Introduction to R

Peter Schmidt

Advanced Econometrics: Microeconometrics from a Semiparametric Perspective

Why should we use R?

Reasons for using R

- It's freeware.
- There are numerous packages.

Why should we use R?

Reasons for using R

- It's freeware.
- There are numerous packages.

Reasons for not using R

- Matrix operations are not so intuitively as in other statistical packages.
- Maybe you want to spend money.

Assignments, Vectors \& calculation

For assignment purposes we use the operator <-:
$>x<-4$
$>\mathrm{x}$
[1] 4
Vectors can be constructed using the c(...) command:
$>\operatorname{vec}<-c(1,3,4,5,10,100)$
> vec
[1] $1 \begin{array}{lllllll}1 & 3 & 4 & 5 & 10 & 100\end{array}$
Using operators like $*, /$, , means that the operations are carried out elementwise. For instance:
> vec2 <- c $(1,3,2,2.5,2,20)$
> vec/vec2
[1] 112255

Other useful Vector commands

The Sequence Command:
$>\operatorname{seq}(1,10)$
[1] $\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
> 1:10
[1] $\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

Or with a different step size:
$>\operatorname{seq}(1,19,2)$
[1] $\begin{array}{lllllllllll}1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 & 17 & 19\end{array}$

Also useful is the Replicate Command:
$>\operatorname{vec}<-c(1,2,3)$
> rep(vec,3)
[1] 123123123
> rep(vec,1:3)
[1] 122333

The usual statistical calculations

If we want to calculate the Mean, the Variance or something else, R provides very intuitive commands.

Suppose we want to calculate the mean of a Standard Normal distributed Variable. By drawing 1000 realizations of a SND variable using rnorm(1000), we get:
> mean(rnorm(1000))
[1] -0.05590491
The same applies for the variance, standard deviation and other statistical calculations.
> $\operatorname{var}($ rnorm (1000))
[1] 1.029674
> sd(rnorm(1000))
[1] 0.9776675

Some useful things

The commands are case sensitive. For example t is the transpose of a matrix and T stand for the logical expression "TRUE".

The variables in the workspace can be shown with ls(). The Workspace can be cleared using the command rm(list=ls(all=TRUE)).

Graphical Elements

Define:
$>\mathrm{x}=$ round(runif $(100,0,200))$
$>\mathrm{y}<-100+1.5 * \mathrm{x}+\operatorname{sqrt}(1000) * r n o r m(100)$
Then we can visualize this relationship with:
$>\operatorname{plot}(x, y)$
Additionaly we can add lines by using:
> abline $(100,1.5)$

Graphical Elements

Figure: Scatter-Plot

Graphical Elements

Figure:

