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I. Introduction to Stochastic Processes
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Time Series Analysis:

We observe (economic) variables over time, hence a time series is a collection

of observations indexed by the date of each observation.

Examples:

• macroeconomic variables as income, consumption, interest rates, unem-

ployment rates,...

• financial data as stock returns, exchange rates,...
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Time series techniques are therefore essential in

Economics:

• properties of macroeconomic time series

• persistence of macro shocks

• testing economic theories

• transmission of monetary policy

Finance:

• predictability of returns

• testing and estimating asset price models

• properties of price formation processes
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Stochastic processes:

Economic time series are viewed as realizations of stochastic processes,
that is, of a sequence of random variables over time (that are typically
not independent).

Idea of randomness:

draws from distributions, no certain numbers - not deterministic but
stochastic!
However, we observe only one (possible) realization of the stochastic
process!
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Stochastic processes (continued):

⇒ We call {Xt} a stochastic process or sequence of random variables

and

{xt} the realization of the stochastic process or sequence of real num-
bers (that we do observe). Hence, we have observed the specific sample
(x1, x2, . . . , xt).

Because of the dependencies between the random variables
{. . . Xt−2, Xt−1 . . .} we have a ”more complex” structure than in the
cross- sectional case with independent random variables {X1, X2 . . .}
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Stochastic processes (continued):

As we have only one realization of the stochastic process, we need to reduce
complexity.

⇒ Two ”required” concepts in time series analysis:

1. stationarity: the distribution doesn’t change over time/what matters is
the relative position in the sequence but the moments remain the same
across time.

2. ergodicity: there might be dependencies of the random variables over
time, but these dependencies get smaller and smaller for larger time lags.
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II. Basic Concepts
—

II.1 Mathematical Techniques of Time Series

Analysis [Hamilton (1994), Appendix A]
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Required techniques:

Complex numbers, unit circle, employing difference- and lag operators,
solving stochastic difference equations

Unit circle

Basics:

The algebraic equation

x2 − 2ax + (a2 + b2) = 0

has the following formal solution:

x = a± b
√−1

But these solutions are defined in the numerical range of real numbers just
for b = 0.
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Solution

Definition of a set C which contains complex numbers R ⊂ C

Requirements for the set C:

1. The sum (product) of real numbers as elements of C is identical with

the sum

(product) that is defined for real numbers.

2. The set C contains an element with the property i2 = −1.

3. For each element z of C there are two real numbers a, b, such that the

complex number z can be expressed as z = a + ib, where a is the real

part of z and b the imaginary part of z.
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We will specify the above definition in more detail by defining a 2x2

matrix:

a :=


 a 0

0 a


 a ∈ R

i :=


 0 1

−1 0




We define the complex number a + bi as

a + bi :=


 a 0

0 a


 +


 0 b

−b 0


 =


 a b

−b a


 a, b ∈ R
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Detailed specification (continued)

The set of (2x2) matrices illustrates, by addition and multiplication of

matrices, a model for complex numbers. The complex number z = a + ib is

called purely imaginary, whenever a = 0 and b 6= 0. It is called purely real,

whenever b = 0.

The complex number z = a− ib is the complex conjugate of z = a + ib.

Example:

The equation x2 + c = 0, where c > 0 can be solved with the purely

imaginary number z1 = i
√

c and z2 = −i
√

c, as z2
1 = z2

2 = −c. The

numbers z1 and z2 are said to be complex conjugate.
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Visualization of the complex numbers in an Argand diagram:

a

z a i b
i b

i b z a i b

|z
|

|z|

The points on the horizontal axis correspond to the real numbers. The

points on the vertical axis correspond to the purely imaginary numbers.

Each point in the plane matches exactly one complex number.
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The real number |z| = √
a2 + b2 is called the absolute value of z = a+ ib.

|z| is the distance to the origin.

As it is obvious from the formula this absolute value is identical to the

absolute value of real numbers.

Important rules from calculus:

(a + ib) + (c + id) = (a + c) + i(b + d)

(a + ib)− (c + id) = (a− c) + i(b− d)

(a + ib) · (c + id) = ac− bd + i(ad + bc)
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Trigonometric representation of complex numbers

A complex number z = a + ib of the absolute value 1 satisfies x2 + y2 = 1.

It is referred to as z being an element of the unit circle in the Argand

diagram.

z

x 10,

0 1,

i y

0 0,
reelle Achse

imaginäre Achse

0 1,

10,

|z
|=

1

The circumference of the unit circle is 2π. The length of the arc from (1, 0)

to (0, 1), (−1, 0), (0,−1) equals π
2 , π, 3π

2 .
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Trigonometric representation of complex numbers (continued)

% is the length of the circular arc from (1, 0) to z

cos(ϕ) := x

sin(ϕ) := y if y 6= 0

tan(ϕ) := y
x if x 6= 0

Hence, the complex number z on the unit circle can be expressed as:

z = cos(ϕ) + i · sin(ϕ)

An arbitrary complex number z = a + ib has the absolute value R =
√

a2 + b2. It can be expressed as z = R(x + iy), where x = a
R, y = b

R and

(x, y) are elements of the unit circle.
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Trigonometric representation of complex numbers (continued)
Z

a
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i b

Hence, z has the trigonometric form: z = R · (cos(ϕ) + i sin(ϕ))

⇒ Polar coordinate representation of z

Moivre’s theorem: For each complex number z 6= 0 and each rational

number q it has to hold that zq = Rq [cos(qϕ) + i sin(qϕ)]
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Exponential representation of complex numbers

ex = 1 + x + x2

2! + . . . + x5

5! + . . . (Power series expansion)

where x = iϕ holds due to i2 = −1, i3 = −i, i4 = 1, i5 = i

e
iϕ

= 1 + iϕ− ϕ2

2!
− i

ϕ3

3!
+

ϕ4

4!
+ i

ϕ5

5!
− ϕ6

6!
− i

ϕ7

7!
. . .

=

[
1− ϕ2

2!
+

ϕ4

4!
− ϕ6

6!
+ . . .

]
+ i

[
ϕ− ϕ3

3!
+

ϕ5

5!
− ϕ7

7!
+ . . .

]

= cos(ϕ) + i sin(ϕ)

The representation of a complex number z = a + ib by means of z = Reiϕ

using R = |z|, tan(ϕ) = b
a is called the exponential form.
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II.2 (Stochastic) Difference Equations

[Hamilton (1994), Chapter 1]
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First order difference equation

Dynamic properties of
yt = φyt−1 + wt (1)

wt can be a random variable. Then: First order stochastic difference equation

Example:

Equation describing the demand for money [Goldfeld (1973)] for the USA

mj (log real demand for money) as a function of log aggregate income

(real) It, the logarithmic interest rate on deposits rGt and the interest rate

on bonds rCt:

mt = 0.27 + 0.72mt−1 + 0.19It − 0.045rGt − 0.019rCt (2)
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Hence, mt = 0.27 + 0.72mt−1 + 0.19It − 0.045rGt − 0.019rCt is just a

special case of equation (1) with

wt = 0.27 + 0.19It − 0.045rGt − 0.019rCt, yt = mt, φ = 0.72

Aim: Understanding the dynamic behavior of y if w changes.

Point in time Equation

0 y0 = φy−1 + w0

1 y1 = φy0 + w1

2 y2 = φy1 + w2

... ...

t yt = φyt−1 + wt
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If the starting value y−1 for t = −1 and wt for 0, 1, ..., t is known,

recursive substitution can be used to evaluate the sequence yt

yt = φt+1y−1 + φtw0 + φt−1w1 + φt−2w2 + . . . + φwt−1 + wt (3)

Dynamic behavior

If w0 changes and w1 . . . wt are not affected of the change, the effect on yt

is:

yt = ∂yt
∂w0

= φt

Dynamic multiplier = (impulse-response function)

The intensity of the effect of the dynamic multiplier depends on the time

span 0− t and the parameter φ.
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Dynamic Simulation

Let the dynamic simulation start in t:

yt+j = φj+1yt−1 + φjwt + φj−1w1+1 + . . . + wt+j

Size and sign of φ determine the sequence of dynamic multipliers.

The effect of wt on yt+j is:
∂yt+j

∂wt
= φj

Thus, the dynamic multiplier depends just on j, the time span between wt

and yt+j.

Therefore we have exponential growth/augmention for φ > 1, a geometric

decreasing development for 0 < φ < 1, oscillating decline for −1 < φ < 0,

explosive oscillating behavior for φ < −1.
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Higher order difference equations

Generalization of a p-th order difference equation

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p + wt (4)

Aim: Explaining the dynamic behavior of equation (4).
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Explaining the dynamic behavior of equation

Writing the p-th order difference equation as vector difference equation of

order one. We need the following notation:

ξt ≡




yt

yt−1

...

yt−p+1




(p× 1)− vector

F ≡




φ1 φ2 . . . φp−1 φp

1 0 . . . 0 0

0 1 . . . 0 0

0 0 . . . 1 0




(p× p)− matrix

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 26



Advanced Time Series Analysis

Explaining the dynamic behavior of equation (continued)

vt ≡




wt

0

0

0




(p× 1)− vector

For p = 1 (first order difference equation) we have F = φ (scalar).
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Define a first order vector-difference equation

ξt = Fξt−1 + vt

Recursion analogous to the case of a first order difference equation:

For time t = 0: ξ0 = Fξ−1 + v0

For time t = 1: ξ1 = Fξ0+v1 = F(Fξ−1+v0)+v1 = F2ξ−1+Fv0+v1

For time t = t:

ξt = Ft+1ξ−1 + Ftv0 + Ft−1v1 + . . . + Fvt−1 + vt (5)

Of special significance for the dynamics:

First row of system (5) for time t.

Definition: f
(t)
11 is the (1, 1) element of Ft, f

(t)
12 is the (1, 2) element of Ft.
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For the first row of ξt = . . . we get

yt = f
(t+1)
11 y−1 + f

(t+1)
12 y−2 + . . . + f

(t+1)
1p y−p + f

(t)
11 w0 +

f
(t−1)
11 w1 + . . . + f

(1)
11 wt−1 + wt

⇒ yt is a function of p initial values of y and the entire history of w.

Starting the dynamic simulation in t:

ξt+j = Fj+1ξt−1 + Fjvt + Fj−1vt+1 + . . . + Fvt+j−1 + vt+j

for a p-th order difference equation the impulse-response function is

∂yt+j

∂wt
= f

(j)
11 (6)
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For j = 1 this is given by the (1, 1) element of F, or the parameter φ1!

For each p-th order system the effect of an increase in wt on yt+1 is as

follows:
∂yt+1
∂wt

= φ1

Expansion of F 2 yields:

∂yt+2
∂wt

= φ2
1 + φ2 This is the (1, 1) element of F2.

In order to describe the dynamic behavior of higher order difference equations

analytically (e.g. when is the system explosive?) the eigenvalues of the matrix

F are analyzed.

⇒ Matrix algebra [see for example Hamilton Appendix A]
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Eigenvalues/characteristic roots of a matrix F are the solutions for

the equation|F− λIp| = 0

Ip is a p-th order identity matrix. For a system of difference equations of

second order this means
∣∣∣∣∣∣


 φ1 φ2

1 0


−


 λ 0

0 λ




∣∣∣∣∣∣
=

∣∣∣∣∣∣


 (φ1 − λ) φ2

1 −λ




∣∣∣∣∣∣
= λ2−φ1λ−φ2 = 0

⇒ characteristic equation

Hence, the two eigenvalues are:

λ1 = φ1+
√

φ2
1+4φ2

2 , λ2 = φ1−
√

φ2
1+4φ2

2

⇒ Eigenvalues can be complex numbers
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For difference equations of order p it holds generally that the ei-

genvalues of F can be computed as solutions to the characteristic

equation

λp − φ1λ
p−1 − φ2λ

p−2 − . . .− φp−1λ− φp = 0

Proposition from matrix algebra [see e.g. Hamilton (1994), Appendix A]

If the eigenvalues of a (p× p) matrix F differ, then there is a non-singular

matrix T, such that

F = TΛT−1

where Λ is a (p× p) matrix containing the eigenvalues of F
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The eigenvalues are arranged in the following fashion

Λ =




λ1 0 . . . 0

0 λ2 . . . 0

... . . . . . . ...

0 . . . . . . λp




Hence, we can write: F2 = TΛT−1 ·TΛT−1 = TΛ2T−1

Due to the diagonal structure of Λ it holds that

Λ2 =




λ2
1 0 . . . 0

0 λ2
2 . . . 0

... . . . . . . ...

0 . . . . . . λ2
p
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Generally it must hold that Fj = TΛjT−1

The diagonal structure of Λj is still kept: Λj =




λj
1 0 . . . 0

0 λj
2 . . . 0

... . . . . . . ...

0 . . . . . . λj
p




Defining tij as the element of the i-th row and j-th column of T and

defining tij as the element of the i-th row and j-th column of T−1, then

by multiplying the matrices one can write the (1, 1)-th element of Fj as:

f
(j)
11 = [t11t11]λ

j
1 + [t12t21]λ

j
2 + . . .+ [t1pt

p1]λj
p = c1λ

j
1 + c2λ

j
2 + . . .+ cpλ

j
p

where ci = [t1it
i1]. To show this, write equation Fj = TΛjT−1 extensively!
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(c1 + c2 + . . . + cp) is the (1, 1) element of TT−1 = Ip, such that

c1 + c2 + . . . + cp = 1

Substitution into equation (9) yields
∂yt+j

∂wt
= c1λ

j
1 + c2λ

j
2 + . . . + cpλ

j
p

The impulse-response function of order j is a weighted average of the p

eigenvalues raised to the j-th power.

For p = 1 the characteristic equation states:

λ1 − φ1 = 0 ⇒ λ1 = φ1

The dynamic multiplier is then given by:
∂yt+j

∂wt
= c1λ

j
1 = φj

1 as c1 = 1 (see above)
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Remark: If there is at least one eigenvalue of F with an absolute value > 1

the system is explosive, because the eigenvalue with the largest absolute

value dominates the dynamic multiplier in an exponential function. For real

eigenvalues with an absolute value < 1 the dynamic multiplier converges

either geometrically or oscillating against zero.

(Compute the dynamic multiplier of equation yt = 0.6yt−1 + 0.2yt−2 + wt)

Complex eigenvalues for p = 2:

Eigenvalues of F are complex, if φ2
1 + 4φ2 < 0. Writing the solutions of the

characteristic polynomial as complex numbers

λ1 = a + ib, λ2 = a− ib, where a = φ1
2 , b = 0.5

√
−φ2

1 − 4φ2.
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To show the dynamic of the system of difference equations, we use

the polar coordinate representation

λ1 = R [cos(ρ) + i sin(ρ)]

where R =
√

a2 + b2, cos(ρ) = a
R, sin(ρ) = G

R

In exponential representation:

λ1 = R[eiρ]

λj
1 = Rj[eiρj] = Rj [cos(ρj) + i sin(ρj)]
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The complex conjugate λ1 can be derived as follows:

λj
2 = Rj[e−iρj] = Rj [cos(ρj)− i sin(ρj)]

Substitution yields

∂yt+j

∂wt
= c1λ

j
1 + c2λ

j
2

= c1R
j [cos(ρj) + i sin(ρj)] + c2R

j [cos(ρj)− i sin(ρj)]

= [c1 + c2] Rj cos(ρj) + i [c1 − c2] Rj sin(ρj)

It can be shown, that these are also complex conjugates [proof: see Hamilton

(1994) p. 15]: c1 = α + βi, c2 = α− βi
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Substitution yields the real multipliers

c1λ
j
1 + c2λ

j
2 = 2αRj cos(ρj)− 2βRj sin(ρj)

⇒ If the eigenvalues are greater than 1 in absolute terms the system

explodes at a rate Rj.

For R = 1 (the eigenvalues are on the unit circle) the multipliers are periodic

sine-cosine-combinations. Only if R < 1 (the eigenvalues are inside the unit

circle) the amplitude of the multipliers decreases at a rate Rj.
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Due to the enormous significance of second order difference equations

Sargent’s so-called stationarity triangle (1981).

A simple derivation [Hamilton (1994) p. 17f.]
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II.3 Using Lag Operators

[Hamilton (1994), Chapter 2]
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Comment on the notation

The notation of a time series yt is an abbreviated representation.

The fact, that yt does not just denote one observation, but a complete time
series can be accounted for by using the extensive expression {yt}∞t=−∞.

Thus: An arithmetic operation xt = byt generates not only a new value,
but {xt}∞t=−∞, i.e. a new time series! This holds as well for all the other
possible arithmetic operators.

