for the Cifar10 3C3D model with three
BatchNorm layers, trained for 100 epochs with a batch size of 128, and
a learning rate of 0.022. 44

A.5 β of the Cifar10 3C3D model with three BatchNorm layers. In (A)
and (B), BatchNorm is placed after the first layer. In (C) and (D),
BatchNorm is placed at the penultimate layer. 45

A.6 γ of the Cifar10 3C3D model with three BatchNorm layers. In (A)
and (B), BatchNorm is placed after the first layer. In (C) and (D),
BatchNorm is placed at the penultimate layer. 46

A.7 Training loss and accuracy for the Cifar100 3C3D model with one
BatchNorm layer, trained for 350 epochs with a batch size of 256, and
a learning rate of 0.166. 47

A.8 β of the Cifar100 3C3D model with one BatchNorm layer. In (A)
and (B), BatchNorm is placed after the first layer. In (C) and (D),
BatchNorm is placed at the penultimate layer. 47

A.9 γ of the Cifar100 3C3D model with one BatchNorm layer. In (A)
and (B), BatchNorm is placed after the first layer. In (C) and (D),
BatchNorm is placed at the penultimate layer. 48

A.10 Training loss and accuracy for the Cifar100 3C3D model with three
BatchNorm layers, trained for 350 epochs with a batch size of 256, and
a learning rate of 0.166. 48

xiii

A.11 β of the Cifar100 3C3D model with three BatchNorm layers. In (A)
and (B), BatchNorm is placed after the first layer. In (C) and (D),
BatchNorm is placed at the penultimate layer. 49

A.12 γ of the Cifar100 3C3D model with three BatchNorm layers. In (A)
and (B), BatchNorm is placed after the first layer. In (C) and (D),
BatchNorm is placed at the penultimate layer. 50

A.13 Training loss and accuracy for the Cifar100 ALL-CNN-C model with
one BatchNorm layer at different positions in the network. All models
are trained for 350 epochs with SGD and a learning rate of 0.166. 51

A.14 β of the Cifar100 ALL-CNN-C model with one BatchNorm layer. In
(A) and (B), BatchNorm is placed after the first layer. In (C) and (D),
BatchNorm is placed at the penultimate layer. 51

A.15 γ of the Cifar100 ALL-CNN-C model with one BatchNorm layer. In
(A) and (B), BatchNorm is placed after the first layer. In (C) and (D),
BatchNorm is placed at the penultimate layer. 52

A.16 Training loss and accuracy for the Cifar100 ALL-CNN-C model with
four BatchNorm layers at different positions in the network. All models
are trained for 350 epochs with SGD and a learning rate of 0.166. 52

A.17 β of the Cifar100 ALL-CNN-C model with four BatchNorm layers. In
(A) and (B), BatchNorm is placed after the first layer. In (C) and (D),
BatchNorm is placed at the penultimate layer. 53

A.18 γ of the Cifar100 ALL-CNN-C model with four BatchNorm layers. In
(A) and (B), BatchNorm is placed after the first layer. In (C) and (D),
BatchNorm is placed at the penultimate layer. 54

xv

List of Tables

3.1 Dataset, network architecture, and hyperparameter setting for the
experiments, including the batch size and the learning rate (lr). 20

xvii

List of Abbreviations

DNN Deep Neural Network . v

BatchNorm Batch Normalization . v

DL Deep Learning . 1

ICS Internal Covariance Shift . 1

ResNet Residual Neural Network . 2

MLP Multilayer Perceptron . 3

CE Cross-Entropy . 4

SGD Stochastic Gradient Descent . 4

CNN Convolutional Neural Netowk . v

EMA Exponential Moving Average . 9

RNN Recurrent Neural Network . 12

DeepOBS Deep Learning Optimizer Benchmark Suite 18

xix

List of Symbols

fθ model prediction function
θ model weights
Θ weights space
xi instance of input features
X random variable for input features
X input space
yi instance of label for input features
ŷ predicted output
ẏi instance of label one-hot encoding
Y random variable for output labels
Y output space
b bias term
h hidden layer activation
ϕ activation function
(xi, yi) sample of input and label pair
D training distribution
C number of classes
D training dataset
L loss term
LCE cross-entropy loss term
η learning rate
Rerm(fθ) empirical model risk
Oi,j feature map in a convolutional layer
K kernel in a convolutional layer
nin input units of a fully connected layer
nout output units of a fully connected layer
U uniform distribution
N normal distribution
d binary mask vector
H Hessian of the loss
γ gamma parameter
β beta parameter
BNγβ batch normalization transformation
BN non-adaptive batch normalization only
BNβ batch normalization without γ
BNγ batch normalization without β
B mini-batch
m size of the mini-batch
µB mean of a mini-batch
σ2
B variance of a mini-batch

x̃i instance of normalized features
µ running mean

xx

σ2 running variance
v vector for the direction of θ
||v|| Euclidean (ℓ2) norm of v
g magnitude of θ
Si group in group normalization layer
G group number in group normalization

1

Chapter 1

Introduction

DNNs offer exceptional capabilities across a wide range of applications and tasks
(Goodfellow et al., 2016). However, successfully training DNNs poses a complex task.
The field of Deep Learning (DL) has proposed various techniques to overcome training
difficulties via improved optimization (Dauphin et al., 2014; Sainath et al., 2013),
weight initialization (Glorot and Bengio, 2010; He et al., 2016) and regularization
methods (Srivastava et al., 2014). A significant stride was the introduction of the
BatchNorm technique by Ioffe et al. (2015). BatchNorm has quickly been adopted as a
standard component for training DNNs and found its way into numerous state-of-
the-art models (Szegedy, Vanhoucke, et al., 2016; Amodei et al., 2016; Szegedy, Ioffe,
et al., 2017; Dosovitskiy et al., 2021). While the internal computations are well known,
and the research community agrees on the beneficial effects of BatchNorm (Bjorck et al.,
2018; Szegedy, Vanhoucke, et al., 2016), there is no consensus regarding the precise
underlying mechanisms of these effects (Santurkar et al., 2019; Cai et al., 2018; Frankle
et al., 2020; Awais et al., 2020; Peerthum, 2023).

At its core, BatchNorm normalizes the output or activation of a layer to have zero mean
and unit variance. This is achieved by computing the mean and the variance over a
mini-batch from the training data and applying those statistics for the normalization
of activations. In the context of BatchNorm, this transformation can be described as a
non-adaptive normalization, which is followed by an affine transformation with two
learnable parameters γ and β. During training, both parameters are adjusted by the
optimizer, along with the weights of the network. The first parameter γ scales the
activations, while β applies a shift on the activations (See Section 2.2.1).

BatchNorm was initially introduced with the objective of tackling the internal shift of
hidden layer activations during training, an effect Ioffe et al. defined as the Internal
Covariance Shift (ICS). However, subsequent studies have strongly questioned this
assumption (Santurkar et al., 2019; Xu et al., 2019; Davis et al., 2021; Lewkowycz et al.,
2020). Numerous other effects are attributed to the usage of BatchNorm ranging from
improved convergence rates, to reduced sensitivity, towards parameter initialization
(Bjorck et al., 2018; Luo et al., 2018), and potential regularization effects that reduce
the need for classical regularization methods such as dropout (Ghorbani et al., 2019).
Another aspect of investigation in this context, is the contribution of the respective
components of BatchNorm, namely the non-adaptive normalization and the learnable
parameters γ and β. The original paper introduces the learnable component under
the rationale to equip the BatchNorm method with the flexibility to undo the non-
adaptive normalization if it serves the optimization process. The authors assume that
this is necessary if the activation function after BatchNorm has saturating regions, as is
the case for the sigmoid activation function (Ioffe et al., 2015). However, the paper
did not delve further into the specifics of the two learnable parameters, leaving a gap
in the comprehension of their full impact.

2 Chapter 1. Introduction

Research has examined the role of BatchNorm’s learnable parameters, with varying
outcomes. Frankle et al. (2020) observed, that freezing all other weights and solely
training γ and β still yields competitive performance. Training an equivalent set of
randomly selected parameters elsewhere in the network failed to achieve similar
outcomes. In contrast, findings by Davis et al. (2021) show that γ and β tend to remain
near their initialization, indicating the parameters influence the model performance
to a negligible extent. Peerthum (2023) investigate the respective contributions of
the non-adaptive normalization and the learnable component on varying Residual
Neural Network (ResNet) architectures. Their results show that, for ResNets using basic
blocks, the non-adaptive normalization is sufficient on its own. ResNets that utilize
bottleneck blocks heavily rely on the learnable parameters in BatchNorm. Peerthum
(2023) argue that in these cases, γ and β introduce additional degrees of freedom for
the optimizer to train the network.

The above explorations do not provide consensual findings on the role of the learnable
parameters in BatchNorm. This motivates further research on the BatchNorm compo-
nents in general and their impact on the beneficial effects of this method. Our work
seeks to shed light on the learnable parameters γ and β in BatchNorm and their behav-
ior over the training process. By empirically evaluating each component on different
DL architectures, we aim to provide a comprehensive understanding of their individ-
ual and collective impacts on model performance. In particular, we set up an ablation
study with several modifications to the original BatchNorm formula by freezing the
learnable parameters γ and β respectively (Section 3.1). In addition, we design ex-
periments that allow for a detailed investigation of γ and β at each BatchNorm layer
(Section 3.3) in order to determine trends in relation to their performance contribution.

Our experiments provide a detailed analysis of the performance contribution of
the individual components, showing the context-dependent importance of γ and β,
based on the network architecture and the positioning of BatchNorm layers. We further
provide insights into the behavior of the two parameters at each BatchNorm layer over
the training process. While our experiments could not find a solid relation between
the trajectory of the learnable parameters and their performance contribution, we can
identify trends in the training behavior specific to the position of a BatchNorm layer in
the network and in relation to other embedded BatchNorm layers. Extending from the
comprehensive analysis conducted in this thesis, we outline the key contributions
and research findings in the following:

• Examination of different model architectures and datasets to discern the
varying impacts of learnable parameters on training performance. In most
cases, the non-adaptive normalization is the component that primarily induces
the beneficial effects of BatchNorm on the training performance. However, there
are cases in which the contribution of the learnable parameters can be crucial
for the method to be beneficial at all.

• The success of BatchNorm cannot be solely attributed to one component. The
Experiments, with BatchNorm at the last layer, reveal the learnable parameters
γ and β can compensate for cases in which the non-adaptive normalization
hinders model performance.

• Visualization of the trajectory of γ and β over the training process. For both
parameters γ and β, the pattern exhibited is primarily characterized by the
position of the BatchNorm layer within the network architecture, irrespective of
its eventual performance impact.

3

Chapter 2

Background

This chapter briefly introduces foundational aspects of neural network training along
with architectures and methods utilized in the context of this work. The focus of
this chapter is set on the BatchNorm method (Section 2.2). After providing details
on the BatchNorm computations (Section 2.2.1), we delve into the discussion on the
effects attributed to BatchNorm in Section 2.2.3 and the contribution of the learnable
component Section 2.2.4. Lastly, this chapter provides an insight into alternative
normalization techniques along with their advantages and drawbacks in comparison
to BatchNorm (Section 2.2.5).

2.1 Neural Network Training

A neural network aims to learn a mapping fθ : X → Y from an input x ∈ X to
the corresponding label or ground truth y ∈ Y . In simple feed-forward networks,
such as the Multilayer Perceptron (MLP), this is achieved by processing the input
through a sequence of layers to produce a prediction ŷ. Each layer consists of
multiple weights θ ∈ Θ that apply a linear transformation to the input, followed by a
non-linear activation function ϕ, allowing the network to learn complex, non-linear
mappings. For clarity, h represents the output activation of an intermediate layer,
while ŷ represents the final prediction after the last layer:

h = ϕ(θx + b) (2.1)

with a bias b at each layer to introduce a learnable offset to aid the network training.
The last layer of a neural network serves a specific function, namely to transform the
internal representation of the input into a prediction ŷi. For multi-class classification
tasks with classes denoted by C, it is common to employ the softmax activation
function. Softmax transforms the raw layer output into one-hot encoded class proba-
bilities ŷc, meaning only one unit of the vector is activated. The probabilities over the
classes C lie in the range [0, 1] such that the entire vector sums to one, which ensures
the predictions ŷ align with the intended classification task and are interpretable as
probabilities for decision-making and model evaluation.

In supervised learning, a set of training data D = {(xi, yi)}N
i=1 comes with pairs of

inputs and corresponding labels (xi, yi) to aid the decision making process. Typically,
the data pairs are drawn independently and identically distributed (i.i.d.) from the
underlying data distribution D such that the network receives representative samples
of the entire data space X ×Y . The labels y serve as the ground truth that the model
strives to predict. The difference between the ground truth y and the prediction ŷ
is measured by the loss L(ŷ, y) ∈ R≥0. By training the neural network, we seek to
minimize the empirical risk over the dataset:

4 Chapter 2. Background

Rerm(fθ) =
1
N

N

∑
i=1
L(fθ(xi), yi) (2.2)

Among various loss functions, the Cross-Entropy (CE) loss is a commonly used metric
for multi-class classification tasks (Janocha et al., 2017) to measure the difference
between the predicted probability distribution and the ground truth distribution. The
CE loss is given by:

LCE(ŷ, y) = −
C

∑
c=1

yc log(ŷc) (2.3)

where yc is the ground truth probability for class c ∈ C, and ŷc denotes the predicted
probability for a class. Minimizing this loss pushes the output of the neural network
towards the ground truth probabilities.

