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Abstract

Testing Hypotheses About Psychometric Functions

An investigation of some confidence interval methods, their validity,
and their use in the assessment of optimal sampling strategies.

N. Jeremy Hill, St. Hugh’s College, University of Oxford, UK.
D. Phil. Thesis, Trinity Term 2001.

Various methods for computing confidence intervals and confidence regions
for the threshold and slope of the psychometric function were investigated in
the context of block-design psychophysical experiments of the sort that are
typically carried out with trained adult human observers.

Several variations on the bootstrap method, along with the more tradi-
tional methods of probit analysis, were tested using computer simulation,
comparing (a) the accuracy of overall coverage, (b) the balance of coverage
between the two sides of a two-tailed interval, and (c) the stability of cov-
erage with regard to variation in the total number of observations and in
the distribution of stimulus values. For thresholds, the bootstrap percentile
and bias-corrected accelerated (BCa) methods were the most reliable, and for
slopes the BCa method was generally the best choice. The differences between
methods were greater, and their performance was generally poorer, (a) for
slopes than for thresholds, (b) in the two-alternative forced-choice than in the
yes-no design, and (c) when the observer’s rate of guessing and/or “lapsing”
cannot be assumed to be zero and must therefore be estimated. The problem
of bias in the initial slope estimate was also exacerbated by the addition of
guessing and lapsing rates as nuisance parameters.

Computer-intensive confidence interval methods were also used to assess
the relative efficiency of different distributions of stimulus values, with re-
gard to the estimation of threshold and slope. The most efficient sampling
patterns shared certain characteristics irrespective of the number of blocks
into which they were divided. Certain unevenly spaced sampling patterns
were marginally more efficient than evenly spaced ones.

Further simulations illustrated that, given broad assumptions about the
way in which stimulus intensities are chosen in realistic experiments, the as-
sumption of fixed stimulus values, which is intrinsic to the bootstrap methods
commonly applied to psychometric functions, may lead to low coverage.



Note

This document is intended to be bound along with a cd-rom whose contents
are as follows:

• The directory tree /simulations/ contains text files in which simu-
lation results are tabulated for many of the tests conducted in this
project. The large number of different conditions explored in the simu-
lations meant that it was impossible to describe them all fully: passing
references are made in the thesis to some tests for which no summary
diagrams are provided. Even for those simulation sets for which figures
have been plotted, the large number of simulations would make the
inclusion of a hard copy of the raw data on which the figures are based
impracticable. Therefore, at several points in the thesis, reference is
made to a directory in the “results archive”. It is to the cd-rom that
this refers. Results are provided in the hope that they may be useful
for further analysis, but they are not essential to the reading of the
thesis.

• The directory tree /software/ contains source files for the fitting soft-
ware used to obtain parameter estimates in the simulations, written
by Jeremy Hill, 1995–2001. The core fitting and simulation routines
were written in Ansi C, and implemented so that they could interface
with Matlab versions 5 and up (The MathWorks, Inc, 1997). They
are supported by a number of functions written in the Matlab script
language.

• The directory tree /thesis/ contains an electronic copy of this docu-
ment, in Adobe Portable Document Format (pdf), along with related
papers by Wichmann and Hill (2001).

At the time of writing (September 2001), a version of the software is also
available on the World-Wide Web at:

http://users.ox.ac.uk/~sruoxfor/psychofit/pages/download.shtml

Additional resources concerning this project can also be found at the site.
However, note that the version of the software used for most of the simula-
tions reported in this thesis, and included on the cd-rom (version 2.5.2) in-
cludes numerous small improvements and fixes, relative to the version posted
as at September 2001 (version 2.5.1).
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Extended Abstract

Testing Hypotheses About Psychometric Functions

An investigation of some confidence interval methods, their validity,

and their use in the assessment of optimal sampling strategies.

N. Jeremy Hill, St. Hugh’s College, University of Oxford, UK.

D. Phil. Thesis, Trinity Term 2001.

A psychometric function describes the relation between the physical intensity

of a stimulus and an observer’s ability to detect or respond correctly to it.

The performance dimension is expressed as the probability of a positive or

correct response, and measurements are based on a number of discrete trials

at a number of different stimulus intensities. Each trial consists of a single

stimulus presentation (in subjective or “yes-no” designs) or a set of stimulus

presentations of which one is the target stimulus (in “forced choice” designs)

followed by a response that can be represented as a single binary value: a

“yes” or “no” in yes-no designs, or a correct or incorrect response in forced-

choice designs. The psychometric function usually increases monotonically

with stimulus intensity, and sigmoidal functions such as a logistic, cumulative

normal or Weibull function are commonly fitted to the data, usually by the

method of maximum likelihood.

To compare sensitivity across different stimulus conditions, thresholds are

often compared, a threshold being the stimulus value that corresponds to a

certain performance level, and which therefore specifies the location of the

psychometric function along the stimulus axis. In many circumstances, the

slope of the psychometric function is also of interest, indicating the rate

at which performance increases with increasing stimulus intensity. In addi-
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tion, one or two nuisance parameters may need to be estimated: the upper

asymptote offset λ, which is related to the rate at which the observer makes

stimulus-independent errors or “lapses”, and (in yes-no designs) the lower

asymptote γ, which is the rate at which the observer guesses that the stim-

ulus is present even in its absence.

Statistical inference about the estimated threshold and slope of a psycho-

metric function often involves the estimation of confidence intervals for those

measures. Traditionally, probit analysis1 offered the most widely accepted

method of doing so. However, the confidence intervals thus obtained are only

asymptotically correct, as the total number of trials N tends toward infinity.

At the low values of N typically encountered in psychophysical experiments,

probit methods have been shown to be potentially inaccurate,2,3 particularly

in two-alternative forced choice (2-AFC) designs. In the last 15 years the

computationally intensive alternative offered by bootstrap resampling meth-

ods4,5 has been advocated in the context of psychometric functions.3,6–11

Bootstrap methods come in many forms, some of which are potentially

more accurate estimators of confidence interval boundaries than others.4,5,12

The current research aims to compare the performance of a range of confi-

dence interval methods, including probit methods and several different vari-

ations on the bootstrap. The different confidence interval methods are intro-

duced in chapter 2. Their accuracy will be examined empirically by Monte

Carlo simulation, in the context of psychometric functions obtained from

psychophysical experiments on adults, and in particular in the situation in

which nuisance parameters must be estimated. An additional aim is to follow

up and extend the work of Wichmann and Hill11,13 in using computationally

intensive methods to assess the relative efficiency of different distributions of

stimulus intensities in the estimation of psychophysical thresholds and slopes.

Monte Carlo tests of confidence interval coverage were carried out for a

number of different confidence interval methods applied to the threshold and

to the slope of a psychometric function. The confidence interval methods

studied included five parametric bootstrap methods: the bootstrap standard

error method, the basic bootstrap, the bootstrap-t method incorporating a
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parametric Fisher-information estimate for the Studentizing transformation,

the bootstrap percentile method, and the bootstrap BCa method in which

a least-favourable direction vector for each measure of interest was obtained

by parametric methods. In addition, standard-error confidence intervals were

obtained from probit analysis, and fiducial intervals for the threshold were

computed using the method described by Finney.1

The results are reported in chapter 3. In general, most of the confidence

interval methods were more accurate for thresholds than for slopes, better

in yes-no than in 2-AFC designs, and better under idealized conditions (in

which there were no nuisance parameters) than under realistic conditions (in

which there was a small non-zero rate of “guessing” or “lapsing” that the

experimenter must also estimate).

In many cases, confidence interval coverage was found to be inaccurate

even though the true value of the relevant measure (threshold or slope) lay

within the interval on roughly the correct proportion of occasions: despite

accurate overall coverage, two-tailed intervals sometimes failed to be properly

balanced with equal proportions of false rejections occurring in the two tails.

An example is the probit fiducial method for thresholds in simulated 2-AFC

experiments. Previous studies2,3 have suggested that probit methods are

accurate when the total number of trials N exceeds about 100. However,

while the current study found that the coverage of two-tailed 95.4% intervals

was very accurate overall, it was also found that coverage in the lower part of

the interval was too high, compensating for low coverage in the upper part.

Under the best conditions (thresholds in the idealized yes-no case) all

the confidence interval methods performed in a very similar manner. For

slopes in the idealized yes-no case, there was also little to choose between

the best bootstrap methods and the probit method: the bootstrap-t method

was found to be accurate, as Swanepoel and Frangos14 also found, yet in

the range of N studied by Swanepoel and Frangos and in the current study

(120 ≤ N ≤ 960), the probit method was equally accurate (there is reason

to believe that bootstrap methods may be more accurate than the probit

method at lower N , however3). In other conditions, where the performance
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of all confidence interval methods generally deteriorated, some methods were

better than others. The bootstrap percentile and BCa methods were found

to be the most accurate methods for thresholds, and although still far from

perfect, the BCa method was the best choice for slopes. The BCa method

was found to be particularly effective in the idealized 2-AFC case, in that it

was able to produce balanced confidence intervals for thresholds at different

performance levels on the psychometric function: thus it was less sensitive

to asymmetric placement of the stimulus values relative to the threshold of

interest. The bootstrap percentile method, by contrast, was only balanced

when the performance level corresponding to threshold was close to 75%. In

2-AFC, bootstrap methods were generally found to be considerably better

than probit methods in the range of N studied.

One of the observed differences between confidence interval methods was

their stability , i.e. their sensitivity to variation in N and in the sampling

scheme or distribution of stimulus values on the x-axis. The bootstrap stan-

dard error and basic bootstrap methods, for example, tended to produce very

different coverage results depending on sampling scheme, whereas the BCa

method was generally the most stable. Some previous approaches, in which

stimulus values are chosen randomly and independently in each Monte Carlo

run,15–17 may mask such differences between confidence interval methods.

In all the simulations, a change in the mathematical form of the psycho-

metric function had little effect. In order to allow direct comparison with

a range of existing literature, yes-no simulations were carried out using the

logistic function, and 2-AFC simulations were carried out using the Weibull

function. All the simulations were repeated using the cumulative normal

function, and one set of 2-AFC simulations was repeated using the logistic

function. In none of the cases did a change in the form of the psychometric

function produce any qualitative or appreciable quantitative alteration to the

observed effects of different confidence interval methods, sampling schemes,

and values of N .

Under realistic assumptions, the estimation of the upper asymptote offset

λ (and also the lower asymptote γ in yes-no designs) presents a problem. It
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has previously been noted13,18,19 that the maximum-likelihood estimates of

these “nuisance parameters” of the psychometric function are correlated with

the slope estimate, and that therefore any mis-estimation of γ or λ may lead

to mis-estimation of slope. A particular example of such an effect occurs

when an observer makes stimulus-independent errors or “lapses”, but when

the experimenter assumes idealized conditions in which the observer never

lapses, so that λ is fixed at 0 during fitting. In such a case, the slope of the

psychometric function is under-estimated, and the same is true whenever the

estimated or assumed value of λ is too low. The converse effect, a tendency

to over-estimate slope, can be observed when the estimate of λ is too high,

and such an error exacerbates the natural tendency, which has previously

been noted,7,18,20 for the maximum-likelihood method to overestimate slope

even in idealized conditions.

The nuisance parameters λ and γ themselves can be difficult to estimate

accurately, a problem which was previously noted by Green21 and illustrated

by Treutwein and Strasburger.19 The bias in the estimation of λ, for exam-

ple, depends on the true underlying value of λ itself. When the true value

is 0.01, as it was in most of the current simulations, there is a tendency, over

the range of N -values studied, for the maximum-likelihood estimate λ̂ to be

larger than 0.01. This leads to overestimation of slope, and inaccuracy in

the coverage of confidence intervals for both threshold and slope. In par-

ticular, slope coverage probability dropped below target for the bootstrap-t

and BCa methods, which were the methods that relied on the asymptotic

approximation to the parameter covariance matrix given by the inverse of

the Fisher information matrix. In the BCa method, coverage probability for

thresholds also dropped, an effect which was found to change according to

the underlying value of λ and the consequent accuracy with which λ could

be estimated.

In addition to the one-dimensional methods listed above, four bootstrap

methods were applied, in chapter 4, to the problem of computing likelihood-

based joint confidence regions which allow inferences to be made about

threshold and slope simultaneously. The basic bootstrap, bootstrap-t and
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bootstrap percentile methods were tested, along with a method that used

bootstrap likelihood values directly. The last of these proved to be excep-

tionally accurate, if somewhat conservative—however, it could not separate

inferences about threshold and slope from the effects of nuisance parame-

ters. The coverage of the other bootstrap methods was in some cases better

and in some cases worse than the performance of the corresponding one-

dimensional interval method. All four methods suffered to some extent from

bias in the estimation of slope, and were consequently imperfectly balanced

in their coverage of slope values above and below the maximum-likelihood

estimate.

Further simulations in chapter 5 examined the question of the optimal

placement of stimulus values, in order to achieve maximum efficiency and

minimal bias in the estimation of thresholds and slopes from a 2-AFC psy-

chometric function.

When efficiency of threshold estimation is the important criterion, probit

analysis predicts that, for finite N , the optimal distribution of sample points

about the threshold to be estimated has a certain non-zero spread, depending

on the number of observations and on the confidence level desired. This is at

odds with the asymptotic assumption voiced by several authors, and widely

followed as a guideline for stimulus placement in adaptive procedures, that

optimally efficient estimation of thresholds is to be achieved by placing all

observations as close to the threshold as possible. Monte Carlo simulation

confirmed the probit predictions: despite the fact that probit intervals tend

to be poorly balanced in their coverage (chapter 3) in 2-AFC, and have

previously been shown to be inaccurate,2,3 the predictions of probit analysis

were found to be qualitatively correct, in that probit interval widths were

highly consistent with Monte Carlo simulations in predicting the relative

threshold estimation efficiency of different sampling schemes.

The mean and spread of sample points proved to be a fairly good pre-

dictor of sampling efficiency with regard to thresholds, and the even spacing

of samples proved to be an efficient strategy, assuming that optimal mean

location and spread could be achieved. However, there were notable cases in
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which certain uneven sampling patterns were found to be more efficient: in

particular, one highly efficient strategy proved to be to place a small number

of trials at very a high performance level, and then concentrate on levels

closer to threshold than the optimal spread would otherwise indicate. The

gain in efficiency, relative to evenly spaced sampling, was nevertheless quite

small.

The relationship between efficiency of slope estimation and sampling

scheme was not so straightforward, and was not fully explained by the mean

and spread of stimulus locations. Predictions from probit analysis were also

less consistent with the results of Monte Carlo simulation in the slope results

than in the threshold results. The simulations concentrated on the realis-

tic 2-AFC case, with the underlying value of λ set to 0.01: as mentioned

above, this condition is particularly prone to bias, and nearly all the sam-

pling schemes studied overestimated the slope of the psychometric function

by a considerable amount.

Within the range of N studied, there was an appreciable change in the op-

timal spread of stimulus values as N increased: for thresholds, the optimally

efficient sampling scheme became narrower, converging towards the asymp-

totic ideal of zero spread. For slopes, optimal spread converged towards the

asymptotically predicted (non-zero) value.