A very important operator, that creates a new time series, is the lag
operator. It is defined as:

Lxt ≡ xt−1,

where y = Lxt creates a new time series from {xt}∞t=−∞. This new time
series is denoted by {yt}∞t=−∞.
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It is written: L2xt = L(Lxt) = L(xt−1) = xt−2

For each integer value k:

Lkxt = xt−k

Arithmetic operators and lag operators are commutative

L(βxt) = βLxt

and distributive:

L(xt + wt) = Lxt + Lwt

Using the lag operator manipulation of time series is possible. It works
analogous to the manipulations done by the common arithmetic operators.
Therefore, it can be stated, that xt is

”
multiplied“ by L to express that the

lag operator operates on xt.
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Example:

yt = (a + bL)Lxt = (aL + bL2)xt = axt−1 + bxt−2

An important, later implemented example:

(1− λ1L)(1− λ2L)xt =
(
1− (λ1 + λ2)L + λ1λ2L

2
)
xt

= xt − (λ1 + λ2)xt−1 + λ1λ2xt−2

⇒ Lag polynomials can be compared to simple polynomials such as
a · z + b · z2 (where z is a real number).

Main difference:

The term a ·z + b ·z2 adds up to a real number, while a ·L+ b ·L2 operating
on a time series {t}∞t=−∞ produces a new series {yt}∞t=−∞.

If xt = c for all t then: Lxt = c.
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Practical implementation of the lag operators: Analysis of the dyna-
mics of difference equations

First order difference equation:

yt = φyt−1 + wt ⇒ yt = φLyt + wt (7)

⇒ yt − Lyt = wt ⇒ (1− φL)yt = wt (8)

In textbooks mainly the inverse representation yt = (1−φL)−1wt is printed.

We will explain the relevance of the expression (1− φL)−1.
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To do so:

”Multiplication” of equation (7) with the lag polynomial(
1 + φL + φ2L2 + φ3L3 . . . φtLt

)
:

(
1 + φL + φ2L2 + φ3L3 . . . φtLt

)
(1− φL) yt =

(
1 + φL + φ2L2 + φ3L3 . . . φtLt

)
wt

”Expanding” the left hand side (exercise!) yields:

(1− φt+1Lt+1)yt =
(
1 + φL + φ2L2 + φ3L3 . . . φtLt

)
wt

Written extensively:

yt = φt+1y−1 + wt + φwt−1 + φ2wt−2 + . . . + φtw0

This is the same result as we got above by recursive substitution!
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Property of the operator
(
1 + φL + φ2L2 + φ3L3 . . . φtLt

)
, if

♦ t gets large,

♦ |φ < 1| is bounded for all t and

♦ |yt| < yu is bounded for all t,

(1− φt+1Lt+1)yt
∼= yt

(
1 + φL + φ2L2 + φ3L3 . . . φtLt

)
(1− φL) yt

∼= yt

This yields the following result:

(1− φL)−1 = lim
j→∞

(
1 + φL + φ2L2 + φ3L3 . . . φjLj

)
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Dynamics of difference equations can also be analyzed by means of
the lag operator.

First, dynamics for a second order difference equation

yt = φ1yt−1 + φ2yt−2 + wt

(
1− φ1L− φ2L

2
)
yt = wt

⇒ Second order lag polynomial factorization of the lag polynomial
results in:

(
1− φ1L− φ2L

2
)

= (1− λ1L) (1− λ2L) = 1−[λ1+λ2]L+[λ1λ2]L2 (9)

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 48
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Example:

If φ1 = 0.6 and φ2 = 0.08 ⇒ λ1 = 0.4 and λ2 = 0.2

We will show, that λ1, λ2 from equation (9) are identical to the eigenvalues
of the matrix F (see above).

Remember: Stability (”stationarity”) is determined by the eigenvalues of
the (2× 2) matrix F

Furthermore, we search for: values λ1, λ2 for which equation (9) is fulfilled!
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Searching for values λ1, λ2 for which equation (9) is fulfilled

Auxiliary construction: We use a number z, that can be substituted for the
lag operator L in equation (9):

(1− φ1z − φ2z
2) = (1− λ1z)(1− λ2z) (10)

The right hand side of equation (10) is 0, if z = λ−1
1 or z = λ−1

2 .

Thus, it is made clear why we substituted L out with z: L = λ−1
1 would

not have a reasonable interpretation!

z is just to be used as intermediate replacement character for solving for
λ1, λ2!

z = λ−1
1 or z = λ−1

2 have to set the left hand side of equation (10) equal
to zero.
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Searching for values λ1, λ2 for which equation (9) is fulfilled (cont.)

(1− φ1z − φ2z
2) = 0 holds for

z1 = φ1−
√

φ2
1+4φ2

−2φ2
, z2 = φ1+

√
φ2

1+4φ2

−2φ2

z1, z2 set the left hand side of equation (10) to 0. We can compute
λ1 = z−1

1 , λ2 = z−1
2 .

There is also a more direct way to compute λ1, λ2:

Division of equation (10) by z2:

(z−2 − φ1z
−1 − φ2) = (z−1 − λ1)(z−1 − λ2)

Defining λ = z−1 yields

(λ2 − φ1λ− φ2) = (λ− λ1)(λ− λ2) (11)
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Advanced Time Series Analysis

The values of λ, which equalize the right hand side to zero are λ = λ1, λ =
λ2. These values have to equalize the left hand side of equation (11) to
zero as well:

λ2 − φ1λ− φ2 = 0

λ1 = φ1+
√

φ2
1+4φ2

2 , λ2 = φ1+
√

φ2
1+4φ2

2

Hence, it follows: λ1 and λ2 are identical to the eigenvalues of the matrix
F, which determine the dynamics of the system of difference equations.

These eigenvalues can be calculated by factorizing the lag polynomial
(1−φ1L−φ2L

2) and computing the nulls of the corresponding polynomial
(λ2 − φ1λ− φ2) or 1− φ1z − φ2z

2.

Calculate λ1, λ2 for a second order difference equation with φ1 = 0.6 and
φ2 = 0.08.
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Concluding remarks

Be careful: In many textbooks the representations are not clear: Therefore,
when is a system of second order difference equations stable?

We have seen:

♦ if the eigenvalue λ1, λ2 of the (2×2) matrix F are < 1 in absolute terms
(lie inside the unit circle)

♦ if the solutions to λ1 and λ2 of (λ2 − φ1λ − φ2) = 0 lie inside the unit
circle

♦ if the solutions to z1, z2 where λ1 = z−1
1 , λ2 = z−1

2 of (1−φ1z−φ2z
2) = 0

lie outside the unit circle.

All three statements are equivalent.
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Generalization of the p-th order difference equation

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p + wt

(
1− φ1L− φ2L

2 − . . .− φpL
p
)
yt = wt

Factorization of the lag polynomial results in:

(
1− φ1L− φ2L

2 − . . .− φpL
p
)

= (1− λ1L) (1− λ2L) . . . (1− λpL)
(12)

As seen above: Substitution of the lag operator by the number z:

(
1− φ1z − φ2z

2 − . . .− φpz
p
)

= (1− λ1z) (1− λ2z) . . . (1− λpz) (13)

The right hand side of equation (13) is zero, whenever z = λ−1
1 , z =

λ−1
2 , . . . , z = λ−1

p . These values also have to equalize the left hand side to
zero.
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Generalization of the p-th order difference equation (cont.)

Equalizing the left hand side to zero and multiplying it with z−p and
λ ≡ z−1 yields

(
λp − φ1λ

p−1z − φ2λ
p−2 − . . .− φp−1λ− φp

)
= 0 (14)

Equation (14) is identical to the formula we found for the eigenvalues of F
in the case of a p-th order difference equation.

It follows: The nulls of equation (14) are identical to the eigenvalues of the matrix F,

which determines the dynamics of the system of difference equations.

These eigenvalues can be computed by first factorizing the lag polynomi-

al
(
1− φ1L− φ2L

2 − . . .− φpL
p
)
, second derivation of the nulls λ1, . . . , λp

of the corresponding polynomial
(
λp − φ1λ

p−1z − φ2λ
p−2 − . . .− φp−1λ− φp

)
.

Equivalently the nulls z1, . . . , zp of the polynomial
(
1− φ1z − φ2z

2 − . . .− φpz
p
)

(where z = λ−1
1 , z = λ−1

2 , . . . , z = λ−1
p ) can be derived in order to get the eigenvalues.
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Three equivalent statements about stability (
”
stationarity“) of diffe-

rence equations of p-th order can be made (and are often confused
in textbooks).

A p-th order difference equation is stable, if:

♦ the eigenvalues of the (p× p) matrix F are within the unit circle.

♦ the solutions to λ1, . . . , λp of the polynomial(
λp − φ1λ

p−1z − φ2λ
p−2 − . . .− φp−1λ− φp

)
are within the unit circle.

♦ the solutions z1, z2, . . . , zp to the polynomial
(
1− φ1z − φ2z

2 − . . .− φpz
p
)

are outside the unit circle.
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II.4 Stationarity and Ergodicity

[Hayashi 2.2]
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1. Weak/Covariance stationarity

A stochastic process Xt is weakly/covariance stationary if

E(Xt) = µ ∀ t

Var(Xt) = σ2 ∀ t

Cov(Xt, Xt−j) = γj ∀ t

⇒ The mean, variance and autocovariances do not depend on t.

The autocovariances only depend on the distance j.

Example: Cov(x3, x5) = Cov(x98, x100).
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2. Strict stationarity

A stochastic process Xt is strictly stationary if its distribution does not
depend on t:

FXt1
,...,Xtn

(x1, . . . , xn) = FXt1+j,...,Xtn+j
(x1, . . . , xn).

So, the joint distribution of two or more random variables in the sequence
does not depend on t,

Example: FX100,X200(a, b) = FX900,X1000(a, b).
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Implications from stationarity

• If a sequence is strictly stationary and the variance and covariances are
finite, then the sequence is also weakly stationary.

• In the remainder of the course ”stationary” means covariance stationary,
and therefore we always check for covariance stationarity of a given
stochastic process.

• Special case: Gaussian process
As the first two moments are sufficient to identify the normal distribution,
for the Gaussian process weak stationarity also implies strict stationarity.
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3. Trend stationarity and difference stationarity

• A stochastic process Xt is trend stationary if the process is stationary
after subtracting a (usually linear) function of time t, which is called
time trend.

• A stochastic process Xt is difference stationary if the process is not
stationary, but its first difference, Xt −Xt−1, is stationary.
Xt is also called integrated of order 1, I(1)-process or a stochastic
process with a unit root.
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4. Ergodicity and the Ergodic Theorem

• A stochastic process Xt is ergodic if the dependencies between Xt and
Xt−j get weaker and weaker over time.

• We consider two different definitions:
a) Hayashi and b) Hamilton.
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a) Ergodicity following Hayashi:

A stationary process is ergodic if for any two bounded functions f : Rk → R
and g : Rl → R

lim
n→∞

E [f(zi, . . . , zi+k) · g(zi+n, . . . , zi+n+l)]

= E [f(zi, . . . , zi+k)] · E [g(zi+n, . . . , zi+n+l)]

⇒ A stationary process is ergodic if it is asymptotically independent, that
is, if any two random variables positioned far apart in the sequence, are
almost independently distributed.

⇒ Problem: This definition of ergodicity is difficult to check!
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b) Ergodicity following Hamilton:

A stationary Gaussian process Xt is ergodic if

∞∑

j=0

|γj| < ∞ ”absolute summability”

with γ0 = Var(Xt) and

γj = Cov(Xt, Xt−j); j = 1, 2, . . .

⇒ In order to check for ergodicity:

1. Is the process stationary Gaussian? Yes → 2.
2. Find the autocovariances γj and sum them up.
3. Is the sum finite? Yes: the process is stationary and ergodic!
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5. The Ergodic Theorem

If Xt is a stationary and ergodic process, then any moment of this process
is consistently estimated by the sample moment.

6. The autocorrelation function (ACF)

The jth-order autocorrelation function is defined as:

ρj :=
γj

γ0
=

Cov(Xt, Xt−j)
Var(Xt)

; j = 0, 1, 2 . . .

with −1 ≤ ρj ≤ 1.

The plot of ρj against j = 0, 1, 2 . . . is called the correlogram.
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III. ARMA Models and Stationarity Tests
—

III.1 Modeling Univariate Time Series: ARMA

Models

[Hamilton: 43-61, 64-71]

[Hayashi: 365 - 386]
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A general ARMA(p, q) model is defined as the stochastic process {Yt}
that evolves as

Yt = c+ φ1Yt−1 + φ2Yt−2 + . . . + φpYt−p︸ ︷︷ ︸
AR (autoregressive)-part

+ θ1εt−1 + θ2εt−2 + . . . + θqεt−q︸ ︷︷ ︸
MA (moving average)-part

+εt

where {εt} is Gaussian White Noise, that is:

E(εt) = 0
Var(εt) = E(ε2

t ) = σ2 ∀ t
Cov(εt, εt−j) = E(εt · εt−j) = 0 ∀ j 6= 0

and εt ∼ N(0;σ2)
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Firstly, we are interested in:

i) Is a given ARMA(p, q) process stationary and ergodic?

ii) How does its joint distribution look like?

iii) How can the parameters c, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq

be estimated?

iv) How can we forecast the time series?

Reference:
Hamilton: p.43-61 and 64-71
Hayashi: p.365-386
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A. Moving Average Processes

1. MA(1)-process

2. MA(q)-process

3. MA(∞)-process

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 69
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1. MA(1)-process

Yt = µ + θ1εt−1 + εt

with {εt}: Gaussian White Noise

Checking for stationarity:

E(Yt) = µ + θ1E(εt−1) + E(εt) = µ ∀ t

γ0 = Var(Yt) = E[(Yt − µ)2] = E[(θ1εt−1 + εt)2]

= E[θ2
1ε

2
t−1 + 2θ1εt−1εt + ε2

t ]

= θ2
1σ

2 + 0 + σ2

= (1 + θ2
1)σ

2 ∀ t
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The autocovariance of an MA(1)

γ1 = Cov(Yt, Yt−1) = E[(Yt − µ)(Yt−1 − µ)]

= E[(θ1εt−1 + εt)(θ1εt−2 + εt−1)]

= E[θ2
1εt−1εt−2 + θ1ε

2
t−1 + θ1εtεt−2 + εtεt−1]

= 0 + θ1σ
2 + 0 + 0

= θ1σ
2 ∀ t
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Advanced Time Series Analysis

Higher order covariances are all zero

γj = Cov(Yt, Yt−j) = 0 ∀ j > 1

⇒ {Yt} is (covariance) stationary! Is it also ergodic?

∞∑

j=0

γj = (1 + θ2
1)σ

2 + |θ1|σ2 < ∞

⇒ The MA(1)-process is stationary and ergodic!
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The autocorrelations for the MA(1)-process are given by

ρj =
γj

γ0
for j = 0, 1, 2, . . .

Therefore, ρ0 = 1 (always) and for the MA(1)-process we get:

ρ1 =
θ1

(1 + θ2
1)

with

ρ1 > 0 for θ1 > 0 and

ρ1 < 0 for θ1 < 0.

As for j > 1 : γj = 0 ⇒ ρj = 0!

Hence, the autocorrelations are useful to identify the process!
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2. MA(q)-process

Yt = µ + θ0εt + θ1εt−1 + . . . + θqεt−q

normally with θ0 = 1.

Checking for stationarity and ergodicity: ⇒ See Hamilton p. 50

Result:

E(Yt) = µ
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Advanced Time Series Analysis

Further results of the MA(q)-process

γ0 = Var(Yt) = (θ2
0 + θ2

1 + . . . + θ2
q)σ

2 ∀ t

γj = Cov(Yt, Yt−j)

= (θjθ0 + θj+1θ1 + . . . + θqθq−j)σ2 for j = 1, . . . , q

γj = 0 for j > q !

Checking for ergodicity:

∞∑

j=0

|γj| < ∞ for q < ∞.

⇒ The MA(q)-process is stationary and ergodic (for finite q)!
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3. MA(∞)-process

If q →∞: the complete history of the ε’s matters! (often in econometrics)

Yt = µ + ψ0εt + ψ1εt−1 + ψ2εt−2 + . . .

= µ +
∞∑

j=0

ψjεt−j

Is the MA(∞)-process also stationary and ergodic?

If
∞∑

j=0

|ψj| < ∞ (the coefficients are absolutely summable), then the

MA(∞)-process is stationary and ergodic!
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Why do we need the condition
∞∑

j=0

|ψj| < ∞?

Because then:
E(Yt) = µ + ψ0E(εt) + ψ1E(εt−1) + . . .

= µ + (ψ0 + ψ1 + . . .)︸ ︷︷ ︸
finite

E(εt)︸ ︷︷ ︸
0

= µ

and γ0 = Var(Yt) = . . . = (ψ2
0 + ψ2

1 + . . .)σ2.

As
∞∑

j=0

|ψj| < ∞ implies that
∞∑

j=0

ψj
2 < ∞ (square summability),

[proof see Hamilton p.69-70],

γ0 converges to a finite number if
∞∑

j=0

|ψj| < ∞.
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Similarly,

γj = Cov(Yt, Yt−j) = . . . = (ψjψ0 + ψj+1ψ1 + . . .)σ2

converges also to a finite number if
∞∑

j=0

|ψj| < ∞.

[proof see Hamilton p.70]

Hence, the MA(∞)-process is stationary if
∞∑

j=0

|ψj| < ∞.

