Peter Schroeder-Heister / Bartosz Więckowski

Seminar: Modallogik Sommersemester 2003

Übungsblatt 3

1. Beweisen Sie für die unten aufgelisteten Eigenschaften von R und die diesen Eigenschaften korrespondierenden Schemata Theorem 1 und Theorem 2.

Eigenschaften von R:

- (a) symmetrisch: $\forall s \forall t (sRt \rightarrow tRs)$
- (b) euklidisch: $\forall s \forall t \forall u (sRt \land sRu \rightarrow tRu)$
- (c) partiell funktional: $\forall s \forall t \forall u (sRt \land sRu \rightarrow t = u)$
- (d) schwach konnex: $\forall s \forall t \forall u (sRt \land sRu \rightarrow tRu \lor t = u \lor uRt)$

Korrespondierende Schemata:

- (a) $A \to \Box \Diamond A$
- (b) $\Diamond A \to \Box \Diamond A$
- (c) $\Diamond A \to \Box A$
- (d) $\Box(A \land \Box A \to B) \lor \Box(B \land \Box B \to A)$

Theorem 1. Sei $\mathcal{F} = (S, R)$ ein Rahmen. Dann gilt für jede der Eigenschaften (a) - (d): wenn R diese Eigenschaft erfüllt, dann ist das korrespondierende Schema gültig in \mathcal{F} . (Punkte: (a): 2, (b): 2, (c): 2, (d): 3)

Theorem 2. Wenn ein Rahmen $\mathcal{F}=(S,R)$ eines der Schemata (a) - (d) erfüllt, dann erfüllt R die korrespondierende Eigenschaft. (Punkte: (a): 2, (b): 2, (c): 2, (d): 3)

2. Ist die folgende Behauptung wahr oder falsch? Wenn $\mathcal{M} \models \Box A \to A$ für alle A, dann ist der Rahmen, auf dem \mathcal{M} basiert notwendigerweise reflexiv. Begründen Sie Ihr Urteil. (2 Punkte)

Abgabe in der Sitzung am 21. Mai 2003.