With regard to thresholds, there was little or no effect of k, the number

of blocks into which the N observations were divided: the mean and spread

of the optimally efficient sampling scheme were not affected, nor was the

distribution of bias and efficiency scores measured outside the optimal region.

For slopes, there was little effect when k exceeded 5, although there was a

discernible advantage to sampling with smaller numbers of blocks (k = 3 and

k = 4): the simulations imposed a minimum spacing between blocks, and

the 3- and 4-point schemes were able to concentrate more closely on the two

asymptotically optimal sampling points.

The simulations of chapter 5 addressed the question of what the optimally

efficient sampling schemes look like, without addressing the question of how

such sampling is to be achieved relative to an unknown psychometric func-
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tion. In practice, a larger k will be useful from the point of view of sequential

estimation, as it allows a greater number of opportunities to re-position the

stimulus value according to the current best estimate of the optimal loca-

tion. Sequential stimulus selection has so far been ignored in the application

of bootstrap methods to psychometric functions.3,6,7,11 However, it can be

presumed to occur to some extent in many experimental designs (includ-

ing many that are described as “constant stimuli” experiments) whether the

stimuli are selected “by eye” or by a formally specified adaptive procedure.

The simulations of chapter 6 suggest that the assumption of fixed stimuli

can lead bootstrap methods to produce confidence intervals whose coverage

is too low. Furthermore, sequential selection introduces an increasing rela-

tionship between threshold coverage and N , a fact which may undermine

one of the principal advantages of the bootstrap, namely that it is less sen-

sitive to error than asymptotic methods when N is low. It is recommended

that future developments of bootstrap methods in psychophysics should con-

centrate on formal specification of the algorithm for stimulus selection, and

that bootstrap replications of the experiment should include simulation of

the stimulus selection process, using the same algorithm as that employed

by the experimenter.
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1. Introduction

1.1 Modelling psychophysical data

Psychophysics is concerned with the relation between physical attributes of a

stimulus, such as its intensity, and an observer’s ability to detect or respond

appropriately to it. A typical psychophysical experiment involves repeated

presentation of a stimulus in a number of discrete trials. In a yes-no design, a

trial consists of a single presentation of a stimulus, which the observer must

categorize as being either the target or non-target stimulus—the response

variable is then the proportion of occasions on which the observer gives a

positive response, classifying the stimulus as a target. In forced-choice de-

signs, a trial consists of two or more stimuli, separated in space or in time,

one of which (chosen at random on each trial) is the target. The response

variable is the proportion of trials on which the observer can correctly identify

the target stimulus within the set.†

Stimulus intensity will generally be denoted by x. The number of different

stimulus levels in a data set will be denoted by k, and a vector x of length

k will contain all the stimulus intensity values for the data set. The vector

n will specify the number of trials ni performed at each stimulus intensity

xi, and the total number of trials,
∑

ni, will be denoted by N . The vector

† A third kind of design is the identification paradigm, in which a single stimulus is presented
on each trial, and detection performance is measured by the proportion of trials on which
the observer correctly identifies the category to which the stimulus belongs, given a forced
choice between a number of mutually exclusive categories defined on a dimension other
than intensity. For example, the detectability of a luminance grating might be measured by
the observer’s ability to identify whether it is horizontally or vertically orientated (given
equal probability of either, on each trial). Statistically, results from the identification
paradigm can be treated identically to those from forced-choice designs. For the purposes
of this study, their inclusion in the category of forced-choice experiments will be implicit.
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r will denote the number of correct or positive responses at each stimulus

intensity, and y will denote the observed proportions of such responses, so

that yi = ri/ni. For a general explanation of notation conventions, and a

glossary of the algebraic terms used in this report, see appendix A.

In order to explain the data and make predictions about future experimen-

tal conditions, the experimenter often fits a parametric model p = M(x,ρ; θ)

to the data, where p is the underlying value of y that the model predicts, θ is

a vector containing the model’s parameters, and ρ is a vector which contains

any other explanatory variables besides stimulus intensity x. A particular

combination of values ρ designates a single experimental condition, in which

the observer’s performance is modelled by a single psychometric function,

p = ψ(x).

Estimates for the parameter values are often found by the method of

maximum-likelihood,1–10 so that estimates θ̂ are those values for which like-

lihood or log-likelihood is greatest. Expressions for likelihood and log-like-

lihood are given in appendix B, equations (B.42) and (B.43), respectively.

The method assumes that response probabilities pi are stationary throughout

the experiment, and that the observed responses ri are therefore binomially

distributed, each with underlying probability of success pi.

Some of the parameters θ will be of theoretical interest to the experi-

menter, but others may be nuisance parameters whose values are of little

interest in themselves, but which must be estimated in order to obtain unbi-

ased estimates of the other parameters. In the yes-no design, two examples

of nuisance parameters are the observer’s guess rate, which is the probability

with which the observer makes a positive response even when there is no in-

formation from sensory mechanisms about the signal’s presence (for example,

when no signal is present at all),† and the lapse rate, which is the probabil-

† Some analyses of single-interval experiments plot the proportion of correct responses, given
a mixture of signal and non-signal trials—then the psychometric function is statistically
more similar to that of the 2-AFC paradigm. The term “yes-no” is not used here to refer
to such an approach, but rather to the formulation in which the response measure is the
proportion of positive responses given the presence of a signal—thus the psychometric
function ranges from near 0 to near 1. Therefore, in the context of “yes-no” designs, the
term “guess rate” should not be construed to mean the probability of giving a correct

(footnote continues −→)
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ity that the observer fails to report the target, irrespective of its intensity.

Under the assumption that guesses and lapses are uncorrelated with x, and

that their rates of occurrence are stationary, the psychometric function can

be written as

ψ (x) = γ + (1− γ − λ)F (x) , (1.1)

where γ is the guess rate, λ is the lapse rate, and F (x) is the underlying

detection function, a function with range 0 to 1 (inclusive or exclusive) that is

independent of γ and λ, and which determines the shape of the psychometric

function. The shape of F (x) emerges from M(x,ρ; θ) given the relevant

set of conditions ρ. It is nearly always monotonic (usually monotonically

increasing) and often sigmoidal in shape.

The formulation of the psychometric function given in equation (1.1), or a

special case of (1.1) in which λ = 0, is often used.6–10 It can also be applied in

m-alternative forced choice (m-AFC) designs: the lower asymptote γ is fixed

at the chance level 1/m, and need not be estimated as a free parameter;† the

upper asymptote offset λ, as in the yes-no case, is equal to the rate at which

the observer makes stimulus-independent errors.

1.2 The psychometric function

The current study considers the particular case in which the model M deals

with only one experimental condition at a time—thus, the parameters θ are

concerned with describing only one psychometric function. Beside the upper

and lower bounds defined by λ and γ, two aspects of the psychometric func-

tion are of interest: its location and scale along the x-axis. The underlying

detection function F (x) therefore has two parameters, which will be referred

answer by chance, as it does for forced-choice designs. Rather, it is used solely to mean
the stimulus-independent probability of a positive response.

† The use of a fixed lower asymptote equal to the chance performance level assumes that the
observer has been trained on the task using appropriate feedback signals, and is motivated
to try to maximize the number of correct responses. Such assumptions are implicit in the
treatment of 2-AFC designs in the current study.
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to as α and β. The psychometric function has four parameters in total:

ψ (x; θ) = γ + (1− γ − λ)F (x; α, β) . (1.2)

where the vector θ is used as a collective shorthand for the four parameters:

θ = (α, β, γ, λ)T.

1.2.1 The shape of the detection function

Many different two-parameter functions have been employed as the detec-

tion function F (x). Examples, from the literature that examines the statisti-

cal properties of psychometric functions, include the cumulative normal,11–13

the logistic3,7,8,14 and the Weibull function.2,4–6,9,10 Formulae for these three

functions are provided in the appendix, sections B.1.1, B.1.2 and B.1.3, re-

spectively. In each, the parameters α and β together determine the location

and scale of the function. Their exact rôles, and their relation to the units

in which stimulus is measured, vary according to the shape chosen (for this

reason, the standardized measurements of threshold and slope will be defined

in section 1.2.2).

According to the experimental situation, there may be theoretical reasons

for choosing one particular function shape over another. Signal detection

theory15 predicts a cumulative normal shape for the yes-no psychometric

function, and also predicts that the 2-AFC psychometric function should

be a cumulative normal with mean 0 (passing through x = 0, ψ = 0.5 at

its steepest point). This assumes a linear mapping between the stimulus

dimension and the decision axis. Real 2-AFC psychometric functions, on the

other hand, tend to accelerate in the region in which ψ(x) is low, and are often

better fit by scaling a sigmoidal function (such as the cumulative normal,

logistic or Weibull) between 0.5 and 1− λ, as per equation (1.2). Assuming

that quantities on the decision axis are normally distributed, such shapes are

obtained if one assumes a non-linear (usually accelerating) transformation

from the physical stimulus dimension to the decision axis.
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The Weibull function in particular provides a very good fit to 2-AFC

data from visual contrast detection16,17 and contrast discrimination17 experi-

ments. It also has the potentially useful property that probability summation

over multiple mechanisms, each with a Weibull response, produces another

Weibull function. This property has found a useful rôle in developments of

signal detection theory which model an attentional field distributed across

multiple channels.18,19

For the purposes of the current research, however, it will be assumed that

the experimenter merely wants a threshold and slope estimate from a well-

fitting function, without (yet) having to worry about a fully-fledged model

for the mapping between the physical world and the decision axis. At a later

stage of research, when several psychometric functions in several different ex-

perimental conditions have been sampled, the experimenter may well want to

develop a more general model M(x,ρ) that predicts performance across the

whole corpus of data, taking into account multiple experimental conditions

ρ. When such a model is in place, the experimenter would presumably want

to adjust the parameters of the whole model to obtain maximum-likelihood

estimates, rather than estimating a threshold and slope separately for each

individual condition. If one has a good idea of the mapping from stimulus

axis to decision axis under different experimental conditions, the artificial

intermediate step of using the Weibull function (or any other particular two-

parameter function) to model individual conditions becomes redundant, or

at best it is relegated to a role in the initial “guessing” phase of the fit.

Therefore, the choice between the logistic, cumulative normal and Weibull

functions (or any other similar function) will not be treated as a theoretically

important issue. For the purposes of estimating thresholds and slopes (sec-

tion 1.2.2) and confidence limits for those measures, the choice of different

sigmoidal functions generally makes little difference in practice, relative to

the experimental variability typically observed in the measures themselves.10

Nevertheless, in order to verify the lack of importance of one’s choice of psy-

chometric function shape, many of the simulations of the current study were

repeated with more than one shape. The coverage simulations of chapter 3,
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for example, use the cumulative normal function for both yes-no and 2-AFC

simulations, but the yes-no simulations are repeated with the logistic func-

tion, and the 2-AFC simulations with the Weibull function. Although the

choice of shape was indeed found to make little difference, the logistic and

Weibull results are reported in order to allow direct comparison with previous

studies.4,10,20,21

1.2.2 Threshold and slope

As previously stated, the two parameters of particular interest in the psycho-

metric function, α and β, determine the location and scale of the detection

function. Often, location and scale are reported by quoting the values of α

and β as they appear in the formulae of section B.1, or in whatever form the

experimenter chooses to express the equation for the detection function. As

stated in section 1.2.1, however, the choice of equation for the detection func-

tion will not be considered to be of high theoretical importance. Therefore,

the terms usually employed to refer to the location and scale in the context

of psychometric functions, “threshold” and “slope” are defined here in terms

that do not rely on any particular formulation.

Threshold t is defined as the inverse of the detection function F at a

particular detection level of interest. The notation tf will be used to denote

the value of x such that F (x) = f . For example, t0.5 represents the mid-point

of the psychometric function, the point at which F (x) = 0.5. A threshold

measure specifies the location of the psychometric function along the x-axis.

Slope s is defined as the derivative of F (x) with respect to x, evaluated

at a particular threshold point. So sf denotes dF/dx evaluated at x = tf , s0.5

being the slope of the detection function at its mid-point. Thus, slope is a

measure of the rate at which performance improves with increasing stimulus

intensity.

When the term “threshold” is used on its own, it should generally be

taken to refer to t0.5. Similarly, “slope” on its own means s0.5.

N.B. In many reports, thresholds and slopes are described in terms of

the range of ψ(x) rather than that of F (x). For example, the mid-point of
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a 2-AFC psychometric function is often referred to as the “75% threshold”,

i.e. the point at which ψ(x) = 0.75. This convention is not adopted here.

Threshold and slopes are instead defined in terms of the underlying detec-

tion function F (x), because F (x) reflects those aspects of the psychometric

function that are of interest to an experimenter (viz. the characteristics of

the underlying detection mechanisms) without involving the mechanisms of

“guessing” and “lapsing” that are assumed to yield no direct insight into the

psychological phenomena of interest. Terminology such as “75% threshold”

is therefore somewhat imprecise—75% is often chosen as a standard thresh-

old measure in 2-AFC designs because it is the mid-point of the psychometric

function, but this is only the case if λ = 0. If λ = 0.02, for example, then the

74% threshold is the mid-point. An additional convenient aspect of defin-

ing threshold and slope with respect to F (x) is that a term such as t0.5, for

example, represents the same point on the detection function, regardless of

whether the experiment uses a yes-no, 2-AFC, or other forced-choice design.

Differences in an observer’s sensitivity to stimuli across different experi-

mental conditions are often examined by comparing thresholds and/or slopes

across two or more psychometric functions. The comparison can be made in

different ways, depending on (a) the detection level(s) at which the experi-

menter wishes to measure threshold and slope, and (b) the relative impor-

tance of information about thresholds and information about slopes. The

answers to both issues depend on the experimental context: when consider-

ing the former, there may be reasons to examine a particular detection level

for comparison with previous experiments that also studied that level; the

answer to the latter question depends on the psychophysical phenomenon un-

der study. There has been a general tendency for reports of psychophysical

experiments to concentrate on thresholds alone, due in part to the prevalence

of adaptive procedures that provide efficient and accurate threshold estimates

in a relatively small number of trials, usually at the cost of very imprecise

and often biased22–24 slope estimates. Where slope estimates are taken (as

is possible with some adaptive procedures25,26) or where full psychometric

functions are measured, the experimenter often uses them merely to verify
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that the psychometric functions are roughly parallel (usually without statis-

tical support) in order to justify using the threshold as the single dimension

of performance.

