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I. Introduction to Stochastic Processes
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Time Series Analysis:

We observe (economic) variables over time, hence a time series is a collection

of observations indexed by the date of each observation.

Examples:

• macroeconomic variables as income, consumption, interest rates, unem-

ployment rates,...

• financial data as stock returns, exchange rates,...
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Time series techniques are therefore essential in

Economics:

• properties of macroeconomic time series

• persistence of macro shocks

• testing economic theories

• transmission of monetary policy

Finance:

• predictability of returns

• testing and estimating asset price models

• properties of price formation processes
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Stochastic processes:

Economic time series are viewed as realizations of stochastic processes,
that is, of a sequence of random variables over time (that are typically
not independent).

Idea of randomness:

draws from distributions, no certain numbers - not deterministic but
stochastic!
However, we observe only one (possible) realization of the stochastic
process!
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⇒We call {Xt} a stochastic process or sequence of random variables

and

{xt} the realization of the stochastic process or sequence of real num-
bers (that we do observe). Hence, we have observed the specific sample
(x1, x2, . . . , xt).

Because of the dependencies between the random variables
{. . . Xt−2, Xt−1 . . .} we have a ”more complex” structure than in the
cross- sectional case with independent random variables {X1,X2 . . .}

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 7
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As we have only one realization of the stochastic process, we need to reduce
complexity.
→ Two ”required” concepts in time series analysis:

1. stationarity: the distribution doesn’t change over time/what matters is
the relative position in the sequence but the moments remain the same
across time.

2. ergodicity: there might be dependencies of the random variables over
time, but these dependencies get smaller and smaller for larger time lags.
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II. Basic Concepts

—

II.1 Mathematical Techniques of Time Series

Analysis [Hamilton (1994), Appendix A]
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Required techniques:

Complex numbers, unit circle, employing difference- and lag operators, solving stochastic

difference equations

Unit circle

Basics:

The algebraic equation

x2 − 2ax + (a2 + b2) = 0

has the following formal solution:

x = a± b
√
−1

But these solutions are defined in the numerical range of real numbers just for b = 0.
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Solution

Definition of a set C which contains complex numbers R ⊂ C

Requirements for the set C:

1. The sum (product) of real numbers as elements of C is identical with the sum

(product) that is defined for real numbers.

2. The set C contains an element with the property i2 = −1.

3. For each element z of C there are two real numbers a, b, such that the complex

number z can be expressed as z = a + ib, where a is the real part of z and b the

imaginary part of z.
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We will specify this definition in more detail by defining a 2x2 matrix:

a :=




a 0

0 a



 a ∈ R

i :=




0 1

−1 0





We define the complex number a+ bi as

a+ bi :=




a 0

0 a



 +




0 b

−b 0



 =




a b

−b a



 a, b ∈ R

The set of (2x2) matrices illustrates, by addition and multiplication of matrices, a model for

complex numbers. The complex number z = a + ib is called purely imaginary, whenever

a = 0 and b 6= 0. It is called purely real, whenever b = 0.
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The complex number z = a− ib is the complex conjugate of z = a+ ib.

Example:

The equation x2 + c = 0, where c > 0 can be solved with the purely imaginary number

z1 = i
√
c and z2 = −i√c, as z2

1 = z2
2 = −c. The numbers z1 and z2 are said to be

complex conjugate.
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Visualization of the complex numbers in an Argand diagram:

a

z a i b
i b

i b z a i b

|z
|

|z|

The points on the horizontal axis correspond to the real numbers. The points on the

vertical axis correspond to the purely imaginary numbers. Each point in the plane matches

exactly one complex number.
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The real number |z| =
√
a2 + b2 is called the absolute value of z = a+ ib.

|z| is the distance to the origin.

As it is obvious from the formula this absolute value is identical to the absolute value of

real numbers.

Important rules from calculus:

(a + ib) + (c+ id) = (a + c) + i(b + d)

(a + ib) − (c + id) = (a− c) + i(b− d)

(a + ib) · (c + id) = ac− bd + i(ad + bc)
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Trigonometric representation of complex numbers

A complex number z = a+ ib of the absolute value 1 satisfies x2 + y2 = 1. It is referred

to as z being an element of the unit circle in the Argand diagram.

z

x 10,

0 1,

i y

0 0,
reelle Achse

imaginäre Achse

0 1,

10,

|z
|=

1

The circumference of the unit circle is 2π. The length of the arc from (1, 0) to

(0, 1), (−1, 0), (0,−1) equals π
2 , π,

3π
2 .
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̺ is the length of the circular arc from (1, 0) to z

cos(ϕ) := x

sin(ϕ) := y if y 6= 0

tan(ϕ) := y
x if x 6= 0

Hence, the complex number z on the unit circle can be expressed as:

z = cos(ϕ) + i · sin(ϕ)

An arbitrary complex number z = a + ib has the absolute value R =
√
a2 + b2. It can

be expressed as z = R(x + iy), where x = a
R, y = b

R and (x, y) are elements of the

unit circle.
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Z

a
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Hence, z has the trigonometric form: z = R · (cos(ϕ) + i sin(ϕ))

⇒ Polar coordinate representation of z

Moivre’s theorem: For each complex number z 6= 0 and each rational number q it has

to hold that zq = Rq [cos(qϕ) + i sin(qϕ)]
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Exponential representation of complex numbers

ex = 1 + x+ x2

2! + . . . + x5

5! + . . . (Power series expansion)

where x = iϕ holds due to i2 = −1, i3 = −i, i4 = 1, i5 = i

eiϕ = 1 + iϕ− ϕ2

2!
− i

ϕ3

3!
+
ϕ4

4!
+ i

ϕ5

5!
− ϕ6

6!
− i

ϕ7

7!
. . .

=

[

1 − ϕ2

2!
+
ϕ4

4!
− ϕ6

6!
+ . . .

]

+ i

[

ϕ− ϕ3

3!
+
ϕ5

5!
− ϕ7

7!
+ . . .

]

= cos(ϕ) + i sin(ϕ)

The representation of a complex number z = a + ib by means of z = Reiϕ using

R = |z|, tan(ϕ) = b
a is called the exponential form.
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II.2 (Stochastic) Difference Equations

[Hamilton (1994), Chapter 1]
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First order difference equation

Dynamic properties of

yt = φyt−1 + wt (1)

wt can be a random variable. Then: First order stochastic difference equation

Example:

Equation describing the demand for money [Goldfeld (1973)] for the USA mj (log real

demand for money) as a function of log aggregate income (real) It, the logarithmic interest

rate on deposits rGt and the interest rate on bonds rCt:

mt = 0.27 + 0.72mt−1 + 0.19It − 0.045rGt − 0.019rCt (2)
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Advanced Time Series Analysis

Hence, this is just a special case of equation (1) with

wt = 0.27 + 0.19It − 0.045rGt − 0.019rCt

yt = mt

φ = 0.72

Aim:

Understanding the dynamic behavior of y if w changes.

Point in time Equation

0 y0 = φy−1 + w0

1 y1 = φy0 + w1

2 y2 = φy1 + w2

... ...

t yt = φyt−1 + wt
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⇒ If the starting value y−1 for t = −1 and wt for 0, 1, ..., t is known, recursive

substitution can be used to evaluate the sequence yt:

yt = φt+1y−1 + φtw0 + φt−1w1 + φt−2w2 + . . . + φwt−1 + wt (3)

Dynamic behavior

If w0 changes and w1 . . . wt are not affected of the change, the effect on yt is:

yt =
∂yt
∂w0

= φt

Dynamic multiplier = (impulse-response function)

The intensity of the effect of the dynamic multiplier depends on the time span 0 − t and

the parameter φ.
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Let the dynamic simulation start in t:

yt+j = φj+1yt−1 + φjwt + φj−1w1+1 + . . .+ wt+j

Size and sign of φ determine the sequence of dynamic multipliers.

The effect of wt on yt+j is:

∂yt+j
∂wt

= φj

Thus, the dynamic multiplier depends just on j, the time span between wt and yt+j.

Therefore we have exponential growth/augmention for φ > 1, a geometric decreasing

development for 0 < φ < 1, oscillating decline for −1 < φ < 0, explosive oscillating

behavior for φ < −1.
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Higher order difference equations

Generalization of a p-th order difference equation

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p + wt (4)

Aim: Explaining the dynamic behavior of equation (4).
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To do so: Writing the p-th order difference equation as vector difference equation of order

one. We need the following notation:

ξt ≡












yt

yt−1

...

yt−p+1












(p× 1) − vector

F ≡












φ1 φ2 . . . φp−1 φp

1 0 . . . 0 0

0 1 . . . 0 0

0 0 . . . 1 0












(p× p) − matrix
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vt ≡












wt

0

0

0












(p× 1) − vector

For p = 1 (first order difference equation) we have F = φ (scalar).
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Define a first order vector-difference equation:

ξt = Fξt−1 + vt

Recursion analogous to the case of a first order difference equation:

For time t = 0: ξ0 = Fξ−1 + v0

For time t = 1: ξ1 = Fξ0 + v1 = F(Fξ−1 + v0) + v1 = F2ξ−1 + Fv0 + v1

For time t = t:

ξt = F
t+1

ξ−1 + F
t
v0 + F

t−1
v1 + . . . + Fvt−1 + vt (5)

Of special significance for the dynamics: First row of system (5) for time t.