And as
∞∑

j=0

|ψj| < ∞ also implies that
∞∑

j=0

|γj| < ∞,

the MA(∞)-process is also ergodic if
∞∑

j=0

|ψj| < ∞.
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B. Autoregressive Processes

1. AR(1)-process

2. AR(2)-process

3. AR(p)-process

4. Invertibility of AR processes
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1. AR(1)-process

Yt = c + φYt−1 + εt (15)

with {εt}: Gaussian White Noise.

Remember: A first-order linear difference equation is given by

Yt = Yt−1 + wt.

For the AR(1)-process: wt = c + εt.

As εt is a stochastic process, the AR(1)-process is a first-order stochastic
linear difference equation.
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As we already showed, Yt can be written as:

Yt = φt+1Y−1 + φtwo + . . . + φ2wt−2 + φwt−1 + wt

with the dynamic multiplier φj.

Hence, the effects of the past innovations ε only die out for |φ| < 1,
and under this condition the difference equation is stable!

⇒ The AR(1)-process is only stationary and ergodic if |φ| < 1!
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The AR(1)-process can be written as:

Yt = (c + εt) + φ(c + εt−1) + φ2(c + εt−2) + φ3(c + εt−3) + . . .

= c (1 + φ + φ2 + φ3 + . . .)︸ ︷︷ ︸ + εt + φεt−1 + φ2εt−2 + . . .︸ ︷︷ ︸
1

1− φ
if |φ| < 1 MA(∞)− process

Yt = µ + εt + φεt−1 + φ2εt−2 + . . .

with E(Yt) = µ =
c

1− φ
.
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Checking stationarity and ergodicity for this MA(∞)-process:

∞∑

j=0

|ψj| =
∞∑

j=0

|φj| = 1
1− |φ| < ∞ if |φ| < 1

⇒ stationary and ergodic!

The variance is given by:

γ0 = E[(Yt − µ)2] = E[(εt + φεt−1 + φ2εt−2 + . . .)2]

= (1 + φ2 + φ4 + φ6 + . . .)σ2

=
1

1− φ2
σ2 (if |φ| < 1)
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Similarly, we get the autocovariances for |φ| < 1:

γj = E[(Yt − µ)(Yt−j − µ)]

= E[(εt + φεt−1 + φ2εt−2 + . . .)

(εt−j + φεt−j−1 + φ2εt−j−2 + . . .)]

⇒ γ1 = (φ + φ3 + φ5 + . . .) σ2

= φ(1 + φ2 + φ4 + . . .) σ2

=
φ

1− φ2
σ2
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Autocovariances for |φ| < 1 (continued):

⇒ γ2 = (φ2 + φ4 + . . .) σ2

= φ2(1 + φ2 + φ4 + . . .) σ2

=
φ2

1− φ2
σ2

...

⇒ γj = φj(1 + φ2 + φ4 + . . .) σ2 =
φj

1− φ2
σ2

and the autocorrelations:
ρj =

γj

γ0
= φj

⇒ If |φ| < 1, ρj decays for j = 1, 2, . . ., but there is no abrupt stop as for
a MA(q)-process!
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Alternatively, the moments of the AR(1)-process can be calculated by
”brute force”, that is under the assumption that the AR(1)-process
is covariance-stationary:

Yt = c + φYt−1 + εt

E(Yt) = c + φE(Yt−1) + E(εt).

As E(Yt) = E(Yt−1) = µ for a covariance-stationary AR(1)-process:

µ = c + φµ + 0

⇒ µ =
c

1− φ
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Substituting c = µ(1− φ) into (15), we get:

Yt = µ(1− φ) + φYt−1 + εt

Yt − µ = φ(Yt−1 − µ) + εt

Therefore, the variance is:

γ0 = E[(Yt − µ)2]

= E[(φ(Yt−1 − µ) + εt)2]

= φ2E[(Yt−1 − µ)2] + 2φE[(Yt−1 − µ)εt] + E[ε2
t ]

= φ2 · γ0 + 0 + σ2

⇒ γ0 =
1

1− φ2
σ2

γj : → See Hamilton p.53
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Note: Using the Lag operator L, the AR(1)-process can be written
as:

Yt = φLYt + εt (with c = 0)

(1− φL)Yt = εt

Yt = (1− φL)−1εt

= (1 + φL + φ2L2 + . . .)εt

= εt + φεt−1 + φ2εt−2 + . . .

which is a MA(∞)-process and therefore called the MA representation of
the AR(1) process.
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2. AR(2)-process

Yt = c + φ1Yt−1 + φ2Yt−2 + εt (16)

which is a second-order stochastic linear difference equation with wt = c+εt

and {εt} Gaussian White Noise. This stochastic process can also be written
using the lag operator L as:

(1− φ1L− φ2L
2)Yt = c + εt

or in the factorized form:

(1− λ1L)(1− λ2L)Yt = c + εt.
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As we saw in II.1, this difference equation is only stable if the eigenvalues

λ1 and λ2 of the matrix F =
[

φ1 φ2

1 0

]
, which are the solutions λ1 and

λ2 of the characteristic polynomial

λ2 − φ1λ− φ2 = 0,

lie inside the unit circle (are less than 1 in modulus for complex numbers).
As we also showed, you can alternatively check, if the solutions z1 and z2

of the lag polynomial

1− φ1z − φ2z
2 = 0

lie outside the unit circle (are greater than 1 in modulus).
As the AR(2)-process is a second-order stochastic linear difference equa-
tion, those same conditions must be fulfilled for the AR(2)-process to be
stationary!
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Then, there also exists an expression for (1 − φ1L − φ2L
2)−1 so that

the AR(2)-process can also be written as a MA(∞)-process:

Yt = (1− φ1L− φ2L
2)−1c + (1− φ1L− φ2L

2)−1εt

where

(1− φ1L− φ2L
2
)
−1

= (1− λ2L)
−1

(1− λ1L)
−1

= (1 + λ2L + λ
2
2L

2
+ . . .)(1 + λ1L + λ

2
1L

2
+ . . .)

= 1 + ψ1L + ψ2L
2
+ . . .

= ψ(L)

with ψ1 = λ1 + λ2

ψ2 = λ
2
1 + λ

2
2 + λ1 · λ2

...
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Hence, the MA(∞)-representation of the AR(2)-process is given by:

Yt =
c

1− φ1 − φ2
+ εt + ψ1εt−1 + ψ2εt−2 + . . .

with
E(Yt) = µ =

c

1− φ1 − φ2

and
ψj = c1λ

j
1 + c2λ

j
2

where c1 + c2 = 1 (for a proof see Hamilton p.12).

Therefore, the MA representation of the AR(2)-process can be
written shortly as:

Yt = µ + ψ(L)εt.
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Substituting c = µ(1− φ1 − φ2) in (16), we get:

Yt = µ(1− φ1 − φ2) + φ1Yt−1 + φ2Yt−2 + εt

(Yt − µ) = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + εt

Multiplying by (Yt−j − µ) and taking expectations results in:

E[(Yt − µ)(Yt−j − µ)] = φ1E[(Yt−1 − µ)(Yt−j − µ)]

+ φ2E[(Yt−2 − µ)(Yt−j − µ)]

+ E[εt(Yt−j − µ)]

⇒ γj = φ1γj−1 + φ2γj−2 for j = 1, 2, ... (17)

Thus, the autocovariances follow the same second-order difference equation
as the process for Yt.
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By dividing (17) through γ0 we get the autocorrelations as:

ρj = φ1ρj−1 + φ2ρj−2 for j = 1, 2, ...

As ρ0 = 1 and ρ−1 = ρ1 the autocorrelation for j = 1 is given by:

ρ1 = φ1 + φ2ρ1

⇒ ρ1 =
φ1

1− φ2
.
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For j = 2:

ρ2 = φ1ρ1 + φ2

=
φ2

1

1− φ2
+ φ2

and so on.

Similarly (⇒ See Hamilton p.57-58), it can be shown that:

γ0 =
(1− φ2)σ2

(1− φ2)[(1− φ2)2 − φ2
1]

.
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3. AR(p)-process

Yt = c + φ1Yt−1 + φ2Yt−2 + . . . + φpYt−p + εt (18)

which is a pth-order stochastic linear difference equation with wt = c + εt

and {εt} Gaussian White Noise.

This stochastic process can also be written using the lag operator L as:

(1− φ1L− φ2L
2 − . . .− φpL

p)Yt = c + εt.
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As we have already shown, the difference equation is only stable if
the eigenvalues λ1, λ2, . . . , λp of the matrix F ,

F =




φ1 φ2 · · · φp−1 φp

1 0 · · · 0 0
0 1 · · · 0 0
... ... . . . ... ...
0 0 · · · 1 0




which are the solutions λ1, λ2, . . . , λp of the characteristic polynomial

λp − φ1λ
p−1 − φ2λ

p−2 − . . .− φp−1λ− φp = 0,

lie inside the unit circle (are less than 1 in modulus for complex numbers).
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As we have also shown, you can alternatively check, if the solutions
z1, z2, . . . , zp of the lag polynomial

1− φ1z − φ2z
2 − . . .− φpz

p = 0

lie outside the unit circle (are greater than 1 in modulus).

As the AR(p)-process is a pth-order stochastic linear difference equati-
on, those same conditions must be fulfilled for the AR(p)-process to be
stationary!
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Then, there exists an expression for (1−φ1L−φ2L
2− . . .−φpL

p)−1 so
that the AR(p)-process can also be expressed as a MA(∞)-process:

Yt = (1−φ1L−φ2L
2− . . .−φpL

p)−1c+(1−φ1L−φ2L
2− . . .−φpL

p)−1εt

where

(1− φ1L− φ2L
2 − . . .− φpL

p)−1

= (1− λpL)−1 · · · (1− λ1L)−1

= (1 + λpL + λ2
pL

2 + . . .) · · · (1 + λ1L + λ2
1L

2 + . . .)

= 1 + ψ1L + ψ2L
2 + . . .

= ψ(L).
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It can also be shown that

ψj = c1λ
j
1 + c2λ

j
2 + . . . + cpλ

j
p

with
p∑

i=1

ci = 1 (for a proof see Hamilton p.12).

Hence, the MA(∞)-representation of the AR(p)-process is given by:

Yt =
c

1− φ1 − . . .− φp
+ εt + ψ1εt−1 + ψ2εt−2 + . . .

with
E(Yt) = µ =

c

1− φ1 − . . .− φp
.
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Therefore, the MA representation of the AR(p)-process can also be
written shortly as:

Yt = µ + ψ(L)εt.

As for a stationary AR(p)-process

∞∑

j=0

|ψj| < ∞,

the process is also ergodic.
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Substituting c = µ(1− φ1 − . . .− φp) in (18), we get:

Yt = µ(1− φ1 − . . .− φp) + φ1Yt−1 + . . . + φpYt−p + εt

(Yt − µ) = φ1(Yt−1 − µ) + . . . + φp(Yt−p − µ) + εt

Multiplying by (Yt−j − µ) and taking expectations results in:

E[(Yt − µ)(Yt−j − µ)] = φ1E[(Yt−1 − µ)(Yt−j − µ)] + . . .

+ φpE[(Yt−p − µ)(Yt−j − µ)]

+ E[εt(Yt−j − µ)]

⇒ γj = φ1γj−1 + φ2γj−2 + . . . + φpγj−p for j = 1, 2, ... (19)

Again, the autocovariances follow the same pth-order difference equation as
the process for Yt.
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By dividing (19) through γ0 we get the autocorrelations as:

ρj = φ1ρj−1 + . . . + φpρj−p for j = 1, 2, ...

Those equations are called the Yule-Walker equations and can be solved
recursively as we did in the case of the AR(2)-process.
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4. Invertibility of AR processes

As all stationary AR(p)-processes have a MA(∞) representation, it can
also be shown that a MA(q) process has an AR(∞) representation if the
so-called invertibility conditions are fulfilled. However, those invertibility
conditions resemble the stationarity conditions of the AR-process!
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Advanced Time Series Analysis

C. ARMA Processes

Combining an MA(q) and an AR(p) part, we obtain the general ARMA(p, q)
model:

Yt = c + φ1Yt−1 + ... + φpYt−p︸ ︷︷ ︸
AR-part

+ θ1εt−1 + ... + θpεt−p︸ ︷︷ ︸
MA-part

+εt

where {εt} is Gaussian White Noise.

As the MA(q) part is always a stationary process, the AR(p) part, that
is to say the parameters φ1, ..., φp, determine if the ARMA(p, q) process is
stationary.
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Advanced Time Series Analysis

Using the lag operator L, the ARMA(p, q)-process can be written as:
(1− φ1L− ...− φpL

p)Yt = ct + (1 + θ1L + ... + θqL
q)εt

If the AR part is stationary, there exists an expression for (1 − φ1L −
... − φpL

p)−1, so that the ARMA(p, q)-process has the following MA(∞)
representation:

Yt = µ + (1− φ1L− ...− φpL
p)−1(1 + θ1L + ... + θqL

q)εt

= µ +
(1 + θ1L + ... + θqL

q)
(1− φ1L− ...− φpLp)

εt

= µ + (1 + ψ1L + ψ2L
2 + ...)εt

= µ + ψ(L)εt

with µ = c
1−φ1−...−φp

as for the AR(p)-process.
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Note: The stationarity of the AR(p) part also guarantees that:

∞∑
j=0

|ψj| < ∞

⇒ the process is ergodic!
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As we did for the AR(p)-process, we can write the ARMA(p, q)-
process in terms of deviations from the mean µ in order to derive the
autocovariances:

(Yt − µ) = φ1(Yt−1 − µ) + ... + φp(Yt−p − µ)

+θ1εt−1 + ... + θqεt−q + εt

...

γj = φ1γj−1 + φ2γj−2 + ... + φpγj−p for j > q!

For j ≤ q, the MA part also effects the autocovariances. Hence, the
autocovariances as well as the autocorrelations of the ARMA(p, q)-process
have more complicated characteristics than those of an AR(p)- or MA(q)-
process!
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III.2 Parameter Estimation of ARMA Processes

[Hamilton (1994), Chapter 3, 5]
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Aim: Parameter Estimation of ARMA Processes

Estimation of the model parameters θ =
(
c, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq, σ

2
)′

of an ARMA(p, q) process

Yt = c + φ1Yt−1 + φ2Yt−2 + φ3Yt−3 + . . . + θ1εt−1 + θ2εt−2 +

. . . + θqεt−q + εt

{εt}t∈T White Noise with E(εt) = 0 and E(ε2
t ) = σ2 from a time series

that contains T observations (y1, y2, . . . , yT )

Maximum likelihood (ML) estimation

⇒ Distributional assumption for εt. Typically: εt ∼ i.i.d.N
(
0, σ2

)
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Parameter Estimation of ARMA Processes

Computation of the likelihood function, i.e. the ”likelihood” to observe a

time series (y1, y2, . . . , yT ) given the assumption of a specific parametric

stochastic process.

Parameter vector θ =
(
c, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq, σ

2
)′

which maxi-

mizes the likelihood function: Maximum likelihood estimator.
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Maximum Likelihood Estimation of a stationary AR(1) , i.e.

ARMA(1, 0)-Process

Yt = c + φyt−1 + εt

{εt}t∈T White Noise with E(εt) = 0 and E(ε2
t ) = σ2. Additional Assumpti-

on: εt ∼ i.i.d.N
(
0, σ2

)
.

We search for estimators of the unknown parameters θ = (c, φ, σ2)′.

E(Yt) = E(Y1) = c
1−φ

E(Yt) = E(Y1 − µ)2 = σ2

1−φ2

where εt is normally distributed ⇒ y1 ∼ N
(

c
1−φ, σ2

1−φ2

)
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Likelihood contribution y1:

fY1(y1; θ) = fY1(y1; c, φ, σ2) = 1√
2π
√

σ2/(1−φ2)
exp

[
−{y1−[c/(1−φ)]}2

2σ2/(1−φ2)

]

Consider y1: Density of (y2|Y1 = y1) N
(
(c + φy1), σ2

)
i.e.

fY2|Y1
(y2|y1; θ) = 1√

2πσ2
exp

[
−{y2−c−φy1)}2

2σ2

]

Joint density function of the first and second observation

fY2,Y1(y2, y1; θ) = fY2|Y1
(y2|y1; θ) · fY1(y1; θ)
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Analogous:

fY3|Y2,Y1
(y3|y2, y1; θ) = fY3|Y2

(y3|y2; θ)

=
1√

2πσ2
exp

[
−{y3 − c− φy2}2

2σ2

]

fY3,Y2,Y1
(y3, y2, y1; θ) = fY3|Y2,Y1

(y3|y2, y1; θ) · fY2,Y1
(y2, y1; θ)

=
1√

2πσ2
exp

[
−{y3 − c− φy2}2

2σ2

]
· 1√

2πσ2
exp

[
−{y2 − c− φy1}2

2σ2

]
·

1
√

2π
√

σ2/(1− φ2)

exp

[
−{y1 − [c/(1− φ)]}2

2σ2/(1− φ2)

]

Generally:

fYt|Yt−1,Yt−2,...,Y1
( yt |yt−1, yt−2, . . . , y1; θ) = fYt|Yt−1

(yt|yt−1; θ)

=
1√

2πσ2
exp

[
−{yt − c− φyt−1}2

2σ2

]
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Joint Density of the sample, i.e. likelihood function:

fYT ,YT−1,...,Y1
(yT , yT−1, yT−2, . . . , y1; θ) = fYT |YT−1

(yt|yt−1; θ)

· fYT−1,YT−2,...,Y1
(yT−1, yT−2, . . . , y1; θ)

= f (y1; θ) ·
T∏

t=2

fYt|Yt−1
(yt|yt−1; θ)

Log likelihood function:

log L = − 1

2
log(2π)− 1

2
log

(
σ2

1− φ2

)
−

[
−{y1 − [c/(1− φ)]}2

2σ2/(1− φ2)

]
−

−
[

T − 1

2

]
log(2π)−

[
T − 1

2

]
log(σ

2
)−

T∑
t=2

[
(yt − c− φyt−1)

2

2σ2

]
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The system is maximized by solving for nulls of the first derivatives

subject to θ = (c, φ, σ2)′

System of equations is non-linear in the parameters θ = (c, φ, σ2)′

⇒ numerical optimization

Summary: Hamilton (1994), p. 133-142.
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Maximum Likelihood Estimation of a stationary AR(p) , i.e.