However, there are cases in which psychometric function slopes are impor-

tant in their own right. Wichmann17 found that, whereas it was impossible

to distinguish statistically between classes of models for contrast discrimi-

nation using previously reported data (which consisted mostly of thresholds

from adaptive procedures), it was possible to make a decisive hypothesis

test using a corpus of block-design psychometric functions: the crucial in-

formation lay in significant slope differences within the corpus. Differences

in slope may indicate changes in an observer’s certainty about a stimulus:

in signal detection theory,15 a change in the psychometric function, from a

steep slope and high threshold to a shallower slope at a lower threshold, is

the signature of a change from the ideal observer for a signal known only

statistically to the ideal observer for a signal known exactly.† Alternative

theoretical approaches predict similar slope changes due to “uncertainty”18

or “distraction”19 when multiple channels are attended simultaneously. In

certain circumstances there may be a change of slope that is not correlated

with a shift in the mid-point of the psychometric function. For example,

Tyler27 presents results from a 2-AFC visual detection task in which the sig-

nal is a two-dimensionally amplitude-modulated 4-cycle-per-degree sinusoidal

grating: psychometric function slope becomes steeper as the spatial extent

of the envelope increases, without any significant change in the d′ = 1 (76%)

performance threshold. A slope estimate might also be useful in its own

right as a diagnostic criterion, in cases where there are significant between-

subject differences in slope. Such a case was found by Patterson, Foster

and Heron,28 who studied the ability of Multiple Sclerosis patients to detect

small-field flashes of light in a yes-no task, relative to that of normal controls:

the patient group showed significantly shallower slopes when the flash was to

be detected against background light, but at two out of the three background

† This is true when performance is plotted against signal-to-noise ratio on semi-logarithmic
coordinates, as in the formulation of Green and Swets (1966)15—see page 194, ibid .
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light levels at which a slope difference was found, there was no difference in

the 50% threshold between the groups.

Thresholds and slopes will be considered separately in the current sim-

ulation studies, except in chapter 4, in which joint confidence regions for

threshold and slope are investigated.

1.2.3 Nuisance parameters

The inclusion of λ (and γ, in yes-no designs) as free parameters of the fit

is a step recommended by some authors6–10 in order to avoid bias in the

estimation of slope. The problem is illustrated for a 2-AFC psychometric

function in figure 1.1.

The upper panel of figure 1.1 is from Wichmann and Hill’s first paper

on psychometric functions.9 The blue circles show observed proportions of

correct responses from a psychophysical data set with 50 trials per point.

The last point (x = 3.5) is an exception: here, only 49 trials have yet been

completed, with 1 still to run. The maximum-likelihood fit to the data so far,

using a Weibull function, is shown by the solid blue curve. Now suppose that,

on the very last trial of the last block, the observer happens to press the wrong

response button, or alternatively blinks, misses the stimulus presentation

interval, is forced to guess the correct answer, and guesses incorrectly. The

last block, at 98% correct, is now shown by the yellow triangle.

The solid yellow curve shows the maximum-likelihood Weibull function

fit to the revised data assuming the fixed value λ = 0. Note that, in order

to accommodate the block that includes the “lapse”, the slope of the psy-

chometric function has become much shallower, yielding a very poor fit to

most of the other data points. The slope estimate is biased, as is any thresh-

old estimate other than t0.6 (the 80% point, which is roughly where the two

solid curves cross). The broken yellow curve, on the other hand, shows the

maximum-likelihood fit when λ is allowed to vary. The maximum-likelihood

value λ̂ is roughly 0.014, the curve is a much better fit to the rest of the data

points, and the threshold and slope estimates are now very similar to those

obtained before the lapse occurred.
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Fig. 1.1: A demonstration of the effect of “lapses” on a maximum-
likelihood fit using a 2-AFC Weibull function. See section 1.2.3 for
details.
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The example shown in figure 1.1 is an exaggerated illustration, but Wich-

mann and Hill9 show using Monte Carlo simulation that bias can be signifi-

cant, for more realistic data sets, whenever an inaccurate fixed value of λ is

used. The large influence of the apparently small shift in the position of the

last data point is due to the very small variability of the binomial distribu-

tion around an expected probability close to 1.0. The original (solid blue)

curve is a poor fit to the revised data because it predicts a performance of

almost exactly 1.0 at x = 3.5. If the probability of correct performance were

really 1.0, then an observed probability of 0.98 would be impossible (with a

log-likelihood of −∞). In order to provide a likely fit, the predicted prob-

ability at x = 3.5 must be reduced, and if λ is fixed at 0, the only way of

doing so is to reduce the slope of the function drastically.

The lower panel of figure 1.1 demonstrates that the failure of the fixed-λ

approach can be seen as a lack of robustness to what is actually an extreme

outlier. A maximum-likelihood fit can also be seen to be minimizing the log

likelihood ratio or deviance, D, a quantity which is monotonically related to

likelihood:

D = 2
k∑

i=1

{
ri log

(
ri

nipi

)
+ (ni − ri) log

[
ni − ri

ni(1− pi)

]}
. (1.3)

Just as the sum-squared-error loss function is the sum of squared arithmetic

residuals, D can be seen as the sum of squared deviance residuals, where

each residual di is the square root of the deviance value computed for point

i alone, signed according to the sign of yi − pi (see Wichmann and Hill’s

paper9 for more about the analysis of deviance and deviance residuals). The

deviance residuals of the data set, given the initial fit (the solid blue curve

in the upper panel) are plotted against x in the lower panel of figure 1.1. As

before, the yellow triangle indicates the last block after the lapse occurred.

Note that it has dropped a long way from the position it occupied before

the lapse occurred, relative to the magnitude of the other residuals: in a

least-squares sense it is clearly an extreme outlier, and it is not surprising

that the fit must change drastically in order to accommodate it.
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Note that the same arguments apply to γ in yes-no designs, if it cannot

be assumed that the observer’s guess rate is 0. The low binomial variability

around low expected response probabilities has the same effect as that at

high probabilities.

1.3 Fitting the psychometric function

The addition of nuisance parameters to the model means that the maximum-

likelihood search procedure must search for the global maximum in a three-

or four-dimensional parameter space. Performing a search efficiently in more

than two dimensions is no trivial task, but the simplex search algorithm

of Nelder and Mead29 is well-suited to the problem. The current simula-

tion studies used software developed by the author, which was also used by

Wichmann and Hill.9,10

In cases where λ and γ were allowed to vary, they were first fixed at 0.01

(an arbitrarily chosen but plausible value) while a maximum-likelihood grid

search was performed to obtain initial “guess” values for α and β. The values

of α and β thus obtained, along with the guess values λ = 0.01 and γ = 0.01,

were then used to initialize the simplex. Over the range of N studied, the

imprecision of the simplex search results was found to be negligible relative

to the variability of the parameters themselves.

The fitting process was guided by the assumption that the observer’s

true lapse rate and guess rate would not take large values (greater than,

say, 0.05). This guideline was implemented by the use of a rectangular

Bayesian prior (see the appendix, section B.2.1) which constrained λ (and

γ, where appropriate), to lie within the range [0, 0.05]. A constrained multi-

parameter maximum-likelihood search of this nature is similar to the ap-

proach of Treutwein and Strasburger8 and identical to that of Wichmann

and Hill.9,10
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1.4 Testing hypotheses about psychometric

functions

Psychophysical hypotheses may take a very broad form, such as, for example,

“the detection of [some type of stimulus] is mediated by a divisive contrast

gain-control mechanism,” or they may concern much simpler observations,

such as “observers are more sensitive to the stimulus, at the 50% detection

level, under conditions ρ1 than under conditions ρ2”.

The former sort of hypothesis may be examined by formulating the model

in question (a divisive gain-control mechanism, in the above example) and

applying a statistical test of goodness-of-fit . A typical goodness-of-fit test

assesses some measure of the dispersion of the observed data around the

values predicted by the model, against the distribution of dispersion values

obtained under the assumption that the model is correct. The deviance

measure of equation (1.3) is one suitable measure of dispersion, which also

allows related models to be compared against one another. Hypothesis tests

of this sort, in the context of visual contrast gain control, are treated in detail

by Wichmann.17

The current study concentrates on simpler models that predict single

psychometric functions. Goodness-of-fit tests also have an important rôle to

play when fitting single psychometric functions, in order to verify whether

the data are compatible with the assumed shape of the detection function,

and with the assumption that the data truly arise from stationary binomial

processes. Wichmann and Hill9 describe a number of tests that may be

applied in this situation, including an analysis of deviance residuals that

may indicate whether the observer’s performance changes from one block of

trials to the next. Goodness-of-fit tests will not be considered here. Instead,

it is the second kind of hypothesis, above, that will be examined.

In order to make statistical comparisons of an observer’s performance

under two or more experimental conditions, confidence intervals for thresh-

olds and slopes are frequently computed. The statistical significance of an

effect may be gauged by comparing the size of the effect to the size of the
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interval. Broadly speaking, a confidence interval is a numerical range within

which the true threshold or slope value can be asserted to lie, with a certain

probability or confidence level , based on the expected variability of the ob-

served data. For the thresholds and slopes of psychometric functions, probit

analysis30 traditionally offered the most widely accepted set of techniques

for the computation of confidence intervals. However, the intervals obtained

by probit analysis rely on approximations to the probability distributions of

thresholds and slopes, which are only asymptotically correct, as N → ∞.

Consequently, the accuracy of probit estimates of variability has been called

into question, and Monte Carlo simulation studies have suggested that they

are potentially inaccurate in their application to psychometric functions.11,13

Recently, bootstrap methods,31,32 which are computationally intensive confi-

dence interval methods that use Monte Carlo simulation to estimate variabil-

ity, have been proposed as an alternative to the more traditional asymptotic

approaches.4,10,12,13,33–35

This thesis aims to explore two general aspects of threshold and slope

confidence intervals. The first is their accuracy—in other words, the extent

to which their coverage (the probability that the true value lies within the

confidence interval) matches the intended confidence level. The second is

their width—narrow confidence intervals are clearly more desirable than wide

ones, provided their coverage is accurate, because the statistical test that

they represent is more powerful (power being the probability of finding a

significant effect, given that an effect really exists).

Chapter 3 uses Monte Carlo simulation to examine the former question,

simulating experiments repeatedly in order to measure the proportion of oc-

casions on which the true threshold or slope value lies within the confidence

intervals computed by a particular method. Chapter 4 then briefly consid-

ers the coverage of confidence regions that may be used to make inferences

about threshold and slope simultaneously. Chapter 5 examines the effect

of sampling scheme (see below) on the accuracy and precision with which

thresholds and slopes are estimated, where the width of the confidence in-

terval is used in order to measure precision. Finally, chapter 6 examines
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the effect on confidence interval coverage of uncertainty in the placement of

stimuli.

Several factors may affect both the width of a confidence interval and the

accuracy of the probability with which it covers the true value:

• Experimental design, i.e. the question of whether the experimenter uses

a yes-no design, a 2-AFC design, or another forced-choice design. In the

coverage tests of chapters 3, 4 and 6, the yes-no and 2-AFC designs will

be considered. The simulations of chapter 5 will focus on the 2-AFC

design.

• The method used to compute the confidence interval. Coverage tests

will compare the performance of the probit methods described in sec-

tion 2.1, and six different variations on the bootstrap, described in

section 2.2.

• Whether the lapse rate λ (and the guess rate γ in yes-no designs) are

assumed to be 0, or whether they are included in the fit as unknown

nuisance parameters. The former set of assumptions will be referred to

as the idealized case, and the latter the realistic case. Both cases will

be considered in the coverage tests of chapters 3, 4 and 6. Chapter 5

will examine the realistic case. In all simulated fits, it will be assumed

that λ and γ are low (less than 0.05, consistent with a trained adult

observer).

• The total number of trials, N . Again, it will be assumed that the

observer is a motivated adult, and therefore capable of performing at

least 100, and anything up to about 1000 trials in a single experimen-

tal condition. Psychometric functions will be based on 120, 240, 480

and 960 trials.

• Intended coverage. Both the width and coverage of an interval are

clearly affected by the confidence level that the interval is intended to

have. Two confidence levels will be considered: 68.3% and 95.4%. The
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former confidence level has the same intended coverage as the “stan-

dard error bar”, a familiar statistical yardstick which is obtained from

the mean ± one standard error, assuming that the quantity in question

is normally distributed. The latter, 95.4%, is the same coverage as a

standard interval constructed from the mean ± two standard errors,

and provides coverage of a comparable level to that used in many sta-

tistical tests (90%, 95% and 99% are often used). All intervals will be

two-tailed—thus, they aim to cover the central 68.3% or 95.4% of the

probability distribution of the estimate in question.

• The configuration of the stimulus values x, which will be referred to

as the sampling scheme. Ideally, the coverage of a confidence interval

should be independent of the sampling scheme, since the experimenter

does not have precise control over the locations in which the stimulus

values happen to lie relative to the curve of the true psychometric

function. For the coverage tests of chapters 3, 4 and 6, a small number

of illustrative sampling schemes (defined in section 1.5) will be used.

Chapter 5 will explore sampling schemes in more detail.

1.5 Sampling schemes

Wichmann and Hill9,10 examined the effect of sampling scheme on the sta-

tistical properties of threshold and slope estimates, and noted in particular

that some schemes caused slope estimates to be more sensitive to errors in

the estimate of λ than others,9 and that confidence interval width was more

sensitive to errors in the initial fit for some schemes than for others. To il-

lustrate some of the possible effects, they used a set of seven schemes, whose

definitions are reproduced in section 1.5.1.

The seven schemes are by no means intended to represent an exhaustive

inventory of possible sampling patterns (for one thing, they all have the

same number of points). They were used by Wichmann and Hill, and will

be used in some of the current simulations, because the computationally
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intensive nature of Monte Carlo techniques makes it impossible to explore

exhaustively the effects of variations in sampling scheme. Wichmann and

Hill found, in their second paper,10 that their examples highlighted some of

the important differences that the choice of sampling scheme can produce.

So, while chapter 5 will extend Wichmann and Hill’s work, and explore the

accuracy and precision of a wider range of sampling schemes, the coverage

tests of chapters 3 and 4, which are even more computationally demanding,

will fall back once again on these seven examples.

Note that Wichmann’s 7 sampling schemes are designed specifically for

forced-choice experimental designs, and in particular the 2-AFC design. Many

of them are asymmetric about the mid-point of the curve, to investigate and

take advantage of the asymmetry in the variability about different points

on a 2-AFC psychometric function (see section 5.3). As such they do not

constitute a reasonable set of examples for the effects of sampling scheme

variation in yes-no designs. Section 1.5.2 therefore defines a different set of

examples for the purposes of the yes-no coverage simulations performed in

chapter 3 and in section 4.3.3.

1.5.1 Seven sampling schemes for the 2-AFC design

Figure 1.2 shows the seven sampling schemes devised by Wichmann and

Hill9,10 as illustrative examples of the effect of sampling placement in 2-AFC

experiments. The figure is similar to Figure 1 from Wichmann and Hill’s

second paper.10 Although θ is different in the figure, the values of F (x) and

ψ(x) for each sampling scheme, which are listed in table 1.1, are identical to

those used in the paper.

In pilot simulations, sampling schemes were designed by hand in order to

explore a number of ways in which the pattern of stimulus values can vary:

bias towards the low or high end of the function, wide or narrow spacing,

and clustering towards or away from the mid-point. Differences in these

attributes were found to yield significantly different results in terms of the

bias and precision of threshold and slope estimation. The seven schemes

of figure 1.2 were selected in order to provide a set of sampling schemes
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Fig. 1.2: Seven sampling schemes (each represented as a chain of
symbols) after Wichmann and Hill.9,10 A 2-AFC Weibull psychomet-
ric function with θ = (3, 4, 0.5, 0.01)T is plotted to show the location
of each sample relative to the underlying function. The dotted lines
show t0.2, t0.5 and t0.8 for this function, corresponding to performance
levels of 0.598, 0.745 and 0.892, respectively.