Definition: f
(t)
11 is the (1, 1) element of Ft, f

(t)
12 is the (1, 2) element of Ft.
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For the first row of ξt = . . . we get:

yt = f
(t+1)
11 y−1 + f

(t+1)
12 y−2 + . . .+ f

(t+1)
1p y−p + f

(t)
11 w0 +

f
(t−1)
11 w1 + . . . + f

(1)
11 wt−1 + wt

⇒ yt is a function of p initial values of y and the entire history of w.

Starting the dynamic simulation in t:

ξt+j = F
j+1

ξt−1 + F
j
vt + F

j−1
vt+1 + . . .+ Fvt+j−1 + vt+j

for a p-th order difference equation the impulse-response function is

∂yt+j

∂wt
= f

(j)
11 (6)
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For j = 1 this is given by the (1, 1) element of F, or the parameter φ1!

For each p-th order system the effect of an increase in wt on yt+1 is as follows:

∂yt+1
∂wt

= φ1

Expansion of F 2 yields:

∂yt+2
∂wt

= φ2
1 + φ2

This is the (1, 1) element of F2.

In order to describe the dynamic behavior of higher order difference equations analytically

(e.g. when is the system explosive?) the eigenvalues of the matrix F are analyzed.

⇒ Matrix algebra [see for example Hamilton Appendix A]
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Eigenvalues/characteristic roots of a matrix F are the solutions for the following equation:
|F − λIp| = 0

Where Ip is a p-th order identity matrix. For a system of difference equations of second

order this means

∣
∣
∣
∣
∣
∣




φ1 φ2

1 0



 −




λ 0

0 λ





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣




(φ1 − λ) φ2

1 −λ





∣
∣
∣
∣
∣
∣

= λ2−φ1λ−φ2 = 0

⇒ characteristic equation

Hence, the two eigenvalues are:

λ1 =
φ1+

√

φ2
1+4φ2

2 , λ2 =
φ1−

√

φ2
1+4φ2

2

⇒ Eigenvalues can be complex numbers
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For difference equations of order p it holds generally that the eigenvalues of F can be

computed as solutions to the characteristic equation:

λp − φ1λ
p−1 − φ2λ

p−2 − . . .− φp−1λ− φp = 0

Proposition from matrix algebra [see for example Hamilton (1994), Appendix A]

If the eigenvalues of a (p× p) matrix F differ, then there is a non-singular matrix T, such

that

F = TΛT−1

where Λ is a (p × p) matrix containing the eigenvalues of F, which are arranged in the

following fashion
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Λ =











λ1 0 . . . 0

0 λ2 . . . 0
... . . .

. . .
...

0 . . . . . . λp











Hence, we can write:

F2 = TΛT−1 · TΛT−1 = TΛ2T−1

Due to the diagonal structure of Λ it holds that

Λ2 =











λ2
1 0 . . . 0

0 λ2
2 . . . 0

... . . .
. . .

...

0 . . . . . . λ2
p










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Generally it must hold that

F
j = TΛ

j
T

−1
(7)

The diagonal structure of Λj is still kept:

Λj =











λ
j
1 0 . . . 0

0 λ
j
2 . . . 0

... . . .
. . .

...

0 . . . . . . λ
j
p











Defining tij as the element of the i-th row and j-th column of T and defining tij as the

element of the i-th row and j-th column of T−1, then by multiplying the matrices one can

write the (1, 1)-th element of Fj as:

f
(j)
11 = [t11t

11]λj1 + [t12t
21]λj2 + . . .+ [t1pt

p1]λjp = c1λ
j
1 + c2λ

j
2 + . . .+ cpλ

j
p

where ci = [t1it
i1] (To show this, write equation (7) extensively!)
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(c1+c2+. . .+cp) is the (1, 1) element of TT−1 = Ip, such that c1+c2+. . .+cp = 1

Substitution into equation (6) yields

∂yt+j
∂wt

= c1λ
j
1 + c2λ

j
2 + . . . + cpλ

j
p

The impulse-response function of order j is a weighted average of the p eigenvalues raised

to the j-th power.

For p = 1 the characteristic equation states:

λ1 − φ1 = 0 ⇒ λ1 = φ1

The dynamic multiplier is then given by

∂yt+j
∂wt

= c1λ
j
1 = φj1 as c1 = 1 (see above)
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If there is at least one eigenvalue of F with an absolute value > 1 the system is explosive,

because:

the eigenvalue with the largest absolute value dominates the dynamic multiplier in an

exponential function. For real eigenvalues with an absolute value < 1 the dynamic

multiplier converges either geometrically or oscillating against zero.

(Compute the dynamic multiplier of equation yt = 0.6yt−1 + 0.2yt−2 + wt)

Complex eigenvalues for p = 2:

Eigenvalues of F are complex, if φ2
1 +4φ2 < 0. Writing the solutions of the characteristic

polynomial as complex numbers

λ1 = a+ ib, λ2 = a− ib, where a =
φ1
2 , b = 0.5

√

−φ2
1 − 4φ2.
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To show the dynamic of the system of difference equations, we use the polar coordinate

representation:

λ1 = R [cos(ρ) + i sin(ρ)]

where R =
√
a2 + b2, cos(ρ) = a

R, sin(ρ) = G
R

In exponential representation:

λ1 = R[eiρ]

λj1 = Rj[eiρj] = Rj [cos(ρj) + i sin(ρj)]
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Advanced Time Series Analysis

The complex conjugate λ1 can be derived as follows:

λj2 = Rj[e−iρj] = Rj [cos(ρj) − i sin(ρj)]

Substitution yields

∂yt+j

∂wt
= c1λ

j
1 + c2λ

j
2

= c1R
j [cos(ρj) + i sin(ρj)] + c2R

j [cos(ρj) − i sin(ρj)]

= [c1 + c2]R
j cos(ρj) + i [c1 − c2]R

j sin(ρj)

It can be shown, that these are also complex conjugates [proof: see Hamilton (1994) p.

15]:

c1 = α+ βi, c2 = α− βi
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Substitution yields the real multipliers:

c1λ
j
1 + c2λ

j
2 = 2αRj cos(ρj) − 2βRj sin(ρj)

⇒ If the eigenvalues are greater than 1 in absolute terms the system explodes at a rate

Rj.

For R = 1 (the eigenvalues are on the unit circle) the multipliers are periodic sine-cosine-

combinations. Only if R < 1 (the eigenvalues are inside the unit circle) the amplitude of

the multipliers decreases at a rate Rj.
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Due to the enormous significance of second order difference equations Sargent’s so-called

stationarity triangle (1981). A simple derivation [Hamilton (1994) p. 17f.]
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II.3 Using Lag Operators

[Hamilton (1994), Chapter 2]
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Comment on the notation

The notation of a time series yt is an abbreviated representation.

The fact, that yt does not just denote one observation, but a complete time series can be

accounted for by using the extensive expression {yt}∞
t=−∞.

Thus: An arithmetic operation xt = byt generates not only a new value, but {xt}∞
t=−∞,

i.e. a new time series! This holds as well for all the other possible arithmetic operators.

A very important operator, that creates a new time series, is the lag operator.

It is defined as:

Lxt ≡ xt−1,

where y = Lxt creates a new time series from {xt}∞
t=−∞. This new time series is denoted

by {yt}∞
t=−∞.
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It is written:

L2xt = L(Lxt) = L(xt−1) = xt−2

For each integer value k:

Lkxt = xt−k

Arithmetic operators and lag operators are commutative

L(βxt) = βLxt

and distributive:

L(xt + wt) = Lxt + Lwt

Using the lag operator manipulation of time series is possible. It works analogous to the

manipulations done by the common arithmetic operators. Therefore, it can be stated, that

xt is
”
multiplied“ by L to express that the lag operator operates on xt.
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Example:

yt = (a+ bL)Lxt = (aL+ bL2)xt = axt−1 + bxt−2

An important, later implemented example:

(1 − λ1L)(1 − λ2L)xt =
(

1 − (λ1 + λ2)L+ λ1λ2L
2
)

xt (8)

= xt − (λ1 + λ2)xt−1 + λ1λ2xt−2 (9)

⇒ Lag polynomials can be compared to simple polynomials such as a · z + b · z2

(where z is a real number).

Main difference:

The term a · z + b · z2 adds up to a real number, while a · L + b · L2 operating on a

time series {t}∞
t=−∞ produces a new series {yt}∞

t=−∞.

If xt = c for all t then: Lxt = c.
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Advanced Time Series Analysis

Practical implementation of the lag operators: Analysis of the dynamics of difference

equations

First order difference equation:

yt = φyt−1+wt ⇒ yt = φLyt+wt ⇒ yt−Lyt = wt ⇒ (1−φL)yt = wt
(10)

In textbooks mainly the inverse representation yt = (1 − φL)−1wt is printed.