ARMA(p, 0)-process

Aim:

Estimating θ = (c, φ1, φ2, . . . , φpσ
2)′ of an ARMA(p, 0)-process is defined

with

[
1− φ1L− φ2L

2 − φ3L
3 − . . .− φpL

p
]
Yt = c + εt

{εt}t∈T Gaussian White Noise with E(εt) = 0 and E(ε2
t ) = σ2.

Additional Assumption: εt ∼ i.i.d.N
(
0, σ2

)
.
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Maximum Likelihood Estimation of a stationary AR(p) , i.e.

ARMA(p, 0)-process (continued)

y(p) = (y1, y2, . . . , yp)′: (p× 1) vector of the first p observations of the time

series

µ(p): (p× 1) vector of expectations of the first p observations E
(
y(p)

)
.

vector consists of p elements: µ = c
1−φ1−φ2−...−φp
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Maximum Likelihood Estimation of a stationary AR(p) , i.e.

ARMA(p, 0)-process (continued)

σ2V(p): (p× p) variance covariance matrix of y(p):



E(Y1 − µ)2 E(Y1 − µ)(Y2 − µ) . . . E(Y1 − µ)(Yp − µ)

E(Y1 − µ)(Y2 − µ) E(Y2 − µ)2 . . . ...

... . . . ...

E(Y1 − µ)(Yp − µ) . . . . . . E(Yp − µ)2
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Maximum Likelihood Estimation of a stationary AR(p) , i.e.

ARMA(p, 0)-process (continued)

y(p) ∼ N
(
µ(p), σ2V(p)

)
. Joint density function of the first p observations

(i. e. likelihood contribution):

fY1,Y2,...,Yp (y1, y2, . . . , yp; θ) = (2π)
−p/2

∣∣∣σ−2
(V(p)

)
−1

∣∣∣
1/2

·

exp

[
− 1

2σ2
(y

(p) − µ
(p)

)
′
(V(p)

)
−1

(y
(p) − µ

(p)
)

]
=

= (2π)
−p/2

(σ
−2

)
−p/2

∣∣∣(V(p)
)
−1

∣∣∣
1/2

·

exp

[
− 1

2σ2
(y

(p) − µ
(p)

)
′
(V(p)

)
−1

(y
(p) − µ

(p)
)

]
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Maximum Likelihood Estimation of a stationary AR(p) , i.e.

ARMA(p, 0)-process (continued)

Using |αA| = αn|A|.

Consider p preceding observations, then the tth observation is normally

distributed with expectation c + φ1yt−1 + φ2yt−2 + φ3yt−3 + . . . + φpyt−p

and variance σ2.
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When we condition only the last p observations are of interest for t.

Therefore for t > p

fYt|Yt−1,Yt−2,...,Y1
(yt|yt−1, yt−2, . . . , y1; θ) =

= fYt|Yt−1,Yt−2,...,Yt−p
(yt|yt−1, yt−2, . . . , yt−p; θ) =

=
1√

2πσ2
exp

[
−{yt − c− φ1yt−1 − φ2yt−2 − φ3yt−3 − . . .− φpyt−p}2

2σ2

]

The joint density (= likelihood) function is:

fYt,Yt−1,...,Y1
(yt, yt−1, yt−2, . . . , y1; θ) =

= fYp|Yp−1,Yp−2...,Y1
(yp−1, yp−2, . . . , y1; θ) ·

T∏
t=p+1

fYt|Yt−1,Yt−2,...,Yt−p
(yt|yt−1, yt−2, . . . , yt−p; θ)
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Log likelihood:

log L = − p

2
log(2π)− p

2
log

(
σ
2
)

+
1

2

(
V(p)

)−1
− 1

2σ2

(
y
(p) − µ

(p)
)′(

V(p)
)−1 (

y
(p) − µ

(p)
)

− T − p

2
· log(2π)− T − p

2
· log(σ

2
)−

T∑

t=p+1


(yt − c− φ1yt−1 − φ2yt−2 − φ3yt−3 − . . .− φpy1−p)2

2σ2




− T

2
· log(2π)− T

2
· log(σ

2
) + log(σ

2
)
1

2
log(V(p)

)
−1 − 1

2σ2

(
y
(p) − µ

(p)
)′(

V(p)
)−1 (

y
(p) − µ

(p)
)

−
T∑

t=p+1


(yt − c− φ1yt−1 − φ2yt−2 − φ3yt−3 − . . .− φpy1−p)2

2σ2




Setting the first derivatives equal to zero: Resulting system of equations is

non-linear in the parameters.

⇒ Numerical optimization.
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Avoiding numerical optimization techniques: Conditional likelihood

function

fYt,Yt−1,...,Yp+1|Yp,...,Y1
(yt, yt−1, yt−2, . . . , yp+1|yp, . . . , y1; θ) =

= −T − p

2
· log(2π)− T − p

2
· log(σ

2
)−

−
T∑

t=p+1

[
(yt − c− φ1yt−1 − φ2yt−2 − φ3yt−3 − . . .− φpy1−p)

2

2σ2

]

Identical asymptotic distributions for large samples. Conditional log like-

lihood.
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Maximization yields the same result as minimization

∑T
t=p+1

[
(yt − c− φ1yt−1 − φ2yt−2 − φ3yt−3 − . . .− φpy1−p)2

]

⇒ Conditional ML-estimation of an AR(p)-process: Result is identical to

Least Squares Estimation. Asymptotic properties of (exact) ML-estimation

and OLS-estimation are equivalent.
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Conditional Maximum Likelihood estimation of an MA(1), i.e.

ARMA(0, 1)-process

Aim: Estimation of the parameters of an MA(q) process θ =
(
µ, θ1, θ2, . . . , θq, σ

2
)′

Conditional Maximum Likelihood estimation does

not result in a simplified estimating equation for the parameters MA(1):

Yt = µ + εt + θεt−1

{εt}t∈T Gaussian White Noise with E(εt) = 0 and E(ε2
t ) = σ2.

Additional assumption: εt ∼ i.i.d.N
(
0, σ2

)
.

Conditioning is more difficult compared to AR: ε is not directly observable
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If εt−1 were known:

Yt|εt−1 ∼ N
(
µ + θεt−1, σ

2
)

fYt|εt−1
(yt|εt−1; θ) = 1√

2πσ2
exp

[
−{yt−µ−θεt−1}2

2σ2

]

If additionally ε0 = 0 were known ⇒

Y1|ε0 ∼ N
(
µ, σ2

)

and: ε1 = y1 − µ

⇒ fY2|Y1,ε0=0(yt|y1, ε0 = 0; θ) = 1√
2πσ2

exp
[
−{y2−µ−θε1}2

2σ2

]
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ε2 = y2 − µ − θε1 is also to be derived. ⇒ If ε0 = 0, then the sequence

{ε1, ε2, . . . , εT} can be iteratively computed from εt = yt− µ− θεt−1 for a

given θ = (µ, θ, σ2)′.

Conditional density of the tth observation, conditioned on the past obser-

vations and ε0 = 0

fYt|Yt−1,Yt−2,...,Y1,ε0=0 (yt|yt−1, yt−2, . . . , yt−q, ε0 = 0; θ) =

= fYt|εt−1
(yt|εt−1; θ) =

=
1√

2πσ2
exp

[
−{εt}2

2σ2

]

log L = −T
2 log(2π)− T

2 log(σ2)−∑T
t=1

[
ε2
t

2σ2

]
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For each choice of the parameter vector θ = (µ, θ, σ2)′

⇒ Recursion from εt = yt − µ− θεt−1

⇒ Sequence of {ε1, ε2, . . . , εT}.

Analytical solution for nulls of the conditional log likelihood of an MA(1)

process is not available.
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Alternative method of computation instead of recursion

εt = yt − µ− θεt−1

εt = (yt − µ)− θ(yt−1 − µ) + θ2(yt−2 − µ)− . . . +

+(−1)t−1θt−1(y1 − µ) + (−1)tθtε0

|θ| smaller than 1: effects of conditioning get weaker over time.

⇒ Conditional log likelihood is a good approximation of the exact

likelihood function

|θ| > 1: cumulation of the effects of conditioning. If |θ| > 1: results can

not be used ⇒ Exact likelihood has to be known.

MA(q) estimation is analogous to conditional ML estimation.
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Conditional Maximum Likelihood estimation of an MA(q), i.e.

ARMA(0, q)-process

Yt = µ + εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q

{εt}t∈T White Noise with E(εt) = 0 and E(ε2
t ) = σ2.

Additional assumption: εt ∼ i.i.d.N
(
0, σ2

)
.

Conditioning on the first q values of the innovation ε0, ε−1, . . . , ε−q+1 = 0 .

Analogous to MA(1): Recursive construction {ε1, ε2, . . . , εT}:

εt = yt − µ− θ1εt−1 − θ2εt−2 − . . .− θqεt−q

for t = 1, 2, . . . , T
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Conditional Maximum Likelihood estimation of an MA(q), i.e.

ARMA(0, q)-process (continued)

log L = −T
2 log(2π)− T

2 log(σ2)−∑T
t=1

[
ε2
t

2σ2

]

Effects of conditioning: Stability of the difference equation εt = yt − µ −
θ1εt−1 − θ2εt−2 − . . .− θqεt−q ?

Is the solution to
(
1 + θ1z + θ2z

2 + . . . + θqz
q
)

= 0 within the unit circle?

(asked differently: Are the eigenvalues of F outside?)

⇒ Identification of the exact likelihood function.
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Exact Maximum Likelihood estimation of an MA(1), i.e. ARMA(0, 1)-

process

1. Kalman-Filter-Approach [see Hamilton (1994), p. 372 ff.]

2. Triangular factorization of the variance covariance matrix of the MA(1)

process

(T × 1) vector of realizations of the stochastic process:

y ≡ (y1, y2, . . . , yt)′

(T × 1) vector of expectations µ ≡ (µ, µ, . . . , µ)′ and

(T × T ) variance covariance-matrix of an MA(1): Yt = µ + εt + θεt−1
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Exact Maximum Likelihood estimation of an MA(1), i.e. ARMA(0, 1)-

process (continued)

Ω = σ2 ·




(1 + θ2) θ 0 . . . 0

θ (1 + θ2) θ 0
...

0 θ . . . 0
... 0

. . . θ

0 0 . . . θ (1 + θ2)




Implementing Gaussian White Noise innovations ⇒ joint density (=like-

lihood): T -variate normal distribution

(2π)−T/2|Ω|−1/2 exp
[
−1

2
(y − µ)′(Ω)−1(y − µ)

]
(20)

Maximization of equation (20)? If there are many observations in the time

series: Numerical instabilities when inverting Ω.
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Numerical instabilities when inverting Ω

Solution: Triangular factorization

Ω = ADA′

A: (T ×T ) matrix, only on and below the main diagonal there are elements

unequal to zero. There are only ones on the main diagonal.

D: Diagonal matrix, i.e. only the elements on the main diagonal of the

(T × T ) matrix are unequal to zero.

Ω = ADA′
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Writing the matrices Ω,A, and D out

Ω = σ2 ·




(1 + θ2) θ 0 . . . 0

θ (1 + θ2) θ 0 ...

0 θ . . . 0

... 0 . . . θ

0 0 . . . θ (1 + θ2)




A = ·




1 0 0 . . . 0

θ
(1+θ2)

1 0 0 ...

0 θ(1+θ2)

1+θ2+θ4 . . . 0

... 0 . . . 0

0 0 . . . θ(1+θ2+θ4+...+θ2(T−2))

1+θ2+θ4+...+θ2(T−1) 1
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Writing the matrices Ω,A, and D out (continued)

D = σ2 ·




1 + θ2 0 0 . . . 0

0 1+θ2+θ4

1+θ2 0 0 ...

0 0 1+θ2+θ4+θ6

1+θ2+θ4 . . . 0

... 0 . . . 0

0 0 . . . 0 +θ2+θ4+...+θ2T

1+θ2+θ4+...+θ2(T−1)




Derivation: see Hamilton (1994)

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 137
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Alternative notation of the MA(1) likelihood:

Construction of an auxiliary time series: ỹ = A−1(y − µ)

A has on its main diagonal only ones ⇒ |A| = 1

⇒ |Ω| = |A| |D| |A′| = |D|
⇒ Likelihood function of the MA(1):

(2π)−T/2|Ω|−1/2 exp
[
−1

2
(y − µ)′(Ω)−1(y − µ)

]

= (2π)−T/2|D|−1/2 exp
[
−1

2
ỹ′D−1ỹ

]

where Ω−1 = A−1D−1A−1
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Numerical instability when computing the auxiliary time series (due

to inversion of the (T × T ) matrix)?

ỹ = A−1(y − µ) ⇒ Aỹ = (y − µ)

System of equations with T equations.

First line: ỹ1 = y1 − µ

tth line: ỹt = yt − µ− 1+θ2+θ4+...+θ2(t−2)

1+θ2+θ4+...+θ2(t−1) ỹt−1

⇒ Iterative computation of ỹt , starting with ỹ1 = y1 − µ
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Numerical instability when computing the inverse of D ((T × T )

matrix)?

D is a diagonal matrix ⇒ |D| is the product of the terms on the main

diagonal |D| = ∏T
t=1 dtt

Inverse of D: Diagonal matrix with reciprocal values on the main diagonal

of D ⇒ ỹ′D−1ỹ =
∑T

t=1
ỹ2

t
dtt

Log likelihood function of an MA(1) process

log
(
(2π)−T/2|Ω−1/2| exp

[−1
2(y − µ)′(Ω)−1(y − µ)

])

log L = T
2 log(2π)− 1

2

(∑T
t=1 log dtt

)
− 1

2

(∑T
t=1

ỹ2
t

dtt

)

Simply evaluate it recursively!
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Conditional Maximum Likelihood Estimation of an ARMA(p, q)-

process

We search for: Estimator for the parameter vector of an ARMA(p, q) process

Yt = c + φ1Yt−1 + φ2Yt−2 + . . . +

+ φpYt−p + θ1εt−1 + θ2εt−2 + . . . + θqεt−q + εt

{εt}t∈T White Noise with E(εt) = 0 and E(ε2
t ) = σ2.

Additional assumption: εt ∼ i.i.d.N
(
0, σ2

)
.

Likelihood is conditioned on p initial values y(0) = {y0, y−1, . . . , y−p+1} and

q initial innovations ε(0) = {ε0, ε−1, . . . , ε−q+1}.
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Conditional Maximum Likelihood Estimation of an ARMA(p, q)-

process (continued)

For given y(0), ε(0), θ
(
c, φ1, φ2, φ3, . . . , φp, θ1, θ2, . . . , θq, σ

2
)′ ⇒ recursi-

ve computation of {ε1, ε2, . . . , εT} from {y1, y2, . . . , yT}

εt = yt − c− φ1yt−1 − φ2yt−2 − . . .−

− φpyt−p − θ1εt−1 − θ2εt−2 − . . .− θqεt−q

log L = log fYT ,YT−1,YT−2,...,Y1|ε(0),y(0)

(
yT , yT−1, yT−2, . . . , yT−p|ε(0), y(0);θ

)

= −T

2
log(2π)− T

2
log(σ2)−

T∑
t=1

[
ε2

t

2σ2

]
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Conditional Maximum Likelihood Estimation of an ARMA(p, q)-

process (continued)

log L = log fYT ,YT−1,YT−2,...,Y1|ε(0),y(0)

(
yT , yT−1, yT−2, . . . , yT−p|ε(0), y(0);θ

)

= −T

2
log(2π)− T

2
log(σ2)−

T∑
t=1

[
ε2

t

2σ2

]

compare MA(1)

Initial values of the vectors y(0) and ε(0) e.g. on expectations:

εs = 0 for s = 0,−1, ...,−q + 1 and ys = c

(1−φ1−φ2−...−φp) for s =

0,−1, ..,−p + 1 or observed values y1, y2, . . . , yp as starting values.
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Examination for MA(q) part: Stability of the difference equation

εt = yt − c− φ1yt−1 − φ2yt−2 − . . .−

− φpyt−p − θ1εt−1 − θ2εt−2 − . . .− θqεt−q

Solutions of
(
1 + θ1z + θ2z

2 + . . . + θqz
q
)

= 0

outside the unit circle? (possibly eigenvalues of F inside the unit circle?)