Gradient-based optimization methods, such as Stochastic Gradient Descent (SGD),
are employed to minimize the empirical risk by iteratively optimizing θ. Rather than
using the entire dataset for each update, which can be computationally intensive,
SGD commonly employs mini-batches, subsets of the training data. SGD updates the
weights θ and the bias b with a learning rate η that determines the size of the update
at each iteration t.

θt+1 = θt − η∇θL((fθt(xi), yi)) (2.4)

The term ∇θL represents the gradient of L with respect to the parameters, including
the weights θ and the biases b. In each iteration, ∇θL points in the direction of the
steepest ascent in the loss landscape. By moving into the opposite direction −∇θ , the
loss can be locally minimized. With numerous iterations, this method allows a neural
network to train and generalize well when subjected to unseen input data.

2.1.1 Convolutional Neural Networks

CNNs (LeCun, Bottou, Bengio, et al., 1998), have become a foundational architecture
in DL, especially for images (Springenberg et al., 2015). A primary distinction of
CNNs compared to traditional fully connected neural networks is their incorporation
of convolutional layers to learn spatial hierarchies of features from the input. The
convolutional layer operates by applying a kernel K of size q, a tensor usually small
in spatial dimensionality but spreads along the entirety of the depth d of the input.
The kernel is convolved across the spatial dimensionality of the input with a stride
s denoting the number of pixels by which the kernel moves. The result is a 2D
activation map O of size (o× o), which reduces the number of weights in the model
compared to fully connected architectures. The produced activation maps are stacked
along the depth dimension, each representing locations and strengths of detected
features. The convolution operation transforms an input xi with height h and width
w of size (h× w× d) into a size of (o× o× q).

Although the method is technically a cross-correlation operation, it is referred to
as convolution in DL. This spatial locality of convolutions makes them particularly
suitable for image analysis, among others. While at the initial layers, kernels typically
capture rudimentary patterns such as edges or textures, deeper layers recognize more
abstract features, from shapes to intricate objects (Springenberg et al., 2015).

2.1. Neural Network Training 5

After the convolution operation, CNNs often employ a pooling layer to reduce the
spatial dimensions of the activations, thereby further decreasing the required amount
of computations and weights. Max pooling, for example, works by selecting the
maximum value from a window in the activation map, thereby preserving dominant
features and making the representation more robust to small translations.

2.1.2 ReLU Activation

The Rectified Linear Unit (ReLU) (Fukushima, 1975) activation function is utilized for
various types of neural network architectures, including CNNs and MLPs (Dubey et al.,
2022). The ReLU function is defined as:

ϕ(x) = max(0, x) (2.5)

ReLU offers computational efficiency due to its simplicity. Evaluating ReLU only
requires a threshold at zero, which comes without much computational and memory
overhead. Unlike saturating functions like sigmoid or tanh, whose gradients tend
toward zero for extreme values of x, ReLU’s gradient is either zero (for x < 0) or
one (for x > 0), ensuring more robust and more consistent gradient signals during
optimization, especially in deep networks (Glorot, Bordes, et al., 2011). However, if
too many input values are below zero, ReLU leads to units that never activate, known
as the "dying ReLU" problem.

2.1.3 Parameter Initialization

The choice of weight and bias initialization can have a great impact on the training of
DNNs. Proper initialization ensures balanced activations across layers, aiding in faster
convergence and avoiding issues like vanishing or exploding gradients during the
early stages of training (Kumar, 2017). Conversely, improperly initialized weights
and biases can lead to saturated activation functions at the beginning of the training,
hindering the model’s ability to learn.

Xavier (Glorot) Initialization. The core principle of Xavier initialization is to maintain
the variance of activations consistent across layers. For a fully connected layer with
nin input units and nout output units, the parameters are initialized according to a
uniform distribution,

θ ∼ U

(
−

√
6

nin + nout
,

√
6

nin + nout

)
(2.6)

or a normal distribution with zero mean and variance 2
nin+nout

. Xavier initialization is
primarily developed for the sigmoid and tanh activation functions.

He Initialization: An approach tailored for the ReLU activation function and similar
activation functions (Clevert et al., 2016; Mu et al., 2020). The initialization keeps the
variance of activations consistent across layers. For a layer with nin input units, the
weights are initialized from a distribution with zero mean and variance 2

nin
:

θ ∼ N

(
0,

√
2

nin

)
(2.7)

or from a uniform distribution in the range
[
−
√

6
nin

,
√

6
nin

]
.

6 Chapter 2. Background

2.1.4 Regularization Methods

Regularization techniques are essential for preventing overfitting in DNNs, a phe-
nomenon that occurs when, instead of capturing the underlying patterns, the model
memorizes the training set, leading to high performance on training data but poor
performance otherwise. This section presents the methods that are relevant in the con-
text of this work. However, there exist various other methods that have a regularizing
effect.

ℓ2 Regularization or weight decay, adds a penalty term to the loss function. This
prevents the weights from reaching large values. This effectively constrains the
updates optimization process, forcing the model to find a solution in a smaller,
constrained weight space. The regularized loss function is defined as:

Lℓ2 = L(θ) +
λ

2 ∑
i

θ2
i (2.8)

Dropout. Srivastava et al. (2014) introduced dropout, a regularization technique that
randomly sets a fraction of the activations h for a given layer to zero at each update
in the training process, which mitigates the risk of overfitting. The dropout operation
for the output h of a layer is defined by,

hdropout = h⊙ d (2.9)

Here, ⊙ denotes element-wise multiplication, and di is a binary mask vector drawn
from a Bernoulli distribution:

di ∼ Bernoulli(p) (2.10)

where p is the probability of each element being independently set to zero. At test
time, all units in the layer stay active, but the weights are scaled by p.

2.1.5 Normalization in Deep Neural Networks

Normalizing the inputs to a model is a common pre-processing technique in machine
learning (Friedman, 1987; Goodfellow et al., 2016). Given input data x, normalization
is generally defined as:

x̂ =
x− µ

σ2 (2.11)

In this equation, the scalars, µ and σ2, are the mean and variance of x, so that x̂ has
zero mean and unit variance after the normalization. It ensures that input data is on
the same scale, preventing the optimization process from being disproportionately
influenced by a single input feature.

LeCun, Bottou, Orr, et al. (1998) investigate the beneficial effects of pre-processing
input data by mean subtraction and variance scaling. With this transformation,
the authors aim to regulate the sensitivity of the output to changes in the input
distribution. LeCun, Bottou, Orr, et al. (1998) can show that the normalization affects
the eigenvalues of the Hessian matrix H, a second-order derivative matrix capturing
the curvature of the loss function with respect to the model parameters.

H = ∇2
θL(ŷ, y) (2.12)

2.2. Batch Normalization 7

Normalizing the input features can alter the distribution of eigenvalues of the Hessian
matrix, potentially fostering more favorable conditions for optimization.

This principle can be extended to hidden layers. However, applying normalizations
to inputs of intermediate layers is not as straightforward as normalizing static input
data and comes with a greater computational expense: The activations constantly
change over the training time, and directly normalizing those requires continuous
computation of statistics over the entire training set for each training step.

2.2 Batch Normalization

One fundamental challenge of training DNNs stems from the nature of the parameter
updates. The weights and the bias of a layer, θ and b, are updated with the underlying
assumption that the activations of the preceding layers remain unchanged. However,
during the training process, weights in all layers are concurrently adjusted, leading
to alterations in their output distributions. This alteration in output distributions of
a layer, commonly termed "internal covariate shift", means that subsequent layers
are faced with a changing input distribution at each iteration. This can result in
inconsistent weight updates as each layer attempts to learn from a continuously
changing distribution, slowing down the optimization procedure (Goodfellow et al.,
2016).

Aiming to address this issue, Ioffe et al. (2015) introduce BatchNorm with the objective
of normalizing the activations of a layer. BatchNorm can be viewed as an additional
layer that normalizes each feature dimension of an input xi = x(1)i ...x(d)i . At each
feature dimension, the distribution is normalized to have zero mean and a standard
deviation of one. In addition, Ioffe et al. (2015) introduce the two learnable parameters
γ and β. The first parameter is a vector trained to approximate the optimal scaling
factor for each feature dimension, allowing the network to modulate the magnitude
of the features based on their importance. Similarly, β is a vector that shifts the
activations, enabling the network to adjust the normalized values. For each feature
dimension of the input x(k)i with m values in the mini-batch Bx1...m , the transformation
BNγ,β : x1...m → y1...m is defined as,

BNγ,β(x
(k)
i) ≡ γ(k) x(k)i − µB√

σ2
B + ϵ

+ β(k) = ỹ(k) (2.13)

where ϵ ∈ R>0 is a small constant added to the variance estimate to ensure no
division by zero, thus preventing numerical instability. Both learnable parameters
can be defined such that the transformations applied by BatchNorm can recover the
identity transform. If ϵ is neglected, the original activations can be restored by
defining γ = σ2

B , and β = µB .

2.2.1 Details on the Internal Computations

Training Time. In the forward pass, the mean and the variance of the current mini-
batch B are computed. Specifically, the variances are computed per feature dimension
of the input rather than as joint covariances. This is necessary to handle cases
where the batch size is smaller than the number of activations, resulting in singular
covariance matrices (Ioffe et al., 2015). For clarity, the feature dimension of the input
(k) is omitted in the following equations.

8 Chapter 2. Background

µB ←
1
m

m

∑
i=1

xi (2.14)

σ
2(k)
B ← 1

m

m

∑
i=1

(xi − µB) (2.15)

Calculated mean and variance are then applied to the input xi, such that the distribu-
tion of each feature dimension is normalized to have zero mean and unit variance
if ϵ is neglected. In the context of this work, we refer to this transformation as non-
adaptive normalization. The effect on the distributions is illustrated in Figure 2.1
(b).

x̃i =
xi − µB√

σ2
B + ϵ

(2.16)

The non-adaptive normalization is followed by the application of the learnable pa-
rameters:

ỹi = γx̃i + β (2.17)

After the transformation by γ and β, the activations can be shifted to a different mean
and scaled to another standard deviation, as follows:

µ[x̃γ + β] = µ[x̃γ] + β = γµ[x̃] + β = β (2.18)

σ2[x̃γ + β)] = σ2[x̃γ] = γ2σ2[x̃] = γ2 (2.19)

As a result, the distribution of the activations is not necessarily normalized to have
zero mean and unit variance anymore, but instead, γ adjusts the variance, and β shifts
the mean of the distributions. Figure 2.1 illustrates the change in the distributions
through the BatchNorm transformation.

In the backward pass, the gradient of each input xi is affected by the entire mini-batch
statistics. The gradient of the loss ℓ through this transformation has to be computed
with respect to the learnable parameters γ and β. Ioffe et al. (2015) provide the
backward pass of the computations in the original paper:

∂ℓ

∂x̃i
=

∂ℓ

∂ỹi
· γ (2.20)

∂ℓ

∂σ2
B
=

m

∑
i=1

∂ℓ

∂x̃i
· (xi − µB) · −

1
2
· (σB + ϵ)−

3
2 (2.21)

∂ℓ

∂µB
=

(
m

∑
i=1

∂ℓ

∂x̃i
· −1√

σB + ϵ

)
+

∂ℓ

∂σ2
B
· ∑m

i=1−2(xi − µB)

m
(2.22)

∂ℓ

∂xi
=

∂ℓ

∂x̃i
· 1√

σ2
B + ϵ

+
∂ℓ

∂σ2
B
· 2 · (xi − µB)

m
+

∂ℓ

∂µB
· 1

m
(2.23)

∂ℓ

∂γ
=

m

∑
i=1

∂ℓ

∂ỹi
· x̃i (2.24)

∂ℓ

∂β
=

m

∑
i=1

∂ℓ

∂ỹi
(2.25)

2.2. Batch Normalization 9

FIGURE 2.1: Illustration of the change of distributions across the fea-
ture dimensions of an input xi through the BatchNorm transformation.
(a) illustrates distributions of the input before BatchNorm, (b) the nor-
malized distributions after the non-adaptive normalization with µB
and σ2

B , and (c) the change in the distributions that can be induced by
either γ or β.

Inference Time. In contrast to the training process, the output should be deterministic
during inference, relying solely on the input rather than the entire mini-batch B.
Hence, instead of calculating the mini-batch statistics, the authors from the BatchNorm
paper suggest using the population statistics by processing multiple training mini-
batches B of size m and averaging over them. Again, for clarity, (k) is omitted.

µ[x] = µB (2.26)

σ2[x] =
m

m− 1
· µB [σ2

B] (2.27)

The transformation ỹi = BNγ,β(xi) is replaced by:

ỹi =
γ · xi√

σ2[xi] + ϵ
+

(
β− γ · µ[xi]√

σ2[xi] + ϵ

)
(2.28)

In practice, during the validation phase, it is not possible to utilize the population
averages as these are still evolving. Hence, employing running averages of the
statistics becomes more appropriate for evaluating performance on the validation set.
The running mean µ and running variance σ2 are gathered over the training to be
utilized at inference.