ψ values (f values)
s1 • s2 � s3 � s4 � s5 � s6 � s7 �

0.647 (0.30) 0.549 (0.10) 0.647 (0.30) 0.549 (0.10) 0.539 (0.08) 0.647 (0.30) 0.667 (0.34)

0.696 (0.40) 0.647 (0.30) 0.716 (0.44) 0.598 (0.20) 0.588 (0.18) 0.696 (0.40) 0.716 (0.44)

0.735 (0.48) 0.696 (0.40) 0.843 (0.70) 0.647 (0.30) 0.637 (0.28) 0.745 (0.50) 0.765 (0.54)

0.755 (0.52) 0.794 (0.60) 0.892 (0.80) 0.696 (0.40) 0.843 (0.70) 0.794 (0.60) 0.892 (0.80)

0.794 (0.60) 0.843 (0.70) 0.941 (0.90) 0.745 (0.50) 0.916 (0.85) 0.843 (0.70) 0.941 (0.90)

0.843 (0.70) 0.941 (0.90) 0.980 (0.98) 0.794 (0.60) 0.985 (0.99) 0.985 (0.99) 0.980 (0.98)

Table 1.1: For each of the sampling schemes of figure 1.2, the f values
(by which the sampling schemes are defined) are given in parentheses
after the ψ values that are produced when that sampling scheme is
used with γ = 0.5 and λ = 0.01 (this particular combination of pa-
rameters is used in section 5.4 and for many of the tests of chapter 3).
Each column corresponds to one sampling scheme.
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that might occur in practice, but which were maximally illustrative of such

effects.†

1.5.2 Seven sampling schemes for the yes-no design

As the sampling schemes of section 1.5.1 were specifically designed for use

with 2-AFC psychometric functions, a new set of seven was chosen for to

explore the yes-no design. Their values are given in table 1.2 and plotted in

figure 1.3.
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Fig. 1.3: Seven sampling schemes, each represented as a chain of
symbols. A logistic psychometric function with θ = (0, 1, 0.02, 0.01)T

is plotted for comparison. The dotted lines show t0.2, t0.5 and t0.8 for
this function, corresponding to performance levels of 0.214, 0.505 and
0.796 respectively.

† Note that in all the simulations of this report, the true psychometric function of the
simulated observer is constant, and unaffected by any psychological influence of the range
or order of presentation of the stimulus levels.
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ψ values (f values)
y1 • y2 � y3 � y4 � y5 � y6 � y7 �

0.030 (0.01) 0.069 (0.05) 0.117 (0.10) 0.117 (0.10) 0.214 (0.20) 0.263 (0.25) 0.359 (0.35)

0.117 (0.10) 0.117 (0.10) 0.214 (0.20) 0.311 (0.30) 0.311 (0.30) 0.359 (0.35) 0.408 (0.40)

0.214 (0.20) 0.214 (0.20) 0.311 (0.30) 0.408 (0.40) 0.408 (0.40) 0.456 (0.45) 0.456 (0.45)

0.796 (0.80) 0.796 (0.80) 0.699 (0.70) 0.602 (0.60) 0.602 (0.60) 0.553 (0.55) 0.553 (0.55)

0.893 (0.90) 0.893 (0.90) 0.796 (0.80) 0.699 (0.70) 0.699 (0.70) 0.650 (0.65) 0.602 (0.60)

0.980 (0.99) 0.942 (0.95) 0.893 (0.90) 0.893 (0.90) 0.796 (0.80) 0.748 (0.75) 0.650 (0.65)

Table 1.2: For each of the sampling schemes of figure 1.3, the f values
(by which the sampling schemes are defined) are given in parenthe-
ses after the ψ values that are produced when that sampling scheme
is used with γ = 0.02 and λ = 0.01 (the parameters used in sec-
tion 3.2.2). Each column corresponds to one sampling scheme.
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2. Confidence interval methods

Sections 2.1 and 2.2 describe methods of obtaining confidence intervals for

the threshold and slope of a psychometric function. If u denotes the measure

of interest (threshold or slope), then the confidence limits [uLO, uUP] denote

the lower and upper endpoints of a two-tailed interval which is designed to

have coverage equal to 1− 2η, i.e. to contain the true underlying value ugen

on a proportion of occasions equal to 1− 2η. The tails of the interval should

be balanced, so that the probability of rejecting the true value in each tail is

η.

Section 2.1 describes the confidence interval methods based on probit

analysis. Section 2.2 describes the basic principles of the bootstrap and six

different bootstrap confidence interval methods.

2.1 Probit methods

Probit analysis has a long history in psychology which can be traced back

to Fechner’s experiments on weight discrimination in 1860. An account is

given by Finney,1 who details the methods and their application with specific

reference to the dose-response curves of medicine and toxicology.

The term “probit” is a contraction of “probability unit” which reflects

the approach of treating the response variable on a transformed scale y′ =

Υ−1(y), where Υ is the “link” function.2 It provides a method of fitting

the psychometric function by reducing it to a linear function y′ = βpr (x −
αpr). The term was originally coined with the cumulative normal function

specifically in mind as the link function, the “probit of y” being defined

as Φ−1(y) + 5 where Φ−1(·) is the inverse cumulative of the standard normal
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distribution, but the theory can be applied to other shapes. When the logistic

function is used, the units are often called “logits”. For the purposes of the

current study, “probit” will be treated as a generic term, not specifically tied

to any particular psychometric function shape, which can embrace “logits”,

“normits” (a term which is also sometimes applied to analyses that use the

cumulative normal function) and other kinds of transformed response scale.

Fitting a function by probit analysis involves an iterative procedure in

which the location and scale parameters αpr and βpr are estimated by weighted

linear regression. The weight on each block, Wi, is updated after each

iteration—it is always proportional to ni but also takes into account the ex-

pected binomial variability around each the probability value Υ(β̂pr [xi−α̂pr]),

and the slope of the function, dΥ/dx. The estimates α̂pr and β̂pr converge

to their maximum-likelihood values. However, when there are additional

parameters in the fit (for example, when Υ(·) scales the function between

unknown lower and upper bounds γ and 1−λ) the iterative procedure is not

necessarily the most efficient or reliable way of maximizing likelihood. Since

a maximum-likelihood procedure has already been defined in section 1.3,

probit analysis will not be used to obtain parameter estimates. Rather, the

interesting aspect of probit analysis for current purposes is that it provides

asymptotic formulae for the variance of αpr and βpr, and for confidence limits

on αpr.

The formulae provided by Finney1 are adapted here to yield the variance

of the threshold t0.5 and slope s0.5. The function Υ(·) need not be formulated,

except to state that Υ(βpr [xi − αpr]) is identical to ψ(x; θ̂0) when αpr = t̂0.5

and βpr = κ ŝ0.5. The constant κ depends on the shape of the psychometric

function, but it is eliminated in the derivation of the following.

A generalized formula for the probit weights is

Wi =
ni ṗ

2
i

pi (1− pi)
, where ṗi =

dψ

dx

∣∣∣∣
xi

. (2.1)

When the weights are evaluated at the MLE, so that each pi is equal to

ψ(xi; θ̂0), they can then be used to obtain the standard error set for the
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estimated threshold t̂0.5:

se2
t =

1∑
Wi

+
(t̂0.5 − x̄)

2∑
Wi (xi − x̄)2

, (2.2)

and standard error ses for the estimated slope ŝ0.5:

se2
s =

ŝ2
0.5∑

Wi (xi − x̄)2
, (2.3)

where x̄ =
∑

Wi xi/
∑

Wi, and the sum is taken over blocks i = 1 . . . k.

Standard error estimates (2.2) and (2.3) may be used to compute standard

confidence intervals of coverage 1− 2η as follows:

[uLO, uUP] = û0 ∓ seu Φ
−1(1− η). (2.4)

Probit standard error estimates were examined for the threshold and slope

of a yes-no psychometric function by Foster and Bischof.3 At lower values

of N , they were found to be less accurate and precise than the bootstrap

standard error method (section 2.2.1), particularly for slopes.

In addition to the normal-theory limits of equation (2.4), probit analysis

provides confidence limits for the threshold based on fiducial bands around

the estimated psychometric function. The probit fiducial limits† for t̂0.5 are

given by

[tLO, tUP] = t̂0.5 +
g

1− g
(t̂0.5 − x̄)∓ z

1− g

√
1− g∑

Wi

+
(t̂0.5 − x̄)

2∑
Wi (xi − x̄)2

, (2.5)

† The term “fiducial” refers to one of two ways of looking at the construction of a confidence
interval, both of which yield the same results in most situations. It is not proposed to
labour the distinction here: the potentially controversial word “fiducial” is used purely
as a label to refer to method (2.5), because this is the term used by Finney.1 See Ed-
wards (1992)4 for a discussion of the fiducial argument.
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where z = Φ−1(1− η) for an interval of overall coverage 1− 2η, and

g =
z2∑

Wi (xi − x̄)2
.

Probit fiducial limits for psychophysical thresholds were investigated in

2-AFC designs by Teller5 and by McKee, Klein and Teller.6 The latter study

noted that the confidence limits tended to be fairly accurate (as compared

with limits obtained from Monte Carlo simulation for a known psychometric

function) when N ≥ 100, although they made appreciable errors (particularly

in the lower confidence limit) at lower values of N .

2.2 Bootstrap methods

Bootstrap techniques were introduced in 1979 by Bradley Efron, since which

time they have undergone rapid development and have been applied in a wide

variety of situations. Good tutorial accounts and reviews of the statistical

literature can be found in the books by Efron and Tibshirani7 and by Davison

and Hinkley.8

The name “bootstrap” arises from the expression “to pull oneself up by

one’s bootstraps”, after the feat performed by the mythical character Baron

Munchausen to save himself from sinking into a swamp. Thus, it has the

connotation of performing an impossible task, getting something for nothing

or, in a statistical context, apparently obtaining information from nowhere.

In fact, a bootstrap technique is no more magical in this sense than the

use of an ordinary statistical “plug-in” estimate of variability: in both, the

probability distribution of estimates around a true (unknown) value ugen is

approximated by using the experimenter’s estimate û0 in place of ugen. The

difference is that the bootstrap technique uses Monte Carlo simulation to

approximate the probability distribution rather than relying on parametric

assumptions about its shape—assumptions that are often only asymptotically

correct.

Thus, bootstrap confidence limits for an estimate û are based on the
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bootstrap distribution which is estimated by taking a large number R of Monte

Carlo estimates û∗
1 . . . û

∗
R. Each bootstrap estimate û∗

i is derived in exactly

the same way as the initial estimate, but from a simulated set of responses

r∗i . Bootstrap techniques may be parametric or non-parametric, a distinction

which refers to the way in which simulated data are generated. The non-

parametric method is to sample with replacement from the original data. For

psychophysical data this means that, in the j th block of the i th simulated

data set, the number of correct responses r∗ij is the total number of ones in

a set of size nj drawn with replacement from the original set of rj ones and

nj − rj zeros. Thus, r
∗
·j is binomially distributed with probability of success

yj in nj trials.
† Foster and Bischof9 applied this form of the bootstrap to the

psychometric function, and report its accuracy to be greater than that of an

asymptotic method based on the “combination of observations”, particularly

when N is low. The non-parametric bootstrap was also recommended by

Treutwein and Strasburger.14

The parametric bootstrap, on the other hand, uses a parametric model to

obtain the generating probability in each block. Wichmann and Hill12 point

out that, when a function has already been fitted to psychophysical data in

order to estimate threshold and slope, a parametric model has already been

assumed. Generating probability values are therefore available without the

need for any extra assumptions. In the parametric bootstrap, r∗·j is binomially

distributed with probability of success pj = ψ(xj ; θ̂0). This is the form in

which the bootstrap is generally applied to psychometric functions,3,10,12,13,15

† Though this approach is conventionally referred to as non-parametric, it is not without as-
sumptions about how the data are generated. In their simplest form, both non-parametric
and parametric bootstrap methods assume that the individual observations of a block are
independent and identically distributed. Under such an assumption, bootstrap resam-
pling from block of Bernoulli trials will automatically yield a binomially distributed total.
Though this assumption is made in the simulations presented here and elsewhere,3,9–13 its
validity is questionable given that serial correlations between an observer’s responses may
in fact occur, leading to supra-binomial variability. Alternative non-parametric resampling
techniques, such as a block-based resampling system within each block of trials, may be
suitable to address this issue. In order to test the effectiveness of such a method, a model
for the observer’s trial-to-trial behaviour would have to be assumed in simulation. This is
beyond the scope of the current study, which tests confidence interval methods under the
assumption of independent identically distributed responses.
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and which will be used in the current study.

Provided the distribution (û∗
i − û0) of bootstrap estimates around the ini-

tial estimate is similar to the distribution of estimates around the true value

(û0−ugen) the accuracy of the bootstrap method is limited only by the num-

ber of simulations R. The shape of the distribution is estimated directly by

simulation, rather than by a method whose accuracy relies on a large enough

N , which is why bootstrap methods are often found to be more accurate than

asymptotic methods when N is low. However, the bootstrap does rely on

the shape of the bootstrap distribution around û0 being sufficiently similar

to the true distribution around ugen. The strength of this assumption (i.e.

the validity of the “plug-in” principle,7 or as Wichmann and Hill12 call it,

the “bootstrap bridging assumption”) usually relies on numerical closeness

of û0 to ugen, which does tend to be better at higher N .

There are many different ways of using the bootstrap distribution to ob-

tain confidence limits, some of which use more information from the boot-

strap distribution to correct for errors in the bridging assumption than oth-

ers. Six variations are described in the following sub-sections. Depending

on the application, the accuracy of the different variations may differ. The

bootstrap standard error, basic bootstrap and bootstrap percentile meth-

ods are generally found to be first-order accurate, which means that, to a

first approximation, the error in their coverage probability is proportional

to N− 1
2 . Various improvements to the bootstrap method have been devel-

oped, including the bootstrap-t method (section 2.2.3) and the BCa method

(section 2.2.5), which can be shown to be second-order accurate (error in

coverage probability ∝ N−1) in many applications.†

With the exception of the bootstrap standard error method, all the meth-

ods described below are based on estimated quantiles of the bootstrap dis-

† Although two methods may be shown to have the same order of accuracy, their absolute
accuracy may differ depending on the context in which they are applied: coverage error
might be proportional to (say) N− 1

2 for both methods, but with different constants of
proportionality. Each new application of bootstrap methods requires a new theoretical
analysis and new simulation studies (of the kind reported in chapters 3, 4 and 6) to
compare the performance of different bootstrap variations.
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tribution û∗. A subscript in parentheses will be used to denote an estimated

quantile.† For example, the η quantile of the distribution of R bootstrap val-

ues û∗ is written as û∗
(η), and is estimated by taking the (R+ 1)η th ordered

value of the distribution. Where (R + 1)η < 1 or (R + 1)η > R, the result

is undefined, and where it is not a whole number, the result is linearly inter-

polated between the nearest two values. The reverse process will be known

as the cumulative probability estimate or cpe, given by

cpe{u; u∗} = 1

R+ 1

R∑
i=1

I{u∗
i ≤ u}, (2.6)

where I{·} is the indicator function. Note that, assuming there are no re-

peated values in u∗, the two processes are exact inverses of one another for

a value u ∈ u∗, so that cpe{u∗
(η); u

∗} ≡ η when (R + 1)η is an integer.

