Advanced Econometrics - $1^{\text {st }}$ assignment sheet

Task 1

Show that these functions are Kernels:

$$
\begin{array}{r}
K(\psi)=(2 \pi)^{-1 / 2} \exp \left(-0.5 \psi^{2}\right) \\
K(\psi)=\mathbf{1}\{|\psi| \leq 1\} 3 / 4 \cdot\left\{1-\psi^{2}\right\} \\
K(\psi)=\mathbf{1}\{|\psi| \leq 1 / 2\} \tag{3}
\end{array}
$$

Task 2

Show that the relation

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \psi^{k} K(\psi) d \psi=0 \tag{4}
\end{equation*}
$$

holds, for $k=1,3,5, \ldots$
Task 3

Proof the following Collary:
Corallary 1 Let assumptions DE I-IV hold. Then

$$
\begin{align*}
\hat{f}_{x}\left(x_{0}\right) & \xrightarrow{p} f_{x}\left(x_{0}\right) \tag{5}\\
\operatorname{plim} \hat{f}_{x}\left(x_{0}\right) & \rightarrow f_{x}\left(x_{0}\right) \tag{6}
\end{align*}
$$

Task 4

Show that the following theorem holds:
Theorem 1 Under $A D E$ I', ADE II, ADE III' and $A D E$ IV we obtain

$$
\begin{align*}
& E\left[\hat{f}_{x}\left(x_{0}\right)\right]=f_{x}\left(x_{0}\right)+\frac{h^{r}}{r} \mu_{r} \partial_{x}^{r} f_{x}\left(x_{0}\right)+o\left(h^{r}\right) \tag{7}\\
& \operatorname{Var}\left[\hat{f}_{x}\left(x_{0}\right)\right]=(n h)^{-1} \kappa_{0} f_{x}\left(x_{0}\right)+o\left((n h)^{-1}\right) \tag{8}
\end{align*}
$$