Popular machine learning frameworks, such as PyTorch (Paszke et al., 2019) and
TensorFlow (Abadi et al., 2015), use a parameter named momentum term to weigh the
update for the running statistics. Momentum in BatchNorm serves a unique purpose
distinct from its conventional use in optimization algorithms such as SGD (Robbins
et al., 1951). Here, it controls the Exponential Moving Average (EMA) update for the
running statistics by stabilizing and smoothening the estimations over training time.

10 Chapter 2. Background

In the Tensorflow implementation, with setting the Momentum to zero, the running
mean and running variance come from the last seen batch, and if the Momentum is
one, the running averages come from the first mini-batch (Abadi et al., 2015).

µ = momentum · µ + (1−momentum) · µi (2.29)

σ2 = momentum · σ2 + (1−momentum) · σ2
i (2.30)

The PyTorch implementation uses a different definition, such that the value of mo-
mentum equals (1-momentum) in Tensorflow (Paszke et al., 2019).

µ = (1−momentum) · µ + momentum · µi (2.31)

σ2 = (1−momentum) · σ2 + momentum · σ2
i (2.32)

2.2.2 BatchNorm Layers

The implementation of BatchNorm within neural networks varies depending on the
type of layer to which it is applied and the shape of the layer output. In the initial
paper by Ioffe et al. (2015), BatchNorm is suggested to be placed right before the
activation function within fully connected layers. Then, the BatchNorm transformation
in a fully connected layer can be represented as:

ϕ(BNγ,β(θxi + b)) (2.33)

Relation between Beta and Bias. Ioffe et al. (2015) mention that with the imple-
mentation of BatchNorm, the effect of the bias is canceled out by the subsequent mean
subtraction and suggest ignoring it and, further, subsume the bias by β. A comparison
of the gradient computation underpins the assumption (Goodfellow et al., 2016). The
computation of the gradient of the loss in BatchNorm parallels how gradients would
be calculated for a bias term. Thus, the parameter β in a BatchNorm layer can be seen
as analogous to the bias term in a traditional neural network layer, and the above
transformation can be expressed as:

ϕ(BNγ,β(θxi)) (2.34)

BNγ,β is applied independently to each dimension of x and with a separate pair of
trainable parameters γ(k), β(k) per feature.

Convolutional Layers. The properties of convolutional layers require an adjusted
application of BatchNorm compared to fully connected layers. Here, the BatchNorm layer
normalizes all activations over all locations of the input jointly. The mean µB and
the variance σB are computed over all values in a feature map across the mini-batch
and the spatial locations, visualized in Figure 2.2. In addition, instead of learning
γ(k), β(k) per activation, there is a separate pair of parameters per feature map. The
computations at inference time are similarly adjusted, such that BatchNorm uses the
same linear transformation for each activation within one feature map O.

2.2. Batch Normalization 11

2.2.3 On the Effects of BatchNorm

In the original paper, the authors introduce BatchNorm with the primary reason to
reduce the ICS (Ioffe et al., 2015). While they argued that BatchNorm stabilizes the
distribution of layer activations and facilitates training, the only experiment in the
paper that takes the ICS into account shows the mean of the activations at the last
hidden layer. Ioffe et al. (2015) utilize a simple network with three fully connected
hidden layers, trained on MNIST. Without BatchNorm, the activations fluctuate signifi-
cantly in the early phases of training. In contrast, the curve of the activations appears
significantly smoother with BatchNorm. However, this does not provide substantial
proof for the claim that BatchNorm reduces the ICS or that reducing the ICS is actually
beneficial for training DNNs.

The studies by Santurkar et al. (2019) have particularly challenged this view and
proposed alternative explanations for the beneficial effects of BatchNorm. By visual-
izing the distribution of activations at different layers, the authors found that the
performance gain of BatchNorm does not seem to be linked to the reduction of ICS
and might not even reduce it at all. Santurkar et al. (2019) induced an additional
ICS to show that in scenarios where the ICS is inherent, BatchNorm still improves the
performance of the model. In contrast, Awais et al. (2020) propose results that rather
underpin the importance of the reduction of the ICS and the role of BatchNorm in this
issue. In their experiments, the authors found the learnable parameters to have little
effect on the performance of a model, but the non-adaptive normalization alone could
reach competitive performance. The authors suggest this indicates that the reduction
of the ICS is the primary reason for BatchNorm’s beneficial effects.

In the original BatchNorm paper, additional effects are awarded to the method besides
the reduction of the ICS (Ioffe et al., 2015). These include enhanced convergence,
preventing exploding or vanishing gradients, allowing for higher learning rates, and
reducing sensitivity to initialization of the weights. The following section provides a
collection of the main research directions in the literature on the effects of BatchNorm.
Although the effects are widely accepted and tested in practice (Smith et al., 2017;
Bjorck et al., 2018), they rather represent characteristics of the method than reveal
fundamental reasons behind the effectiveness of BatchNorm.

Smoothness of the Loss Landscape. Along with questioning the reduction of the ICS,
Santurkar et al. (2019) propose BatchNorm leads to a smoother optimization landscape.
They show that under natural conditions, the Lipschitzness of the loss and the
gradients is decreased, which is related to the smoothness of the loss surface (Gouk
et al., 2021). Santurkar et al. (2019) observe that with BatchNorm, the loss changes are
smaller, and the magnitudes of the gradients are reduced. In addition, BatchNorm
appears to reduce the Lipschitzness of the gradients of the loss, as well. A function f
is L-Lipschitz, if

|| f (x1)− f (x2)|| ≤ L||x1 − x2|| (2.35)

holds, for all choices of x1 and x2, with L ∈ R>0. A smoother loss surface means
reduced variations and irregularities in the landscape, such as high curvature or
narrow valleys. The stabilization of gradients helps to guide the optimization process
effectively and prevents the gradients from exploding or vanishing. The authors
claim this effect enables an increase in the learning rate without destabilizing the
training process (Santurkar et al., 2019). This makes a strong case for the fundamental

12 Chapter 2. Background

mechanisms of BatchNorm. However, it does not reveal which aspects of the method
lead to the improved Lipschitzness.

In addition to the work by Santurkar et al. (2019), more recent literature suggests the
improvement of the Lipschitzness, or the smoothness of the loss surface, as a general
effect of regularization methods, that enables DNNs to train stably (Gouk et al., 2021;
Kim et al., 2022).

BatchNorm as a Regularization method. Subsequent research literature investigates
the regularization effects of BatchNorm on DNNs (Teye et al., 2018; Luo et al., 2018).
Ghorbani et al. (2019) show that if BatchNorm is trained with the true aggregated
mean and variance, it induces poor conditioning. On the other hand, BatchNorm
seems to rely on these aggregated statistics to reveal its full potential and outperform
other normalization methods (Rao et al., 2020). This suggests that, specifically, the
mean and variance for each mini-batch introduce slight variability in the normalized
activations, serving as a form of regularizer that accelerates the ability of the model to
generalize well on unseen data and prevent overfitting. Furthermore, Luo et al. (2018)
show that the regularization effect is not only observable for scenarios in which ICS is
significant. BatchNorm also improves the model’s generalization performance in cases
where the shift is minimal.

Beneficial effects, such as faster training and less overfitting by utilizing regularization
methods, are a recurrent theme in deep learning. However, Kohler et al. (2018) suggest
the effects of BatchNorm go beyond that of other regularization techniques. Their work
shows that the transformations imposed by BatchNorm lead the magnitude of the
weight vector to be independent of its direction. The authors argue that BatchNorm
can exploit those properties for the optimization process, which makes it superior
to other regularization methods. Still, Kohler et al. (2018) state that decoupling the
length and direction of the parameters does not fully solve the questions around the
reasons for BatchNorm’s success.

Control over Large Hessian Eigenvalues. In their paper, Ghorbani et al. (2019) could
show that the fractions of eigenvalues of the Hessian of L(ŷ, y) are significantly
reduced with BatchNorm. Not using BatchNorm led to a rapid appearance of large
isolated eigenvalues, and the gradients tended to concentrate in the corresponding
eigenspaces, which was shown to slow down optimization. BatchNorm appears to
suppress those outliers in the eigenvalues and thereby speed up training. They argue
that lowering the eigenvalues of the covariance matrix allows for higher learning
rates. Rao et al. (2020) show this effect is not unique to the BatchNorm method but
appears to happen in many other normalization methods (Wu et al., 2018; Ulyanov
et al., 2016).

Position in the Architecture Matters. Laurent et al. (2015) demonstrated that al-
though BatchNorm is effective in deep feed-forward networks, the optimal positioning
within Recurrent Neural Networks (RNNs) appears to be more complex. The authors
observed that only if BatchNorm is applied to input-to-hidden transitions, it yields ben-
eficial results in RNNs. Otherwise, convergence speed did not improve. Conversely,
Cooijmans et al. (2016) proposed that, with appropriate reparameterization, BatchNorm
could also enhance the performance of hidden-to-hidden transitions within RNNs.
This suggests the application of BatchNorm layers could be sensitive to the network
architecture and positioning of the layers, requiring additional adaptations to unlock
the full potential of BatchNorm.

2.2. Batch Normalization 13

2.2.4 On the Learnable Component in BatchNorm

In the broader discourse on BatchNorm, a critical area of investigation is the learnable
component. The authors justify the introduction of γ and β with the ability of the
BatchNorm layer to undo the non-adaptive normalization if that is the optimal adjust-
ment for the optimization problem Ioffe et al. (2015). However, as both parameters
are trained by the optimizer, there is no direct control over how γ and β adjust the
mean and the variance of the activations. Besides the note that β could subsume the
bias term (See Section 2.2.2), no further details are provided in the original paper.

Frankle et al. (2020) investigate the expressive power of the trainable component
alone by isolating the contribution of γ and β from that of the learned weights.
The authors freeze all the weights at their random initialization and only train the
affine transformation, reaching a competitive performance regarding the limitations
of the model capacity in this setting. Surprisingly, training an equivalent number
of randomly chosen learnable parameters elsewhere in the network does not yield
nearly the same results.

In contrast to these findings, Davis et al. (2021) have investigated that γ and β tend to
stay close to their initial values, which is zero for β and one for γ, but strongly question
that those parameters are optimal near identity settings. Instead, the authors suggest
the affine transformation is either unnecessary, which aligns with the suggestions by
Awais et al. (2020), or something in the optimization process hinders the parameters
from reaching their optimal values. The work by Davis et al. (2021) then focuses on
the initialization and updates γ, showing that besides reaching a better performance
with other initial values for γ, for all cases, both parameters stay close to their initial
values. Thus, the authors suggest modifying the update step of the parameters by
adjusting the learning rate respectively. However, this paper aims to improve the
performance of BatchNorm but does not seek to understand the role of the learnable
parameters. In addition, a formal explanation is missing for the claim that the optimal
solution of γ and β cannot be close to their initial values.

Peerthum (2023) aim to separate the relative effects of the two components in
BatchNorm, the non-adaptive normalization, and the affine transformation. They
propose two modifications of the technique, one that applies only the non-adaptive
normalization step and one that applies only the affine transformation. Those mod-
ifications are then compared on several ResNets, with the original BatchNorm and a
version without BatchNorm at all. Peerthum (2023) can show that the role of the affine
transformation varies across several ResNet architectures. In their work, the ResNet18
and ResNet34, which use basic blocks, the non-adaptive normalization step alone reaches
comparable performance to the original BatchNorm version. On the contrary, the affine trans-
formation is critical for the ResNet50 and ResNet101 models, which make use of bottleneck
blocks.

2.2.5 Alternative Normalization Techniques

Despite its huge success, the application of BatchNorm has its drawbacks. For instance, it
requires additional overhead and complexity in the training process, as the statistics for
test time have to be accumulated for each batch. Another consideration is that BatchNorm
can be less advantageous in scenarios with small batch sizes and σ2 undefined for a batch
size of one. The need for efficient optimization with small batch sizes arises as machine
learning systems increasingly adopt distributed architectures. Even though the batch size
might be relatively large in these architectures, it often gets divided across multiple machines,
sometimes resulting in single or dual sample batches on each device (Qiao et al., 2019).

14 Chapter 2. Background

Consequently, the choice of normalization technique should be carefully considered, particu-
larly when data availability is constrained. Several alternatives exist aside from BatchNorm,
especially for settings where it may not be the most suitable (Xu et al., 2019; Clevert et al.,
2016; Xiang et al., 2017).

Weight Normalization. Salimans et al. (2016) propose a method that normalizes the weights,
a reparameterization of the weight vectors in a neural network that decouples the length
of those weight vectors from their direction. Weight normalization re-parameterizes the
d-dimensional weight vector θ:

θ =
g
||v||v (2.36)

Here, v is a d-dimensional vector, ||v|| denotes the Euclidean norm of v and g is a scalar.
Gradient descent performs the updates with respect to those parameters instead, with the
effect of fixing the Euclidean norm of the weight vector to ||θ|| = g, independent of v.
Unlike BatchNorm, weight normalization is deterministic and does not make use of a learnable
component. In addition, Rao et al. (2020) can show that weight normalization does not
affect the conditioning of the Hessian as opposed to BatchNorm while reaching comparable
performance. Despite its simplicity, the experiments show it can reach much of the speed
improvements of BatchNorm. However, weight normalization highly depends on the input
data and can be unstable during training (Gitman et al., 2017).

Layer Normalization. At the same time, Ba et al. (2016) introduce a technique that directly
estimates the normalization statistics from the layer inputs to fix the mean and the variance
of inputs within a layer and thereby aim to reduce the ICS. The layer normalization statistics
are computed for each sample across all channels d:

µ =
1
d

d

∑
k=1

xk (2.37)

σi =
1
d

d

∑
k=1

(xk − µ)2 (2.38)

Figure 2.2 shows a visualization of that operation. The calculation of statistics eliminates
dependencies between the layers and similarly applies the learnable parameters γ and β after
the non-adaptive normalization. Layer normalization has been shown to work successfully
in RNNs and transformer-based models (Ba et al., 2016; Vaswani et al., 2017). This success
underpins the notion that a reduction of the ICS is unlikely to be the only reason for BatchNorm’s
success.

Instance Normalization can be considered a variation of above layer normalization (Ulyanov
et al., 2016), which prevents instance-specific mean and covariance shifts. It computes the
mean and variance for each channel and each sample, visualized in Figure 2.2. This technique
could be shown to be especially successful in training generative adversarial networks (Xu
et al., 2019), for which BatchNorm is not the most suitable (Xiang et al., 2017).

Group Normalization. Another approach independent of batch sizes is group normalization
(Wu et al., 2018). This technique divides the input channels into groups and normalizes the
features within each group before applying the trainable parameters γ and β. The group
number G is a pre-defined hyperparameter containing groups Si with i ∈ N, denoting the
index of the channels.

µi =
1
m ∑

r∈Si

xr (2.39)

σ2
i =

1
m ∑

r∈Si

(xr − µi)
2 (2.40)

If the number of groups is set to one, group normalization is equivalent to the above instance
normalization (See Figure 2.2).

2.3. Summary 15

Weight Standardization. Qiao et al. (2019) found inspiration from the findings that BatchNorm
improves the Lipschitzness of the loss and the gradients (Santurkar et al., 2019). Qiao et al.
(2019) propose weight standardization, a method developed to utilize this effect further.
Instead of normalizing the activations, weight standardization re-parametrizes the weights in
convolutional layers.

θ̂ = [θ̂i,j|θ̂i,j =
θi,j − µθi

σθi + ϵ
] (2.41)

With µθi and σθi are the mean and the variance over the weights of each channel in the convo-
lutional layer. Experiments from the original paper show that weight standardization can,
even more, smoothen the loss landscape of the optimization problem (Qiao et al., 2019). Differ-
ent from BatchNorm, this method does not apply any learnable component because the authors
suggest additional normalization layers can be used along with weight standardization.

FIGURE 2.2: Normalization methods. Each subplot shows a feature
map tensor with m as the batch axis, d as the channel axis and (q, w) as
the spatial axes. The pixels in blue are normalized by the same mean
and variance, computed by aggregating the values of these pixels.

Illustration adapted from Wu et al. (2018).

2.3 Summary

The literature presented throughout this chapter emphasizes the complexity of the task to
train DNNs and the importance of the BatchNorm technique in the realm of training DNNs. This
method has been empirically shown to offer benefits such as faster convergence, enhanced
stability, and improved performance. Furthermore, its role as a regularizer is well-established
and extensively utilized across a spectrum of DL applications. However, the application
of BatchNorm encloses drawbacks regarding the computational overload and the inability to
handle batch sizes of one. Alternatives to BatchNorm exist, yet none of them could be proven
to be generally superior.

While researchers agree on the beneficial effects of BatchNorm, the underlying mechanisms
are still a subject of discussion. Until today, BatchNorm is an active area of research with
various theories and approaches (Hoedt et al., 2022). None of the theories or investigated
effects can fully serve as the solution to why BatchNorm is of such great benefit. An area of
particular intrigue is the role of the affine transformation in BatchNorm, characterized by the
trainable parameters gamma and beta. This aspect has been underrepresented in current
research narratives despite its centrality to the BatchNorm process. Research findings show
disparate results on the impact of the affine transformation of BatchNorm, which motivates
further investigation.

17

Chapter 3

Methods

In order to investigate the contribution of the respective components in BatchNorm, we de-
signed an ablation study with BatchNorm in Section 3.1, introducing the modifications on the
formula in Section 3.1.1 along with the experimental setup (Section 3.1.2). This includes the
network architectures and the implementation of the BatchNorm modifications, along with ad-
ditional details considered for subsequent analysis. Section 3.2 provides insights on the study
of performance contributions, and Section 3.3 provides the methodology for the detailed
investigation of the learnable parameters during training 1.

3.1 On the Design of the Ablation Study

For the investigation of the behavior of γ and β during training, we want to be able to relate
the behavior of the two parameters to their impact on model performance. This is important
because we first want to identify whether the non-adaptive normalization in BatchNorm is
the only component contributing to the performance gain. If that is the case for all models,
the behavior of the trainable parameters in these experiments would be irrelevant for the
effects induced by BatchNorm. In contrast, if the two parameters significantly affect the model
performance, it allows for a meaningful investigation of the behavior of γ and β in relation to
their performance contribution.

We design an ablation study by modifying the BatchNorm formula in different ways, such
that the learnable parameters are removed from the equation individually or together. The
modifications are designed to investigate the contribution of the γ and β upon the non-
adaptive normalization step. This allows us to clarify if the learnable parameters are of
benefit or even necessary for the BatchNorm method.

3.1.1 Modifications of BatchNorm

The original BatchNorm formula is modified in three ways for the investigation. Together
with the original BatchNorm formula and the Vanilla model without any BatchNorm layers, this
provides us with five models to compare in relation to each other (See Section 2.2.1 for details).

Original BatchNorm. BNγ,β with the non-adaptive normalization and the two learnable
parameters γ and β. The feature dimension (k) is omitted for clarity.

BNγ,β(xi) ≡ γ
xi − µB√

σ2
B + ϵ

+ β (3.1)

Non-adaptive Normalization Only. The second modification BN is only utilizes the non-
adaptive component of BatchNorm.

BN(xi) ≡
xi − µB√

σ2
B + ϵ

(3.2)

1Implementation can be found here: https://github.com/Vanessa-Ts/DissectBatchNorm

https://github.com/Vanessa-Ts/DissectBatchNorm

18 Chapter 3. Methods

Non-adaptive Normalization with Learnable β. BNβ encompasses the learnable shift post
the non-adaptive normalization. As above, γ is set to one.

BNβ(xi) ≡
xi − µB√

σ2
B + ϵ

+ β (3.3)

Non-adaptive Normalization with Learnable γ. BNγ trains the γ parameter, while β is set to
zero. This way, the activations are scaled but not shifted after the non-adaptive normalization.

BNγ(xi) ≡ γ
xi − µB√

σ2
B + ϵ

(3.4)

3.1.2 Experimental Setup

For the comparison of performance contributions of the respective BatchNorm components,
we consider a standardized experimental setup, where our purpose is not to achieve state-
of-art results but to understand how the individual components of BatchNorm contribute
to the beneficial effects in the training process, in a typical DL setup. To allow for better-
supported conclusions on the role of the learnable parameters in BatchNorm, we seek varying
complexity in terms of datasets and network architectures, relating the impact of the respective
components and the training behavior of γ and β to the data set and the architecture.

The network architectures and the training details used in the experiments build upon the
work by Schneider et al. (2019). The authors introduce a Deep Learning Optimizer Benchmark
Suite (DeepOBS)2 that enables the empirical comparison of an optimizer across various datasets,
network architectures and other components of DNN training in a unified setting to improve
comparability and reproducibility of results. These properties and the provided performance
targets without BatchNorm make it a suitable basis for our empirical study.

Selection of Datasets and Network Architectures. In our investigation, we have selected the
CIFAR-10 and CIFAR-100 datasets for image classification (Krizhevsky, 2009) to provide a
variation in the number of classes in the training data (See Appendix B for details). These
datasets are widely recognized and utilized in the machine learning community, presenting a
standard benchmark for evaluating and comparing the performance of different network ar-
chitectures and optimization strategies (Goodfellow et al., 2016; Thakkar et al., 2018; Schneider
et al., 2019).

In order to compare the performance contributions of the respective modifications, a model is
needed that performs well without BatchNorm layers but can be improved by the application
of such. DeepOBS provides several architectures implemented without any BatchNorm layers
that can be extended for our work. Regarding the activation function, Hasani et al. (2019)
could show that the placement of BatchNorm layers before or after a ReLU activation function
does not significantly affect the model performance. Hence, it makes sense to select networks
in which the activation functions employed are all ReLUs in order to mitigate possible effects
on performance induced by the position of the BatchNorm layer in relation to the activation
function.

The first network 3C3D consists of three convolutional layers with ReLU activation functions,
followed by max-pooling. After this sequence, the architecture includes three fully connected
layers, often called dense or linear layers. The first two linear layers have ReLu activation
functions, while the third linear layer uses a softmax function, defined in Section 2.1, as the
last layer in the network. For all layers, the weight matrices are initialized using the Xavier
initialization (See Section 2.1.3), and all biases are initialized to zero. The network additionally
uses ℓ2 regularization, introduced in Section 2.1.4, on the weights but not the biases.

2Github repository: https://github.com/fsschneider/DeepOBS

https://github.com/fsschneider/DeepOBS

3.1. On the Design of the Ablation Study 19

The second architecture resembles the ALL-CNN-C network introduced in the paper by
Springenberg et al. (2015). The DeepOBS implementation of the network is composed of nine
convolutional layers, each with a ReLU activation function. Additionally, the network utilizes
dropout regularization before a sequence of three convolutional layers. The original paper
does not provide information on the initialization of weights and learnable parameters, but
the DeepOBS implementation suggests the weights are initialized with Xavier, and the biases
are initialized at a value of 0.1. We adopt the initialization of the weights for our experiments
but set the bias values b to zero to support equal conditions regarding the initialization of β,
noting that this change did not prevent the DNN from learning the task.

FIGURE 3.1: BatchNorm Layer
Implementation. Illustration of a
convolutional layer with BatchNorm. Max
pooling is only applied in the 3C3D. Apart
from that, the structure is similar for both
architectures.

Implementation of BatchNorm Layers. In
both network architectures, the BatchNorm lay-
ers are placed between the convolutional or
linear layer and the ReLU activation function,
as proposed in the original paper (Ioffe et al.,
2015). We initialized β to zero, similar to the
bias in the Vanilla version of each model, and
the scale parameter γ to one. For each modifi-
cation in Section 3.1.1, we adjust the BatchNorm
layers accordingly by freezing γ and β to one
and zero, respectively. Figure 3.1 illustrates
the structure of a convolutional layer from
our network architectures with BatchNorm. Our
analysis in Section 3.2.3 takes into account that
the position and amount of BatchNorm layers
can affect the performance contribution, espe-
cially when BatchNorm is placed at the last layer
of the network.

Characteristics of the Training Setup. In all
experiments, we employed the CE loss suitable for the multi-class image classification task and
SGD as the optimization algorithm of choice, both defined in Section 2.1. The hyperparameters
were set with a focus on comparing the performance contributions rather than achieving
state-of-the-art performance for each modification. For the CIFAR10 3C3D problem, we
adopted the hyperparameter setting provided in the baselines from DeepOBS for the model
without BatchNorm layers, referred to as the Vanilla version of a model in this work. The
hyperparameter setting for the CIFAR100 ALL-CNN-C model was adapted from the original
paper (Springenberg et al., 2015). DeepOBS does not provide baselines for the CIFAR100 3C3D
model. We apply the hyperparameter setting from the CIFAR100 ALL-CNN-C since it also
leads to acceptable performance for the Vanilla model.

The analysis in Section 3.2 includes a heuristic assessment of the performance contributions
across a wide range of learning rates to address the issue of observing a behavior only specific
to one hyperparameter setting. The corresponding results in Section 4.1.2 show that tuning the
learning rate is not necessarily required for our comparative analysis. Moreover, individual
tuning of the learning rate and batch size for each model with and without BatchNorm layers
would, in turn, require tuning each modified version of BatchNorm from Section 3.1.1. Yet, this
can be considered neglectable as we focus on comparing performance differences between
the modifications for each model, and individual tuning might induce additional effects on
the performance not directly related to the application of BatchNorm. Table 3.1 provides an
overview of the models and hyperparameters for the training process.

Though not directly considered a hyperparameter, it plays a crucial role in the fair and
empirical comparison to set the seed to the same value for all experiments, providing a
controlled environment that minimizes the influence of random initialization on the observed
behaviors.

20 Chapter 3. Methods

Dataset Architecture Hyperparameter Epochs
CIFAR10 3C3D batch size: 128, lr: 0.022 100
CIFAR100 3C3D batch size: 256, lr: 0.166 350
CIFAR100 ALL-CNN-C batch size: 256, lr: 0.166 350

TABLE 3.1: Dataset, network architecture, and hyperparameter setting
for the experiments, including the batch size and the learning rate (lr).

3.2 Analysis of Performance Contributions

To assess the impact of the respective components of BatchNorm, we focus on the training
performance of the introduced modifications in relation to each other. Key indicators of this
contribution are discerned by observing differences in training loss and training accuracy to
identify any potential disparities in the training dynamics that could be attributed to γ and β,
separately and jointly.