We will explain the relevance of the expression (1 − φL)−1.
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To do so:

”Multiplication” of equation (10) with the lag polynomial
(
1 + φL+ φ2L2 + φ3L3 . . . φtLt

)
:

(
1 + φL+ φ2L2 + φ3L3 . . . φtLt

)
(1 − φL) yt =

(
1 + φL+ φ2L2 + φ3L3 . . . φtLt

”Expanding” the left hand side (exercise!) yields:

(1 − φt+1Lt+1)yt =
(
1 + φL+ φ2L2 + φ3L3 . . . φtLt

)
wt

Written extensively:

yt = φt+1y−1 + wt + φwt−1 + φ2wt−2 + . . .+ φtw0

This is the same result as we got above by recursive substitution!
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Property of the operator
(
1 + φL+ φ2L2 + φ3L3 . . . φtLt

)
, if

♦ t gets large,

♦ |φ < 1| is bounded for all t and

♦ |yt| < yu is bounded for all t,

(1 − φt+1Lt+1)yt ∼= yt

(
1 + φL+ φ2L2 + φ3L3 . . . φtLt

)
(1 − φL) yt ∼= yt

This yields the following result:

(1 − φL)
−1

= lim
j→∞

(
1 + φL+ φ2L2 + φ3L3 . . . φjLj

)
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Dynamics of difference equations can also be analyzed by means of the lag operator.

First, dynamics for a second order difference equation

yt = φ1yt−1 + φ2yt−2 + wt

(
1 − φ1L− φ2L

2
)
yt = wt

⇒ Second order lag polynomial factorization of the lag polynomial results in:

(

1 − φ1L− φ2L
2
)

= (1 − λ1L) (1 − λ2L) = 1 − [λ1 + λ2]L+ [λ1λ2]L
2

(11)
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Example:

If φ1 = 0.6 and φ2 = 0.08 ⇒ λ1 = 0.4 and λ2 = 0.2

We will show, that λ1, λ2 from equation (11) are identical to the eigenvalues of the matrix

F (see above).

(Remember: Stability (”stationarity”) is determined by the eigenvalues of the (2 × 2)

matrix F)

Furthermore, we search for: values λ1, λ2 for which equation (11) is fulfilled!
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To do so:

Auxiliary construction: We use a number z, that can be substituted for the lag operator L

in equation (11):

(1 − φ1z − φ2z
2
) = (1 − λ1z)(1 − λ2z) (12)

The right hand side of equation (12) is 0, if z = λ−1
1 or z = λ−1

2 .

Thus, it is made clear why we substituted L out with z: L = λ−1
1 would not have a

reasonable interpretation!

z is just to be used as intermediate replacement character for solving for λ1, λ2!

z = λ−1
1 or z = λ−1

2 have to set the left hand side of equation (12) equal to zero.

(1 − φ1z − φ2z
2) = 0 holds for

z1 =
φ1−

√

φ2
1+4φ2

−2φ2
, z2 =

φ1+
√

φ2
1+4φ2

−2φ2
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z1, z2 set the left hand side of equation (12) to 0. We can compute λ1 = z−1
1 , λ2 = z−1

2 .

There is also a more direct way to compute λ1, λ2:

To do so:

Division of equation (12) by z2:

(z−2 − φ1z
−1 − φ2) = (z−1 − λ1)(z

−1 − λ2)

Defining λ = z−1 yields
(λ2 − φ1λ− φ2) = (λ− λ1)(λ− λ2) (13)

The values of λ, which equalize the right hand side to zero are λ = λ1, λ = λ2. These

values have to equalize the left hand side of equation (13) to zero as well:

λ2 − φ1λ− φ2 = 0

λ1 =
φ1+

√

φ2
1+4φ2

2 , λ2 =
φ1+

√

φ2
1+4φ2

2
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Advanced Time Series Analysis

Hence, it follows: λ1 and λ2 are identical to the eigenvalues of the matrix F, which

determine the dynamics of the system of difference equations.

These eigenvalues can be calculated by factorizing the lag polynomial (1−φ1L−φ2L
2) and

computing the nulls of the corresponding polynomial (λ2−φ1λ−φ2) or 1−φ1z−φ2z
2.

Calculate λ1, λ2 for a second order difference equation with φ1 = 0.6 and φ2 = 0.08.

Be careful: In many textbooks the representations are not clear: Therefore, when is a

system of second order difference equations stable?
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We have seen:

♦ if the eigenvalue λ1, λ2 of the (2 × 2) matrix F are < 1 in absolute terms (lie inside

the unit circle)

♦ if the solutions to λ1 and λ2 of (λ2 − φ1λ− φ2) = 0 lie inside the unit circle

♦ if the solutions to z1, z2 where λ1 = z−1
1 , λ2 = z−1

2 of (1 − φ1z − φ2z
2) = 0 lie

outside the unit circle.

All three statements are equivalent.

Generalization of the p-th order difference equation:

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p + wt

(
1 − φ1L− φ2L

2 − . . .− φpL
p
)
yt = wt
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Factorization of the lag polynomial results in:

(

1 − φ1L− φ2L
2 − . . .− φpL

p
)

= (1 − λ1L) (1 − λ2L) . . . (1 − λpL) (14)

As seen above: Substitution of the lag operator by the number z:

(

1 − φ1z − φ2z
2 − . . .− φpz

p
)

= (1 − λ1z) (1 − λ2z) . . . (1 − λpz) (15)

The right hand side of equation (15) is zero, whenever z = λ−1
1 , z = λ−1

2 , . . . , z = λ−1
p .

These values also have to equalize the left hand side to zero.

Equalizing the left hand side to zero and multiplying it with z−p and λ ≡ z−1 yields
(

λ
p − φ1λ

p−1
z − φ2λ

p−2 − . . .− φp−1λ− φp
)

= 0 (16)

Equation (16) is identical to the formula we found for the eigenvalues of F in the case of

a p-th order difference equation.
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It follows: The nulls of equation (16) are identical to the eigenvalues of the matrix F,

which determines the dynamics of the system of difference equations.

These eigenvalues can be computed by first factorizing the lag polynomi-

al
(
1 − φ1L− φ2L

2 − . . .− φpL
p
)
, second derivation of the nulls λ1, . . . , λp

of the corresponding polynomial
(
λp − φ1λ

p−1z − φ2λ
p−2 − . . .− φp−1λ− φp

)
.

Equivalently the nulls z1, . . . , zp of the polynomial
(
1 − φ1z − φ2z

2 − . . .− φpz
p
)

(where z = λ−1
1 , z = λ−1

2 , . . . , z = λ−1
p ) can be derived in order to get the eigenvalues.

Three equivalent statements about stability (
”
stationarity“) of difference equations of p-th

order can be made (and are often confused in textbooks).

A p-th order difference equation is stable, if:

♦ the eigenvalues of the (p× p) matrix F are within the unit circle.

♦ the solutions to λ1, . . . , λp of the polynomial
(
λp − φ1λ

p−1z − φ2λ
p−2 − . . .− φp−1λ− φp

)
are within the unit circle.

♦ the solutions z1, z2, . . . , zp to the polynomial
(
1 − φ1z − φ2z

2 − . . .− φpz
p
)

are

outside the unit circle.
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II.4 Stationarity and Ergodicity

[Hayashi 2.2]

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 56
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1. Weak/Covariance stationarity

A stochastic process Xt is weakly/covariance stationary if

E(Xt) = µ ∀ t

Var(Xt) = σ2 ∀ t

Cov(Xt, Xt−j) = γj ∀ t

⇒ The mean, variance and autocovariances do not depend on t.
The autocovariances only depend on the distance j,

for example: Cov(x3, x5) = Cov(x98, x100).
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Advanced Time Series Analysis

2. Strict stationarity

A stochastic process Xt is strictly stationary if its distribution does not
depend on t:

FXt1,...,Xtn(x1, . . . , xn) = FXt1+j,...,Xtn+j
(x1, . . . , xn).

So, the joint distribution of two or more random variables in the sequence
does not depend on t,

for example: FX100,X200(a, b) = FX900,X1000(a, b).
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• If a sequence is strictly stationary and the variance and covariances are
finite, then the sequence is also weakly stationary.

• In the remainder of the course ”stationary” means covariance stationary,
and therefore we always check for covariance stationarity of a given
stochastic process.

• Special case: Gaussian process
As the first two moments are sufficient to identify the normal distribution,
for the Gaussian process weak stationarity also implies strict stationarity.
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3. Trend stationarity and difference stationarity

• A stochastic process Xt is trend stationary if the process is stationary
after subtracting a (usually linear) function of time t, which is called
time trend.

• A stochastic process Xt is difference stationary if the process is not
stationary, but its first difference, Xt −Xt−1, is stationary.
Xt is also called integrated of order 1, I(1)-process or a stochastic
process with a unit root.
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4. Ergodicity and the Ergodic Theorem

• A stochastic process Xt is ergodic if the dependencies between Xt and
Xt−j get weaker and weaker over time.

• We consider two different definitions:
a) Hayashi and b) Hamilton.
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a) Ergodicity following Hayashi:
A stationary process is ergodic if for any two bounded functions f : R

k → R

and g : Rl → R

lim
n→∞

E [f(zi, . . . , zi+k) · g(zi+n, . . . , zi+n+l)]

= E [f(zi, . . . , zi+k)] · E [g(zi+n, . . . , zi+n+l)]

⇒ A stationary process is ergodic if it is asymptotically independent, that
is, if any two random variables positioned far apart in the sequence, are
almost independently distributed.

⇒ Problem: this definition of ergodicity is difficult to check!
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b) Ergodicity following Hamilton:

A stationary Gaussian process Xt is ergodic if

∞∑

j=0

|γj| < ∞ ”absolute summability”

with

γ0 = Var(Xt) and

γj = Cov(Xt, Xt−j); j = 1, 2, . . .