If we do not have an exact likelihood function, e.g. Kalman-Filter approach

(Hamilton (1994, p.372 ff.)
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Wold’s decomposition theorem (WDT)

Consider: stationary AR(p) [and ARMA(p, q)] process have MA(∞) repre-

sentation: Yt = µ +
∑∞

j=0 ψjεt−j with {εt}t∈T White Noise process and∑∞
j=0 ψ2

j < ∞
Wold’s decomposition theorem: All covariance stationary processes with

expectation 0 can be written in the form: Yt =
∑∞

j=0 ψjεt−j + κt

where ψ0 = 1 and
∑∞

j=0 ψ2
j < ∞ and κt uncorrelated with εt−j. κt can be

expressed by a linear function of preceding values of Yt: linear deterministic

component of Yt

∑∞
j=0 ψjεt−j: linear stochastic component of Yt. κt = 0 ⇒ Yt is a purely

stochastic process.
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Implications of Wold’s decomposition theorem for modeling

Additional assumptions regarding the MA parameter (ψ1, ψ2, . . .) are neces-

sary to make use of the WDT.

If not there were infinitely many possible parameters.

ARMA(p, q) pose a structure on ψ (L): Infinite lag polynomial as function

of the ARMA parameter θ =
(
c, φ1, φ2, , . . . , φp, θ1, θ2, . . . , θq, σ

2
)′

∑∞
j=0 ψjL

j = ψ (L) = θ(L)
φ(L) = 1+θ1L+θ2L2+...+θqLq

1−φ1L−φ2L2−...−φpLp

Estimation of θ(L) and φ(L) from the sample.
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Box-Jenkins modeling philosophy

1. Transform the data, until the assumption of covariance stationarity is

met (building differences, logs)

2. First try to model the transformed time series with small values p and q

(stage of identification). Compare the empirical ACF with the theoretical

ACF of the ARMA(p, q) process.

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 147
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Box-Jenkins modeling philosophy (continued)

3. Estimate the parameter θ(L) and φ(L) (stage of estimation)

4. Specification tests (possibly iteration for identification)

Testing for uncorrelated estimated residuals. (Ljung-Box statistic)

Under the null hypothesis, yt ∼ N
(
µ, σ2

)
the test statistic Q(k) =

T
T+2

∑k
i=1(T − i)−1r2

i is asymptotically χ2(k).

T : number of observations,

r2
i : squared autocorrelation of order i,

k: number of accounted autocorrelations
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Akaike/Schwartz information criterion

AICA(p, q) = ln(σ̂2) + 2(p + q)T−1

AICB(p, q) = −2 ln(L) + 2(p + q)

SBCA(p, q) = ln(σ̂2) + (p + q)T−1 ln T

SBCB(p, q) = −2 ln(L) + (p + q) ln T
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III.3 Stationarity Tests (Dickey Fuller Test)
[Hamilton (1994), p.502;

Hayashi (2000), Chapter 9.3/9.4]
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Advanced Time Series Analysis

The work horse to test for non-stationarity: Dickey-Fuller tests
Basics: Unit Root Processes vs. Trend Stationary Processes:

Two types of non-stationarity

yt = µ + yt−1 + ut (21)

yt = α + β · t + ut

Equation (21) is a special case of:

yt = µ + φyt−1 + ut

There are three cases possible:

|φ| < 1

|φ| > 1

|φ| = 1

yt = φyt−1 + ut = φut−1 + φ2ut−2 + φ3ut−3 + . . . + φtu0 + φt+1y−1 + ut
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Advanced Time Series Analysis

The work horse to test for non-stationarity: Dickey-Fuller tests
Basics: Unit Root Processes vs. Trend Stationary Processes:

yt = µ + φ1yt−1 + φ2yt−2 + φ3yt−3 + . . . + φpyt−p + ut

Explosive? Stationary? Permanent Effects (Unit root)?

yt = f1ut−1 + f2ut−2 + f3ut−3 + . . . + f tu0 + yt+1
−1 + ut

Compute p eigenvalues of F, where F:

F ≡




φ1 φ2 . . . φp−1 φp

1 0 . . . 0 0

0 1 . . . 0 0

0 0 . . . 1 0




∣∣∣∣
(

φ1 φ2

1 0

)
−

(
λ 0

0 λ

)∣∣∣∣ = λ2 − φ1λ− φ2 = 0

absolute value largest root = 1: unit root process for p = 2
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The work horse to test for non-stationarity: Dickey-Fuller tests
Basics: Unit Root Processes vs. Trend stationary processes:

Two types of non-stationarity

yt = yt−1 + ut or yt = µ + yt−1 + ut (22)

yt = α + β · t + ut

Equation (22) is a special case of:

yt = µ + φyt−1 + ut

There are three cases possible with µ = 0:

|φ| < 1

|φ| > 1

|φ| = 1

yt = φyt−1 + ut = φut−1 + φ2ut−2 + φ3ut−3 + . . . + φtu0 + φt+1y−1 + ut
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Realization of a White Noise process yt = ut
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Realization of a stationary process (autoregressive
process of order one)

yt = 0.8yt−1 + ut

y0 = 0
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Advanced Time Series Analysis

Realization of a random walk without drift

yt = yt−1 + ut

y0 = 0
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Realization of a trend-stationary process

yt = 0.2 · t + ut
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Realization of a random walk with drift

yt = 0.2 + yt−1 + ut

y0 = 0
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The work horse to test for non-stationarity: Dickey Fuller tests

Basic idea: Test whether a1 = 1 in yt = a1yt−1 + ut

Run a regression, back out â1, s.e.(â1)

Calculate t-statistic: τ = â1−1
s.e.(â1)

Distribution of τ under the null: non-standard. Obtained by simulations.
Refer to tables (e.g. in Hamilton)

Equivalent (and usually done):

yt − yt−1 = ∆yt = (a1 − 1)yt−1 + ut = γ · yt−1 + ut

⇒ τ = γ̂
s.e.(γ̂)
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The work horse to test for non-stationarity: Dickey-Fuller test stati-
stics

Related tests. Look at your data! Estimated models:

yt = a0 + a1yt−1 + ut yt = a0 + a1yt−1 + a2t + ut

∆yt = a0 + γ · yt−1 + ut ∆yt = a0 + γ · yt−1 + a2t + ut

Test whether a1 = 1, γ = 0 respectively.

Run regression, back out s.e.(γ̂)

Calculate t-statistic: τµ = γ̂
s.e.(γ̂) τ = γ̂

s.e.(γ̂)

both have under the null hypothesis γ = 0 non-standard distributions: look
up the correct quantile table!!
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Critical values (quantiles) for Dickey-Fuller test statistics
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IV. Univariate GARCH Models

[Hamilton (1994), Chapter 21]
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Conditional vs. unconditional distributions and moments

joint distribution fXtXt+1(xt, xt+1)

marginal distribution fXt(xt)

conditional distribution of Xt|Xt−1 ∼?

unconditional moments E(Xt), Var(Xt), . . .

conditional moments E(Xt+1|Xt, Xt−1, . . .), . . .

Unconditional moments 6= conditional moments ⇒ predictability?
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To study the time series properties of asset prices and returns we
review some fundamentals of time series analysis

Weak stationarity

E(Xt) = µ

Var(Xt) = σ2

Cov(Xt, Xt−j) = γj





unconditional mo-
ments are not time
dependent

serial dependence Cov(Xt, Xt−j) = γj 6= 0 for j 6= 0

⇒ predictability?
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Martingale Processes

E (Xt+1| It) = Xt It : information available time t

{Xt, Xt−1 . . .} ⊂ It

{Xt} A martingale w.r.t It

E (Xt+1|It) best forecast of Xt+1 in terms of

MSE = E
[
(X∗

t+1|t −Xt+1)2
]

Using E (Xt+1|It) for X∗
t+1|t yields smallest MSE

[Proof: Hamilton (1994): Time Series Analysis, page 72f.]

For a martingale: ”best” forecast of tomorrow: observed value of process
today
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Are asset prices martingales?

E (Yt+1|It) = 0 a martingale difference process

Yt = Xt −Xt−1 E (Xt+1 −Xt|It) = 0 (Xt ∈ It)

Future changes are not forecastable using past information (do not improve
MSE)

Hypothesis:
Do asset prices follow a martingale process ⇒ i.e. price changes unforeca-
stable?

Theory?

Practice?
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Marginal utility weighted prices follow martingales (in the absence of
dividends)

Et (mt+1 xt+1) = pt xt+1 = pt+1 + dt+1

pt = E
(
β

u′(ct+1)
u′(ct)

xt+1|It

)
compare to E (Xt+1|It) = Xt

Assume β ≈ 1 and no dividends dt+1 = 0

E (u′(ct+1)pt+1|It) = u′ (ct) pt u′ (ct) pt ≡ p̃t

E (p̃t+1|It) = p̃t

Marginal utility weighted prices follow a martingale process
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In a risk neutral world with no dividends and no time preferences
prices follow a martingale. Predictability in the short run?

In a risk neutral world u′(ct) constant:

E (pt+1|It) = pt

Short run, high frequency ( e.g. daily): β = 1, ct almost constant, ⇒
u′(ct) = u′(ct+1)

⇒ E (pt+1|It) = pt in short run!

no better forecast of pt+1 than pt in terms of MSE

Et

(
pt+1
pt

)
= Et (Rt+1) = 1 (coin flips) E (Rt+1 − 1) = 0︸ ︷︷ ︸

net return

In practice...
technical analysis, trend lines, resistance lines, double shoulders...
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Predictability in the short run? (1)

An ARMA model for asset returns?

Rt+1 = c+φ1 Rt++ . . . φpRt−p+1+θ1εt+θ2εt−1+θpεt−p+1+εt+1

where

E(εt) = 0, V ar(εt) = σ2, Cov(εtεt−j) = 0 j > 0

E (εt|It−1) = 0
A useful model?

E (Rt+1|It) = c + φ1Rt + φ2Rt−1 · ·+ θ1εt + θ2εt−1

{Rt, Rt−1, εt, εt−1 = ··} ⊂ It

If theory correct φ1 = φ2 . . . = θ1 = θ2 = 0
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Predictability in the short run? (2)

Some specific martingale processes

Random Walk pt = pt−1 + εt Et(εt) = 0
RW type 1 {εt} i.i.d independent, identically distributed
RW type 2 {εt} independent, but not necessarily

identically distributed
RW type 3 {εt} uncorrelated (less restrictive than independence)

Tests for random walk hypothesis of asset prices (Chapter 3 in Camp-
bell/Lo/McKinlay) Only weak evidence for short run predictability of asset
returns.
(Microstructure effects: bid/ask bounce)
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Advanced Time Series Analysis

Predictability in the long run?

From

Et

(
Ri

t+1

)− Rf
t = −Covt(mt+1,Ri

t+1)
Et(mt+1)

using mt = β
(

ct+1
ct

)−γt

and log-normal consumption growth
ct+1
ct

Et

(
Ri

t+1

)−Rf
t ≈ γtσt(∆ ln ct+1)σt(Ri

t+1)ρt(mt+1, R
i
t+1)
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Advanced Time Series Analysis

When setting up a time series model in finance we usually use log
returns (1)

It is useful to take ’log returns’ (continuously compounded returns)

Use rt+1 = ln
(

pt+1
pt

)
instead of Rt+1 = pt+1

pt
(gross return)

rt+1 ≈ pt+1 − pt

pt
=

pt+1

pt
− 1 = Rt+1 − 1 (net return)

e.g.
pt+1 = 105 pt = 100
Rt+1 = 1.05 net return = 0.05
rt = 0.049

Continuous compounding between t and t + 1
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Advanced Time Series Analysis

When setting up a time series model in finance we usually use log
returns (2)

Distributional assumption for Rt+1 = pt+1
pt

; [0,∞)

Normal distribution? Rt+1 − 1; [−1,∞)

Assume: rt = ln
(

pt+1
pt

)
∼ N(µ, σ2)

⇒ pt+1
pt

= exp(rt) ∼ lognormal defined on(0,∞)
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Advanced Time Series Analysis

When setting up a time series model in finance we usually use log
returns (3)

Multi-period returns: k > 1

gross returns:
pt+k
pt

=
pt+1

pt
· pt+2

pt+1
· pt+3

pt+2
· . . . · pt+k

pt+k−1︸ ︷︷ ︸
multiplicative

log returns: ln
(

pt+k
pt

)
= ln

(
pt+1

pt

)
+ ln

(
pt+2

pt+1

)
· · ·

︸ ︷︷ ︸
additive

= ln
(

pt+1
pt
· pt+2

pt+1
· pt+3

pt+2
· . . . · pt+k

pt+k−1

)
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Advanced Time Series Analysis

When setting up a time series model in finance we usually use log
returns (4)

(Asymptotic) distribution of sum of (normal) random variables known.

Distribution of product of random variables more difficult, especially asym-
ptotic distribution

LLNs and CLTs exist for sums of random variables
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Advanced Time Series Analysis

Stylized facts of financial return data

low serial correlation in (log) returns (in line with theory, if prices are
martingales)

significant correlation in squared returns

A simple model to account for these stylized facts

rt = c + ut

E(ut) = 0, Var(ut) = E(u2
t ) = σ2, E(utut−j) = 0 for j 6= 0

⇒ rt and ut White Noise, E(rt) = c and Var(rt) = σ2

︸ ︷︷ ︸
unconditional

Cov(rt, rt−j) = 0 ∀j 6= 0
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Advanced Time Series Analysis

The success of Engle‘s ARCH is due to the fact that the model can
take into account the fundamental time series properties of asset
prices (1)

For the AutoRegressive Conditional Heteroscedasticity (ARCH) model Engle
assumes

ut =
√

ht · εt

1. εt ∼ N(0, 1) i.i.d.

2. E(εt|It−1) = 0 exogenous identical shocks (unpredictable)

3. ht = f(u2
t−1) or ht = f(|ut−1|) or longer lags of absolute or squared

returns. ARCH(1): ht = d + a1u
2
t−1
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Advanced Time Series Analysis

The success of Engle‘s ARCH is due to the fact that the model can
take into account the fundamental time series properties of asset
prices (2)

For the ARCH(1) specification

ht = d + a1u
2
t−1

Et−1(rt) = c +
√

ht · Et(εt)

= c +
√

d + a1u2
t−1 · 0 = c

V art−1(rt) = Var(c) + (d + a1u
2
t−1)V art(εt)

= d + a1u
2
t−1

= ht (conditional variance,
√

ht conditional ”volatility”)
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Advanced Time Series Analysis

Remark:

Volatility sometimes defined as annualized (log) return standard de-
viation. With σt =

√
ht the standard deviation of daily log returns we

annualize σann. = T · σt (T number of trading days)

(ML) estimated coefficient a1 significantly different from zero (positive)!

⇒ variance of return in t + 1 predictable given time t information!
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Advanced Time Series Analysis

A plethora of conditional volatility models have been proposed

♦ asymmetric responses of return variance to positive or negative return
shock?

♦ persistence of shocks (ARCH) only one lag period or longer?

⇒ GARCH: ht = d +
∑q

i=1 αiu
2
t−i +

∑p
j=1 βjht−j

♦ Long memory, fractionally integrated GARCH

♦ shocks ε normally distributed?
fat tails, skewness (large negative shocks more likely)

♦ How to ensure non-negativity of conditional variance ht?

♦ ARCH-in-Mean rt = d + δht +
√

htεt

♦ multivariate extensions ⇒ multivariate ARCH: Conditional covariances
of asset returns (correlations) predictable.
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Advanced Time Series Analysis

A successful model: Nelson‘s E-ARCH model (1)

Nelson’s Exponential ARCH
Standard assumptions:

rt = µ + ut

ut =
√

htvt

where Et−1(vt) = 0 and Et−1(v2
t ) = 1

{vt} iid, i.e. V art−1(rt) = ht rt a White Noise process as above.

However, log of conditional variance evolves as:

lnht = ζ + π{|vt−1| − E(|vt−1|) + ℵvt−1}
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Advanced Time Series Analysis

A successful model: Nelson‘s E-ARCH model (2)

lnht = ζ + π{|vt−1| − E(|vt−1|) + ℵvt−1}

Non-negativity of ht = V art−1(rt) guaranteed.

Asymmetric effects positive and negative return shocks possible:

π > 0 → deviation of absolute iid shock |vt−1| from expectation E(|vt−1|)
increases volatility forecast (c.p.)