3.2.1 Performance Implications of BatchNorm Modifications

To provide a clear context for our observations, we use the performance of both the Vanilla ver-
sion of the neural network and the BNγ,β as baselines. The performance of the Vanilla version
serves as the lower baseline, indicating whether a modification of BatchNorm is beneficial or
potentially detrimental to the model performance. BNγ,β serves as the upper baseline in the
experiments. Relating the performance of the modifications with that of BNγ,β allows us to
identify whether the non-adaptive normalization alone is primarily the beneficial component
of BatchNorm, or the learnable parameters, in addition, lead to the success of BatchNorm.

For our analysis, we suggest that if the count of the trainable parameters is reduced, there is a
potential decrease in the performance enhancement brought by BatchNorm. Specifically, we
anticipate the highest performance from the original BatchNorm, followed by either BNγ or BNβ.
A superior performance of the original BatchNorm method indicates the success of BatchNorm
cannot solely be attributed to the non-adaptive normalization component. The combination
with the learnable parameters then plays a pivotal role, likely due to the optimizer’s ability to
train two additional parameters.

If BN exhibits performance similar to BNγ,β across all models, it clearly indicates that the
learnable parameters do not have an effect on the model performance and can be neglected.
We note that removing both trainable parameters leaves the model with fewer learnable
parameters because the effect of the bias is zeroed out by the non-adaptive normalization
in BatchNorm. A parameter that adjusts the mean of the activations and thereby allows the
optimizer to control how many activations are set to zero by the subsequent ReLU operation.
If the learnable parameters do not affect performance, it indicates the network is robust to
small changes in the number of activations that are deactivated by the ReLU function. If the
adaptive BNβ demonstrates increased performance to the non-adaptive BatchNorm version,
the model benefits from the trainable shift operation introduced at every layer. Conversely, if
BNγ outperforms BN and BNβ, it would suggest that a learnable scaling term, adjusting the
variance of the normalized activations is more beneficial than shifting the mean.

3.2.2 Robustness to Hyperparameter Setting

In the context of evaluating learning rates for optimization algorithms, an order of magnitude
test offers a systematic method to gauge the performance induced by different learning rates.
This comparison is conducted by examining different orders of magnitude. For our work, we
utilize this test not to determine the optimal learning rate but to ensure that the respective
performance contributions are not specific to a particular value of the learning rate. Therefore,
we added experiments for learning rates ten times larger and ten times smaller than the
original one as heuristics to showcase the robustness of the observed behavior across a wide
range of learning rates. The results are presented in Section 4.1.2.

3.3. Behavioral Analysis of the Learnable Parameters 21

3.2.3 BatchNorm in the Last Layer

For the implementation, we have refrained from using BatchNorm at the last convolutional or
linear layer in each network, as illustrated in Figure 3.1. The reason for this lies in the function
of the last layer to produce a set of predictions or probability distributions in a classification
task. Intuitively, the normalization by BatchNorm can potentially compromise the quality of
the predictions. The normalization introduces an additional layer of stochasticity due to
the dependence of BatchNorm on the mini-batch statistics, which might not be desirable in
the final decision-making layer. Furthermore, good predictions are not required to follow
normalized distributions. Hence, it is likely that γ and β show a different effect on the training
performance if BatchNorm is placed at this position in the network. We have considered this
intuition in our analysis and added experiments to investigate if such an effect appears in the
last layer (Section 3.2.3).

To ensure the observed effects can be attributed to the positioning of BatchNorm in the last
layer, we extend this analysis to explore whether the amount and position of BatchNorm layers
can further change the impact of the respective components on the training performance
(Appendix A).

3.3 Behavioral Analysis of the Learnable Parameters

We proceed with an analysis of γ and β, based on the performance contributions documented
in (Section 4.1.1). The core objective is to investigate whether discernible trajectories of γ and
β during training can provide new insights and further reveal information about the model
performance.

3.3.1 Activity of Learnable Parameters.

In the context of this work, we use the term "activity" to describe the extent to which γ and β
differ from their neutral states - one and zero, respectively.For γ, low activity means that the
values stay very close to one, as scaling activations with a value of one has no effect. A value
close to zero means the activations are reduced, while activations are amplified for every
value over one. With γ, the optimizer can adjust the variance of the normalized activations,
as shown in Figure 2.1.

For β, this means that if the values stay very close to zero, it has a low activity. While a high
activity implies that the values differ significantly from zero in either the negative or positive
direction in the value space. Strong positive values of β shift the mean of the activations
towards positive values. As, in our setting, each BatchNorm layer is followed by a ReLU, a
strong positive shift indicates more features are activated, and a strong negative shift indicates
the sparsity of the activations is increased.

The sparsity of activations refers to the proportion of activations that are zero and has been
shown to aid DNNs in prioritizing salient features in the data, potentially offering robustness
against noise and unessential patterns (Zhou et al., 2016). Specifically, by adjusting β, the
optimizer can regulate the number of activations, thereby inducing sparsity within the
network. In this light, the beta parameter in BatchNorm might act as a regularizer, comparable
to dropout.

3.3.2 Visualization of Learnable BatchNorm Parameters

To visualize the dynamics of the learnable parameters across training, we use contour plots,
which can represent a 3D surface by plotting constant z slices, called contours, on a 2D format.
In our case, this property pertains to the activity of the learnable parameter, γ or β. For each
BatchNorm layer in the model, a plot is created that displays the trajectory of either γ and β,
as shown in Figure 3.2. The vertical axis denotes the training steps, and the horizontal axis
represents the dimensions of the respective layer.

22 Chapter 3. Methods

The color intensity in these plots is denoted by the range, set by the maximum and minimum
values of the respective parameter across all BatchNorm layers of a model, which is crucial
for our analysis. Centralized scales, with zero for β and one for γ, allow us to identify the
magnitude and direction of shifts applied to the activations throughout the layers of the
model.

Leveraging the fact that most trajectories are monotonic, we sorted the feature dimensions in
each plot by their converged value to improve the visualization, which has no loss of general-
ity since DNNs are considered invariant to permutations of linear features or convolutional
channels (Hoefler et al., 2021).

FIGURE 3.2: Parameter Visualization. Example of a contour plot for
analyzing the learnable parameters of BatchNorm at a specific layer.
The vertical axis denotes the training steps, the horizontal axis the
feature dimensions, and the values of the respective parameter are
denoted by the color scale.

23

Chapter 4

Experiments

This chapter outlines the experiments in order to identify the performance contribution of
each model from Table 3.1, in Section 4.1. The results are then used in the investigation
of γ and β, allowing for an analysis of the relation between the behavior of the learnable
parameters and their performance contribution in a DL model (Section 4.2). Due to the variety
of experiments and results in this chapter, we summarize our findings in Section 4.2.3.

4.1 Results from the Ablation Study

The experiments from the ablation study on BatchNorm, with the methodologies established
in Chapter 3, show the training loss and accuracy of the models from Table 3.1. Each model
is trained with all BatchNorm modifications respectively and without BatchNorm layers at all,
as described in Section 3.1. In all experiments, the Vanilla version of the model and the
original BatchNorm version serve as lower and upper baselines, respectively (SeeSection 3.1.1
for details). The performance contribution of the respective BatchNorm components is analyzed
across models (Section 4.1.1), learning rates (Section 4.1.2), and positions (Section 4.1.3).

4.1.1 The Role of the Learnable Parameters

For the CIFAR-10 3C3D and CIFAR-100 3C3D, γ and β do not show any significant effects on
the loss and accuracy curvature over training time (Figure 4.1a and Figure 4.1b). However,
the CIFAR-100 ALL-CNN-C can significantly benefit from applying the trainable parameters,
γ and β (Figure 4.1c).

Specifically for the CIFAR-10 3C3D model, considered less complex in the context of this
work, the application of the original BatchNorm formula led to a faster convergence of loss and
accuracy in early training phases (Figure 4.1a). Yet, the model converges to a similar loss and
accuracy at the end of training. In this scenario, in which the benefit induced by BatchNorm is
merely faster convergence, we observe BN to be similarly successful as BNγ,β, indicating γ
and β have no significant effect on the training performance. The CIFAR-100 3C3D benefits
from the application of BatchNorm with faster convergence and higher accuracy at the end
of training (Figure 4.1b). Here, again, the different modifications do not show significant
performance differences up to stochastic training noise.

The deeper CIFAR-100 ALL-CNN-C model likewise converges faster and to improved accuracy
with the application of BatchNorm (Figure 4.1c). Contrary to the above findings, the ablation of
the learnable parameters from the BatchNorm formula showed, although not huge, significant
effects on the training performance of the model. Here, BN introduces the least benefits to
the model performance, as expected (See Section 3.2.1). It does lead to faster convergence but
converges to a similar training loss and accuracy as the Vanilla model. The BNγ can slightly
accelerate loss and accuracy, but BNβ overtakes this improvement. The most beneficial effect
can be observed if the model has the ability to train both γ and β.

24 Chapter 4. Experiments

(A) CIFAR-10 3C3D model trained for 100 epochs with SGD, a learning rate of 0.023, and a
batch size of 128.

(B) CIFAR-100 3C3D trained for 350 epochs with SGD, a learning rate of 0.166, and a batch
size of 256.

(C) CIFAR-100 ALL-CNN-C trained for 350 epochs with SGD, a learning rate of 0.166, and a
batch size of 256.

FIGURE 4.1: Training loss and accuracy for all three models and all
modifications of BatchNorm along with the Vanilla version • and
original BatchNorm • serving as baselines.

4.1.2 Similar Contribution Across Learning Rates

For each model (CIFAR-10 3C3D, CIFAR-100 3C3D and CIFAR-100 ALL-CNN-C), an order of
magnitude test was performed on the learning rates. This ensures the observed performance
contribution of the BatchNorm components is not specific to the value of the learning rate (See
Section 3.2). Each learning rate is adjusted by an order of magnitude smaller (×10−1) and
larger (×101) as in Figure 4.1. For each model, the figure shows the training loss and accuracy
across the varying learning rates. The findings below support the idea that the performance
contribution is not specific to the hyperparameter setting, as outlined in Section 3.2.2.

CIFAR-10 3C3D. For both learning rates (0.022× 10−1 and 0.022× 101), all modifications
of BatchNorm show to improve the model performance (Figure 4.2). However, there is no
difference in the training performances regardless of the number of learnable parameters
of the BatchNorm modification. Together with the results in Figure 4.1a, this allows for the
confident conclusion that for the CIFAR-10 3C3D model, the non-adaptive normalization
alone is the beneficial component of BatchNorm.

4.1. Results from the Ablation Study 25

CIFAR-100 3C3D. Figure 4.3 shows all modifications of BatchNorm consistently performed well
across both learning rates (0.166× 10−1 and 0.166× 101) with the CIFAR-100 3C3D model.
In contrast, the Vanilla model struggled, diverging right at the start with the larger learning
rate. Our findings suggest that even without the learnable parameters γ and β, BatchNorm
is effective for this model. However, we did observe minor variations in the data, likely
resulting from noise. While it wasn’t our main focus, Figure 4.3b is an example of BatchNorm
effectively supporting larger learning rates, thereby leading to improved training outcomes.

CIFAR-100 ALL-CNN-C. In our analysis of the CIFAR-100 ALL-CNN-C model presented in
Figure 4.4, we found that all BatchNorm modifications improved the training performance for
both learning rates (0.166× 10−1 and 0.166× 101). However, the performance differences
between these modifications are still evident, consistent with what is shown in Figure 4.1c.
Specifically, BNγ,β marginally outperforms the other modifications, while the standard BN
shows the least effect. With the larger learning rate, BNβ enhances convergence speed more
than BNγ and the basic BN, a trend also seen in Figure 4.1c. It should be noted that the
Vanilla model diverges when trained with the larger learning rate (0.022× 101).

(A) CIFAR-10 3C3D model trained with SGD and a learning rate of 0.022× 10−1.

(B) CIFAR-10 3C3D trained with SGD and a learning rate of 0.022× 101.

FIGURE 4.2: Training loss and accuracy for the CIFAR-10 3C3D model
trained for 100 epochs, a batch size of 128, and learning rates varying
in the order of magnitude (0.022× 10−1 and 0.022× 101).

26 Chapter 4. Experiments

(A) CIFAR-100 3C3D model trained with SGD and a learning rate of 0.166× 10−1.

(B) CIFAR-100 3C3D model trained with SGD and a learning rate of 0.166× 101. With this
learning rate, the Vanilla model • could not be trained at all.

FIGURE 4.3: Training loss and accuracy for the CIFAR-100 3C3D
model trained for 350 epochs with a batch size of 256, and learning
rates vary in the order of magnitude (0.166× 10−1 and 0.166× 101).

(A) CIFAR-100 ALL-CNN-C model trained with SGD and a learning rate of 0.166× 10−1.

(B) CIFAR-100 ALL-CNN-C trained with SGD and a learning rate of 0.166× 101. With this
learning rate, the Vanilla model • could not be trained at all.

FIGURE 4.4: Training loss and accuracy for the CIFAR-100 ALL-CNN-C
model trained for 350 epochs with a batch size of 256 and learning
rates varying in the order of magnitude (0.166× 10−1 and
0.166× 101).