It is recommended8 that R be at least 999 when confidence levels of the

order of 0.95 and 0.99 are to be considered. The current study uses R = 1999.

Sections 2.2.1–2.2.5 detail the bootstrap standard error, basic bootstrap,

bootstrap-t, bootstrap percentile and BCa methods. The equations are

adapted from Davison and Hinkley8 sections 5.2 and 5.3, with appropriate

substitution and rearrangement of the notation for the current purpose. Sec-

tion 2.2.6 describes and illustrates the expanded bootstrap method suggested

by Wichmann and Hill.12

2.2.1 The bootstrap standard error method

The bootstrap distribution can be used in order to estimate the standard

deviation of the true distribution, which is then used as a standard error

estimate in the construction of the standard interval of overall coverage 1−2η:

[uLO, uUP] = û0 ∓ ŝeu Φ
−1(1− η), (2.7)

† “Quantiles” will be discussed rather than “percentiles”, so that the subscript value is
always in the range (0, 1) and the superfluous factor 100 can be omitted. However, the
name “bootstrap percentile” will be retained as it is the conventionally recognized name
for the method described in section 2.2.4.
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where Φ−1(·) is the inverse cumulative of the standard normal distribution

and ŝeu is the standard deviation the bootstrap values û∗
1 . . . û

∗
R.

The bootstrap standard error method was applied to the threshold and

slope of the psychometric function by Foster and Bischof,3,9,10 and was found

to be a better estimator of the true standard error at low N than either the

probit method of equation (2.4) or the “incremental” method.16

As confidence intervals, bootstrap standard intervals (2.7) are generally

found to be first-order accurate. They are often less accurate than other

first-order accurate methods, because their accuracy is limited by the extent

to which the true distribution is normal, and therefore symmetrical—Efron

and Tibshirani7 point out that “the most serious errors made by standard

intervals are due to their enforced symmetry” (page 180).

2.2.2 The basic bootstrap method

The essence of the bootstrap is to take û∗− û0 (the distribution of bootstrap

estimates around the initial estimate) as an approximation to û0 − ugen (the

distribution of estimates around the true underlying value).

By taking such a step, confidence limits can be computed directly, without

any parametric assumptions about the form of the distribution (û0 − ugen),

as follows. Consider the low tail of a two-tailed confidence interval of overall

coverage 1− 2η. The limit % is the value such that

Pr(ugen ≤ %) = η,

which is equivalent to

Pr(û0 − ugen ≥ û0 − %) = η.

The bootstrap step is to make the substitution on the left hand side of the

inequality, so that

Pr(û∗ − û0 ≥ û0 − %) = η,
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which can then be re-arranged as

Pr(% ≥ 2û0 − û∗) = η.

This is satisfied by taking

% = 2û0 − û∗
(1−η).

Thus, the basic bootstrap limits for a two-tailed interval of coverage 1− 2η

are given by:

[uLO, uUP] =
[
2û0 − û∗

(1−η), 2û0 − û∗
(η)

]
. (2.8)

Note the reversal of the quantiles of û∗: the lower limit is computed using the

higher quantile of the bootstrap distribution, and vice versa. This may seem

counter-intuitive at first, but it is appropriate when considering asymmetric

distributions. If, for example, the bootstrap distribution has a long upper

and short lower tail, and this is an accurate estimate of the shape of the true

distribution, then it is entirely appropriate for the confidence interval to have

a long lower arm and short upper arm: the estimator is likely to have made

a larger positive error, to arrive at the observed value from below (if the true

value lies below) than the negative error it is likely to have made in order to

arrive at the observed value from above (if the true value lies above).

Hall17,18 refers to (2.8) as the “bootstrap percentile” method, a classifica-

tion which will not be used here. The nomenclature of Efron and Tibshirani7

and Davison and Hinkley8 is preferred, in which “bootstrap percentile” refers

to the use of the quantiles of û∗ without reversal (see section 2.2.4, below).

In the limit as R → ∞, the basic bootstrap is correct for distributions

of arbitrary shape, provided that the bootstrap distribution is of identical

shape to the true distribution. In practice, this is rarely the case, and such an

assumption generally leads to confidence intervals whose coverage converges

fairly slowly to the desired level. Basic bootstrap intervals are generally

found to be first-order accurate.
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2.2.3 The bootstrap-t method

The Studentized bootstrap or bootstrap-t method is a development of the

basic bootstrap. It is found to be second-order accurate in many applications,

including the logistic regression design treated by Lee,19 which is analogous

to a yes-no psychometric function without nuisance parameters.

The bootstrap-t method relies on a separate approximation for v̂, the

variance of u, for which any one of a number of methods may be used. The

method considered here uses the asymptotic approximation to the parameter

covariance matrix V̂ provided by the inverse of the expected Fisher informa-

tion matrix Î (see the appendix, section B.2). The vector u̇ of derivatives

of u with respect to each the parameters (see the appendix, section B.1) is

used in conjunction with V̂ to obtain an approximation to the variance v̂ of

u

v̂ = u̇ V̂ u̇T. (2.9)

(Thus if u is one of the parameters, θi, then v̂ is simply the appropriate

element V̂ii on the diagonal of the covariance matrix.)

The initial estimated variance v̂0 is obtained using the initial parameter

estimate θ̂0 to evaluate Î and u̇. In addition, a bootstrap estimate v̂∗i is

obtained on each simulation using the bootstrap parameter set θ̂
∗
i . The

intention is to create an approximately pivotal distribution ẑ∗, where

ẑ∗i = N− 1
2 v̂∗i

− 1
2 (û∗

i − û0). (2.10)

The appropriate quantiles of ẑ∗ are then transformed back onto a meaningful

scale by multiplying by the square root of the initial variance estimate, to

yield confidence limits analogous to (2.8), as follows:

[uLO, uUP] =
[
û0 −N

1
2 v̂0

1
2 ẑ∗(1−η), û0 −N

1
2 v̂0

1
2 ẑ∗(η)

]
. (2.11)

Alternative methods for the computation of v̂ include the non-parametric

delta method (see sections 2.7.2, 3.2.1 and 5.2.2 of Davison and Hinkley8),

and various forms of jackknife method.7,20 The simulations of chapter 3
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will use (2.9) because the additional level of iteration required by the non-

parametric methods would make repeated Monte Carlo simulation of the

entire bootstrap process impracticable. It is sometimes recommended8,21

that the observed rather than expected Fisher information be used to obtain

V̂ . The expected information matrix will be used here, however, in order to

allow direct comparison with the simulation studies of Lee22 and of Swanepoel

and Frangos,20 both of which used (2.9) based on V̂ = Î
−1

in the context of

logistic regression.

A two-dimensional version of the bootstrap-t method will also be inves-

tigated in chapter 4: following the method of Hall,17 the covariance matrix

V̂ is used instead of the scalar variance estimate v̂ in (2.10) and (2.11)—see

page 129.

2.2.4 The bootstrap percentile method

The bootstrap percentile method is similar to the basic bootstrap, in that

quantiles of the bootstrap distribution are used without any kind of non-

linear transformation. It differs from the basic bootstrap, however, in that

the quantiles are used unswapped, so that

[uLO, uUP] =
[
û∗

(η), û∗
(1−η)

]
. (2.12)

Hall18 is critical of (2.12), calling it the “backwards bootstrap” because

of its failure to reverse the quantiles of û∗ as the logic of section 2.2.2 would

demand, and he applies the name “bootstrap percentile” to equation (2.8).

Nonetheless, Davison and Hinkley8 provide an ingenious theoretical justi-

fication, which is to suppose that there is some monotonic function ζ(û∗)

that normalizes the bootstrap distribution. The quantiles of the transformed

distribution may be freely reversed, or not, because the distribution is sym-

metrical. Thus, lower and upper confidence limits may be obtained on the

transformed scale by ζ(û∗)(η) and ζ(û∗)(1−η), respectively. As ζ(·) is mono-
tonic, transformation back onto the u axis, ζ−1

[
ζ(û∗)(η)

]
and ζ−1

[
ζ(û∗)(1−η)

]
,

yields limits that are equal to û∗
(η) and û∗

(1−η), respectively.
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The bootstrap percentile method is only first-order accurate in theory,

but Efron and Tibshirani7 observe that it is often more reliable than the

bootstrap-t method in practice, because the latter often tends be more heav-

ily influenced by a few outliers.

Bootstrap percentile intervals were applied in the context of 2-AFC psy-

chometric functions by Maloney13 and by Wichmann and Hill.12,15

2.2.5 The BCa method

The bias-corrected accelerated or BCa method was introduced by Efron23 as

a second-order accurate adjustment to the bootstrap percentile method. It is

also described by Efron and Tibshirani7 and by Davison and Hinkley.8 The

following account is adapted from Davison and Hinkley8 (section 5.2.3 on

pages 203–207 and problem 7 on page 249).

Confidence limits are computed as for the bootstrap percentile method,

using quantiles of the bootstrap distribution directly:

[uLO, uUP] =
[
û∗

(ε̃lo), û∗
(ε̃up)

]
, (2.13)

where ε̃LO and ε̃UP are bias-corrected accelerated versions of the unadjusted

confidence levels εLO = η and εUP = 1− η, respectively. The adjustment is

ε̃ = Φ

(
w +

Φ−1(ε) + w

1− ξ (Φ−1(ε) + w)

)
,

where w is the bias correction term, and ξ is the acceleration or skewness

correction factor. The bias correction term is defined by

Φ(w) = Pr(û0 < ugen | ugen) ≈ Pr(û∗ < û0 | û0),

which leads to the following expression based on the bootstrap distribution:

w = Φ−1

(
1

R+ 1

R∑
i=1

I{û∗
i ≤ û0}

)
, (2.14)
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where I{·} is the indicator function. Estimation of the skewness correction

factor ξ is somewhat more involved. One method is to use the non-parametric

delta method mentioned in section 2.2.3. The current study uses the para-

metric approximation

ξ =
E∗{ ,̇∗

LF

3}

6 var∗
{
,̇∗
LF

} 3
2

.

The i th value in the bootstrap distribution ,̇∗
LF

is the derivative of log-

likelihood, evaluated at the bootstrap parameter estimate θ̂
∗
i , taken in the

least favourable direction in the parameter space. Thus, acceleration is equal

to one sixth of the ratio between the mean of the cubed bootstrap deriva-

tives and the cube of the standard deviation of the bootstrap distribution of

derivatives. Each bootstrap log-likelihood derivative value is given by

,̇∗LFi =
∂,(θ)

∂θT

∣∣∣∣
�̂
∗
i

· δ̂u,

where δ̂u is a unit vector denoting the least favourable direction in parameter

space for the purposes of inference about the measure of interest u. It is given

by

δ̂u =
Î

−1

u̇∥∥∥Î−1

u̇
∥∥∥ ,

where Î is the expected Fisher information matrix and u̇ is the vector of

derivatives of u with respect to each of the parameters θ. For further details

on the computation of ∂,/∂θT and Î, see the appendix, section B.2. For the

computation of u̇, see section B.1.

The BCa method was recommended for use in the context of psychometric

functions by Wichmann and Hill,12 based on reports that it yielded improve-

ments in coverage accuracy in other applications, but without theoretical or

empirical support for its application in psychophysics.
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2.2.6 Expanded bootstrap intervals

The expanded method was proposed by Wichmann and Hill12 as a method of

examining the sensitivity of the confidence limits to error in the initial fit, and

providing conservative confidence limits. From the initial estimate 0θ̂0, the

initial estimate of the measure of interest 0û0 is computed, and a confidence

interval [0uLO,
0uUP] is obtained by one of the above bootstrap methods. The

next step is to examine how the interval expands as 0θ̂0 changes, in order

to obtain an indication of how the interval might be affected by error in the

initial estimate (in other words, to assess the extent to which the bootstrap

bridging assumption fails). The method is designed to test possible errors in a

number of different directions in parameter space. To this end, a confidence

region (see chapter 4) is computed, expressing likely variation in all the

parameters simultaneously, and new parameter sets 1θ̂0, . . .
8θ̂0 are chosen

at eight different locations on the boundary of the region. The bootstrap

is then re-run eight times, substituting each of the new parameter sets iθ̂0

for the original estimate 0θ̂0, to obtain a new pair of limits [iuLO,
iuUP]. The

expanded limits are then given by

[uLO, uUP] =
[

0û0 − max
i=0...8

{iû0 − iuLO} , 0û0 + max
i=0...8

{iuUP − iû0}
]
. (2.15)

Thus the expanded interval represents a “worst-case” scenario, encom-

passing the confidence limits furthest removed from the initial estimate, given

that it is not known which of the parameter sets 0θ̂0, . . .
8θ̂0 yields the best

bootstrap approximation to the true probability distribution. Depending on

how widely the secondary parameter sets 1θ̂0, . . .
8θ̂0 are spaced (which in

turn depends on the expansion level, i.e. the coverage of the underlying re-

gion) the method therefore offers some security against possible failure of the

bootstrap bridging assumption.

Wichmann and Hill12 took the ratio of the width of the expanded interval

to the width of the ordinary bootstrap interval as an index of the sensitivity

of a particular sampling scheme to likely error in the initial fit, “likely error”

being estimated by the confidence region on which the expanded method is
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based. They used a crude method for constructing the region, simultaneously

asserting a 68.3% bootstrap percentile confidence interval in α and another

in β, to produce a rectangle. Parameter sets 1θ̂0, . . .
8θ̂0 were located at

the corners and on each side of the rectangle, with all the iλ̂0 equal to 0λ̂0.

The rectangle was generally found to contain roughly 50% of the original

bootstrap points in a two-dimensional projection, although this depended on

the data, as some data sets introduced more covariance between α and β than

others, an effect which a rectangular region does not take into account. The

bootstrap percentile method was used to obtain confidence limits at each of

the nine parameter sets.

The current study uses two refinements of the method. First, the BCa

method is used to obtain confidence limits for each parameter set. Second,

the underlying region is obtained by the bootstrap deviance method described

in section 4.2, and thus reflects likely error in all the parameters, including

nuisance parameters. The parameter sets 1θ̂0, . . .
8θ̂0, being chosen to lie

on the region boundary, have equal likelihood given the original data. The

implementation of the method includes an algorithm for choosing the eight

points such that they explore the largest deviations in all the parameters

while being spread out as much as possible in the α–β plane. Two examples

are shown in figure 2.1—each example is the result of a 2-AFC logistic fit

to a different data set, with λ allowed to vary in the range [0, 0.05]. The

expansion level is equal to 0.5 in both examples.

In each panel of figure 2.1, the red triangle marks the initial estimate
0θ̂0. The light blue points mark the parameter sets from the first bootstrap

distribution 0θ̂
∗
that lie within the region, and the dark blue points mark

those that lie outside. The error bars close to the axes show the central 68.3%

(inner box) and 95.4% (outer bar endpoints) of the bootstrap distribution,

separately in the α and β dimensions. Note that, particularly in the lower

panel, there are some dark blue points apparently near the centre of the

distribution, “underneath” the light blue points. This is because the plot

is a two-dimensional projection of a space that actually includes a third

dimension λ, so the confidence “region” is in fact a volume. Nevertheless the
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exploratory parameter sets 1θ̂0, . . .
8θ̂0, marked by the yellow triangles, are

placed so that they are spread out with respect to the two parameters that

are of particular interest, α and β.
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Fig. 2.1: The upper and lower panels illustrate the expanded boot-
strap method for logistic function fits to two different 2-AFC data
sets. See section 2.2.6 for details.
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3. Testing the coverage of confidence

intervals

3.1 Introduction

3.1.1 General methods

In order to assess the accuracy of a method for obtaining confidence intervals,

a Monte Carlo coverage test is performed. Where Monte Carlo methods for

obtaining confidence intervals use a computer to simulate, over and over

again, the behaviour of an observer, a Monte Carlo coverage test takes this

principle one stage further by simulating, over and over again, the steps

carried out by an experimenter.