−1 < ℵ < 0 positive return shock vt−1 > 0 increases volatility forecast
ht+1 less than negative return shock vt−1 < 0

ℵ < −1 positive return shock vt−1 > 0 c.p. decreases volatility forecast
ht+1.
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Advanced Time Series Analysis

A successful model: Nelson‘s E-ARCH model (3)

lnht = ζ + π{|vt−1| − E(|vt−1|) + ℵvt−1}

Economic explanation (heuristic) for −1 < ℵ < 0:

Leverage effect

stock prices ↓ ⇒ value of ratio value equity
corporate dept ↓ ⇒

risk of holding stocks increases.

Note: Extendable to E-GARCH model (lagged ln ht−j on right hand side)
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Advanced Time Series Analysis

Uses of ARCH type models

Forecast return variances and covariances for VAR models

volatility forecast to feed in Black/Scholes formula (practitioners ap-
proach)

Estimate and forecast time varying beta

βit = Covt−1(R
m
t ,Ri

t)
V art−1(R

m
t ) ⇒ asset pricing

Modeling evolution of conditional covariance in same fashion: Bivariate
ARCH models

Portfolio selection: forecast variance-covariance matrix of assets in port-
folio (multivariate ARCH models)
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Advanced Time Series Analysis

V. Vector Autoregressions (Basics)
[Hamilton (1994), Chapter 11;

Hayashi (2000), Chapter 6.3/6.4;

Enders (1995), p. 291-331 (-343 for those who want

more) ]
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Advanced Time Series Analysis

An SVAR model to analyze short term effects of Swiss monetary policy

(∆ log pt, ∆ log yt, ∆ log mt, ∆rt) with ∆ log pt = log pt − log pt−1

p = Consumer price index
y = GDP in 1990 Swiss francs
m = money stock M1
r = quarterly average of three month Swiss franc LIBOR rate of interest

Denote: p̃t = ∆logpt ỹt = ∆logyt m̃t = ∆logmt r̃t = ∆rt

p̃t = b10 −b12ỹt−b14r̃t +γ11p̃t−1γ12ỹt−1+γ13m̃t−1+γ14r̃t−1+...+ε1t

ỹt = b20−b21p̃t −b24r̃t +γ21p̃t−1γ22ỹt−1+γ23m̃t−1+γ24r̃t−1+...+ε2t

m̃t = b30−b31p̃t−b32ỹt−b34r̃t +γ31p̃t−1γ32ỹt−1+γ33m̃t−1+γ34r̃t−1+...+ε3t

r̃t = b40−b41p̃t−b42ỹt− b43m̃t+γ41p̃t−1γ42ỹt−1+γ43m̃t−1+γ44r̃t−1+...+ε4t
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Advanced Time Series Analysis

Structural Vector Autoregression (SVAR) in primitive form

No distinction between exogenous and endogenous variables.

{εit} White Noise

E(εit) = 0,

Cov(εitεit−k) = 0 for all k 6= 0

Var(εit) = σ2
i , Cov(εitεjt) = 0 for all j 6= i
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Advanced Time Series Analysis

The key tool to trace short run effects of monetary policy with an
SVAR is the impulse-response function

Q: How are monetary shocks absorbed by the system?

Tool: Impulse-Response function ⇒ Traces the dynamics of the system

Based on the reduced form of the system. VAR in standard form:

p̃t = a11p̃t−1 + a12ỹt−1 + a13m̃t−1 + a14r̃t−1... + e1t

ỹt = a21p̃t−1 + a22ỹt−1 + a23m̃t−1 + a24r̃t−1... + e2t

m̃t = a31p̃t−1 + a32ỹt−1 + a33m̃t−1 + a34r̃t−1... + e3t

r̃t = a41p̃t−1 + a42ỹt−1 + a43m̃t−1 + a44r̃t−1... + e4t

Estimate parameters by OLS: {p̃t}, {ỹt}, {m̃t}, {p̃t−1}
Ceteris paribus shock of the system, trace forward responses of the system.
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Advanced Time Series Analysis

Key tool to trace short run effects of monetary policy with SVAR is
the impulse-response function
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Advanced Time Series Analysis

LIBOR stands for London Interbank Offered Rate. It refers to any of a number of short-term indicative

interest rates compiled by the British Bankers Association (BBA) at 11:00 AM London time, each business

day. LIBOR is quoted for monthly maturities out to a year for many of the world's currencies. Rates are

available from Telerate news service page 3750. LIBOR rates are widely used as the underlying interest rates

for derivative contracts for all currencies except the Euro.

Similar rates are quoted in other world capitals. PIBOR stands for Paris Interbank Offered Rate. TIBOR

stands for Tokyo Interbank Offered Rates. Use of these rates is modest.

Euribor stands for Euro Interbank Offered Rate. These interest rates for the Euro are compiled by the
European Banking Federation (FBE—Fédération Bancaire de l’Union Européenne) and are released at 11:00

AMBrussels time, each business day. Rates are quoted for one week and monthly maturities out to a year.

They are available on Telerate page 248. Euribor is widely used as the underlying interest rate for Euro-

denominated derivative contracts.
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Advanced Time Series Analysis

Consumer price index
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Advanced Time Series Analysis

Gross Domestic Product in 1990 Swiss
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Money stock M1

0

50000

100000

150000

200000

250000

J
a

n
 7

4

J
a

n
 7

5

J
a

n
 7

6

J
a

n
 7

7

J
a

n
 7

8

J
a

n
 7

9

J
a

n
 8

0

J
a

n
 8

1

J
a

n
 8

2

J
a

n
 8

3

J
a

n
 8

4

J
a

n
 8

5

J
a

n
 8

6

J
a

n
 8

7

J
a

n
 8

8

J
a

n
 8

9

J
a

n
 9

0

J
a

n
 9

1

J
a

n
 9

2

J
a

n
 9

3

J
a

n
 9

4

J
a

n
 9

5

J
a

n
 9

6

J
a

n
 9

7

J
a

n
 9

8

J
a

n
 9

9

J
a

n
 0

0

J
a

n
 0

1

J
a

n
 0

2

Time

M
io

. 
C

H
F

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 193
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Three month Swiss LIBOR rate of interest
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∆ log pt
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∆ log yt
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∆ log mt
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∆ log rt

-5

-4

-3

-2

-1

0

1

2

3

J
a

n
 7

4

J
a

n
 7

5

J
a

n
 7

6

J
a

n
 7

7

J
a

n
 7

8

J
a

n
 7

9

J
a

n
 8

0

J
a

n
 8

1

J
a

n
 8

2

J
a

n
 8

3

J
a

n
 8

4

J
a

n
 8

5

J
a

n
 8

6

J
a

n
 8

7

J
a

n
 8

8

J
a

n
 8

9

J
a

n
 9

0

J
a

n
 9

1

J
a

n
 9

2

J
a

n
 9

3

J
a

n
 9

4

J
a

n
 9

5

J
a

n
 9

6

J
a

n
 9

7

J
a

n
 9

8

J
a

n
 9

9

J
a

n
 0

0

J
a

n
 0

1

J
a

n
 0

2

Time

%

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 198



Advanced Time Series Analysis

Structural VAR: Methodology in a bivariate system

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt

E(εyt) = 0, Var(εyt) = σ2
y, Cov(εyt, εyt−j) = 0

E(εzt) = 0, Var(εzt) = σ2
z, Cov(εzt, εzt−j) = 0, Cov(εyt, εzt) = 0

[
1 b12

b21 1

][
yt

zt

]
=

[
b10

b20

]
+

[
γ11 γ12

γ21 γ22

][
yt−1

zt−1

]
+

[
εyt

εzt

]

Bxt = Γ0 + Γ1xt−1 + εt

xt = B−1Γ0 + B−1Γ1xt−1 + B−1εt

xt = A0 + A1xt−1 + et

yt = a10 + a11yt−1 + a12zt−1 + e1t

zt = a20 + a21yt−1 + a22zt−1 + e2t
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Advanced Time Series Analysis

The stochastic properties of the
’
composite‘ shocks in the standard

form VAR differ from those in the primitive form: Contemporaneous
Covariances! (1)

e1t = εyt−b12εzt

1−b12b21
e2t = εzt−b21εyt

1−b12b21

E(e1t) = E
[εyt−b12εzt

1−b12b21

]
= 0

E(e2t) = E
[εyt−b12εzt

1−b12b21

]
= 0

Var(e1t) = E(e2
1t) = E

[εyt−b12εzt

1−b12b21

]2 =
σ2

y+b2
12σ2

z

(1−b12b21)2

Var(e2t) = ...
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Advanced Time Series Analysis

The stochastic properties of the
’
composite‘ shocks in the standard

form VAR differ from those in the primitive form: Contemporaneous
Covariances! (2)

Cov(e1te1t−i) = E(e1te1t−i) =
E
[
(εyt−b12εzt)(εyt−i−b12εzt−i)

]
(1−b12b21)2

= 0

Cov(e2te2t−i) = E(e1te1t−i) =
E
[
(εyt−b12εzt)(εyt−i−b12εzt−i)

]
(1−b12b21)2

= 0

Cov(e1te2t) = E(e1te2t) =
E
[
(εyt−b12εzt)(εzt−b21εyt)

]
(1−b12b21)2

6= 0

Σ =
[

Var(e1t) Cov(e1t, e2t)
Cov(e1t, e2t) Var(e2t)

]
=

[
σ2

1 σ12

σ21 σ2
2

]
σ12 = σ21

Σε =
[

Var(εyt) Cov(εyt, εzt)
Cov(εyt, εzt) Var(εzt)

]
=

[
....

]
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Advanced Time Series Analysis

For Impulse Response Analysis we need to trace the effects of the
shocks to the primitive VAR

Parameters of the unrestricted primitive VAR cannot be consistently esti-
mated by OLS.
VAR in primitive form not useful for forecasting and IR analysis

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt

Bxt = Γ0 + Γ1xt−1 + εt

For estimation, forecasting and IRF analysis we need to use the standard
form of the VAR

xt = B
−1

Γ0 + B
−1

Γ1xt−1 + B
−1

εt

yt = a10 + a11yt−1 + a12zt−1 + e1t

zt = a20 + a21yt−1 + a22zt−1 + e2t

...But to trace the effects of the shocks, we need to know B.
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Advanced Time Series Analysis

For Impulse Response Analysis we need to trace the effects of the
shocks to the primitive VAR

yt = −0.2zt + 0.6yt−1 + 0.4zt−1 + εyt

zt = +0.2yt−1 + 0.3zt−1 + εzt
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Advanced Time Series Analysis

For Impulse Response Analysis we need to trace the effects of the
shocks to the primitive VAR

yt = 0.6yt−1 + 0.4zt−1 + εyt

zt = 0.2yt + 0.2yt−1 + 0.3zt−1 + εzt
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Advanced Time Series Analysis

How to produce Impulse Response functions when SVAR parameters
of primitive form are not known? Step 1 - 2

1. Write down VAR in primitive form

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt

Bxt = Γ0 + Γ1xt−1 + εt

2. Write VAR in standard form. Estimate equation by equation using OLS

xt = B−1Γ0 + B−1Γ1xt−1 + B−1εt

yt = a10 + a11yt−1 + a12zt−1 + e1t

zt = a20 + a21yt−1 + a22zt−1 + e2t
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Advanced Time Series Analysis

How to produce Impulse Response functions when SVAR parameters
of primitive form are not known? Step 3

3. Use estimated residual series to estimate

Σ =
[

Var(e1t) Cov(e1t, e2t)
Cov(e1t, e2t) Var(e2t)

]
=

[
σ2

1 σ12

σ21 σ2
2

]

σ̂2
1 =

( 1
T

) T∑
t=1

ê2
1t, σ̂2

2 =
( 1
T

) T∑
t=1

ê2
2t, σ̂12 =

( 1
T

) T∑
t=1

ê1tê2t

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 206



Advanced Time Series Analysis

How to produce Impulse Response functions when SVAR parameters
of primitive form are not known? Step 4

4. Exploit relationship of variances and covariances of primitive shocks and
variances and covariances of composite shocks.

Σε =
[

Var(εy) 0
0 Var(εz)

]
Σ =

[
σ2

1 σ12

σ21 σ2
2

]

B =
[

1 b12

b21 1

]
et =

(
e1t

e2t

)
εt =

(
εyt

εzt

)

et = B−1εt ⇒ εt = Bet

Σε = BΣB′

[
Var(ε1) 0

0 Var(ε2)

]
=

[
1 b12

b21 1

][
σ2

1 σ12

σ21 σ2
2

][
1 b21

b12 1

]
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Advanced Time Series Analysis

How to produce Impulse Response functions when SVAR parameters
of primitive form are not known? (Step 4 cont.)

And you are generally stuck!

Bxt = Γ0 + Γ1xt−1 + εt ⇒ xt = B−1Γ0 + B−1Γ1xt−1 + B−1εt

⇒ xt = A0 + A1xt−1 + et




1 b12 b13 ... b1n
b21 1 b23 ... b2n

...
...

...
...

...
bn1 bn2 bn3 ... 1







x1t
x2t

...
xnt


 =




b10
b20

...
bn0


+




γ11 γ12 γ13 ... γ1n
γ21 γ22 γ23 ... γ2n

...
...

...
...

...
γn1 γn2 γn3 ... γnn







x1t−1
x2t−1

...
xnt−1


+




ε1t
ε2t
...

εnt




Σε =




Var(ε1) 0 ... 0
0 Var(ε1) ... 0
...

...
...

...
0 0 ... Var(εn)


 Σ =




σ2
1 σ21 ... σ1n

σ21 σ2
2 ... σ2n

...
...

...
...

σn1 σn2 ... σ2
n




Σε = BΣB
′
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Advanced Time Series Analysis

How to produce Impulse Response functions when SVAR parameters
of primitive form are not known? (Step 4 cont.)

A solution: Cholesky Decomposition: Σε = BΣB′



1 0 0 ... 0
b21 1 0 ... 0

...
...

...
...

...
bn1 bn2 bn3 ... 1







x1t
x2t

...
xnt


 =




b10
b20

...
bn0


+




γ11 γ12 γ13 ... γ1n
γ21 γ22 γ23 ... γ2n

...
...

...
...

...
γn1 γn2 γn3 ... γnn







x1t−1
x2t−1

...
xnt−1


+




ε1t
ε2t
...

εnt




B =




1 0 0 ... 0
b21 1 0 ... 0

...
...

...
...

...
bn1 bn2 bn3 ... 1


 ⇒ B

−1
=




1 0 0 ... 0
c21 1 0 ... 0

...
...

...
...

...
cn1 cn2 cn3 ... 1




et = B−1εt

e1t = ε1t

e2t = c21ε1t + ε2t

e3t = c31ε1t + c32ε2t + ε3t
...
ent = cn1ε1t + cn2ε2t + · · ·+ εnt
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Advanced Time Series Analysis

How to produce Impulse Response functions when SVAR parameters
of primitive form are not known? (Step 4 cont.)

Two variable numerical example:

Σ =
[

0.5 0.4
0.4 0.5

]

Σε =
[

Var(εy) 0
0 Var(εz)

]

Σε = BΣB′

Var(εy) = 0.5 + 0.8b12 + 0.5b2
12

0 = 0.5b21 + 0.4b21b12 + 0.4 + 0.5b12

0 = 0.5b21 + 0.4b12b21 + 0.4 + 0.5b12

Var(εz) = 0.5b2
21 + 0.8b21 + 0.5
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Advanced Time Series Analysis

How to produce Impulse Response functions when SVAR parameters
of primitive form are not known? Step 4 cont.

Choosing a different ordering of variables in the Cholesky decomposition

Var(εy) = 0.5 + 0.8b12 + 0.5b2
12

0 = 0.5b21 + 0.4b21b12 + 0.4 + 0.5b12

0 = 0.5b21 + 0.4b12b21 + 0.4 + 0.5b12

Var(εz) = 0.5b2
21 + 0.8b21 + 0.5
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Advanced Time Series Analysis

How to produce Impulse Response functions when SVAR parameters
of primitive form are not known? Step 5

5. Use identified B matrix and estimate coefficients of standard VAR to
trace a shock of one standard deviation in shocks (shocks to the primitive
system).

(Fix starting values, set future shocks equal to zero) et =

B−1

( √
Var(εy)

0

)
Iterate forward to see how shock is transferred

by the system

xt+1 = Â0+Â1xt+et xt+2 = Â0+Â1xt+1 xt+3 = Â0+Â1xt+2 · · ·
Plot resulting series

You’re stuck! Why?
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Advanced Time Series Analysis

VI. Cointegration and Error Correction Models
(Basics)

[Hamilton (1994), Chapter 19 (parts);

Enders (1995), Chapter 6 (parts)

Hayashi (2000), Chapter 10]
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Advanced Time Series Analysis

Many time series in economics and finance look like realizations of
non-stationary stochastic processes
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Advanced Time Series Analysis

Ordinary Least Squares regression using non-stationary time series is
hazardous!