4.1. Results from the Ablation Study 27

4.1.3 The Last Layer is a Special Case

For the investigation focused on the difference of performance contributions if BatchNorm is
placed at the final layer, we added a BatchNorm layer after the last convolutional layer in the
CIFAR-100 ALL-CNN-C model, which means in this experiment the model has one BatchNorm
layer more compared to the original CIFAR-100 ALL-CNN-C in Section 4.1.1. The experiments
show that the contributions of the respective BatchNorm components to the model performance
varied significantly from prior experiments (Figure 4.5). Notably, the use of non-adaptive
normalization in isolation resulted in a pronounced drop in accuracy and an increase in
loss compared to the Vanilla model. Surprisingly, γ alone but even more both learnable
parameters together can compensate for the negative effect of the non-adaptive normalization
and make the application of BatchNorm beneficial for the model.

In comparison to the findings in Figure 4.1, we contend that the role of the learnable parame-
ters in this setting is adjusted due to the idiosyncrasies of the last layer. Moreover, we tested if
the change in the impact of the BatchNorm can be observed for other positionings and varying
numbers of BatchNorm layers (See Appendix A). However, none of the experiments showed a
comparable change in the performance contribution, except if there is a BatchNorm layer placed
after the last convolutional layer.

Nevertheless, it is noteworthy that the training performance of the original BatchNorm BNγ,β
here is similar to the performance of BNγ,β from Figure 4.1c, which does not have a BatchNorm
layer after the last convolution. Hence, placing an additional BatchNorm at the last layer in
a DNN does not necessarily interfere with model performance but changes the role of the
learnable parameters γ and β.

FIGURE 4.5: Training loss and accuracy for the CIFAR-100 ALL-CNN-C
model with BatchNorm at the last layer, for all modifications of
BatchNorm trained with SGD for 350 epochs with a batch size of 256
and a learning rate of 0.166. The Vanilla version of the model • and
the original BatchNorm version • serve as lower and upper baselines
for the comparison of performance contributions, respectively.

28 Chapter 4. Experiments

4.2 Results from the Activity Analysis

In our endeavor to analyze the training behavior of learnable parameters, β and γ, our
primary focus is on their activity, which we characterized in Section 3.3.1. In Section 4.2.1, we
present the behavior of the learnable parameters for cases in which those affect the training
performance. Since the experiments in Section 3.1 have shown this only applies for the CIFAR-
100 ALL-CNN-C model, we analyze the activity of β and γ on that model first. We do this
for both the experiments with the general setup of BatchNorm layers (Section 4.1), described
in Section 3.1.2 and the experiments with an additional BatchNorm layer at the end of the
CIFAR-100 ALL-CNN-C from Section 4.1.3. Moreover, we set the findings from Section 4.2.1
in contrast to the behavior of β and γ for cases in which those do not affect the training
performance (Section 4.2.2).

To effectively monitor the trajectory of the parameters over training, we opted to measure the
values of the β and γ vectors across various layers every five steps. This strategy was chosen
as a balance, allowing us to mitigate computational overhead while ensuring that we capture
sufficient and pertinent data.

4.2.1 The Learnable Component Matters

CIFAR-100 ALL-CNN-C Without BatchNorm at the Last Layer. For both modifications that
train the β parameter (BNγ,β and BNβ) a clear pattern of negative and positive shifts can be
observed, according to the position of a BatchNorm layer in the network (Figure 4.6). At the
first layer, β induces positive and negative shifts across the feature dimensions, while at the
intermediate layers, β is negative or zero across all feature dimensions. At the last layer, β
shows a trend towards positive values. In Figure 4.6b, the overall scale of the β values is
shifted towards the positive value range compared to the β values of the BNγ,β (Figure 4.6a).
The maximum negative shift at the intermediate layers is halved, and the positive shift at the
last BatchNorm layer is approximately twice as strong.

The γ parameter as well shows similar patterns across modifications, here BNγ,β and BNγ

(See Figure 4.7). In the first layers, γ converges to values that amplify and dampen the
activations across the feature dimensions. Especially in the intermediate layers, γ shows little
activity in relation to the activity in the last layer. Here, γ converges to values amplifying the
activations across all channels.

In contrast, with the modification BNβ the scale of the γ values across layers does not
significantly change. Considering the performance contribution of γ in Figure 4.1c, the
impact of the parameter in this setting might not be significant enough in order for the
optimizer to change the trajectory.

CIFAR-100 ALL-CNN-C With BatchNorm at the Last Layer. In Section 4.1.3, we observe a
drastic change in the performance contribution of γ and β when BatchNorm is placed at the last
layer of the CIFAR-100 ALL-CNN-C. Figure 4.8 shows the behavior of β for the modifications
BNγ,β and BNβ across all layers. Similarly, Figure 4.9 provides the visualization of the γ
parameter for BNγ,β and BNγ. In general, we can observe a similar pattern compared to the
CIFAR-100 ALL-CNN-C model without BatchNorm at the last layer (See Figure 4.6 and Figure 4.7)
regarding the individual trends of the learnable parameters in the first, intermediate, and last
BatchNorm layers.

However, we could observe the scale of the β values of BNβ on the positive range is reduced
almost by half (Figure 4.8b). Considering that BNβ performs worse than the Vanilla model,
for this setting (See Figure 4.5), the reduction of the β activity could be an indication for the
decreased performance. For a confident assessment, additional experiments revealing the
same relative performance contributions of the learnable parameters in BatchNorm would be
necessary.

4.2. Results from the Activity Analysis 29

In contrast, γ shows a drastic increase regarding the scale of the values across layers. The
activation of γ at the last BatchNorm layer is approximately doubled for BNγ,β and BNγ

compared to the same model without BatchNorm at the last layer in the network (Figure 4.7).
Considering that BNγ can improve model performance in Figure 4.5, the high activity of
γ could be an indication of the beneficial effects of that parameter in the training process.
Same as with β, this trend requires additional experiments. The comparison between the two
modifications, BNγ,β and BNγ shows the only difference lies in the small shift of the value
scale towards the positive direction with BNγ.

It is conspicuous that for this positioning of BatchNorm layers, γ stays very close to one
across all layers, except for the last layer, meaning the optimizer only adjusts γ at the last
BatchNorm layer in the network. The results suggest that for the CIFAR-100 ALL-CNN-C with
an additional BatchNorm layer at the end, γ can be fixed to one at all layers and only trained
for the last BatchNorm layer without experiencing a decrease in performance.

(A) β values of the CIFAR-100 ALL-CNN-C model, trained with original BatchNorm BNγ,β.

(B) β values of the CIFAR-100 ALL-CNN-C model, trained with the BNβ BatchNorm modification.

FIGURE 4.6: Course of β values across all eight BatchNorm layers of the
CIFAR-100 ALL-CNN-C model, trained for 350 epochs with a learning
rate of 0.166 and a batch size of 256. Note that (A) and (B) have
different colorscales.

30 Chapter 4. Experiments

(A) γ values of the CIFAR-100 ALL-CNN-C model, trained with original BatchNorm BNγ,β.

(B) γ values of the CIFAR-100 ALL-CNN-C model, trained with the BNγ BatchNorm modification.

FIGURE 4.7: Course of γ values across all eight BatchNorm layers of the
CIFAR-100 ALL-CNN-C model, trained for 350 epochs with a learning
rate of 0.166 and a batch size of 256.. Note that (A) and (B) have
different colorscales.

4.2. Results from the Activity Analysis 31

(A) β values of the CIFAR-100 ALL-CNN-C model, trained with original BatchNorm BNγ,β.

(B) β values of the CIFAR-100 ALL-CNN-C model, trained with the BNβ BatchNorm modification.

FIGURE 4.8: Course of β values of all BatchNorm layers of the
CIFAR-100 ALL-CNN-C model, with BatchNorm at the last layer, trained
for 350 epochs with a learning rate of 0.166 and a batch size of 256.

32 Chapter 4. Experiments

(A) γ values of the CIFAR-100 ALL-CNN-C model, trained with original BatchNorm BNγ,β.

(B) γ values of the CIFAR-100 ALL-CNN-C model, trained with the BNβ BatchNorm modification.

FIGURE 4.9: Course of γ values across all bn layers of the CIFAR-100
ALL-CNN-C model, with BatchNorm at the last layer, trained for 350
epochs with a learning rate of 0.166 and a batch size of 256.

4.2. Results from the Activity Analysis 33

4.2.2 The Learnable Component Does Not Matter

For both models, CIFAR-10 3C3D and CIFAR-100 3C3D, the learnable parameters do not show
any significant effect on the training performance in Section 4.1.1. However, the behavior of
the parameters can still be used to contrast it to behavior from scenarios in which γ and β
have a significant impact.

CIFAR-10 3C3D. Although not affecting training performance, the β parameter is adjusted at
the first two layers for both modifications of BatchNorm, BNγ,β and BNβ (Figure 4.10). Overall,
β shows a marginal trend towards negative values at intermediate layers and positive values
at the last BatchNorm layer. However, γ, as expected, shows little activity across all layers and
training steps, even for the last layer (Figure 4.11). For both parameters, the scale of the values
across layers is marginally shifted towards the positive direction if the other parameter is
ablated from the equation.

CIFAR-100 3C3D. Figure 4.12 shows, that γ and β are active across all BatchNorm layers, and
both modifications. Although the activity is stronger for the CIFAR-100 ALL-CNN-C model,
it is surprising that the optimizer is adjusting the learnable parameters at all. This could
indicate that the slight performance differences in Figure 4.1b are not due to noise. However,
this claim would require additional experiments, for example, with a tuned hyperparameter
setting for each modification, left for future work.

Across layers, β shows a similar pattern compared to the other two models. Again, the pa-
rameter induces negative and positive shifts in the first layer, negatively shifts the activations
at the intermediate layers, and applies a positive shift on the activations in the last layer. The
amplification induced by γ of the last BatchNorm layer is significantly stronger compared to
all other layers. Regarding the scale of values across layers, we can observe a shift towards
the positive value space for both parameters. This effect aligns with the observations from
the other experiments with the CIFAR-100 ALL-CNN-C (Figure 4.7 and Figure 4.9) and the
CIFAR-10 3C3D (Figure 4.11, such that it cannot be attributed to the performance contribution
of the learnable parameters.

(A) β values of original BatchNorm BNγ,β.

(B) β values of the BNβ BatchNorm modification.

FIGURE 4.10: Course of β values across all five BatchNorm layers of the
CIFAR-10 3C3D model, trained for 100 epochs with a learning rate of
0.022 and a batch size of 128. Note that (A) and (B) have different
colorscales.

34 Chapter 4. Experiments

(A) γ values of original BatchNorm BNγ,β.

(B) γ values of the BNγ BatchNorm modification.

FIGURE 4.11: Course of γ values across all five BatchNorm layers of the
CIFAR-10 3C3D model, trained for 100 epochs with a learning rate of
0.022 and a batch size of 128. Note that (A) and (B) have different
colorscales.

(A) β values of the original BatchNorm BNγ,β.

(B) β values of the BNβ BatchNorm modification.

FIGURE 4.12: Course of β values across all five BatchNorm layers of the
CIFAR-100 3C3D model trained for 350 epochs with a learning rate of
0.166 and a batch size of 256. Note that (A) and (B) have different
colorscales.

4.2.3 Summary of Results

Throughout our empirical study examining the training behavior of the learnable parameters
of BatchNorm across various network configurations, several consistent patterns emerged. For
both parameters γ and β, the pattern exhibited is primarily characterized by the position of
the BatchNorm layer within the network architecture, irrespective of its eventual performance
impact. In the first BatchNorm layer, β converges to both positive and negative values across
channels. As the input progresses to intermediate layers, there is a discernible negative shift
in activations across all dimensions. Though the degree of this shift varies, each feature
dimension consistently remains non-positive.

4.2. Results from the Activity Analysis 35

(A) γ values of the original BatchNorm BNγ,β.

(B) γ values of the BNγ BatchNorm modification.

FIGURE 4.13: Course of γ values across all eight BatchNorm layers of
the CIFAR-100 3C3D model trained for 350 epochs with a learning rate
of 0.166 and a batch size of 256. Note that (A) and (B) have different
colorscales.

However, in the final BatchNorm layers, β demonstrates a propensity to shift activations
positively across all feature dimensions. This pattern suggests that during the processing in
intermediate BatchNorm layers, a considerable fraction of activations are zeroed by the ReLU
function, owing to their negative values, similar to the functionality of dropout (Defined in
Section 2.1.4).

On the other hand, γ displayed a more reserved behavior. Its activity was especially limited
during the initial phases of training and within intermediate BatchNorm layers. Yet, there was
a noticeable trend for γ to amplify activations in the last BatchNorm layer. This amplifying trait
was particularly evident in the CIFAR-100 ALL-CNN-C and CIFAR-100 3C3D models, whereas
it was notably absent in the CIFAR-10 3C3D configuration. Considering that in the latter two
models, γ did not discernibly affect training performance, it is challenging to correlate γ’s
activity directly with its impact on performance.

Across all the models, another consistent observation was the trend of the learnable pa-
rameters to apply their most substantial positive shifts and amplifications on activations,
specifically in the last layer. This recurrent pattern across models suggests that there might be
inherent benefits in training performance by minimizing activations in intermediate layers
and conserving them in the final BatchNorm layers.

37

Chapter 5

Discussion and Outlook

This study delved into the specifics of BatchNorm, especially emphasizing the roles and impacts
of its respective components. Our approach involved creating modifications of BatchNorm
to discern the relative contribution of the non-adaptive normalization and the learnable
parameters to training performance. We ensured the contributions were consistent across
multiple learning rates and different DL setups.