⇒ In order to check for ergodicity:

1. Is the process stationary Gaussian? Yes → 2.

2. Find the autocovariances γj and sum them up.

3. Is the sum finite? Yes: the process is stationary and ergodic!
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The Ergodic Theorem:

If Xt is a stationary and ergodic process, then any moment of this process
is consistently estimated by the sample moment.
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5. The autocorrelation function (ACF)
The jth-order autocorrelation function is defined as:

ρj :=
γj

γ0
=

Cov(Xt,Xt−j)

Var(Xt)
; j = 0, 1, 2 . . .

with −1 ≤ ρj ≤ 1.

The plot of ρj against j = 0, 1, 2 . . . is called the correlogram.
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III. ARMA Models and Stationarity Tests

—

III.1 Modeling Univariate Time Series: ARMA

Models

[Hamilton: 43-61, 64-71]

[Hayashi: 365 - 386]
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A general ARMA(p, q) model is defined as the stochastic process {Yt} that evolves as:

Yt = c+ φ1Yt−1 + φ2Yt−2 + . . . + φpYt−p
︸ ︷︷ ︸

AR (autoregressive)-part

+ θ1εt−1 + θ2εt−2 + . . .+ θqεt−q
︸ ︷︷ ︸

MA (moving average)-part

+εt

where {εt} is Gaussian White Noise, that is:

E(εt) = 0

Var(εt) = E(ε2
t) = σ2 ∀ t

Cov(εt, εt−j) = E(εt · εt−j) = 0 ∀ j 6= 0

and εt ∼ N(0; σ2)
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Firstly, we are interested in:

i) Is a given ARMA(p, q) process stationary and ergodic?

ii) How does its joint distribution look like?

iii) How can the parameters c, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq
be estimated?

iv) How can we forecast the time series?

Reference:
Hamilton: p.43-61 and 64-71
Hayashi: p.365-386
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A. Moving Average Processes

1. MA(1)-process

2. MA(q)-process

3. MA(∞)-process
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1. MA(1)-process

Yt = µ+ θ1εt−1 + εt

with {εt}: Gaussian White Noise

Checking for stationarity:

E(Yt) = µ+ θ1E(εt−1) + E(εt) = µ ∀ t

γ0 = Var(Yt) = E[(Yt − µ)2] = E[(θ1εt−1 + εt)
2]

= E[θ2
1ε

2
t−1 + 2θ1εt−1εt + ε2t ]

= θ2
1σ

2 + 0 + σ2

= (1 + θ2
1)σ

2 ∀ t
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γ1 = Cov(Yt, Yt−1) = E[(Yt − µ)(Yt−1 − µ)]

= E[(θ1εt−1 + εt)(θ1εt−2 + εt−1)]

= E[θ2
1εt−1εt−2 + θ1ε

2
t−1 + θ1εtεt−2 + εtεt−1]

= 0 + θ1σ
2 + 0 + 0

= θ1σ
2 ∀ t
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Higher order covariances are all zero:

γj = Cov(Yt, Yt−j) = 0 ∀ j > 1

⇒ {Yt} is (covariance) stationary! Is it also ergodic?

∞∑

j=0

γj = (1 + θ2
1)σ

2 + |θ1|σ
2 <∞

⇒ The MA(1)-process is stationary and ergodic!
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The autocorrelations for the MA(1)-process are given by:

ρj =
γj

γ0
for j = 0, 1, 2, . . .

Therefore, ρ0 = 1 (always) and for the MA(1)-process we get:

ρ1 =
θ1

(1 + θ2
1)

with

ρ1 > 0 for θ1 > 0 and

ρ1 < 0 for θ1 < 0.

As for j > 1 : γj = 0 ⇒ ρj = 0!
Hence, the autocorrelations are useful to identify the process!
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2. MA(q)-process

Yt = µ+ θ0εt + θ1εt−1 + . . .+ θqεt−q

normally with θ0 = 1.

Checking for stationarity and ergodicity: → See Hamilton p. 50

Result:

E(Yt) = µ
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γ0 = Var(Yt) = (θ2
0 + θ2

1 + . . .+ θ2
q)σ

2 ∀ t

γj = Cov(Yt, Yt−j)

= (θjθ0 + θj+1θ1 + . . .+ θqθq−j)σ
2 for j = 1, . . . , q

γj = 0 for j > q !

Checking for ergodicity:

∞∑

j=0

|γj| <∞ for q <∞.

⇒ The MA(q)-process is stationary and ergodic (for finite q)!
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3. MA(∞)-process
If q → ∞: the complete history of the ε’s matters! (often in econometrics)

Yt = µ+ ψ0εt + ψ1εt−1 + ψ2εt−2 + . . .

= µ+

∞∑

j=0

ψjεt−j

Is the MA(∞)-process also stationary and ergodic?

If
∞∑

j=0

|ψj| < ∞ (the coefficients are absolutely summable), then the MA(∞)-

process is stationary and ergodic!
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Why do we need the condition
∞∑

j=0

|ψj| < ∞? Because then:

E(Yt) = µ+ ψ0E(εt) + ψ1E(εt−1) + . . .

= µ+ (ψ0 + ψ1 + . . .)
︸ ︷︷ ︸

finite

E(εt)
︸ ︷︷ ︸

0
= µ

and γ0 = Var(Yt) = . . . = (ψ
2
0 + ψ

2
1 + . . .)σ

2
.

As
∞∑

j=0

|ψj| < ∞ implies that
∞∑

j=0

ψj
2 < ∞ (square summability),

[proof see Hamilton p.69-70],

γ0 converges to a finite number if
∞∑

j=0

|ψj| < ∞.
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Similarly,

γj = Cov(Yt, Yt−j) = . . . = (ψjψ0 + ψj+1ψ1 + . . .)σ2

converges also to a finite number if
∞∑

j=0

|ψj| <∞.

[proof see Hamilton p.70]

Hence, the MA(∞)-process is stationary if
∞∑

j=0

|ψj| <∞.

And as
∞∑

j=0

|ψj| <∞ also implies that
∞∑

j=0

|γj| <∞,

the MA(∞)-process is also ergodic if
∞∑

j=0

|ψj| <∞.
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B. Autoregressive Processes

1. AR(1)-process

2. AR(2)-process

3. AR(p)-process

4. Invertibility of AR processes
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1. AR(1)-process
Yt = c+ φYt−1 + εt (17)

with {εt}: Gaussian White Noise.

Remember: A first-order linear difference equation is given by

Yt = Yt−1 + wt.

For the AR(1)-process: wt = c+ εt.

As εt is a stochastic process, the AR(1)-process is a first-order stochastic
linear difference equation.
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Advanced Time Series Analysis

As we already showed, Yt can be written as:

Yt = φt+1Y−1 + φtwo + . . .+ φ2wt−2 + φwt−1 + wt

with the dynamic multiplier φj.

Hence, the effects of the past innovations ε only die out for |φ| < 1, and
under this condition the difference equation is stable!

⇒ The AR(1)-process is only stationary and ergodic if |φ| < 1!
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The AR(1)-process can be written as:

Yt = (c+ εt) + φ(c+ εt−1) + φ2(c+ εt−2) + φ3(c+ εt−3) + . . .

= c (1 + φ+ φ2 + φ3 + . . .)
︸ ︷︷ ︸

+ εt + φεt−1 + φ2εt−2 + . . .
︸ ︷︷ ︸

1

1 − φ
if |φ| < 1 MA(∞) − process

Yt = µ+ εt + φεt−1 + φ2εt−2 + . . .

with E(Yt) = µ =
c

1 − φ
.
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Checking stationarity and ergodicity for this MA(∞)-process:

∞∑

j=0

|ψj| =
∞∑

j=0

|φj| =
1

1 − |φ|
<∞ if |φ| < 1

→ stationary and ergodic!

The variance is given by:

γ0 = E[(Yt − µ)2] = E[(εt + φεt−1 + φ2εt−2 + . . .)2]

= (1 + φ2 + φ4 + φ6 + . . .)σ2

=
1

1 − φ2
σ2 (if |φ| < 1)
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Similarly, we get the autocovariances for |φ| < 1:

γj = E[(Yt − µ)(Yt−j − µ)]

= E[(εt + φεt−1 + φ2εt−2 + . . .)

(εt−j + φεt−j−1 + φ2εt−j−2 + . . .)]

⇒ γ1 = (φ+ φ3 + φ5 + . . .) σ2

= φ(1 + φ2 + φ4 + . . .) σ2

=
φ

1 − φ2
σ2
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⇒ γ2 = (φ2 + φ4 + . . .) σ2

= φ2(1 + φ2 + φ4 + . . .) σ2

=
φ2

1 − φ2
σ2

...

⇒ γj = φj(1 + φ2 + φ4 + . . .) σ2 =
φj

1 − φ2
σ2

and the autocorrelations:
ρj =

γj

γ0
= φj

⇒ If |φ| < 1, ρj decays for j = 1, 2, . . ., but there is no abrupt stop as for
a MA(q)-process!
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Alternatively, the moments of the AR(1)-process can be calculated by
”brute force”, that is under the assumption that the AR(1)-process is
covariance-stationary:

Yt = c+ φYt−1 + εt

E(Yt) = c+ φE(Yt−1) + E(εt).