Applying OLS to macro time series yields

small t-values

high R2

positively autocorrelated residuals

Granger and Newbold

Simulation of independent random walk processes :
y1t = y1t−1 + u1t

y2t = y2t−1 + u2t
...

,

where y1t = α + γ1y2t−1 + γ2y3t−1 + . . . + et

Multiple linear regression

Result: Regression yields too often to a rejection of the (correct) null
hypothesis that slope parameters are zero.
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Advanced Time Series Analysis

Cointegration: Graphical illustration

y1t = y2t−1 + u1t y2t = y2t−1 + u2t
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Advanced Time Series Analysis

Cointegration: An economic interpretation

Long run equilibrium relation of economic time series
Possibility of short term deviations from equilibrium
Economic mechanisms move system to equilibrium

Examples:

Term structure of interest rates
Stock prices of assets traded on different markets
Purchase power parity between two countries
Consumption and Income
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Advanced Time Series Analysis

Cointegration: A definition
Long run equilibrium relation of economic time series

(n × 1) vector of time series yt = (y1t, y2t, y3t, . . . , ynt)′ is cointegrated if
each series is

♦ non-stationary (integrated of order one)

♦ there exists (at least one) a′yt linear combination which produces a
stationary process

Bivariate example:
y1t = γ · y2t + u1t

y2t = y2t−1 + u2t

y1t − y1t−1 = γ · u2t + u1t − u1t−1

y2t − y2t−1 = ∆y2t = u2t

Linear combination y1t − γ · y2t = u1t is stationary
y1t − γ · y2t: Cointegrating relation a = (1,−γ)′ cointegrating vector
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Advanced Time Series Analysis

Cointegration: An economic example Purchase Power Parity (PPP)

No transaction costs and free trade

PS
t : Index of price level Switzerland (CHF per good)

PU
t : Index of price level USA ($ per good)

St: Exchange rate (Dollar/CHF)

PU
t = St · PS

t

in logs: pU
t = st + pS

t ⇒ pU
t − pS

t − st = 0

Weaker version of PPP: zt ≡ pU
t − pS

t − st,

where {zt} is a stationary stochastic process
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Advanced Time Series Analysis

Purchase power parity in the real world: Assets traded on parallel
markets
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Advanced Time Series Analysis

The appropriate econometric specification to model dynamics of
cointegrated time series: The equilibrium correction model

The bivariate case

∆y1t = a0+γ1(y1t−1−β0−β1y2t−1)+a11∆y1t−1+a12∆y2t−1+more lags+
u1t

∆y2t = b0+γ2(y1t−1−β0−β1y2t−1)+a21∆y1t−1+a22∆y2t−1+more lags+
u2t

Multivariate case: Number of cointegrating relations?
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Advanced Time Series Analysis

Engle and Granger have proposed a method to estimate the parame-
ters of a cointegrated system (1)

OLS estimation of ECM not feasible

∆y1t = a0+γ1(y1t−1−β0−β1y2t−1)+a11∆y1t−1+a12∆y2t−1+more lags+
u1t

∆y2t = b0+γ2(y1t−1−β0−β1y2t−1)+a21∆y1t−1+a22∆y2t−1+more lags+
u2t

Assume n variables, h = 1 cointegrating relation (e.g. PPP n = 3, h = 1)

4 step approach
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Advanced Time Series Analysis

Step 1:

Test whether each of n variables is integrated of order one (I(1), non-
stationary, unit root process, first difference yields stationary series).

Standard tests: Dickey-Fuller and Perron tests. Null hypothesis: series non-
stationary. Distribution of test statistic under Null: Non-standard, obtained
by simulations. Critical values (quantiles) tabulated.

If null hypothesis rejected (given α) for all series: cointegration rejected.
Model with VAR. If for some variables null rejected (given α) for others
not: cointegration hypothesis rejected. Exclude variables from cointegrating
relation.

If null hypothesis (non-stationarity) maintained (α) proceed to step 2
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Advanced Time Series Analysis

Illustration: Regression when no cointegration present
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Advanced Time Series Analysis

Step 2

Impose normalization. Put one variable on LHS, others on RHS. Run a
regression: exemplary: n = 2

y1t = β0 + β1y2t + εt

Back out β̂0, β̂1 and ε̂t = y1t − β̂0 − β̂1y2t

If y1t, y2t are cointegrated ⇒ εt = y1t − β0 − β1y2t is stationary

Test nonstationarity of series ε̂t = y1t − β̂0 − β̂1y2t using stationarity tests
Residual series based on estimated parameters: Different distribution of test
statistic: Use correct critical value tables!
If null hypothesis of non-stationarity of ε̂t is rejected, proceed to step 3.
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Advanced Time Series Analysis

Step 3

Replace in ECM

∆y1t = a0 + γ1(y1t−1− β0− β1y2t−1) + a11∆y1t−1 + a12∆y2t−1 + more lags + u1t

∆y2t = b0 + γ2(y1t−1− β0− β1y2t−1) + a21∆y1t−1 + a22∆y2t−1 + more lags + u2t

y1t − β0 − β1y2t

by

ε̂t = y1t − β̂0 − β̂1y2t

∆y1t = a0 + γ1ε̂t−1 + a11∆y1t−1 + a12∆y2t−1 + more lags + u1t

∆y2t = b0 + γ1ε̂t−1 + a21∆y1t−1 + a22∆y2t−1 + more lags + u2t

Estimate parameters by OLS. Regression with only stationary variables on
both sides.
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Advanced Time Series Analysis

Step 4

Innovation accounting

Plot impulse-response functions iterating on

∆y1t = â0 + γ̂1(y1t−1− β̂0− β̂1y2t−1) + â11∆y1t−1 + â12∆y2t−1 + more lags + u1t

∆y2t = b̂0 + γ̂2(y1t−1− β̂0− β̂1y2t−1) + â21∆y1t−1 + â22∆y2t−1 + more lags + u2t

As for SVAR: Possible contemporaneous correlation of u1t, u2t
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Advanced Time Series Analysis

Plotting the impulse-response function

Cholesky Decomposition

Ordering of variables impacts results

Problems of E&G method

With n variables up to n− 1 cointegrating relations may exist

Conclusion step 2 may depend on ordering

Johansen method for ML estimation of Gaussian cointegrated systems.
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Advanced Time Series Analysis

Hypothesis regarding price discovery in international equity trading
and empirical tests based on high frequency data

♦ Simultaneous trading of same asset at different trading venues

♦ Worldwide competition for liquidity. Viability of securities markets de-
pends on performance of trading mechanisms. Efficient capital market:
Value-relevant information flows quickly into prices.

♦ Q1: Price discovery in home market or at the world‘s leading trading
venue?

♦ Bacidore/Sofianos (2000): ”Price discovery takes place at home and
NYSE market participants take those prices as given”
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Advanced Time Series Analysis

Hypothesis regarding price discovery in international equity trading
and empirical tests based on high frequency data (cont.)

♦ ⇒ ”Winner market takes all”-hypothesis (Chowdry and Nanda, RFS
1991): In case of international parallel trading one market will dominate
price discovery.

♦ Kim/Szakmary/Mathur (JBF 2000): Home market dominates price dis-
covery. Problem: Aggregation of price dynamics in daily data. Non-
simultaneous trading (time zones).

♦ Q2: Symmetric reaction of stock prices to exchange rate movements?
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Advanced Time Series Analysis

Starting point: 100 % Price discovery in home market

Ph
t : Stock price home market at time t in Euro (log)

Pu
t : Stock price US market in $ (log)

Et : $/ Euro exchange rate (log)

Et and Ph
t follow random walks

Et = Et−1 + εe
t

Ph
t = Ph

t−1 + εh
t

The US price tracks the home market price:

Pu
t = Ph

t−1 + Et−1 + εu
t
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Advanced Time Series Analysis

Cointegration between home market price, US price and
exchange rate
Arbitrage prevents long run deviations from equilibrium ⇒ log-exchange
rate, log-e-Kurs und log-$-Kurs are cointegrated

Ph
t − Pu

t + Et =
[
Ph

t−1 + εh
t − Ph

t−1 − Et−1 − εu
t + Et−1 + εe

t

]
=

εh
t − εu

t + εe
t

with cointegrating vector (1− 11).

♦ Only own innovations εh
t exert permanent impact on e-price. (100%

information share)

♦ Only own innovations εe
t exert permanent impact on exchange rate.

(100% information share)

♦ $-price: Merely transitory influence of own market innovations εu
t . Only

home market and exchange rate innovations permanently impounded in
US price.
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Advanced Time Series Analysis

In a general model the innovations of all three price series contribute
to the long run dynamics of the system

One cointegrating relation between e-price, $-price and exchange rate but...
... innovations εh

t , εe
t , and εu

t may exert permanent effects on all three
price series

... their importance (the information share) is determined empirically.

Non-stationary VAR using e-price, $-price and exchange rate.
Cointegration between e-price, $-price and exchange rate.
Granger representation theorem ⇒ VECM

Write VECM in VMA representation and simulate VMA parameters
Decompose variance of long run effect of each price series into the effects
caused by the innovations of each series.
Variance Share = Information Share
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Advanced Time Series Analysis

In a general model the innovations of all three price series contribute
to the long run dynamics of the system

Assumptions for a general model:

ONE cointegrating relation between e-price, $-price and exchange rate
but...

... Innovations εh
t , εe

t , and εu
t may exert permanent effects on all three

price series.

... their importance (the information share) is determined empirically.
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Advanced Time Series Analysis

Estimation of the information shares is based on a VECM

Non-stationary VAR using e-price, $-price and exchange rate.

Cointegration between e-price, $-price and exchange rate.

Granger representation theorem ⇒ VECM

∆Et = β1(α1P
h
t−1 − α2P

u
t−1 − α3Et) + δ11∆P

h
t−1 + δ12∆P

u
t−1 + δ13∆Et−1 + ε

e
t

∆P
h
t = β2(α1P

h
t−1 − α2P

u
t−1 − α3Et) + δ21∆P

h
t−1 + δ22∆P

u
t−1 + δ23∆Et−1 + ε

h
t

∆P
u
t = β3(α1P

h
t−1 − α2P

u
t−1 − α3Et) + δ31∆P

h
t−1 + δ32∆P

u
t−1 + δ33∆Et−1 + ε

u
t
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Advanced Time Series Analysis

By simulating the VECM we obtain the weight matrix from which
the information shares can be computed

Write VECM in VMA representation:



∆Et
∆Ph

t
∆Pu

t


 =




εe
t

εh
t

εu
t


 + Ψ1




εe
t−1

εh
t−1

εu
t−1


 + Ψ2




εe
t−2

εh
t−2

εu
t−2


 + . . .

Ψ =




ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33


 = I + Ψ1 + Ψ2 + . . .




permanent impact on exchange rate

permanent impact on -ePrice

permanent impact on $-Price


 =




ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33


×




εe
t

εh
t

εu
t




(follows from Stock/Watson’s common trends representation of cointegrated
systems) Economic common sense: ψ12 = 0, ψ13 = 0: Stock prices do not
affect exchange rate.

Cointegration implies ψ22 = ψ32 and ψ23 = ψ33.
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Hasbrouck (1995): Defines the information share of a market as its
contribution to the variance of the permanent component of a given
price series

Var(perm. impact on exchange rate ) = ψ2
11Var(εe

t) + ψ2
12Var(εh

t ) + ψ2
13Var(εu

t )
(neglecting contemporaneous correlations)

ψ2
11Var(εe

t)

ψ2
11Var(εe

t)+ψ2
12Var(εh

t )+ψ2
13Var(εu

t )
≡ Information Share

Hypothesized ψ12 = 0, ψ13 = 0

100% of relevant information is generated in exchange rate series itself
(Empirically testable) Information shares for home market and US market?
”Winner market takes all”-hypothesis: One market dominates! Sofianos’
”home market hypothesis”.
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The empirical analysis is based on high frequency data for three
NYSE traded German stocks and US/Euro exchange rate data

XETRA (electronic trading system of German Stock Exchange) and NYSE
(TAQ) bid-ask prices for SAP, Deutsche Telekom (DT) and DaimlerChrysler
(DCX).

US/Euro indicative quotes: Olsen & Associates, Zürich

August-Oktober 1999

Mid-quotes from overlapping trading period NYSE-XETRA [GMT 14:30-
16(:30)]

Equally spaced 10 seconds data generated from transactions data.
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A look at the data
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Advanced Time Series Analysis

Comparing Deutsche Telekom and SAP one finds significant diffe-
rences in intra day quoting intensity patterns
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Advanced Time Series Analysis

The empirical results

♦ Johansen’s method confirms the existence of ONE cointegrating relation
between stock prices and exchange rate.

♦ Implies two stochastic trends (efficient stock price and exchange rate).

♦ As expected, no permanent impact of stock prices on exchange rates.

♦ Only the US price incorporates exchange rate shocks. The home market
does not react. Unexpected (?) asymmetric effect.

♦ Support for “winner market takes all”-hypothesis.

♦ Support for home market hypothesis, but qualitative differences are ob-
vious: Deutsche Telekom as “national” stock: Price discovery exclusively
in Germany DaimlerChrysler: The larger information share is generated in
the German market SAP (“New Economy”, significant US-sales): Largest
US information share
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Advanced Time Series Analysis

Information of share XETRA innovations w.r.t NYSE price [Kernel
density estimates based on 1000 Bootstrap replications (Li/Maddala,
1997)]

estimator and s.e.

DCX  0.838 (0.024)

DT     0.942 (0.008)

SAP  0.752 (0.036)
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Advanced Time Series Analysis

Information share of NYSE innovations w.r.t. NYSE price

estimator and s.e.

DCX  0.089 (0.027)

DT     0.009 (0.007)

SAP  0.189 (0.039)
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Information share of exchange rate innovations w.r.t NYSE price

estimator and s.e.

DCX  0.073 (0.007)

DT     0.049 (0.005)

SAP  0.059 (0.006)
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Information share of XETRA innovations w.r.t XETRA price

estimator and s.e.

DCX  0.906 (0.029)

DT     0.991 (0.007)

SAP  0.798 (0.041)
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Advanced Time Series Analysis

Information share of NYSE innovations w.r.t XETRA price
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Advanced Time Series Analysis

Information share of exchange rate innovations w.r.t XETRA price
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Advanced Time Series Analysis

Summary

♦ One cointegrating relation between exchange rate and $ and e-prices
found in high frequency data.

♦ Asymmetric price reactions in response to exchange rate shocks.

♦ Support for ”winner market takes all”-hypothesis: One market dominates
price discovery.

♦ Support for home market hypothesis.

♦ Qualitative differences between stocks. Truly national stocks vs. stocks
with larger international focus.

♦ DaimlerChrysler: Takeover or merger among equals?
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Advanced Time Series Analysis

The following quote from ”A Blueprint for Success”, TSE, Octo-
ber 1998, illustrates the competitive threat from U.S. exchanges
perceived by the non-U.S. exchanges.

”The TSE cannot afford to have the U.S. markets become the price
discovery mechanism for Canadian interlisted stocks.”
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Advanced Time Series Analysis




permanent impact on exchange rate

permanent impact on -ePrice

permanent impact on $-Price


 =




ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33


×




εe
t

εh
t

εu
t




DCX




0.567 (0.010) 0.005 (0.011) 0.011 (0.012)

−0.132 (0.025) 0.822 (0.031) 0.250 (0.033)

0.435 (0.027) 0.818 (0.032) 0.261 (0.034)




DT




0.594 (0.006) 0.004 (0.007) 0.004 (0.008)

−0.046 (0.026) 0.879 (0.030) 0.081 (0.031)

0.539 (0.027) 0.875 (0.030) 0.085 (0.031)




SAP




0.596 (0.007) 0.005 (0.008) 0.001 (0.008)

−0.149 (0.021) 0.689 (0.024) 0.287 (0.026)

0.444 (0.023) 0.685 (0.025) 0.288 (0.026)
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Advanced Time Series Analysis

VII. Structural Vector Autoregressive Models
(Advanced)

[Hamilton (1994), Chapter 11; Hayashi (2000),

Chapter 6.3 / 6.4 ]

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 251



Advanced Time Series Analysis

To analyze the interdependence of three East Asian stock markets,
(Tokyo, Singapore and South Korea) we set up a Structural VAR
(SVAR)

rT
t = kT +β

(0)
12 rS

t + β
(0)
13 rK

t + β
(1)
11 rT

t−1 + β
(1)
12 rS

t−1 + β
(1)
13 rK

t−1 + uT
t

rS
t = kS +β

(0)
21 rT

t + β
(0)
23 rK

t + β
(1)
21 rT

t−1 + β
(1)
22 rS

t−1 + β
(1)
23 rK

t−1 + uS
t

rK
t = kK +β

(0)
31 rT

t +β
(0)
32 rS

t + β
(1)
31 rT

t−1 + β
(1)
32 rS

t−1 + β
(1)
33 rK

t−1 + uK
t

yt
(3×1)

=




rT
t

rS
t

rK
t


 k

(3×1)
=




kT

kS

kK


 B0

(3×3)
=




1 −β
(0)
12 −β

(0)
13

−β
(0)
21 1 −β

(0)
23

−β
(0)
31 −β

(0)
32 1


 ut

(3×1)
=




uT
t

uS
t

uK
t




B0yt = k + B1yt−1 + ut
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Advanced Time Series Analysis

The innovations of a VAR in primitive form are assumed
to be both serially and cross-sectionally uncorrelated (orthogo-
nal/pure/idiosyncratic innovations/shocks)

B0yt = k + B1yt−1 + B2yt−2 + . . . + Bpyt−p + ut

E(ut) = 0

E(utu′τ) =
{

D for t = τ
0 otherwise.