The procedure used in this chapter is as follows: a psychometric function

shape ψgen and a parameter vector θgen are chosen. Together they describe

the true psychometric function for an observer on a particular task. A sam-

pling scheme is chosen, consisting of a set of f -values (see section 1.5) which,

when transformed through the inverse of F (x; αgen, βgen) determine the stim-

ulus values x at which observations are to be taken, and which also, via the

linear transformation p = γgen + (1 − γ − λ)f , determine the corresponding

generating probability values pgen. The number of observations to be taken

at each point is given by a vector n (the vectors x, pgen and n all have

length k). For each of a large number of repetitions C, a simulated data set

ri is then generated, in which each value rij is a simulated performance score

drawn from the binomial distribution Bi(nj , pj). Each data set ri is then

passed to a simulated “experimenter”, which is a subroutine that does not
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know the true parameter vector θgen, but which uses the data set to obtain a

maximum-likelihood parameter estimate, and then uses that parameter esti-

mate to obtain a confidence interval [ui(LO), ui(UP)] for a measure of interest u.

The method for obtaining such confidence intervals might be, for example, a

bootstrap method.

The result, a set of C confidence intervals, is a simulation of what would

happen if an experimenter were to perform the same experiment C times,

including the processes of fitting and confidence interval estimation (thus,

if a bootstrap method is being tested, the test is extremely computationally

intensive because each of the C repeats requires R psychometric function fits).

If the method under examination exhibits perfect coverage, then the expected

proportion of confidence intervals that contain the correct underlying value

ugen (computed from θgen) is equal to the nominal coverage of the confidence

intervals (for example, 0.683 or 0.954).

The coverage estimate ĉ for a given confidence interval method, then, is

equal to the proportion of simulated confidence intervals of u that contain

the true value ugen. As the true value can be either inside (with estimated

probability ĉ) or outside of a confidence interval, the standard error of ĉ is

estimated by the plug-in binomial standard error formula ŝec =
√

ĉ(1− ĉ)/C.

A second concern, besides accurate coverage, is that a method should

produce intervals of correctly balanced coverage. For a two-tailed hypoth-

esis test of 95% coverage, for example, the true value should occur 2.5%

of the time in the upper tail, and 2.5% of the time in the lower tail. If it

appears 5% of the time in the upper tail but not at all in the lower tail,

then the interval has the correct overall coverage probability, but it is unbal-

anced and will lead to hypothesis testing errors. Note that this sense of the

word “balance” is a special case of the commonly-used definition provided

by Beran,1,2 which is that the coverage probabilities of two or more simul-

taneously asserted confidence statements are asymptotically equal, so that

the two statements are “treated fairly”. Lee3 applied the bootstrap method

to logistic regression problems using Beran’s approach, showing the method

to be asymptotically balanced for a simultaneous confidence region whose
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constituent statements are of the general form Ru(θ) < du where Ru(·) is an
appropriate transformation (or “root” function) of any linear combination

of the intercept and slope parameter, weighted by a vector of coefficients u.

In a subsequent paper4 Lee’s Monte Carlo simulations suggested that the

bootstrap is better balanced than the asymptotic methods of Bonferroni and

of Scheffe, although he measured the balance between coverage of intercepts

and coverage of slopes, rather than the balance of coverage between the two

sides of a two-tailed one-dimensional confidence interval. Tail imbalance for

a single measure of interest can be fitted into the same framework, as a

two-tailed confidence interval is just a pair of simultaneously asserted state-

ments u > uLO and u < uUP, which can be expressed in the notation of Beran

and Lee using one root indexed by a certain vector u and another indexed

by −u.
Both Beran2 and Lee4 quantify imbalance simply by taking the abso-

lute difference between two coverage probabilities (or the largest absolute

difference between any pair of coverage probabilities). A slightly different

metric will be used here, because using the difference between tail probabil-

ities would make it difficult to compare imbalance values between two tests

whose overall coverage is different: the range of possible values [0, 1−ĉ] would

change. Instead, a standardized metric will be used, and the direction of the

imbalance will be preserved: imbalance will be defined as the difference be-

tween the conditional probabilities, given that a false rejection of the true

value has occurred, of its occurrence in the lower tail and its occurrence in

the upper tail, i.e.:

a =
PLO − PUP

PLO + PUP

∀ {PLO + PUP > 0}, (3.1)

where PLO and PUP are the false rejection probabilities in the lower and upper

tail respectively: PLO = Pr(ugen < uLO) and PUP = Pr(ugen > uUP). The

imbalance metric is similar to the confidence interval “shape” metric used

by Efron and Tibshirani,5 except that it is a fractional difference of rejection

probabilities, rather than a fractional difference of lengths of the two sides of
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the interval. Each coverage test yields an estimated imbalance â based on the

estimates P̂LO and P̂UP obtained from the set of C confidence intervals. The

ideal result is â = 0, indicating that the the confidence interval is perfectly

balanced. The result â = −1 would indicate that the confidence interval

bounds are set too low, to such an extent that all the false rejections occur in

the upper tail and none in the lower tail. Conversely, â = +1 indicates that

the confidence interval bounds are set too high, with all the false rejections

occurring in the lower tail and none in the upper tail. In the special case

PLO = PUP = 0, a is defined as 0, because the interval is balanced at least in

the sense that the same number of false rejections (zero) occurs in each tail.

The standard error sea of a can be calculated from the following variance

formula:

se2
a =

[
C∑

l=0

C−l∑
h=0

n!
l!h!(n−l−h)!

PLO
lPHI

h(1− PLO − PHI)
n−l−ha(l,h)

2

]

−
[

C∑
l=0

C−l∑
h=0

n!
l!h!(n−l−h)!

PLO
lPHI

h(1− PLO − PHI)
n−l−ha(l,h)

]2

.

(3.2)

where a(l,h) is defined as 0 when l = h = 0, and (l − h)/(l + h) otherwise.

Standard errors for â are obtained using the plug-in estimates P̂LO and P̂UP

in place of PLO and PUP.

Swanepoel and Frangos6 used the Monte Carlo method to measure ĉ for

95% confidence intervals for the slope parameter of a logistic function with

γ = λ = 0. They used two symmetrical sampling schemes: one with k = 5

which they tested at N = 100, 150 and 200, and another of similar spread

but with k = 10, which they tested at N = 200, 300 and 400. Their confi-

dence intervals were obtained by the bootstrap-t method using four different

techniques for estimating v̂ (see section 2.2.3): a parametric method using

the Fisher approximation (considered here) and three jackknife methods. Of

these, the parametric method is by far the least computationally intensive,

and Swanepoel and Frangos found its performance to be second best, with

ĉ = 0.94±0.01 for nearly all cases.† Lee4 also used the parametric method to

† The winning procedure was a third-order-corrected jackknife method. While it was roughly
(footnote continues −→)
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obtain Studentized bootstrap parameter distributions for a logistic function

(again, only the idealized yes-no situation, with γ = λ = 0, was considered).

The coverage results for the slope parameter were somewhat more variable

than those of Swanepoel and Frangos, although this may be attributable to

Lee’s cruder implementation of the bootstrap-t method, in which all confi-

dence intervals were symmetrical about the MLE.

The current chapter aims to use the statistics ĉ and â to compare the

performance of a number of different confidence interval methods:

• bootstrap standard error,

• basic bootstrap,

• bootstrap-t (using the parametric Fisher approximation),

• bootstrap percentile,

• bootstrap BCa,

• expanded bootstrap BCa (at various levels of expansion),

• probit standard errors,

• probit fiducial limits on thresholds.

In order to replicate and extend Swanepoel and Frangos’s observations,6 one

set of tests will be performed with the logistic function and with γ and λ

fixed at 0. In the main, however, tests will focus on realistic psychophysical

conditions, as psychophysicists are likely to be more interested in the case

in which it cannot be assumed that γ = λ = 0. The results of the idealized

equivalent to the parametric method in terms of its estimated coverage, Swanepoel and
Frangos preferred it because it produced significantly shorter confidence intervals. As the
two procedures had the same ĉ but different mean lengths, it seems likely that they had
different values of â, but the authors do not report the extent to which intervals were
balanced. It would therefore be interesting to test this. Such a test will not be attempted
here: the current chapter aims to explore a broader set of variables, and Monte Carlo tests
of bootstrap methods are computationally demanding enough without the extra level of
iteration required by the jackknife.
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condition will therefore be interesting to the extent that they contrast with

the second set of tests, in which the true γ and λ are small non-zero val-

ues that the experimenter must estimate—in this case, using a constrained

maximum-likelihood search. Results of such a comparison will be reported in

section 3.2. The remaining majority of tests will concentrate on the 2-AFC

case, with γ fixed at 0.5. Again, an idealized and a realistic case will be

compared. In the former, it will be assumed that lapses do not occur, so λ

can be safely fixed at 0. In the latter, λ will be a free parameter of the model,

constrained to lie within the neighbourhood of its small non-zero underlying

value.

Performance may be affected by k, by N , and by the exact placement of

the k sample points. These factors create a large space which it is impractical

to explore thoroughly.† Therefore, exploration will be confined, in sections 3.2

and 3.3, to a set of 7 sampling schemes, all of which have k = 6, at N =

120, 240, 480 and 960.

Unless otherwise stated, each of the tests comprised R = 1999 bootstrap

runs on each of C = 500 simulations of an experiment. Also, unless otherwise

stated, the correct psychometric function form was always used to fit sim-

ulated data sets (thus, if the underlying function was the Weibull function,

the Weibull was used for fitting). Thresholds and slopes were computed at

f = 0.2, f = 0.5 and f = 0.8. Confidence intervals were calculated for target

coverage probabilities of 0.683 and 0.954. The target will be identified where

necessary using a subscript on the results; for example, ĉ68 will denote the

measured coverage of a confidence interval whose target coverage was 0.683,

and â95 will denote the measured imbalance of a confidence interval whose

target coverage was 0.954.

† The software allowed most of the confidence interval methods to be tested simultaneously,
with two exceptions: only a single level of expansion could be tested at once, and the
extra time needed to calculate v̂∗ on each bootstrap replication made it impractical to
test bootstrap-t and expanded methods simultaneously. Running on a Macintosh G3 at
350 MHz, a single test set (consisting of 7 different sampling schemes at 4 different values
of N) required roughly five days of continuous processing if the test included an expanded
method, or two days if it included bootstrap-t.
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3.1.2 Freeman-Tukey transformation of coverage

probability estimates

Estimated coverage probabilities ĉ will be transformed using the normalizing

and variance-stabilizing function of Freeman and Tukey:7

ϑC(c) = sin−1

√
c C

C + 1
+ sin−1

√
c C + 1

C + 1
. (3.3)

Whereas the standard error of ĉ itself is dependent on the estimated value,

ϑC(ĉ) is a monotonically increasing transformation of ĉ which yields values

whose standard error is asymptotically independent of ĉ, being approximately

equal to (C + 1
2
)
− 1

2 . In practice, “approximately” means that for C ≤ 500,

and for all observable coverage estimates except 0 and 1 (i.e. for all values

{1, 2, . . . C − 1}/C) the exact standard error of ϑC(ĉ) does not deviate from

the asymptotic value by more than about 3% of the asymptotic value itself.

(For ĉ = 0 or ĉ = 1 the estimated standard error is naturally 0.)

Thus, by plotting ϑC(ĉ) instead of ĉ on figures such as figure 3.1, the

statistical significance of differences in coverage can be more easily assessed

by eye. Assuming C = 500, the standard error bars for every point would be

of extent ±0.045.
Note that the Freeman-Tukey function depends on C and, because of

occasional invalid results within the test, the effective value of C was less

than 500 in some rare cases. Naturally, the standard error is somewhat

higher for these points, according to the formula (C + 1
2
)−

1
2 . However, there

is another slight complication: in order to make the estimates from different

tests directly comparable to one another, and to the axis on which they are

plotted, the same monotonic function will be applied to all, viz. the function

for C = 500. The effect of such a generalization is to perturb the variance-

stabilizing effect of the transform somewhat: when C = 350, for example,

the standard error values at c < 0.03 and c > 0.97 can rise by up to 6% of the

asymptotic value, and when C = 100, the standard error values at c < 0.07

and c > 0.93 can rise by up to 14% of the asymptotic value. Such effects
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are sufficiently small, and values of C less than about 350 occur sufficiently

rarely, that such errors do not substantially affect the interpretation of any

of the results presented here.

When C ≤ 500, the Freeman-Tukey transform can be shown to be appre-

ciably superior to certain other commonly-used variance-stabilizing formulae

such as Φ−1(c) or 2 sin−1
√
c. The latter is actually a special case of equa-

tion (3.3), being the limit of ϑC(c) as C → ∞.

3.1.3 Graphical representation of results

In reporting the results, figures will generally follow the format of figure 3.1.

The upper panel shows estimated coverage probability ĉ on the ordinate,

transformed using the normalizing and variance-stabilizing transform ϑ500(·)
of section 3.1.2. The lower panel shows the estimated imbalance â from equa-

tion (3.1) on the ordinate. In both panels, the results are grouped along the

abscissa according to the confidence interval method used, and each symbol

refers to a single coverage test (i.e. 500 iterations of an experiment using one

particular sampling scheme at one particular value of N).

The symbols can be viewed “from a distance” to show the general trends

that are characteristic of a particular confidence interval method. At the risk

of overloading the diagrams with information, the shape of the symbols will

further denote which sampling scheme was used, and their size will denote the

value ofN . In most cases it is the general trend that will be interesting, so the

reader rarely need worry about trying to decipher symbol shapes and sizes.

There are a few instances, however, in which variations in sampling scheme

and/or N explain a specific discernible trend in the results, and attention

will be drawn to such trends in the text. Otherwise, the symbols at least

serve to illustrate the significant point that there are very few simple trends

that can be attributed solely to sampling scheme or to N .

Symbol shapes will correspond to different sampling schemes. In the

2-AFC simulations of section 3.3, they will refer to Wichmann’s 7 sampling

schemes in the manner illustrated in figure 1.2. As Wichmann’s sampling

schemes are only really appropriate for forced-choice designs, symbols in the
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the yes-no simulation results of section 3.2 will correspond to the alternative

set of 7 sampling schemes shown of figure 1.3.

Error bars have not been drawn on the points. As discussed in sec-

tion 3.1.2, the standard error of a transformed estimated coverage probabil-

ity ϑ500(ĉ) is roughly constant, being approximately 0.045 when C = 500.

As previously mentioned, there were certain rare cases in which the number

of valid simulations dropped below 500. For bootstrap methods, C never

dropped below 350, the corresponding standard error being roughly 0.053.