As E(Yt) = E(Yt−1) = µ for a covariance-stationary AR(1)-process:

µ = c+ φµ+ 0

⇒ µ =
c

1 − φ
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Substituting c = µ(1 − φ) into (17), we get:

Yt = µ(1 − φ) + φYt−1 + εt

Yt − µ = φ(Yt−1 − µ) + εt

Therefore, the variance is:

γ0 = E[(Yt − µ)
2
]

= E[(φ(Yt−1 − µ) + εt)
2]

= φ2
E[(Yt−1 − µ)2] + 2φE[(Yt−1 − µ)εt] + E[ε2

t ]

= φ
2 · γ0 + 0 + σ

2

⇒ γ0 =
1

1 − φ2
σ

2

γj : → See Hamilton p.53
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Note: Using the Lag operator L, the AR(1)-process can be written as:

Yt = φLYt + εt (with c = 0)

(1 − φL)Yt = εt

Yt = (1 − φL)−1εt

= (1 + φL+ φ2L2 + . . .)εt

= εt + φεt−1 + φ2εt−2 + . . .

which is a MA(∞)-process and therefore called the MA representation of
the AR(1) process.
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2. AR(2)-process

Yt = c+ φ1Yt−1 + φ2Yt−2 + εt (18)

which is a second-order stochastic linear difference equation with wt = c+εt
and {εt} Gaussian White Noise. This stochastic process can also be written
using the lag operator L as:

(1 − φ1L− φ2L
2)Yt = c+ εt

or in the factorized form:

(1 − λ1L)(1 − λ2L)Yt = c+ εt.
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As we saw in II.1, this difference equation is only stable if the eigenvalues λ1 and λ2 of

the matrix F =

[
φ1 φ2

1 0

]

, which are the solutions λ1 and λ2 of the characteristic

polynomial

λ
2 − φ1λ− φ2 = 0,

lie inside the unit circle (are less than 1 in modulus for complex numbers). As we also

showed, you can alternatively check, if the solutions z1 and z2 of the lag polynomial

1 − φ1z − φ2z
2 = 0

lie outside the unit circle (are greater than 1 in modulus).

As the AR(2)-process is a second-order stochastic linear difference equation, those same

conditions must be fulfilled for the AR(2)-process to be stationary!
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Then, there also exists an expression for (1 − φ1L − φ2L
2)−1 so that the

AR(2)-process can also be written as a MA(∞)-process:

Yt = (1 − φ1L− φ2L
2)−1c+ (1 − φ1L− φ2L

2)−1εt

where

(1 − φ1L− φ2L
2
)
−1

= (1 − λ2L)
−1

(1 − λ1L)
−1

= (1 + λ2L+ λ
2
2L

2
+ . . .)(1 + λ1L+ λ

2
1L

2
+ . . .)

= 1 + ψ1L+ ψ2L
2 + . . .

= ψ(L)

with ψ1 = λ1 + λ2

ψ2 = λ
2
1 + λ

2
2 + λ1 · λ2

...
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Hence, the MA(∞)-representation of the AR(2)-process is given by:

Yt =
c

1 − φ1 − φ2
+ εt + ψ1εt−1 + ψ2εt−2 + . . .

with
E(Yt) = µ =

c

1 − φ1 − φ2

and
ψj = c1λ

j
1 + c2λ

j
2

where c1 + c2 = 1 (for a proof see Hamilton p.12).

Therefore, the MA representation of the AR(2)-process can be written
shortly as:

Yt = µ+ ψ(L)εt.
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Advanced Time Series Analysis

Substituting c = µ(1 − φ1 − φ2) in (18), we get:

Yt = µ(1 − φ1 − φ2) + φ1Yt−1 + φ2Yt−2 + εt

(Yt − µ) = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + εt

Multiplying by (Yt−j − µ) and taking expectations results in:

E[(Yt − µ)(Yt−j − µ)] = φ1E[(Yt−1 − µ)(Yt−j − µ)]

+ φ2E[(Yt−2 − µ)(Yt−j − µ)]

+ E[εt(Yt−j − µ)]

⇒ γj = φ1γj−1 + φ2γj−2 for j = 1, 2, ... (19)

Thus, the autocovariances follow the same second-order difference equation
as the process for Yt.
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By dividing (19) through γ0 we get the autocorrelations as:

ρj = φ1ρj−1 + φ2ρj−2 for j = 1, 2, ...

As ρ0 = 1 and ρ−1 = ρ1 the autocorrelation for j = 1 is given by:

ρ1 = φ1 + φ2ρ1

⇒ ρ1 =
φ1

1 − φ2
.
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For j = 2:

ρ2 = φ1ρ1 + φ2

=
φ2

1

1 − φ2
+ φ2

and so on.

Similarly (→ See Hamilton p.57-58), it can be shown that:

γ0 =
(1 − φ2)σ

2

(1 − φ2)[(1 − φ2)2 − φ2
1]
.
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3. AR(p)-process

Yt = c+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt (20)

which is a pth-order stochastic linear difference equation with wt = c + εt
and {εt} Gaussian White Noise.

This stochastic process can also be written using the lag operator L as:

(1 − φ1L− φ2L
2 − . . .− φpL

p)Yt = c+ εt.
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Advanced Time Series Analysis

As we have already shown, this difference equation is only stable if the
eigenvalues λ1, λ2, . . . , λp of the matrix F ,

F =









φ1 φ2 · · · φp−1 φp
1 0 · · · 0 0
0 1 · · · 0 0
... ... . . . ... ...
0 0 · · · 1 0









which are the solutions λ1, λ2, . . . , λp of the characteristic polynomial

λp − φ1λ
p−1 − φ2λ

p−2 − . . .− φp−1λ− φp = 0,

lie inside the unit circle (are less than 1 in modulus for complex numbers).
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As we have also shown, you can alternatively check, if the solutions
z1, z2, . . . , zp of the lag polynomial

1 − φ1z − φ2z
2 − . . .− φpz

p = 0

lie outside the unit circle (are greater than 1 in modulus).

As the AR(p)-process is a pth-order stochastic linear difference equati-
on, those same conditions must be fulfilled for the AR(p)-process to be
stationary!
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Then, there exists an expression for (1 − φ1L − φ2L
2 − . . . − φpL

p)−1 so
that the AR(p)-process can also be expressed as a MA(∞)-process:

Yt = (1−φ1L−φ2L
2− . . .−φpL

p)−1c+(1−φ1L−φ2L
2− . . .−φpL

p)−1εt

where

(1 − φ1L− φ2L
2 − . . .− φpL

p)−1

= (1 − λpL)−1 · · · (1 − λ1L)−1

= (1 + λpL+ λ2
pL

2 + . . .) · · · (1 + λ1L+ λ2
1L

2 + . . .)

= 1 + ψ1L+ ψ2L
2 + . . .

= ψ(L).
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It can also be shown that

ψj = c1λ
j
1 + c2λ

j
2 + . . .+ cpλ

j
p

with
p∑

i=1

ci = 1 (for a proof see Hamilton p.12).

Hence, the MA(∞)-representation of the AR(p)-process is given by:

Yt =
c

1 − φ1 − . . .− φp
+ εt + ψ1εt−1 + ψ2εt−2 + . . .

with
E(Yt) = µ =

c

1 − φ1 − . . .− φp
.

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 100
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Therefore, the MA representation of the AR(p)-process can also be written
shortly as:

Yt = µ+ ψ(L)εt.

As for a stationary AR(p)-process

∞∑

j=0

|ψj| <∞,

the process is also ergodic.
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Substituting c = µ(1 − φ1 − . . .− φp) in (20), we get:

Yt = µ(1 − φ1 − . . .− φp) + φ1Yt−1 + . . . + φpYt−p + εt

(Yt − µ) = φ1(Yt−1 − µ) + . . .+ φp(Yt−p − µ) + εt

Multiplying by (Yt−j − µ) and taking expectations results in:

E[(Yt − µ)(Yt−j − µ)] = φ1E[(Yt−1 − µ)(Yt−j − µ)] + . . .

+ φpE[(Yt−p − µ)(Yt−j − µ)]

+ E[εt(Yt−j − µ)]

⇒ γj = φ1γj−1 + φ2γj−2 + . . .+ φpγj−p for j = 1, 2, ... (21)

Again, the autocovariances follow the same pth-order difference equation as the process

for Yt.
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By dividing (21) through γ0 we get the autocorrelations as:

ρj = φ1ρj−1 + . . .+ φpρj−p for j = 1, 2, ...

Those equations are called the Yule-Walker equations and can be solved
recursively as we did in the case of the AR(2)-process.
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4. Invertibility of AR processes

As all stationary AR(p)-processes have a MA(∞) representation, it can
also be shown that a MA(q) process has an AR(∞) representation if the
so-called invertibility conditions are fulfilled. However, those invertibility
conditions resemble the stationarity conditions of the AR-process!
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C. ARMA Processes

Combining an MA(q) and an AR(p) part, we obtain the general ARMA(p, q)
model:

Yt = c+ φ1Yt−1 + ...+ φpYt−p
︸ ︷︷ ︸

AR-part

+ θ1εt−1 + ...+ θpεt−p
︸ ︷︷ ︸

MA-part

+εt

where {εt} is Gaussian White Noise.