For the smaller 3C3D network, we demonstrated that the non-adaptive normalization in
BatchNorm solely contributes to the performance improvement. The learnable parameters
γ and β do not offer any significant effect. In contrast, with the deeper CIFAR-100 ALL-
CNN-C model, both learnable parameters are necessary to achieve the best performance
improvements. Beyond that, the non-adaptive normalization is the component that primarily
induces the beneficial effects of BatchNorm on the training performance in all cases.

A distinct observation of performance contributions only emerged when placing BatchNorm in
the network’s last layer. Here, relying solely on non-adaptive normalization adversely impacts
training performance. Only with both learnable parameters together the model performance
can be improved in comparison to the Vanilla version of that model. Experiments with
the last layer have shown that the success of BatchNorm cannot be attributed solely to one of
the components. While in most cases, the non-adaptive normalization induces the major
effects, depending on the network architecture and the position of the BatchNorm layers, the
contribution of the learnable parameters can be crucial for the method to be beneficial at all.

Further, we extended the experiments by visualizing the behavior of the learnable parameters
γ and β. We contrasted the behavior of the learnable parameters for cases in which those
matter to cases in which the behavior of the γ and β did not matter. Our experiments did
not show behavior patterns that align with the performance contribution of the learnable
parameters. The performance contribution of the learnable parameters did not show in
the way those are optimized over the training process. Nevertheless, our observations can
provide insights into the general behavior of γ and β. The trajectory of the two parameters is
denoted by the position of a BatchNorm layer in the network. γ and β show a specific trend at
all first layers, intermediate layers, and the last BatchNorm layer, respectively. These findings
suggest one of the reasons for the success of BatchNorm could lie in the way γ and β affect the
number of activations that are zeroed by the subsequent ReLU function.

Our study has limitations related to its empirical nature. The 3C3D network used in our
investigations might have ample capacity to tackle the classification task in our experiments,
limiting the scope of improvement via BatchNorm. Another aspect regards the visual com-
parison method employed to understand the behavior of the learnable parameters. While
the qualitative inspection allowed us to identify clear trends and propose new ideas, incor-
porating quantitative metrics could reinforce the findings and potentially reveal additional
information. Potential metrics include the mean or median, magnitude, and number of
zero-crossings for the trajectories of γ and β.

38 Chapter 5. Discussion and Outlook

The findings from our empirical analysis provide a source of motivation for future works
on the comprehensive exploration of BatchNorm and various initial approaches for further
experiments. A natural extension to this work would be incorporating additional networks
and datasets, allowing for a more systematic exploration of the effects of network depth and
dataset complexity on the efficacy and behavior of the different BatchNorm components. In
addition, our findings also underscore the significance of the learnable parameters when
BatchNorm is added to the last layer of DNN. Experiments in which γ and β remain static
in initial BatchNorm layers and become trainable in the last layers could offer computational
advantages while maintaining performance improvement. Another intriguing notion is
the operational similarity between BatchNorm and the ReLU activation function to dropout
mechanisms. An in-depth exploration of how γ and β affect the number of activations that
get zeroed out by the subsequent activation function and how this is related to the model
performance could provide valuable findings on training DNNs in general. Our exploration
has provided novel insights into the mechanisms of BatchNorm and its learnable parameters.
The outlined research directions above promise a deeper understanding and more refined
applications of this technique in future neural network designs.

39

Bibliography

Abadi, Martín et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org.

Amodei, Dario et al. (June 2016). “Deep Speech 2 : End-to-End Speech Recognition
in English and Mandarin”. In: Proceedings of The 33rd International Conference on
Machine Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48.
Proceedings of Machine Learning Research. New York, New York, USA: PMLR,
pp. 173–182.

Awais, Muhammad, Md Tauhid Iqbal, and Sung-Ho Bae (Sept. 2020). “Revisiting
Internal Covariant Shift for Batch Normalization”. In: IEEE Transactions on Neural
Networks and Learning Systems PP. DOI: 10.1109/TNNLS.2020.3026784.

Ba, Lei Jimmy, Jamie Ryan Kiros, and Geoffrey E. Hinton (2016). “Layer Normaliza-
tion”. In: CoRR abs/1607.06450. arXiv: 1607.06450.

Bjorck, Johan, Carla P. Gomes, and Bart Selman (2018). “Understanding Batch Nor-
malization”. In: CoRR abs/1806.02375. arXiv: 1806.02375.

Cai, Yongqiang, Qianxiao Li, and Zuowei Shen (Sept. 2018). “A Quantitative Analysis
of the Effect of Batch Normalization on Gradient Descent”. In: arXiv e-prints,
arXiv:1810.00122, arXiv:1810.00122. DOI: 10.48550/arXiv.1810.00122. arXiv:
1810.00122 [cs.LG].

Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter (2016). “Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs)”. In: 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann
LeCun.

Cooijmans, Tim et al. (2016). “Recurrent Batch Normalization”. In: CoRR abs/1603.09025.
arXiv: 1603.09025.

Dauphin, Yann N. et al. (2014). “Identifying and Attacking the Saddle Point Problem
in High-Dimensional Non-Convex Optimization”. In: Proceedings of the 27th In-
ternational Conference on Neural Information Processing Systems - Volume 2. NIPS’14.
Montreal, Canada: MIT Press, pp. 2933–2941.

Davis, Jim and Logan Frank (Oct. 2021). “Revisiting Batch Norm Initialization”. In:
DOI: 10.48550/ARXIV.2110.13989. arXiv: 2110.13989 [cs.CV].

Dosovitskiy, Alexey et al. (2021). “An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale”. In: International Conference on Learning Representations.

Dubey, Shiv Ram, Satish Kumar Singh, and Bidyut Baran Chaudhuri (2022). “Acti-
vation functions in deep learning: A comprehensive survey and benchmark”. In:
Neurocomputing 503, pp. 92–108. DOI: 10.1016/j.neucom.2022.06.111.

Frankle, Jonathan, David J. Schwab, and Ari S. Morcos (2020). “Training BatchNorm
and Only BatchNorm: On the Expressive Power of Random Features in CNNs”.
In: CoRR abs/2003.00152. arXiv: 2003.00152.

Friedman, Jerome H. (1987). “Exploratory Projection Pursuit”. In: Journal of the Ameri-
can Statistical Association 82.397, pp. 249–266. ISSN: 01621459.

Fukushima, Kunihiko (1975). “Cognitron: A self-organizing multilayered neural
network”. In: Biological Cybernetics 20, pp. 121–136.

https://doi.org/10.1109/TNNLS.2020.3026784
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1806.02375
https://doi.org/10.48550/arXiv.1810.00122
https://arxiv.org/abs/1810.00122
https://arxiv.org/abs/1603.09025
https://doi.org/10.48550/ARXIV.2110.13989
https://arxiv.org/abs/2110.13989
https://doi.org/10.1016/j.neucom.2022.06.111
https://arxiv.org/abs/2003.00152

40 Bibliography

Ghorbani, Behrooz, Shankar Krishnan, and Ying Xiao (2019). “An Investigation into
Neural Net Optimization via Hessian Eigenvalue Density”. In: CoRR abs/1901.10159.
arXiv: 1901.10159.

Gitman, Igor and Boris Ginsburg (2017). “Comparison of Batch Normalization and
Weight Normalization Algorithms for the Large-scale Image Classification”. In:
ArXiv abs/1709.08145.

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort,
Sardinia, Italy, May 13-15, 2010. Ed. by Yee Whye Teh and D. Mike Titterington.
Vol. 9. JMLR Proceedings. JMLR.org, pp. 249–256.

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (Apr. 2011). “Deep Sparse Rec-
tifier Neural Networks”. In: Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics. Ed. by Geoffrey Gordon, David Dunson,
and Miroslav Dudík. Vol. 15. Proceedings of Machine Learning Research. Fort
Lauderdale, FL, USA: PMLR, pp. 315–323.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. English.
Adapt. Comput. Mach. Learn. Cambridge, MA: MIT Press. ISBN: 978-0-262-03561-
3.

Gouk, Henry et al. (Feb. 2021). “Regularisation of Neural Networks by Enforcing
Lipschitz Continuity”. In: Mach. Learn. 110.2, pp. 393–416. ISSN: 0885-6125. DOI:
10.1007/s10994-020-05929-w.

Hasani, Moein and Hassan Khotanlou (2019). An Empirical Study on Position of the Batch
Normalization Layer in Convolutional Neural Networks. DOI: 10.1109/icspis48872.
2019.9066113.

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.
DOI: 10.1109/CVPR.2016.90.

Hoedt, Pieter-Jan, Sepp Hochreiter, and Günter Klambauer (2022). “Normalization is
dead, long live normalization!” In: ICLR Blog Track.

Hoefler, Torsten et al. (2021). “Sparsity in Deep Learning: Pruning and growth for
efficient inference and training in neural networks”. In: Journal of Machine Learning
Research 22.241, pp. 1–124.

Ioffe, Sergey and Christian Szegedy (2015). “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167.
arXiv: 1502.03167.

Janocha, Katarzyna and Wojciech Marian Czarnecki (2017). “On Loss Functions
for Deep Neural Networks in Classification”. In: CoRR abs/1702.05659. arXiv:
1702.05659.

Kim, Bum Jun et al. (Oct. 2022). “Smooth Momentum: Improving Lipschitzness in
Gradient Descent”. In: Applied Intelligence 53.11, pp. 14233–14248. ISSN: 0924-669X.
DOI: 10.1007/s10489-022-04207-7.

Kohler, Jonas et al. (May 2018). “Exponential convergence rates for Batch Normal-
ization: The power of length-direction decoupling in non-convex optimization”.
In: arXiv e-prints, arXiv:1805.10694, arXiv:1805.10694. DOI: 10.48550/arXiv.1805.
10694. arXiv: 1805.10694 [stat.ML].

Krizhevsky, Alex (2009). Learning multiple layers of features from tiny images. Tech. rep.
Toronto: University of Toronto.

Kumar, Siddharth Krishna (2017). “On weight initialization in deep neural networks”.
In: CoRR abs/1704.08863. arXiv: 1704.08863.

https://arxiv.org/abs/1901.10159
https://doi.org/10.1007/s10994-020-05929-w
https://doi.org/10.1109/icspis48872.2019.9066113
https://doi.org/10.1109/icspis48872.2019.9066113
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1702.05659
https://doi.org/10.1007/s10489-022-04207-7
https://doi.org/10.48550/arXiv.1805.10694
https://doi.org/10.48550/arXiv.1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1704.08863

Bibliography 41

Laurent, César et al. (2015). “Batch Normalized Recurrent Neural Networks”. In:
CoRR abs/1510.01378. arXiv: 1510.01378.

LeCun, Yann, Leon Bottou, Yoshua Bengio, et al. (1998). “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–2324.
DOI: 10.1109/5.726791.

LeCun, Yann, Leon Bottou, Genevieve B. Orr, et al. (1998). Efficient BackProp. DOI:
10.1007/3-540-49430-8_2.

Lewkowycz, Aitor et al. (2020). “The large learning rate phase of deep learning: the
catapult mechanism”. In: CoRR abs/2003.02218. arXiv: 2003.02218.

Luo, Ping et al. (2018). “Towards Understanding Regularization in Batch Normaliza-
tion”. In: CoRR abs/1809.00846. arXiv: 1809.00846.

Mu, Dongliang et al. (2020). “RENN: Efficient Reverse Execution with Neural-Network-
Assisted Alias Analysis”. In: Proceedings of the 34th IEEE/ACM International Confer-
ence on Automated Software Engineering. ASE ’19. San Diego, California: IEEE Press,
pp. 924–935. ISBN: 9781728125084. DOI: 10.1109/ASE.2019.00090.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems. Ed. by
H. Wallach et al. Vol. 32. Curran Associates, Inc.

Peerthum, Yashna (Mar. 2023). Empirical Evaluation of the Shift and Scale Parameters in
Batch Normalization. DOI: 10.31979/ARXIV.2303.12818.

Qiao, Siyuan et al. (Mar. 2019). “Micro-Batch Training with Batch-Channel Nor-
malization and Weight Standardization”. In: arXiv e-prints, arXiv:1903.10520,
arXiv:1903.10520. DOI: 10.48550/arXiv.1903.10520. arXiv: 1903.10520 [cs.CV].

Rao, Vinay and Jascha Sohl-Dickstein (2020). “Is Batch Norm unique? An empirical
investigation and prescription to emulate the best properties of common normal-
izers without batch dependence”. In: CoRR abs/2010.10687. arXiv: 2010.10687.

Robbins, Herbert and Sutton Monro (1951). “A Stochastic Approximation Method”.
In: 22, pp. 400–407. ISSN: 0003-4851. DOI: 10.1214/aoms/1177729586.

Sainath, Tara N. et al. (2013). “Improving training time of Hessian-free optimiza-
tion for deep neural networks using preconditioning and sampling”. In: CoRR
abs/1309.1508. arXiv: 1309.1508.

Salimans, Tim and Diederik P. Kingma (2016). “Weight Normalization: A Simple
Reparameterization to Accelerate Training of Deep Neural Networks”. In: CoRR
abs/1602.07868. arXiv: 1602.07868.

Santurkar, Shibani et al. (2019). How Does Batch Normalization Help Optimization? arXiv:
1805.11604 [stat.ML].