D diagonal matrix
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Advanced Time Series Analysis

Writing the VAR in standard form
”
solves“ the system

yt = c + Φ1yt−1 + Φ2yt−2 + . . . + Φpyt−p + εt

c = B−1
0 k (n× 1) vector of constants

Φs = B−1
0 Bs (n× n) matrix of AR coefficients for s = 1, ..., p

εt = B−1
0 ut (n× 1) vector generalization of White Noise.
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Advanced Time Series Analysis

The innovations of a VAR in standard form are, by construction,
contemporaneously correlated (composite innovations/shocks)

yt = c + Φ1yt−1 + Φ2yt−2 + . . . + Φpyt−p + εt

E(εt) = E(B−1
0 ut) = B−1

0 E(ut) = 0

E(εtε
′
t) = E(B−1

0 utu′t[B
−1
0 ]′) ≡ Ω

E(εtε
′
τ) =

{
Ω for t = τ

0 otherwise.
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Advanced Time Series Analysis

The lag operator provides notational convenience

Lag operator:

L(yt) = yt−1, L2(yt) = yt−2, ...

VAR(p) written with lag operator

[In −Φ1L−Φ2L
2 − . . .−ΦpL

p]yt = c + εt

or
Φ(L)yt = c + εt
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Advanced Time Series Analysis

We take expectations of the endogenous variables

Assuming stationarity: E(yt) = µ

E(yt) = c + Φ1E(yt−1) + . . . + ΦpE(yt−p) + E(εt)

µ = c + Φ1µ + Φ2µ + . . . + Φpµ

µ = c + [Φ1 + Φ2 + . . . + Φp]µ

[In −Φ1 −Φ2 − . . .−Φp] µ = c

[In −Φ1L− . . .−ΦpL
p] µ = c

Φ(L)µ = c
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Advanced Time Series Analysis

It is convenient to express a VAR in terms of deviations from the
means

yt = c + Φ1yt−1 + Φ2yt−2 + . . . + Φpyt−p + εt

Φ(L)µ = c

(yt − µ) = Φ1(yt−1 − µ) + Φ2(yt−2 − µ) + . . . + Φp(yt−p − µ) + εt
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Advanced Time Series Analysis

With some additional notation a VAR(p) can be rewritten as a VAR(1)

(yt − µ) = Φ1(yt−1 − µ) + Φ2(yt−2 − µ) + . . . + Φp(yt−p − µ) + εt

Define:

ξt
(np×1)

≡




yt − µ
yt−1 − µ

...
yt−p+1 − µ


 F

(np×np)
≡




Φ1 Φ2 Φ3 . . . Φp−1 Φp

In 0 0 . . . 0 0
0 In 0 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . In 0




vt
(np×1)

≡




εt

0
...
0




ξt = Fξt−1 + vt
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Advanced Time Series Analysis

Consider a forward iteration of the VAR(1) system

ξt = Fξt−1 + vt

ξt+1 = Fξt + vt+1

ξt+2 = Fξt+1 + vt+2

ξt+3 = Fξt+2 + vt+3 = vt+3 + F(Fξt+1 + vt+2)
... = vt+3 + Fvt+2 + F2ξt+1

= vt+3 + Fvt+2 + F2(Fξt + vt+1)
= vt+3 + Fvt+2 + F2vt+1 + F3ξt

iterating s times yields:

ξt+s = vt+s + Fvt+s−1 + F2vt+s−2 + . . . + Fs−1vt+1 + Fsξt
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Advanced Time Series Analysis

To obtain the Vector Moving Average (VMA) representation we
focus on the first rows of the system

the first n rows of the system

ξt+s = vt+s + Fvt+s−1 + F2vt+s−2 + . . . + Fs−1vt+1 + Fsξt

are:

yt+s = µ + εt+s + Ψ1εt+s−1 + Ψ2εt+s−2 + . . . + Ψs−1εt+1

+F(s)
11 (yt − µ) + F(s)

12 (yt−1 − µ) + . . . + F(s)
1p (yt−p+1 − µ)

F(j): F raised to the jth power

F(j)
11 =Ψj: first n rows and columns 1 through n

F(j)
1p : first n rows and columns (n(p− 1) + 1) through np
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Forecast of yt+s on the basis of yt,yt−1, ...

ŷt+s|t = µ + F(s)
11 (yt − µ) + F(s)

12 (yt−1 − µ) + . . . + F(s)
1p (yt−p+1 − µ)

Forecast error:

yt+s − ŷt+s|t = εt+s + Ψ1εt+s−1 + Ψ2εt+s−2 + . . . + Ψs−1εt+1
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Vector MA(∞) Representation

Eigenvalues of F inside the unit circle ⇒ stationarity of {yt}

⇒ Vector MA(∞) Representation

ξt =
∞∑

i=0

Fivt−i

First n rows:

yt = µ + εt + Ψ1εt−1 + Ψ2εt−2 + Ψ3εt−3 + . . .

yt = µ +
[
In + Ψ1L + Ψ2L

2 . . .
]
εt

yt = µ + Ψ(L)εt
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Advanced Time Series Analysis

Combining results shows how VAR and MA coefficients are related

Φ(L)yt = c + εt Φ(L)µ = c yt = µ + Ψ(L)εt

Φ(L)[µ + Ψ(L)εt] = c + εt

Φ(L)µ + Φ(L)Ψ(L)εt = c + εt

c + Φ(L)Ψ(L)εt = c + εt

[Φ(L)Ψ(L)]︸ ︷︷ ︸ εt = εt

In
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Advanced Time Series Analysis

The VMA coefficients can be recursively computed from the VAR
coefficients

In = Ψ(L)Φ(L)

In = (In + Ψ1L + Ψ2L
2 + . . .)(In −Φ1L−Φ2L

2 − . . .−ΦpL
p)

In = In + (Ψ1 −Φ1)L + (Ψ2 −Φ1Ψ1 −Φ2)L2 + . . .

⇒ Ψ1 = Φ1

Ψ2 = Φ1Ψ1 + Φ2

general for Ls s = 1, 2, . . . : Ψs = Φ1Ψs−1 + Φ2Ψs−2 + . . . + ΦpΨs−p
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Advanced Time Series Analysis

The Impulse-Response Function gives the response of the system to
one unit shocks in the ε

yt+s = µ + εt+s + Ψ1εt+s−1 + Ψ2εt+s−2 + . . . + Ψsεt + . . . + . . .

∂yt+s

∂ε′t
= Ψs

Sequence of Ψ1, Ψ2,...: Impulse-Response Function

e.g. response of yi,t+s to a one-time impulse in εj,t with all other va-

riables dated t or earlier held constant:
∂yi,t+s

∂εjt
= ψs[i, j]
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This numerical example shows how to obtain the VMA coefficients
from VAR(2) parameters

s Φs Ψs

1

-0.029 0.034 0.035 -0.029 0.034 0.035

0.007 0.195 0.044 0.007 0.195 0.044

0.027 0.090 0.060 0.027 0.090 0.060

2

-0.071 -0.024 0.020 -0.069 -0.015 0.022

-0.050 -0.062 0.016 -0.047 -0.020 0.028

0.005 -0.016 0.004 0.006 0.008 0.013

3

0.003 -0.005 -0.002

-0.008 -0.016 0.003

-0.006 -0.004 0.004
... ... ...

10

0.000 0.000 0.000

0.000 0.000 0.000

0.000 0.000 0.000
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This numerical example shows how to obtain the VMA coefficients
from the VAR(2) parameters

Ψ1 = Φ1

=



−0.029 0.034 0.035
0.007 0.195 0.044
0.027 0.090 0.060




Ψ2 = Φ1Ψ1 + Φ2

=



−0.029 0.034 0.035
0.007 0.195 0.044
0.027 0.090 0.060


 ·



−0.029 0.034 0.035
0.007 0.195 0.044
0.027 0.090 0.060




+



−0.071 −0.024 0.020
−0.050 −0.062 0.016
0.005 −0.016 0.004


 =



−0.069 −0.015 0.022
−0.047 −0.020 0.028
0.006 0.008 0.013
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This numerical example shows how to obtain the VMA coefficients
from the VAR(2) parameters

Ψ3 = Φ1Ψ2 + Φ2Ψ1

=



−0.029 0.034 0.035
0.007 0.195 0.044
0.027 0.090 0.060


 ·



−0.069 −0.015 0.022
−0.047 −0.020 0.028
0.006 0.008 0.013




+



−0.071 −0.024 0.020
−0.050 −0.062 0.016
0.005 −0.016 0.004


 ·



−0.029 0.034 0.035
0.007 0.195 0.044
0.027 0.090 0.060




=




0.003 −0.005 −0.002
−0.008 −0.016 0.003
−0.006 −0.004 0.004




Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 269
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The plots show a graphical representation of the VMA coefficients

Tokyo

Singapore

Korea
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Advanced Time Series Analysis

To obtain the idiosyncratic shocks from the composite shocks we
need the structural parameters, the matrix B0

covariance matrix of εt:

E(εtε
′
t) = Ω

relation between shocks in VAR and SVAR: εt = B−1
0 ut

E(εtε
′
t) = B−1

0 E(utu′t)
[
B−1

0

]′

= B−1
0 D

[
B−1

0

]′
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Advanced Time Series Analysis

To identify the structural parameters B0, we decompose the
variance covariance matrix of composite innovations (Cholesky-
Decomposition)

Ω = ADA′

=




1 0 0 . . . 0

a21 1 0 . . . 0

a31 a32 1 . . . 0
... ... ... . . . ...

an1 an2 an3 . . . 1



·




d1 0 0 . . . 0

0 d2 0 . . . 0

0 0 d3 . . . 0
... ... ... . . . ...

0 0 0 . . . dn



·




1 a21 a31 . . . an1

0 1 a32 . . . an2

0 0 1 . . . an3
... ... ... . . . ...

0 0 0 . . . 1




Ω: real symmetric positive definite matrix
A: lower triangular matrix with ones along the principal diagonal
D: diagonal matrix with positive elements
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Advanced Time Series Analysis

The idiosyncratic innovations can then be backed out from the com-
posite innovations

Define A = B−1
0

E(εtε
′
t) = Ω = ADA′

Construct from Aut = εt: ut ≡ A−1εt with variance

E(utu′t) = [A−1]E(εtε
′
t)[A

−1]′

= [A−1]Ω[A′]−1

= [A−1]ADA′[A′]−1

= D

This implies: E(uitu′jt) = 0 i 6= j
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The numerical example shows the decomposition of the variance
covariance matrix in the present application

Example:

Ω = ADA′

[
1.79 0.62 0.16
0.62 1.99 0.28
0.16 0.28 2.67

]
=

[
1.00 0.00 0.00
0.34 1.00 0.00
0.09 0.13 1.00

] [
1.79 0.00 0.00
0.00 1.78 0.00
0.00 0.00 2.63

] [
1.00 0.34 0.09
0.00 1.00 0.13
0.00 0.00 1.00

]

Ω and D multiplied by 10000.
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Advanced Time Series Analysis

The composite shocks are generated as linear combinations of the
pure innovations

A · ut = εt




1 0 0 . . . 0
a21 1 0 . . . 0
a31 a32 1 . . . 0

...
...

... . . .
...

an1 an2 an3 . . . 1







u1t

u2t

u3t
...

unt


 =




ε1t

ε2t

ε3t
...

εnt




Thus, u1t = ε1t and ujt = εjt − aj1u1t − aj2u2t − . . .− aj,j−1uj−1,t

⇒ variable ORDERING matters!
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In most applications in economics and finance you want to trace a
shock in the pure innovation

∂Ê(yt+s|yjt, yj−1,t, ..., y1t,xt−1)
∂ujt

= Ψsaj

with aj as the jth column of A

⇒ orthogonalized impulse-response function
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Advanced Time Series Analysis

Orthogonalized impulse-response function of Tokyo to one standard
deviation shock in the SVAR(2) with Cholesky Ordering: Tokyo
Singapore Korea

Tokyo

Singapore

Korea
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Advanced Time Series Analysis

Orthogonalized impulse-response function of Singapore to one stan-
dard deviation shock in the SVAR(2) with Cholesky Ordering: Tokyo
Singapore Korea

Tokyo

Singapore

Korea
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Advanced Time Series Analysis

Orthogonalized impulse-response function of Singapore to one stan-
dard deviation shock in the SVAR(2) with Cholesky Ordering: Tokyo
Singapore Korea

Tokyo

Singapore

Korea

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 279



Advanced Time Series Analysis

To attribute information shares to the markets we consider a decom-
position of the Mean Squared Forecast Error

yt+s − ŷt+s|t = εt+s + Ψ1εt+s−1 + Ψ2εt+s−2 + . . . + Ψs−1εt+1

MSE(ŷt+s|t) = E[(yt+s − ŷt+s|t)(yt+s − ŷt+s|t)′]

= Ω + Ψ1ΩΨ′
1 + Ψ2ΩΨ′

2 + . . . + Ψs−1ΩΨ′
s−1
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Advanced Time Series Analysis

The Cholesky ordering allows a decomposition of the variance of the
composite innovations into the contributions of the pure innovations

εt = Aut = a1u1t + a2u2t + . . . + anunt

Ω = E(εtε
′
t) = A · E(utu′t) ·A′ = ADA′

= a1a′1 · Var(u1t) + a2a′2 · Var(u2t) + . . . + ana′n · Var(unt)
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Advanced Time Series Analysis

We can also decompose the MSE of the s-step ahead forecast

MSE(ŷt+s|t) = E[(yt+s − ŷt+s|t)(yt+s − ŷt+s|t)′]

= Ω + Ψ1ΩΨ′
1 + Ψ2ΩΨ′

2 + . . . + Ψs−1ΩΨ′
s−1

MSE(ŷt+s|t)
(n×n)

=
n∑

j=1

{Var(ujt) · [aja′j + Ψ1aja′jΨ
′
1

+Ψ2aja′jΨ
′
2 + . . . + Ψs−1aja′jΨ

′
s−1]}

contribution of the jth orthogonalized innovation to the MSE of the
s-period-ahead forecast:

Var(ujt) · [aja′j + Ψ1aja′jΨ
′
1 + Ψ2aja′jΨ

′
2 + . . . + Ψs−1aja′jΨ

′
s−1]
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Advanced Time Series Analysis

The numerical example illustrates the decomposition of the variance
covariance matrix of the composite shocks (MSE 1 step forecast)

MSE(ŷt+1|t)
(n×n)

= Var(u
T
t ) · [a1a

′
1] + Var(u

S
t ) · [a2a

′
2] + Var(u

K
t ) · [a3a

′
3]

MSE(ŷt+1|t)
(n×n)

= 1.79 ·



1.000 0.344 0.087

0.344 0.119 0.030

0.087 0.030 0.008


 + 1.78 ·




0.000 0.000 0.000

0.000 1.000 0.127

0.000 0.127 0.016




+ 2.63 ·



0.000 0.000 0.000

0.000 0.000 0.000

0.000 0.000 1.000




=




1.793 0.618 0.157

0.618 1.994 0.281

0.157 0.281 2.674




Var(uT
t ), Var(uS

t ), Var(uK
t ) and MSE(ŷt+1|t) taken times 10000
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Advanced Time Series Analysis

The numerical example illustrates the decomposition of the MSE of

the two step forecast

MSE(ŷt+2|t)
(n×n)

= Var(u
T
t )[a1a

′
1 + Ψ1a1a

′
1Ψ

′
1] + Var(u

S
t )[a2a

′
2 + Ψ1a2a

′
2Ψ

′
1]

+ Var(u
K
t )[a3a

′
3 + Ψ1a3a

′
3Ψ

′
1]

MSE(ŷt+2|t)
(n×n)

= 1.79 ·




1.000 0.343 0.086

0.343 0.125 0.035

0.086 0.035 0.012


 + 1.78 ·




0.001 0.008 0.004

0.008 1.040 0.147

0.004 0.147 0.026




+ 2.63 ·




0.001 0.002 0.002

0.002 0.002 0.003

0.002 0.003 1.004


 =




1.799 0.633 0.167

0.633 2.082 0.332

0.167 0.332 2.707




Var(uT
t ), Var(uS

t ), Var(uK
t ) and MSE(ŷt+2|t) taken times 10000
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Advanced Time Series Analysis

Variance Decomposition of Tokyo

Cholesky Ordering: Tokyo Singapore Korea
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Advanced Time Series Analysis

Variance Decomposition of Korea
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Advanced Time Series Analysis

Variance Decomposition of Korea
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