As the MA(q) part is always a stationary process, the AR(p) part, that
is to say the parameters φ1, ..., φp, determine if the ARMA(p, q) process is
stationary.
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Using the lag operator L, the ARMA(p, q)-process can be written as:
(1 − φ1L− ...− φpL

p)Yt = ct + (1 + θ1L+ ...+ θqL
q)εt

If the AR part is stationary, there exists an expression for (1 − φ1L −
... − φpL

p)−1, so that the ARMA(p, q)-process has the following MA(∞)
representation:

Yt = µ+ (1 − φ1L− ...− φpL
p)−1(1 + θ1L+ ...+ θqL

q)εt

= µ+
(1 + θ1L+ ...+ θqL

q)

(1 − φ1L− ...− φpLp)
εt

= µ+ (1 + ψ1L+ ψ2L
2 + ...)εt

= µ+ ψ(L)εt

with µ = c
1−φ1−...−φp as for the AR(p)-process.
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The stationarity of the AR(p) part also guarantees that:

∞∑

j=0

|ψj| <∞

⇒ the process is ergodic!
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As we did for the AR(p)-process, we can write the ARMA(p, q)-process in
terms of deviations from the mean µ in order to derive the autocovariances:

(Yt − µ) = φ1(Yt−1 − µ) + ...+ φp(Yt−p − µ)

+θ1εt−1 + ...+ θqεt−q + εt
...

γj = φ1γj−1 + φ2γj−2 + ...+ φpγj−p for j > q!

For j ≤ q, the MA part also effects the autocovariances. Hence, the
autocovariances as well as the autocorrelations of the ARMA(p, q)-process
have more complicated characteristics than those of an AR(p)- or MA(q)-
process!
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III.2 Parameter Estimation of ARMA Processes

[Hamilton (1994), Chapter 3, 5]
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Aim:

Estimation of the model parameters θ =
(
c, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq, σ

2
) ′

of an

ARMA(p, q) process

Yt = c+φ1Yt−1+φ2Yt−2+φ3Yt−3+. . .+θ1εt−1+θ2εt−2+. . .+θqεt−q+εt

{εt}t∈T White Noise with E(εt) = 0 and E(ε2
t) = σ2 from a time series that contains

T observations (y1, y2, . . . , yT)

Maximum likelihood (ML) estimation

⇒ Distributional assumption for εt. Typically: εt ∼ i.i.d.N
(
0, σ2

)
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Computation of the likelihood function, i.e. the ”likelihood” to observe a time series

(y1, y2, . . . , yT) given the assumption of a specific parametric stochastic process.

Parameter vector θ =
(
c, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq, σ

2
) ′

which maximizes the

likelihood function: Maximum likelihood estimator.
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Maximum Likelihood Estimation of a stationary AR(1) , i.e. ARMA(1, 0)-Process

Yt = c+ φyt−1 + εt

{εt}t∈T White Noise with E(εt) = 0 and E(ε2
t) = σ2. Additional Assumption: εt ∼

i.i.d.N
(
0, σ2

)
.

We search for estimators of the unknown parameters θ = (c, φ, σ2)′.

E(Yt) = E(Y1) = c
1−φ

E(Yt) = E(Y1 − µ)2 = σ2

1−φ2

where εt is normally distributed ⇒ y1 ∼ N
(

c
1−φ,

σ2

1−φ2

)

Likelihood contribution y1: fY1(y1; θ) = fY1(y1; c, φ, σ
2) = 1√

2π
√
σ2/(1−φ2)

exp

[

−{y1−[c/(1−φ)]}
2σ2/(1−φ2)
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Consider y1: Density of (y2|Y1 = y1) N
(
(c+ φy1), σ

2
)

i.e.

fY2|Y1(y2|y1; θ) = 1√
2πσ2

exp

[

−{y2−c−φy1)}2
2σ2

]

Joint density function of the first and second observation

fY2,Y1(y2, y1; θ) = fY2|Y1(y2|y1; θ) · fY1(y1; θ)
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Analogous:

fY3|Y2,Y1(y3|y2, y1; θ) = fY3|Y2(y3|y2; θ)

=
1

√

2πσ2
exp

[

−{y3 − c− φy2}2

2σ2

]

fY3,Y2,Y1
(y3, y2, y1; θ) = fY3|Y2,Y1(y3|y2, y1; θ) · fY2,Y1(y2, y1; θ)

=
1

√

2πσ2
exp

[

−{y3 − c− φy2}2

2σ2

]

· 1
√

2πσ2
exp

[

−{y2 − c− φy1}2

2σ2

]

·

1
√

2π
√

σ2/(1 − φ2)

exp

[

−{y1 − [c/(1 − φ)]}2

2σ2/(1 − φ2)

]

Generally:

fYt|Yt−1,Yt−2,...,Y1
(yt|yt−1, yt−2, . . . , y1; θ) = fYt|Yt−1

(yt|yt−1; θ)

=
1

√

2πσ2
exp

[

−{yt − c− φyt−1}2

2σ2

]
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Joint Density of the sample, i.e. likelihood function:

fYT ,YT−1,...,Y1

(

yT , yT−1, yT−2, . . . , y1; θ
)

= fYT |YT−1

(

yt|yt−1; θ
)

· fYT−1,YT−2,...,Y1

(

yT−1, yT−2, . . .

= f (y1; θ) ·
T∏

t=2

fYt|Yt−1

(

yt|yt−1; θ
)

Log likelihood function:

logL = − 1

2
log(2π) − 1

2
log

(

σ2

1 − φ2

)

−
[

−{y1 − [c/(1 − φ)]}2

2σ2/(1 − φ2)

]

−
[
T − 1

2

]

log(2π) −

−
[
T − 1

2

]

log(σ
2
) −

T∑

t=2

[

(yt − c− φyt−1)2

2σ2

]

The system is maximized by solving for nulls of the first derivatives subject to θ =

(c, φ, σ2)′.

System of equations is non-linear in the parameters θ = (c, φ, σ2)′ ⇒ numerical

optimization

Summary: Hamilton (1994), p. 133-142.
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Maximum Likelihood Estimation of a stationary AR(p) , i.e. ARMA(p, 0)-process

Aim:

Estimating θ = (c, φ1, φ2, . . . , φpσ
2)′ of an ARMA(p, 0)-process is defined with

[
1 − φ1L− φ2L

2 − φ3L
3 − . . .− φpL

p
]
Yt = c+ εt

{εt}t∈T Gaussian White Noise with E(εt) = 0 and E(ε2
t) = σ2. Additional Assumption:

εt ∼ i.i.d.N
(
0, σ2

)
.

y(p) = (y1, y2, . . . , yp)
′: (p× 1) vector of the first p observations of the time series

µ(p): (p× 1) vector of expectations of the first p observations E
(

y(p)
)

.

vector consists of p elements: µ = c
1−φ1−φ2−...−φp
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σ2V(p): (p× p) variance covariance matrix of y(p):














E(Y1 − µ)2 E(Y1 − µ)(Y2 − µ) . . . . . . E(Y1 − µ)(Yp − µ)

E(Y1 − µ)(Y2 − µ) E(Y2 − µ)2 . . .
...

...
... E(Y3 − µ)3

...
...

...
. . .

E(Y1 − µ)(Yp − µ) . . . . . . E(Yp − µ)2













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y(p) ∼ N
(

µ(p), σ2V(p)
)

. Joint density function of the first p observations (i. e. likelihood

contribution):

fY1,Y2,...,Yp

(
y1, y2, . . . , yp; θ

)
= (2π)−p/2

∣
∣
∣
∣
σ
−2

(V
(p)

)
−1
∣
∣
∣
∣

1/2
·

exp

[

− 1

2σ2
(y(p) − µ(p))′(V(p))−1(y(p) − µ(p))

]

=

(2π)−p/2 (σ
−2

)
−p/2

∣
∣
∣
∣
(V

(p)
)
−1
∣
∣
∣
∣

1/2
·

exp

[

− 1

2σ2
(y(p) − µ(p))′(V(p))−1(y(p) − µ(p))

]

Using |αA| = αn|A|.

Consider p preceding observations, then the tth observation is normally distributed with

expectation c+ φ1yt−1 + φ2yt−2 + φ3yt−3 + . . .+ φpyt−p and variance σ2.
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When we condition only the last p observations are of interest for t. Therefore for t > p

fYt|Yt−1,Yt−2,...,Y1

(

yt|yt−1, yt−2, . . . , y1; θ
)

= fYt|Yt−1,Yt−2,...,Yt−p
(

yt|yt−1, yt−2, . . . , yt−p; θ
)

=

1
√

2πσ2
exp



−
{yt − c− φ1yt−1 − φ2yt−2 − φ3yt−3 − . . .− φpyt−p}2

2σ2





The joint density (= likelihood) function is:

fYt,Yt−1,...,Y1
(yt, yt−1, yt−2, . . . , y1; θ) = fYp|Yp−1,Yp−2...,Y1

(yp−1, yp−2, . . . , y1; θ) ·

∏T
t=p+1 fYt|Yt−1,Yt−2,...,Yt−p(yt|yt−1, yt−2, . . . , yt−p; θ)
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Log likelihood:

logL = − p

2
log(2π) − p

2
log

(

σ2
)

+
1

2

(

V
(p)
)−1

− 1

2σ2

(

y(p) − µ(p)
) ′ (

V
(p)
)−1 (

y(p) − µ(p)
)

− T − p

2
· log(2π) − T − p

2
· log(σ2) −

T∑

t=p+1




(yt − c− φ1yt−1 − φ2yt−2 − φ3yt−3 − . . .− φpy1−p)2

2σ2





− T

2
· log(2π) − T

2
· log(σ2) + log(σ2)

1

2
log(V(p))−1 − 1

2σ2

(

y(p) − µ(p)
) ′ (

V
(p)
)−1 (

y(p) − µ(p)
)

−
T∑

t=p+1




(yt − c− φ1yt−1 − φ2yt−2 − φ3yt−3 − . . .− φpy1−p)2

2σ2





Setting the first derivatives equal to zero: Resulting system of equations is non-linear in

the parameters.