Schneider, Frank, Lukas Balles, and Philipp Hennig (2019). “DeepOBS: A Deep Learn-
ing Optimizer Benchmark Suite”. In: CoRR abs/1903.05499. arXiv: 1903.05499.

Smith, Samuel L., Pieter-Jan Kindermans, and Quoc V. Le (2017). “Don’t Decay
the Learning Rate, Increase the Batch Size”. In: CoRR abs/1711.00489. arXiv:
1711.00489.

Springenberg, Jost Tobias et al. (2015). “Striving for Simplicity: The All Convolutional
Net”. In: 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings. Ed. by Yoshua Bengio
and Yann LeCun.

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural networks
from overfitting”. In: J. Mach. Learn. Res. 15.1, pp. 1929–1958. DOI: 10.5555/
2627435.2670313.

Szegedy, Christian, Sergey Ioffe, et al. (2017). “Inception-v4, Inception-ResNet and
the Impact of Residual Connections on Learning”. In: Proceedings of the Thirty-First

https://arxiv.org/abs/1510.01378
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/3-540-49430-8_2
https://arxiv.org/abs/2003.02218
https://arxiv.org/abs/1809.00846
https://doi.org/10.1109/ASE.2019.00090
https://doi.org/10.31979/ARXIV.2303.12818
https://doi.org/10.48550/arXiv.1903.10520
https://arxiv.org/abs/1903.10520
https://arxiv.org/abs/2010.10687
https://doi.org/10.1214/aoms/1177729586
https://arxiv.org/abs/1309.1508
https://arxiv.org/abs/1602.07868
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1903.05499
https://arxiv.org/abs/1711.00489
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.5555/2627435.2670313

42 Bibliography

AAAI Conference on Artificial Intelligence. AAAI’17. San Francisco, California, USA:
AAAI Press, pp. 4278–4284.

Szegedy, Christian, Vincent Vanhoucke, et al. (June 2016). “Rethinking the Incep-
tion Architecture for Computer Vision”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Teye, Mattias, Hossein Azizpour, and Kevin Smith (July 2018). “Bayesian Uncertainty
Estimation for Batch Normalized Deep Networks”. In: Proceedings of the 35th
International Conference on Machine Learning. Ed. by Jennifer Dy and Andreas
Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 4907–
4916.

Thakkar, Vignesh, S. Tewary, and C. Chakraborty (2018). “Batch Normalization in
Convolutional Neural Networks — A comparative study with CIFAR-10 data”. In:
2018 Fifth International Conference on Emerging Applications of Information Technology
(EAIT), pp. 1–5. DOI: 10.1109/EAIT.2018.8470438.

Ulyanov, Dmitry, Andrea Vedaldi, and Victor S. Lempitsky (2016). “Instance Normal-
ization: The Missing Ingredient for Fast Stylization”. In: CoRR abs/1607.08022.
arXiv: 1607.08022.

Vaswani, Ashish et al. (2017). “Attention is All You Need”. In.
Wu, Yuxin and Kaiming He (2018). “Group Normalization”. In: International Journal

of Computer Vision 128, pp. 742–755.
Xiang, Sitao and Hao Li (2017). “On the effect of Batch Normalization and Weight

Normalization in Generative Adversarial Networks”. In: CoRR abs/1704.03971.
arXiv: 1704.03971.

Xu, Jingjing et al. (2019). “Understanding and Improving Layer Normalization”. In:
CoRR abs/1911.07013. arXiv: 1911.07013.

Zhou, Bolei et al. (2016). “Learning Deep Features for Discriminative Localization”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–
2929. DOI: 10.1109/CVPR.2016.319.

https://doi.org/10.1109/EAIT.2018.8470438
https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1704.03971
https://arxiv.org/abs/1911.07013
https://doi.org/10.1109/CVPR.2016.319

43

Appendix A

Additional Experiments

A.1 Varying Number and Positioning of BatchNorm Layers

A.1.1 Cifar10 3C3D

(A) One BatchNorm layer after the first convolutional layer in the Cifar10 3C3D.

(B) One BatchNorm layer at the penultimate layer in the Cifar10 3C3D

FIGURE A.1: Training loss and accuracy for the Cifar10 3C3D model
with one BatchNorm layer, trained for 100 epochs with a batch size of
128, and a learning rate of 0.022 from Table 3.1.

(A) β’s of BNγ,β (B) β’s of BNβ (C) β’s of BNγ,β (D) β’s of BNβ

FIGURE A.2: β of the Cifar10 3C3D model with one BatchNorm layer.
In (A) and (B), BatchNorm is placed after the first layer. In (C) and
(D), BatchNorm is placed at the penultimate layer.

44 Appendix A. Additional Experiments

(A) γ’s of BNγ,β (B) γ’s of BNγ (C) γ’s of BNγ,β (D) γ’s of BNγ

FIGURE A.3: γ of the Cifar10 3C3D model with one BatchNorm layer.
In (A) and (B), BatchNorm is placed after the first layer. In (C) and
(D), BatchNorm is placed at the penultimate layer.

(A) Three BatchNorm layers at the beginning of the Cifar10 3C3D.

(B) Three BatchNorm layers at the end of the Cifar10 3C3D

FIGURE A.4: Training loss and accuracy for the Cifar10 3C3D model
with three BatchNorm layers, trained for 100 epochs with a batch size
of 128, and a learning rate of 0.022.

A.1. Varying Number and Positioning of BatchNorm Layers 45

(A) β’s of BNγ,β

(B) β’s of BNβ

(C) β’s of BNγ,β

(D) β’s of BNβ

FIGURE A.5: β of the Cifar10 3C3D model with three BatchNorm
layers. In (A) and (B), BatchNorm is placed after the first layer. In (C)
and (D), BatchNorm is placed at the penultimate layer.

46 Appendix A. Additional Experiments

(A) γ’s of BNγ,β

(B) γ’s of BNγ

(C) γ’s of BNγ,β

(D) γ’s of BNγ

FIGURE A.6: γ of the Cifar10 3C3D model with three BatchNorm
layers. In (A) and (B), BatchNorm is placed after the first layer. In (C)
and (D), BatchNorm is placed at the penultimate layer.

A.1. Varying Number and Positioning of BatchNorm Layers 47

A.1.2 Cifar100 3C3D

(A) One BatchNorm layer after the first convolutional layer in the Cifar100 3C3D.

(B) One BatchNorm layer at the penultimate layer in the Cifar100 3C3D

FIGURE A.7: Training loss and accuracy for the Cifar100 3C3D model
with one BatchNorm layer, trained for 350 epochs with a batch size of
256, and a learning rate of 0.166.

(A) β’s of BNγ,β (B) β’s of BNβ (C) β’s of BNγ,β (D) β’s of BNβ

FIGURE A.8: β of the Cifar100 3C3D model with one BatchNorm
layer. In (A) and (B), BatchNorm is placed after the first layer. In (C)
and (D), BatchNorm is placed at the penultimate layer.

48 Appendix A. Additional Experiments

(A) γ’s of BNγ,β (B) γ’s of BNγ (C) γ’s of BNγ,β (D) γ’s of BNγ

FIGURE A.9: γ of the Cifar100 3C3D model with one BatchNorm
layer. In (A) and (B), BatchNorm is placed after the first layer. In (C)
and (D), BatchNorm is placed at the penultimate layer.

(A) Three BatchNorm layers at the beginning of the Cifar100 3C3D.

(B) Three BatchNorm layers at the end of the Cifar100 3C3D

FIGURE A.10: Training loss and accuracy for the Cifar100 3C3D model
with three BatchNorm layers, trained for 350 epochs with a batch size
of 256, and a learning rate of 0.166.

A.1. Varying Number and Positioning of BatchNorm Layers 49

(A) β’s of BNγ,β

(B) β’s of BNβ

(C) β’s of BNγ,β

(D) β’s of BNβ

FIGURE A.11: β of the Cifar100 3C3D model with three BatchNorm
layers. In (A) and (B), BatchNorm is placed after the first layer. In (C)
and (D), BatchNorm is placed at the penultimate layer.

50 Appendix A. Additional Experiments

(A) γ’s of BNγ,β

(B) γ’s of BNγ

(C) γ’s of BNγ,β

(D) γ’s of BNγ

FIGURE A.12: γ of the Cifar100 3C3D model with three BatchNorm
layers. In (A) and (B), BatchNorm is placed after the first layer. In (C)
and (D), BatchNorm is placed at the penultimate layer.

A.1. Varying Number and Positioning of BatchNorm Layers 51

A.1.3 Cifar100 ALL-CNN-C

(A) One BatchNorm layer after the first convolutional layer in the ALL-CNN-C.

(B) One BatchNorm layer after the penultimate convolutional layer in the ALL-CNN-C.

(C) One BatchNorm layer after the last convolutional layer in the ALL-CNN-C.

FIGURE A.13: Training loss and accuracy for the Cifar100
ALL-CNN-C model with one BatchNorm layer at different positions in
the network. All models are trained for 350 epochs with SGD and a
learning rate of 0.166.

(A) β’s of BNγ,β (B) β’s of BNβ (C) β’s of BNγ,β (D) β’s of BNβ

FIGURE A.14: β of the Cifar100 ALL-CNN-C model with one
BatchNorm layer. In (A) and (B), BatchNorm is placed after the first
layer. In (C) and (D), BatchNorm is placed at the penultimate layer.

52 Appendix A. Additional Experiments

(A) γ’s of BNγ,β (B) γ’s of BNγ (C) γ’s of BNγ,β (D) γ’s of BNγ

FIGURE A.15: γ of the Cifar100 ALL-CNN-C model with one
BatchNorm layer. In (A) and (B), BatchNorm is placed after the first
layer. In (C) and (D), BatchNorm is placed at the penultimate layer.

(A) Four BatchNorm layers at the beginning of the ALL-CNN-C.

(B) Four BatchNorm layers at the end of the ALL-CNN-C (the last layer is left out).

(C) Four BatchNorm layers at the end of the ALL-CNN-C (last layer included).

FIGURE A.16: Training loss and accuracy for the Cifar100
ALL-CNN-C model with four BatchNorm layers at different positions
in the network. All models are trained for 350 epochs with SGD and a
learning rate of 0.166.

A.1. Varying Number and Positioning of BatchNorm Layers 53

(A) β’s of BNγ,β

(B) β’s of BNβ

(C) β’s of BNγ,β

(D) β’s of BNβ

FIGURE A.17: β of the Cifar100 ALL-CNN-C model with four
BatchNorm layers. In (A) and (B), BatchNorm is placed after the first
layer. In (C) and (D), BatchNorm is placed at the penultimate layer.

54 Appendix A. Additional Experiments

(A) γ’s of BNγ,β

(B) γ’s of BNγ

(C) γ’s of BNγ,β

(D) γ’s of BNγ

FIGURE A.18: γ of the Cifar100 ALL-CNN-C model with four
BatchNorm layers. In (A) and (B), BatchNorm is placed after the first
layer. In (C) and (D), BatchNorm is placed at the penultimate layer.

55

Appendix B

Network Architectures

B.1 Network Architectures

The 3c3d network consists of:

• Three conv layers with ReLUs, each followed by max-pooling

• Two fully connected layers with 512 and 256 units and ReLU activation

• 100-unit output fully connected layer followed by a softmax activation function

• CE loss

• ℓ2 regularization on the weights (but not the biases) with a default factor of 0.002

• The weight matrices are initialized using Xavier initialization, and the biases are
initialized to 0.

The all-cnn-c network consists of:

• Nine convolutional layers, each followed by a ReLU function

• Average pooling layer after last convolutional layer with kernel size 6.

• CE loss

• ℓ2 regularization is used on the weights (but not the biases) which defaults to 5e− 4.

• The paper does not comment on initialization. Here, we use Xavier initialization for
convolutions and constant initialization of 0 for biases.

More details on the 3C3D and the ALL-CNN-C architectures can be found in DeepOBS (Schneider
et al., 2019) 1 and in the original ALL-CNN-C paper (Springenberg et al., 2015).

1Github repository: https://github.com/fsschneider/DeepOBS

https://github.com/fsschneider/DeepOBS

	Abstract
	Introduction
	Background
	Neural Network Training
	Convolutional Neural Networks
	ReLU Activation
	Parameter Initialization
	Regularization Methods
	Normalization in Deep Neural Networks

	Batch Normalization
	Details on the Internal Computations
	BatchNorm Layers
	On the Effects of BatchNorm
	On the Learnable Component in BatchNorm
	Alternative Normalization Techniques

	Summary

	Methods
	On the Design of the Ablation Study
	Modifications of BatchNorm
	Experimental Setup

	Analysis of Performance Contributions
	Performance Implications of BatchNorm Modifications
	Robustness to Hyperparameter Setting
	BatchNorm in the Last Layer

	Behavioral Analysis of the Learnable Parameters
	Activity of Learnable Parameters.
	Visualization of Learnable BatchNorm Parameters

	Experiments
	Results from the Ablation Study
	The Role of the Learnable Parameters
	Similar Contribution Across Learning Rates
	The Last Layer is a Special Case

	Results from the Activity Analysis
	The Learnable Component Matters
	The Learnable Component Does Not Matter
	Summary of Results

	Discussion and Outlook
	Bibliography
	Additional Experiments
	Varying Number and Positioning of BatchNorm Layers
	Cifar10 3c3d
	Cifar100 3c3d
	Cifar100 all-cnn-c

	Network Architectures
	Network Architectures