Probit fiducial limits for two particular tests (the poorly sampled 2-AFC

schemes • and � at the lowest N value, N = 120), proved calculable only

about 100 times out of the 500: the corresponding standard error of roughly

0.1 can be taken to be the absolute worst case.

The standard error of an estimated imbalance value, computed using

equation (3.2), depends on both ĉ and â as well as C. As a rough guide,

sample values are given in table 3.1 for C = 500.

ŝea

Z ĉ ϑ500(ĉ) â = 0 â = ±0.5 â = ±0.9 â = ±0.99
0.5 0.383 1.335 0.057 0.049 0.025 0.008
1 0.683 1.944 0.080 0.069 0.035 0.011
1.5 0.866 2.391 0.123 0.107 0.054 0.017
2 0.954 2.707 0.214 0.186 0.093 0.030
2.5 0.988 2.910 0.446 0.386 0.198 0.076
3 0.997 3.021 0.718 0.659 0.503 0.445

Table 3.1: Equivalent ±Z scores (first column) are given for a num-
ber of example coverage probability estimates ĉ (second column). The
Freeman-Tukey7 transformed value ϑ500(ĉ) is given in the third col-
umn. The standard error associated with the transformed value is
approximately 0.045 assuming C = 500. The standard error ŝea of
the imbalance statistic â depends on both ĉ and â. Example values
are given in the remaining columns of the table, assuming C = 500.
The standard error for −a is the same as that for +a.

In most cases, only the results for 95.4% confidence intervals will be

shown. With few exceptions, trends in the 68.3% results followed those of
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95.4%, although they were usually less pronounced; for example, both the

absolute mean imbalance value, and the spread of imbalances around the

mean, tended to be smaller, for a given set of tests. Where trends differ at

the two different target confidence levels, results will be presented for both.

3.1.4 Criteria for judging results

Ideally, coverage c should be exactly equal to the target coverage of the de-

sired interval (0.683 or 0.954) and the imbalance a should be be exactly 0.

Inevitably, however, some error occurs, not only because c and a are esti-

mated using a finite number of simulations C, but because confidence inter-

val methods themselves are not perfect, and may be flawed in ways which

depend both on sampling scheme and on N .

Since, in a real experiment, the true parameters θgen are unknown, one

can never be sure where one’s chosen stimulus values will fall relative to

the true curve. In other words, a pre-specified sampling scheme can never

be recreated accurately. Thus, the perfect confidence interval method will

produce results which do not depend on sampling scheme; using it, we would

be able to be confident that our intervals have certain coverage properties,

even if we had inadvertently sampled the psychometric function too narrowly,

or too tightly, or with too much of a bias to one side or the other.

An experimenter will also want to obtain results efficiently, which means

keeping N as low as possible. However, the precise value of N will vary

depending on the experimental context. Thus our hypothetical perfect con-

fidence interval method should also produce results which hold for all com-

monly encountered values of N .

Thus ĉ and â values should exhibit as little variation with sampling scheme

and with N as possible. This quality of stability is the first criterion.

The observed values of ĉ and â are also important, but they are of sec-

ondary importance. A low ĉ value, for example, might not be a serious

problem so long as it is reliably low, as it might be compensated for simply

by inflating the target coverage level (an instance of this can be seen in fig-

ure 3.3, where the ĉ95 values for the BCa method cluster tightly around their
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mean of 88.4%: one could say, therefore, that the BCa method gives reliable

88.4% confidence intervals if one aims for 95.4%, so it is possible that 95.4%

might be reliably achieved by aiming higher). Another way of compensating

for low coverage might be to employ an expanded bootstrap method such as

the one described in section 2.2.6 and tested in section 3.3.5.

Non-zero imbalance values might also be corrected, by adjusting the two

tail rejection probabilities separately, although imbalance values of +1 and

−1 are particularly undesirable as they give no indication of the appropriate

size of such a correction. Non-zero imbalance should probably be considered

more serious than inaccurate overall coverage, as any putative correction for

the latter is a little more straightforward.

3.2 Performance of bootstrap methods for

yes-no designs

The logistic function with αgen = 0, βgen = 1 was taken as the true underlying

function under “idealized” and “realistic” conditions.

In the idealized case, the underlying values of γ and λ were set to 0, and

γ and λ were fixed at 0 during all fitting processes. The results are filed in

the results archive under

• simulations/coverage/yesno/g0f0l0f0/logistic/with_bootstrap_t/

and are shown in figures 3.1 and 3.2. They are discussed in section 3.2.1.

In the more realistic case, psychophysically plausible underlying values

were chosen: γ = 0.02, λ = 0.01. Both parameters were treated as unknowns,

so they were allowed to vary both in the initial fit to each data set generated

from the true function, and in any fits to bootstrap data sets generated from

each estimated function. In all fits, both parameters were constrained, using

a flat Bayesian prior, to lie within the range [0, 0.05]. The results are filed in

the results archive under

• simulations/coverage/yesno/g02l01/logistic/with_bootstrap_t/



3. Testing the coverage of confidence intervals 80

and are shown in figures 3.3 and 3.4. They are discussed in section 3.2.2.

For both conditions, four values of N were tested (N = 120, 240, 480

and 960) with each of the seven sampling schemes defined in section 1.5.2.

Both sets of tests were repeated with the cumulative normal psychometric

function shape (αgen = 0, βgen = 1), and probit analysis was used to obtain

asymptotic-theory confidence intervals—see section 3.4.1 for results.

3.2.1 Idealized yes-no case (zero guess- and

lapse-rates assumed)

Results are shown in figures 3.1 and 3.2 for 95.4% confidence intervals on

thresholds and slopes, respectively.

With regard to thresholds, results from the bootstrap percentile and BCa

methods are in close agreement, both of them exhibiting very good cover-

age that is relatively independent of sampling scheme and N . For the BCa

method, the distribution of the 28 estimates of ĉ95 is 0.952± 0.010 and the

distribution of ĉ68 estimates (not shown) is 0.687± 0.020—note that in both

cases the standard deviation of the set of estimates is roughly equal to the

standard error of an individual estimate from the set, as set out in table 3.1.

The distribution of bootstrap percentile estimates is indistinguishable from

that of the BCa estimates.

The bootstrap standard error and basic bootstrap methods produce re-

sults that are more spread out in both coverage and imbalance, with a ten-

dency for the more narrowly sampled schemes (� and � in particular) to gen-

erate over-conservative confidence intervals. The bootstrap-t method seems

to over-correct for this effect: at lower N values, � and � produce confidence

intervals that are too small.

A slightly different picture emerges when slopes (figure 3.2) are consid-

ered. Coverage is generally good for the bootstrap percentile method, but

it has a positive imbalance (confidence limits are set too high), which in-

creases as the psychometric function is more widely sampled (� → •). The
bootstrap standard error and basic bootstrap methods give widely spread
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(ĉ
)

co
vera

g
e
ĉ

0.996

0.972

0.929

0.869

0.795

0.708

BCa
Bootstrap
percentileBootstrap-tBasic

bootstrap
Bootstrap
standard
error

–1

–0.5

0

+0.5

+1

2

2.2

2.4

2.6

2.8

3

Fig. 3.1: Results of Monte Carlo coverage tests for 95.4% threshold confidence intervals obtained from
the logistic function in the idealized yes-no case (γ = λ = 0). Symbol shapes denote the seven sampling
schemes of figure 1.3. See sections 3.1.3 and 3.2.1 for details.
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Fig. 3.2: Results of Monte Carlo coverage tests for 95.4% slope confidence intervals obtained from the
logistic function in the idealized yes-no case (γ = λ = 0). Symbol shapes denote the seven sampling
schemes of figure 1.3. See sections 3.1.3 and 3.2.1 for details.
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imbalance values with a strong tendency towards the negative side, particu-

larly at low N . The BCa and bootstrap-t methods are the best, with narrow

groups of points centred on the target values. The bootstrap-t method is

slightly inferior to the BCa because of low coverage on � at N = 120, but

generally the performance of the bootstrap-t method at the 95.4% target

(ĉ95 = 0.948 ± 0.014 if that one outlier is excluded) is consistent with the

findings of Swanepoel and Frangos.6

3.2.2 Realistic yes-no case

Results are shown in figures 3.3 and 3.4 for 95.4% confidence intervals on

thresholds and slopes, respectively.

The addition of the constrained free parameters γ and λ has made a

noticeable difference to all the results, and has further differentiated the

bootstrap methods from each other.

For thresholds, there is a general tendency towards negative imbalances:

all methods produced confidence intervals which were slightly biased towards

lower threshold values. As the sampling schemes themselves all have sym-

metrically distributed f -values, this tendency must be due to the asymmetry

in ψ created by the differing values of γgen and λgen.
† The bootstrap per-

centile and bootstrap standard error methods both exhibit good coverage,

with coverage probabilities closest to target and fairly well clustered together

(i.e. relatively unaffected by sampling scheme or by N). Performance is still

worse than in the idealized yes-no case, however. Bootstrap standard error

coverage has dropped slightly below target, and bootstrap percentile imbal-

ance values drift more to the negative side of the 95.4% target. The BCa,

and in particular the basic bootstrap and bootstrap-t methods, suffer from

low coverage, which seems to be worse for tighter distributions of sampling

points (�, � and �).
For slopes, overall performance has also worsened, as compared with the

† A repeat test confirmed this. When the true parameter values are reversed (γgen = 0.01,
λgen = 0.02), all methods tend to produce slight positive imbalances of a similar magnitude
(results are not shown).
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Fig. 3.3: Results of Monte Carlo coverage tests for 95.4% threshold confidence intervals obtained from the
logistic function in the realistic yes-no case. Symbol shapes denote the seven sampling schemes of figure 1.3.
See sections 3.1.3 and 3.2.2 for details.
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Fig. 3.4: Results of Monte Carlo coverage tests for 95.4% slope confidence intervals obtained from the
logistic function in the realistic yes-no case. Symbol shapes denote the seven sampling schemes of figure 1.3.
See sections 3.1.3 and 3.2.2 for details.
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idealized case: coverage has generally decreased below target levels, and there

is a wider spread of imbalance values for all methods. The BCa method

drifts towards positive imbalance values, and coverage is low for many sam-

pling schemes. The bootstrap-t method produces negative imbalances, and

coverage is even lower. The bootstrap percentile method suffers less from

low coverage than the other methods, but drifts even more towards positive

imbalances than it did in the idealized yes-no context, so that for many sam-

pling schemes, there is complete imbalance: no high slope values are ever

rejected. The bootstrap standard error method exceeds the coverage tar-

gets, but there is very wide spread in its imbalance values (with a tendency

towards positive imbalance), and very large differences between the highly

inflated coverage of • and � and the more accurate coverage of the more

widely sampled schemes. The best of the bootstrap methods, although its

coverage is somewhat too low and negatively unbalanced, is arguably the

basic bootstrap, which has the smallest variation across different sampling

schemes and values of N .

3.3 Performance of bootstrap methods in

2-AFC designs

A Weibull function with αgen = 3 and βgen = 4 was used to define the

true psychometric function in both an “idealized” and a “realistic” case of

a 2-AFC experiment. In both cases, γgen = 0.5, and γ was fixed at 0.5 for

all fits. Tests of the bootstrap standard error, basic bootstrap, bootstrap-t,

bootstrap percentile and BCa methods were carried out, using Wichmann’s 7

sampling schemes (see section 1.5.1) at N = 120, 240, 480 and 960.

The idealized case aimed to simulate conditions in which the observer

makes no stimulus-independent errors (hence λgen = 0), and the experimenter

knows the assumption λ = 0 to be safe (thus λ was fixed at 0 for all fits).

The results are filed in the results archive under

• simulations/coverage/2AFC/l0f0/weibull/with_bootstrap_t/
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and are shown in figures 3.5 and 3.6. They are discussed in section 3.3.1.

The realistic case allowed for stimulus-independent errors. The generating

value λgen = 0.01 was chosen, and λ was treated as an unknown nuisance

parameter in all fits, including bootstrap fits. Its value was constrained, using

a flat Bayesian prior, to lie within the range [0, 0.05]. The realistic test set was

repeated using the logistic function with θgen = (2.737, 0.494, 0.5, 0.01)T—

parameters that were chosen so that the threshold and slope values at f = 0.5

were the same as for the Weibull tests with αgen = 3, βgen = 4). The results

are filed in the results archive under

• simulations/coverage/2AFC/l01/weibull/with_bootstrap_t/

• simulations/coverage/2AFC/l01/logistic/with_bootstrap_t/

There were no substantial differences between the results from the two dif-

ferent function shapes, so only the Weibull results will be shown here. They

are shown in figures 3.7 and 3.8 for thresholds and slopes, respectively. They

are discussed in section 3.3.2. The realistic Weibull tests were repeated three

more times, to investigate the performance of the expanded BCa method—see

section 3.3.5 for results.

The idealized and realistic test sets were further repeated using the cu-

mulative normal psychometric function shape (αgen = 5, βgen = 0.2), and

probit analysis was used to obtain asymptotic-theory confidence intervals—

see section 3.4.2.

3.3.1 Idealized 2-AFC case

Results are shown in figures 3.5 and 3.6 for 95.4% confidence intervals on

thresholds and slopes, respectively.

In general, the results are similar to those obtained in the idealized yes-no

case (section 3.2.1), although many of the trends are more pronounced.

The bootstrap percentile and BCa methods are the best methods for

thresholds. Their performance is roughly equal, and roughly equivalent to

their performance in the idealized yes-no case. The bootstrap standard error
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â

+1

+0.5

0

–0.5

–1

ϑ
(ĉ
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Fig. 3.5: Results of Monte Carlo coverage tests for 95.4% threshold confidence intervals obtained from
the Weibull function in the idealized 2-AFC case. Symbol shapes denote the seven sampling schemes of
figure 1.2. See sections 3.1.3 and 3.3.1 for details.
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Fig. 3.6: Results of Monte Carlo coverage tests for 95.4% slope confidence intervals obtained from the
Weibull function in the idealized 2-AFC case. Symbol shapes denote the seven sampling schemes of fig-
ure 1.2. See sections 3.1.3 and 3.3.1 for details.
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and basic bootstrap methods are the worst, with a range of imbalance val-

ues even wider than that observed in the yes-no condition. The bootstrap-t

method is intermediate, with a somewhat wider range of imbalance values

than the bootstrap percentile or BCa methods, and lower coverage, partic-

ularly for the sampling schemes with no sample points at high expected

performance levels, • and �.

For slopes, the bootstrap-t and BCa methods are the best, although they

nevertheless exhibit quite a wide range of imbalance values. The bootstrap

percentile method shows good overall coverage but a positive imbalance,

and the bootstrap standard error and basic bootstrap methods are highly

negatively unbalanced.

3.3.2 Realistic 2-AFC case

Results are shown in figures 3.7 and 3.8 for 95.4% confidence intervals on

thresholds and slopes, respectively.

With regard to thresholds, the BCa and bootstrap percentile methods are

both good, in that the points are tightly grouped: both methods therefore

have the desirable characteristic of being relatively insensitive to differences

in sampling scheme and N . Note that, while it produces the smallest range

of coverage values of all the methods, and the smallest imbalance values in

either direction, coverage for the BCa method is consistently too low.