⇒ Numerical optimization.
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Avoiding numerical optimization techniques: Conditional likelihood function

fYt,Yt−1,...,Yp+1|Yp,...,Y1(yt, yt−1, yt−2, . . . , yp+1|yp, . . . , y1; θ) =

−T − p

2
· log(2π) − T − p

2
· log(σ

2
) −

T∑

t=p+1




(yt − c− φ1yt−1 − φ2yt−2 − φ3yt−3 − . . .− φpy1−p)2

2σ2





Identical asymptotic distributions for large samples. Conditional log likelihood:

Maximization yields the same result as minimization
∑ T

t=p+1

[
(yt − c− φ1yt−1 − φ2yt−2 − φ3yt−3 − . . .− φpy1−p)

2
]

⇒ Conditional ML-estimation of an AR(p)-process: Result is identical to Least Squa-

res Estimation. Asymptotic properties of (exact) ML-estimation and OLS-estimation are

equivalent.
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Conditional Maximum Likelihood estimation of an MA(1), i.e. ARMA(0, 1)-process

Aim: Estimation of the parameters of an MA(q) process θ =
(
µ, θ1, θ2, . . . , θq, σ

2
) ′

Conditional Maximum Likelihood estimation does not result in a simplified estimating

equation for the parameters MA(1):

Yt = µ+ εt + θεt−1

{εt}t∈T Gaussian White Noise with E(εt) = 0 and E(ε2
t) = σ2.

Additional assumption: εt ∼ i.i.d.N
(
0, σ2

)
.

Conditioning is more difficult compared to the AR: ε is not directly observable
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If εt−1 were known:

Yt|εt−1 ∼ N
(
µ+ θεt−1, σ

2
)

fYt|εt−1
(yt|εt−1; θ) = 1√

2πσ2
exp

[
−{yt−µ−θεt−1}2

2σ2

]

If additionally ε0 = 0 were known ⇒

Y1|ε0 ∼ N
(
µ, σ2

)

and: ε1 = y1 − µ

⇒ fY2|Y1,ε0=0(yt|y1, ε0 = 0; θ) = 1√
2πσ2

exp

[

−{y2−µ−θε1}2
2σ2

]
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ε2 = y2 − µ − θε1 is also to be derived. ⇒ If ε0 = 0, then the sequence

{ε1, ε2, . . . , εT} can be iteratively computed from εt = yt − µ − θεt−1 for a gi-

ven θ = (µ, θ, σ2)′.

Conditional density of the tth observation, conditioned on the past observations and

ε0 = 0

fYt|Yt−1,Yt−2,...,Y1,ε0=0

(

yt|yt−1, yt−2, . . . , yt−q, ε0 = 0; θ
)

=

= fYt|εt−1
(yt|εt−1; θ) =

=
1

√

2πσ2
exp

[

−{εt}2

2σ2

]

logL = −T
2 log(2π) − T

2 log(σ2) −
∑ T

t=1

[
ε2t
2σ2

]
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For each choice of the parameter vector θ = (µ, θ, σ2)′

⇒ Recursion from εt = yt − µ− θεt−1

⇒ Sequence of {ε1, ε2, . . . , εT}.

Analytical solution for nulls of the conditional log likelihood of an MA(1) process is not

available.
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Advanced Time Series Analysis

Alternative method of computation instead of recursion εt = yt − µ− θεt−1:

εt = (yt−µ)−θ(yt−1−µ)+θ2(yt−2−µ)−. . .+(−1)t−1θt−1(y1−µ)+(−1)tθtε0

|θ| smaller than 1: effects of conditioning get weaker over time.

⇒ Conditional log likelihood is a good approximation of the exact likelihood function

|θ| > 1: cumulation of the effects of conditioning.

Parameter estimator |θ| > 1: results can not be used

⇒ Exact likelihood has to be known.

MA(q) estimation is analogous to conditional ML estimation.
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Conditional Maximum Likelihood estimation of an MA(q), i.e. ARMA(0, q)-process

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q

{εt}t∈T White Noise with E(εt) = 0 and E(ε2
t) = σ2. Additional assumption: εt ∼

i.i.d.N
(
0, σ2

)
.

Conditioning on the first q values of the innovation ε0, ε−1, . . . , ε−q+1 = 0 .

Analogous to MA(1): Recursive construction {ε1, ε2, . . . , εT}:

εt = yt − µ− θ1εt−1 − θ2εt−2 − . . .− θqεt−q

for t = 1, 2, . . . , T
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logL = −T
2 log(2π) − T

2 log(σ2) −∑ T
t=1

[
ε2t
2σ2

]

Effects of conditioning: Stability of the difference equation εt = yt − µ − θ1εt−1 −

θ2εt−2 − . . .− θqεt−q ?

Is the solution to
(
1 + θ1z + θ2z

2 + . . . + θqz
q
)

= 0 within the unit circle? (asked

differently: are the eigenvalues of F outside?)

⇒ Identification of the exact likelihood function.
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Exact Maximum Likelihood estimation of an MA(1), i.e. ARMA(0, 1)-process

1. Kalman-Filter-Approach [see Hamilton (1994), p. 372 ff.]

2. Triangular factorization of the variance covariance matrix of the MA(1) process

(T × 1) vector of realizations of the stochastic process:

y ≡ (y1, y2, . . . , yt)
′

(T × 1) vector of expectations µ ≡ (µ, µ, . . . , µ)′ and

(T × T ) variance covariance-matrix of an MA(1): Yt = µ+ εt + θεt−1

Ω = σ2 ·














(1 + θ2) θ 0 . . . 0

θ (1 + θ2) θ 0
...

0 θ . . . 0
... 0

. . . θ

0 0 . . . θ (1 + θ2)













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Advanced Time Series Analysis

Implementing Gaussian White Noise innovations ⇒ joint density (=likelihood):

T -variate normal distribution

(2π)−T/2|Ω|−1/2 exp

[

−1

2
(y − µ)′(Ω)−1(y − µ)

]

(22)

Maximization of equation (22)? If there are many observations in the time series: Numerical

instabilities when inverting Ω.
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Solution: Triangular factorization

Ω = ADA′

A: (T × T ) matrix, only on and below the main diagonal there are elements unequal to

zero. There are only ones on the main diagonal.

D: Diagonal matrix, i.e. only the elements on the main diagonal of the (T × T ) matrix

are unequal to zero.

Ω = ADA′
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Writing the matrices Ω,A, and D out

Ω = σ2 ·














(1 + θ2) θ 0 . . . 0

θ (1 + θ2) θ 0
...

0 θ . . . 0
... 0

. . . θ

0 0 . . . θ (1 + θ2)














A = ·


















1 0 0 . . . 0

θ
(1+θ2)

1 0 0
...

0
θ(1+θ2)

1+θ2+θ4
. . . 0

... 0
. . . 0

0 0 . . .
θ(1+θ2+θ4+...+θ2(T−2))

1+θ2+θ4+...+θ2(T−1)
1

















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D = σ2 ·

















1 + θ2 0 0 . . . 0

0 1+θ2+θ4

1+θ2
0 0

...

0 0 1+θ2+θ4+θ6

1+θ2+θ4
. . . 0

... 0
. . . 0

0 0 . . . 0 +θ2+θ4+...+θ2T

1+θ2+θ4+...+θ2(T−1)

















Derivation: see Hamilton (1994)
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Alternative notation of the MA(1) likelihood:

Construction of an auxiliary time series: ỹ = A−1(y − µ)

A has on its main diagonal only ones ⇒ |A| = 1

⇒ |Ω| = |A| |D| |A′| = |D|

⇒ Likelihood function of the MA(1):

(2π)
−T/2|Ω|−1/2

exp

[

−1

2
(y − µ)

′
(Ω)

−1
(y − µ)

]

= (2π)
−T/2|D|−1/2

exp

[

−1

2
ỹ
′
D

−1
ỹ

]

where Ω−1 = A−1D−1A−1
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Numerical instability when computing the auxiliary time series (due to inversion of

the (T × T ) matrix)?

ỹ = A−1(y − µ) ⇒ Aỹ = (y − µ)

System of equations with T equations.

First line: ỹ1 = y1 − µ

tth line: ỹt = yt − µ− 1+θ2+θ4+...+θ2(t−2)

1+θ2+θ4+...+θ2(t−1) ỹt−1

⇒ Iterative computation of ỹt , starting with ỹ1 = y1 − µ
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Numerical instability when computing the inverse of D ((T × T ) matrix)?

D is a diagonal matrix ⇒ |D| is the product of the terms on the main diagonal

|D| =
∏T

t=1 dtt

Inverse of D: Diagonal matrix with reciprocal values on the main diagonal of D

⇒ ỹ′D−1ỹ =
∑ T

t=1

ỹ2t
dtt

Log likelihood function of an MA(1) process log
(

(2π)−T/2|Ω−1/2| exp
[
−1

2(y − µ)′(Ω)−1(y − µ

logL = T
2 log(2π) − 1

2

(
∑ T

t=1 log dtt
)

− 1
2

(
∑ T

t=1

ỹ2t
dtt

)

Simply evaluate it recursively!
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Conditional Maximum Likelihood Estimation of an ARMA(p, q)-process

We search for: Estimator for the parameter vector of an ARMA(p, q) process

Yt = c+φ1Yt−1+φ2Yt−2+. . .+φpYt−p+θ1εt−1+θ2εt−2+. . .+θqεt−q+εt

{εt}t∈T White Noise with E(εt) = 0 and E(ε2
t) = σ2. Additional assumption: εt ∼

i.i.d.N
(
0, σ2

)
.

Likelihood is conditioned on p initial values y(0) = {y0, y−1, . . . , y−p+1} and q initial

innovations ε(0) = {ε0, ε−1, . . . , ε−q+1}.

For given y(0), ε(0), θ
(
c, φ1, φ2, φ3, . . . , φp, θ1, θ2, . . . , θq, σ

2
) ′ ⇒ recursive

computation of {ε1, ε2, . . . , εT} from {y1, y2, . . . , yT}

εt = yt−c−φ1yt−1−φ2yt−2−. . .−φpyt−p−θ1εt−1−θ2εt−2−. . .−θqεt−q
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logL = log f
YT ,YT−1,YT−2,...,Y1|ε(0),y(0)

(

yT , yT−1, yT−2, . . . , yT−p|ε(0)
, y

(0);θ
)

= −T
2

log(2π) − T

2
log(σ2) −

T∑

t=1

[

ε2
t

2σ2

]

compare MA(1)

Initial values of the vectors y(0) and ε(0) e.g. on expectations:

εs = 0 for s = 0,−1, ...,−q+1 and ys = c

(1−φ1−φ2−...−φp)
for s = 0,−1, ..,−p+1.

or observed values y1, y2, . . . , yp as starting values.
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Examination for MA(q) part: Stability of the difference equation

εt = yt−c−φ1yt−1−φ2yt−2−. . .−φpyt−p−θ1εt−1−θ2εt−2−. . .−θqεt−q

Solutions of

(
1 + θ1z + θ2z

2 + . . .+ θqz
q
)

= 0

outside the unit circle? (possibly eigenvalues of F inside the unit circle?)

If we do not have an exact likelihood function, e.g. Kalman-Filter approach (Hamilton

(1994, p.372 ff.)
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Wold’s decomposition theorem (WDT)

Consider: stationary AR(p) [and ARMA(p, q)] process have MA(∞) representation:

Yt = µ+
∑∞

j=0 ψjεt−j

{εt}t∈T White Noise process and
∑∞

j=0 ψ
2
j < ∞

Wold’s decomposition theorem: All covariance stationary processes with expectation 0 can

be written in the form:

Yt =
∑∞

j=0 ψjεt−j + κt

where ψ0 = 1 and
∑∞

j=0 ψ
2
j < ∞ and κt uncorrelated with εt−j. κt can be expressed

by a linear function of preceding values of Yt: linear deterministic component of Yt

∑∞
j=0 ψjεt−j: linear stochastic component of Yt. κt = 0 ⇒ Yt is a purely stochastic

process.
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Implications of Wold’s decomposition theorem for modeling

Additional assumptions regarding the MA parameter (ψ1, ψ2, . . .) are necessary to make

use of the WDT.

If not there were infinitely many possible parameters.

ARMA(p, q) pose a structure on ψ (L): Infinite lag polynomial as function of the ARMA

parameter θ =
(
c, φ1, φ2, , . . . , φp, θ1, θ2, . . . , θq, σ

2
) ′

∑∞
j=0 ψjL

j = ψ (L) = θ(L)
φ(L) =

1+θ1L+θ2L
2+...+θqL

q

1−φ1L−φ2L
2−...−φpLp

Estimation of θ(L) and φ(L) from the sample.

Prof. Dr. Joachim Grammig, University of Tübingen, Winter Term 2007/08 141
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Box-Jenkins modeling philosophy

1. Transform the data, until the assumption of covariance stationarity is met (building

differences, logs)

2. First try to model the transformed time series with small values p and q (stage of

identification). Compare the empirical ACF with the theoretical ACF of the ARMA(p, q)

process.
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3. Estimate the parameter θ(L) and φ(L) (stage of estimation)

4. Specification tests (possibly iteration for identification)

Testing for uncorrelated estimated residuals. (Ljung-Box statistic)

Under the null hypothesis, yt ∼ N
(
µ, σ2

)
the test statistic Q(k) = T

T+2

∑ k
i=1(T −

i)−1r2
i is asymptotically χ2(k).

T : number of observations,

r2
i : squared autocorrelation of order i,

k: number of accounted autocorrelations
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Akaike/Schwartz information criterion

AICA(p, q) = ln(σ̂2) + 2(p + q)T−1

AICB(p, q) = −2 ln(L) + 2(p + q)

SBCA(p, q) = ln(σ̂2) + (p + q)T−1 lnT

SBCB(p, q) = −2 ln(L) + (p + q) lnT
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III.3 Stationarity Tests (Dickey Fuller Test)

[Hamilton (1994), p.502;

Hayashi (2000), Chapter 9.3/9.4]
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The work horse to test for non-stationarity: Dickey-Fuller tests

Basics: Unit Root Processes vs. Trend Stationary Processes:

Two types of non-stationarity

yt = µ+ yt−1 + ut (23)

yt = α+ β · t+ ut

Equation (23) is a special case of:

yt = µ+ φyt−1 + ut

There are three cases possible:

|φ| < 1

|φ| > 1

|φ| = 1

yt = φyt−1 + ut = φut−1 + φ2ut−2 + φ3ut−3 + . . . + φtu0 + φt+1y−1 + ut
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The work horse to test for non-stationarity: Dickey-Fuller tests

Basics: Unit Root Processes vs. Trend Stationary Processes:

yt = µ+ φ1yt−1 + φ2yt−2 + φ3yt−3 + . . . + φpyt−p + ut

Explosive? Stationary? Permanent Effects (Unit root)?

yt = f1ut−1 + f2ut−2 + f3ut−3 + . . . + f tu0 + yt+1
−1 + ut

Compute p eigenvalues of F, where F:

F ≡







φ1 φ2 . . . φp−1 φp
1 0 . . . 0 0
0 1 . . . 0 0
0 0 . . . 1 0







∣
∣
∣
∣

(
φ1 φ2
1 0

)

−
(

λ 0
0 λ

)∣
∣
∣
∣
= λ2 − φ1λ− φ2 = 0

absolute value largest root = 1: unit root process for p = 2
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The work horse to test for non-stationarity: Dickey-Fuller tests

Basics: Unit Root Processes vs. Trend stationary processes:

Two types of non-stationarity

yt = yt−1 + ut or yt = µ+ yt−1 + ut (24)

yt = α+ β · t+ ut

Equation (24) is a special case of:

yt = µ+ φyt−1 + ut

There are three cases possible with µ = 0:

|φ| < 1

|φ| > 1

|φ| = 1

yt = φyt−1 + ut = φut−1 + φ2ut−2 + φ3ut−3 + . . . + φtu0 + φt+1y−1 + ut
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Realization of a White Noise process yt = ut
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Realization of a stationary process (autoregressive process of order one)

yt = 0.8yt−1 + ut

y0 = 0
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Realization of a random walk without drift

yt = yt−1 + ut

y0 = 0
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Realization of a trend-stationary process

yt = 0.2 · t+ ut
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Realization of a random walk with drift

yt = 0.2 + yt−1 + ut

y0 = 0
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The work horse to test for non-stationarity: Dickey Fuller tests

Basic idea: Test whether a1 = 1 in yt = a1yt−1 + ut

Run a regression, back out â1, s.e.(â1)

Calculate t-statistic: τ =
â1−1

s.e.(â1)

Distribution of τ under the null: non-standard. Obtained by simulations. Refer to tables

(e.g. in Hamilton)

Equivalent (and usually done):

yt − yt−1 = ∆yt = (a1 − 1)yt−1 + ut = γ · yt−1 + ut

⇒ τ = γ̂
s.e.(γ̂)
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The work horse to test for non-stationarity: Dickey-Fuller test statistics

Related tests. Look at your data! Estimated models:

yt = a0 + a1yt−1 + ut yt = a0 + a1yt−1 + a2t+ ut

∆yt = a0 + γ · yt−1 + ut ∆yt = a0 + γ · yt−1 + a2t+ ut

Test whether a1 = 1, γ = 0 respectively.

Run regression, back out s.e.(γ̂)

Calculate t-statistic: τµ = γ̂
s.e.(γ̂) τ = γ̂

s.e.(γ̂)

both have under the null hypothesis γ = 0 non-standard distributions: look up the correct

quantile table!!
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Critical values (quantiles) for Dickey-Fuller test statistics
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