By contrast, both the bootstrap standard error and basic bootstrap meth-

ods suffer from a spreading out of imbalance values, which depends on sam-

pling scheme. For both methods, there is an overall tendency towards positive

imbalance values, with � and � highly positively unbalanced, but � is ex-

tremely negatively unbalanced. Coverage probabilities also suffer: ĉ95 for �
is low, and ĉ95 estimates for both • and � break away from the group, rising

as N decreases.

The performance of the bootstrap-t method on thresholds is intermedi-

ate, showing greater spread than the BCa or bootstrap percentile methods,

although not as great as that of the basic bootstrap or bootstrap standard

error method. Sensitivity to differences in sampling scheme is also interme-
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Fig. 3.7: Results of Monte Carlo coverage tests for 95.4% threshold confidence intervals obtained from
the Weibull function in the realistic 2-AFC case. Symbol shapes denote the seven sampling schemes of
figure 1.2. See sections 3.1.3 and 3.3.2 for details.
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â

im
b
a
la
n
ce

â
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Fig. 3.8: Results of Monte Carlo coverage tests for 95.4% slope confidence intervals obtained from the
Weibull function in the realistic 2-AFC case. Symbol shapes denote the seven sampling schemes of figure 1.2.
See sections 3.1.3 and 3.3.2 for details.
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diate. There are few apparent differences between sampling schemes, ex-

cept that the imbalance of �, seen in the basic bootstrap results, has been

overcompensated-for (� now has a large positive imbalance). The bootstrap-

t method produces coverage estimates that are consistently too low, in a

similar manner to, but to a greater extent than, the BCa method.

For slopes, the BCa method is the best performer, with the tightest

groups, and smallest absolute mean imbalance. Its coverage is slightly too

low (although less so than was the case for thresholds), but its performance

is generally worse on slopes than on thresholds because of the wider range

of imbalance values, with a tendency towards the positive side. Neverthe-

less, the BCa method appears potentially most useful because all the other

methods exhibit less manageable problems. The bootstrap standard error

method, echoing its performance on thresholds, produces very widely spread

results that are dependent on sampling scheme and on N . The basic boot-

strap method suffers from low coverage and extreme negative imbalance. The

bootstrap-t method suffers from very low coverage and high negative imbal-

ances. Finally the bootstrap percentile method suffers from high positive

imbalances, and a tendency towards low coverage.

The bootstrap percentile method emerges as the best method for thresh-

old confidence intervals, and the BCa method as the best for slopes. Perfor-

mance has deteriorated noticeably on all measures, by comparison with the

idealized 2-AFC case.

3.3.3 Dependence of threshold coverage on cut level

Another way of viewing the accuracy with which a confidence interval method

copes with variations in psychometric function slope is to look separately at

threshold performance at more than one detection level. The results from

sections 3.3.1 and 3.3.2 are re-plotted in figures 3.9 and 3.10 (the idealized

and realistic 2-AFC conditions respectively). This time, the plots are slightly

more complicated: for each confidence interval method, the graph is divided

into three strips to show results for threshold confidence intervals at three

different detection levels: t0.2, t0.5 and t0.8.
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Fig. 3.9: Results of Monte Carlo coverage tests for confidence intervals on thresholds t0.2, t0.5 and t0.8

obtained from a Weibull psychometric function in the idealized 2-AFC case (λgen = 0, known). Symbol
shapes denote the seven sampling schemes of figure 1.2. See sections 3.1.3 and 3.3.3 for details.
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(ĉ
)

co
vera

g
e
ĉ
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Fig. 3.10: Results of Monte Carlo coverage tests for confidence intervals on thresholds t0.2, t0.5 and t0.8

obtained from a Weibull psychometric function in the realistic 2-AFC case (λgen = 0.01, unknown). Symbol
shapes denote the seven sampling schemes of figure 1.2. See sections 3.1.3 and 3.3.3 for details.
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In both the idealized and realistic cases, we can see that the bootstrap

standard error, basic bootstrap, and bootstrap percentile methods all behave

in a similar way: coverage remains roughly independent of the f value at

which threshold is measured (with admirably small variation in the case of

the bootstrap percentile method), but imbalance is highly positive for f = 0.2

and equally highly negative for f = 0.8. It seems likely that this effect is due

to the bias in sampling that occurs when one’s estimate θ̂0 differs from θgen,

so that the position of sample points x relative to the curve changes.

Let us consider the bootstrap standard error method first, as the simplest

case. Assume that points x are centred on the true threshold t0.5, and that

they yield an unbiased estimate t̂0.5. When t̂0.5 < t0.5, points x are at higher

detection levels on the estimated curve. This means that they are closer to

the estimated threshold at the higher detection level, t̂0.8, than they would

be if the estimate t̂0.5 were correct. As a result, bootstrap values t̂∗
0.8

are

constrained more tightly than they should be, and the bootstrap estimate

of the standard error ŝe0.8 is too low. Therefore the upper confidence limit

t̂0.8 + 2 ŝe0.8 is set too low, and the probability of rejection in the upper tail

of the confidence interval is too great. When t̂0.5 > t0.5, points x fall further

away from t̂0.8, whose variability is therefore over-estimated, so that the lower

confidence limit t̂0.8 − 2 ŝe0.8 is also set too low, and that probability of rejec-

tion in the lower tail is too small. The result is a negative imbalance, and

similar logic predicts a positive imbalance for the lower threshold estimate

t̂0.2.

The basic bootstrap method corrects for the extent to which the distribu-

tion of bootstrap thresholds t̂∗ is non-normal, by computing confidence limits

from percentiles of t̂∗ rather than a fixed multiple of ŝe, but it does not cor-

rect for the sampling bias, and so suffers the same problem. The bootstrap

percentile method reverses the lengths of the two halves of the confidence

interval, so that the non-normality of t̂∗ works against the sampling bias ef-

fect; however, it is clear from figure 3.9 that this is not sufficient in either the

idealized or realistic 2-AFC cases: the problem is still present, with reduced

magnitude relative to the basic bootstrap method, but in the same direction.
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The bootstrap-t method aims to correct the bias problem by correcting

the second moment of t̂∗. In figure 3.9 we see that the overall downward

trend in â95 has been flattened out by the bootstrap-t method, although the

results are still poor because of the wide spread of imbalance values, and

because there is now a downward trend in ĉ95 with increasing detection level.

The BCa method, which aims to correct for bias in t̂∗ and skew in ,̇(t̂∗), was

more successful, in that there is no overall trend in either ĉ95 or â95.
†

However, neither the bootstrap-t method nor the BCa method performs

well in the realistic case (figure 3.10). Note that both methods rely on a

sufficiently accurate estimate of parameter covariance in order to correct for

sampling bias—an estimate which, in its turn, relies on sufficiently accurate

parameter estimates. If there is systematic bias in the simulated experi-

menter’s first estimates of λ, for example, this will be correlated with a bias

in slope estimates, but the amount of correlation, which the BCa method

estimates from I−1, will also be mis-estimated. This is illustrated in sec-

tion 3.3.4.

3.3.4 Performance of confidence interval methods

depends on the unknown value λgen

The problems associated with an unknown lapse rate, such as inaccurate

coverage for slopes or the inability of the BCa method to correct for sampling

bias as observed in figure 3.10, arise because the upper asymptote offset λ,

whose value reflects lapse rate, is difficult to estimate; if lapses are rare

(occurring less than, say, 5% of the time) and their effect is only measurable

at high observer performance levels (below about 90% the effect of a lapse

is swamped by ordinary binomial variability) then there are very few trials

per data set that give any information about the lapse rate. Worse still, the

magnitude of such effects changes depending on the actual value of the true

† Thus the BCa method could be used to produce well-balanced simultaneous confidence
intervals, taking a wider sense of Beran’s1 definition of balance: confidence intervals at the
three levels have similar coverage properties, so each would each be fairly represented if
all three were asserted simultaneously.
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unknown λ, as illustrated by the following simulations: four sets of tests were

run, using the cumulative normal 2-AFC psychometric function (αgen = 5,

βgen = 0.2, γgen = 0.5) as the true psychometric function in conjunction with

four different values for λgen: 0, 0.01, 0.02 and 0.03. The bootstrap standard

error, basic bootstrap, bootstrap percentile and BCa methods were tested.

The four sets of results are filed in the results archive as:

• simulations/coverage/2AFC/l0/cumnorm/

• simulations/coverage/2AFC/l01/cumnorm/

• simulations/coverage/2AFC/l02/cumnorm/

• simulations/coverage/2AFC/l03/cumnorm/

Results are plotted for the BCa method in figure 3.11, and for the bootstrap

percentile method in figure 3.12. Again, as in section 3.3.3, results are shown

side-by-side for thresholds at three different detection levels: f = 0.2, f = 0.5

and f = 0.8. For the BCa method, it can be seen that trend in tail-imbalance

between the three threshold confidence intervals is reduced as λgen increases.

The other bootstrap methods did not show such an effect; their behaviour

is exemplified by the results of the bootstrap percentile method, in which

the imbalance for t0.5 has a tendency to rise from a negative value towards 0

as λgen increases, but there is little change in the trend in imbalance values

between different threshold levels, as imbalance for t0.2 remains highly positive

and imbalance for t0.8 remains highly negative at all the tested values of λgen.

The imbalance results from the BCa method follow a similar pattern to

the trend in estimation bias for the three threshold levels. Each set of 500

simulated experiments in the coverage tests yielded a distribution of 500 t̂0.2’s,

t̂0.5’s, and t̂0.8’s. The median bias was computed by taking the difference

between the median t̂f value for each distribution and the true value tf .

Median bias values were then standardized by dividing by 1
2
wnpi68 for each

distribution.† The results are shown in figure 3.13. It can be seen that there

† The median is used here instead of the mean, and 1
2wnpi68 is used instead of standard

deviation, to guard against undue influence from extreme values, as the t̂ distributions
were often highly non-normal (see page 272 for the definition of wnpi).
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Fig. 3.11: Results of Monte Carlo coverage tests for BCa confidence intervals on thresholds t0.2, t0.5 and t0.8

obtained from a cumulative normal psychometric function in four different realistic 2-AFC cases: λ is
always unknown, with underlying values 0, 0.01, 0.02 or 0.03. Symbol shapes denote the seven sampling
schemes of figure 1.2. See sections 3.1.3 and 3.3.4 for details.
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Fig. 3.12: Results of Monte Carlo coverage tests for bootstrap percentile confidence intervals on thresholds
t0.2, t0.5 and t0.8 obtained from a cumulative normal psychometric function in four different realistic 2-AFC
cases: λ is always unknown, with underlying values 0, 0.01, 0.02 or 0.03. Symbol shapes denote the seven
sampling schemes of figure 1.2. See sections 3.1.3 and 3.3.4 for details.
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are differences in estimation bias between the three threshold levels, and

that such differences are most pronounced at λgen = 0, diminishing as λgen

increases. The pattern closely mirrors that of the imbalances in figure 3.11,

suggesting that it is inaccuracy in the initial estimates that prevents the BCa

method from correcting fully for the imbalance induced by sampling bias.

The pattern of estimation bias might itself be explicable by the difficulty of

obtaining an accurate estimate of λ. Figure 3.14, which plots the mean error

of λ estimates for each of the generating values, supports this idea: generally,

more accurate mean estimates are obtained when λgen is larger.†

It is unfortunate that different values of the unknown parameter λgen can

affect the coverage results in such a way, because such behaviour violates one

of the criteria suggested in section 3.1.4, viz. that, where coverage results are

inaccurate, they should at least be reliably inaccurate. To summarize: both

the bootstrap percentile and BCa methods seemed promising, because they

yielded the narrower ranges of ĉ95 and â95 than other methods. However,

the imbalance of the bootstrap percentile method differs for thresholds at

different detection levels, suggesting that the method is sensitive to sampling

bias—that is to say, the balance of the method’s coverage depends on how

close one’s sample points lie relative to the true threshold value. The BCa

method can correct for sampling bias, but the correction is dependent on an

accurate estimate for λ. When λ is known exactly (as in the idealized case)

the BCa correction works well, but when λ is unknown it fails to more or less

of an extent, depending on the unknown value λgen. Failure allows sampling

bias to affect both imbalance and overall coverage. The unknown value λgen

affects the imbalance of threshold (t0.5) confidence intervals in both methods.

N.B: Problems occur when λ is mis-estimated, not just because λ has

become a free parameter. It has been suggested (A. Derrington, personal

† Treutwein and Strasburger8 observe a similar effect, which can be seen in the top right
panel of their figure 10. The continuation of the trend (gross underestimation of the higher
true values of λ) is not relevant—as the authors explain, a Bayesian prior was employed,
and underestimation occurs simply because the true value lies outside the likely range of
values as defined by the prior. Note, however, that the first three or four columns of the
panel show a similar trend to that of figure 3.14.
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500 simulated experiments using a cumulative normal psychometric function in four realistic 2-AFC cases:
λ is always unknown, and could take underlying values 0, 0.01, 0.02 or 0.03. Symbol shapes denote the
seven sampling schemes of figure 1.2. See section 3.3.4 for details.
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communication) that taking a fixed non-zero value of λ, such as 0.01 or 0.02,

might alleviate the bias in threshold slope measurement associated with the

assumption of a fixed zero λ. However, Wichmann and Hill9 found that the

bias in slope estimation depended on the magnitude and direction of the

difference between the true value λgen and the assumed fixed value, rather

than on any particular fixed value. Three sets of coverage tests (results not

plotted) support similar conclusions where coverage and imbalance are con-

cerned. The first two test sets compared two complementary 2-AFC cases:

one in which λgen = 0 but a fixed value of 0.01 is assumed during fitting,

and another in which λgen = 0.01 but a fixed value of 0 is used for fitting.

As has been the case in the other simulations of this chapter, the BCa and

bootstrap percentile methods were found to be the best in both situations.

However, they suffered from equal and opposite imbalance problems: positive

for thresholds and negative for slopes when the fixed value of λ underesti-

mated the true value, and vice versa when the fixed value overestimated the

true value. A third set of simulations found that the results of overestimating

a λgen of 0.01 using a fixed value of 0.02 were almost identical to the results

of overestimating a λgen of 0 using a fixed value of 0.01. The results can be

found in the archive under

• simulations/coverage/2AFC/l0f01/cumnorm/

• simulations/coverage/2AFC/l01f0/cumnorm/

• simulations/coverage/2AFC/l01f02/cumnorm/

3.3.5 Results for the expanded BCa methods in the

realistic 2-AFC case

The realistic 2-AFC simulations of section 3.3.2 were repeated, except that

the expanded BCa method (see section 2.2.6) was tested instead of the

bootstrap-t method. The three repetitions used regions of coverage 0.5, 0.25

and 0.125, and the results are filed as:

• simulations/coverage/2AFC/l01/weibull/with_expanded05/
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• simulations/coverage/2AFC/l01/weibull/with_expanded025/

• simulations/coverage/2AFC/l01/weibull/with_expanded0125/

The effects of the three different levels of expansion are shown in figures 3.15

and 3.16. The format of the figures is slightly different from the usual repre-

sentation. First of all, results for 68.3% target coverage (lighter symbols) are

plotted along with those for 95.4% target coverage (darker symbols). Second,

different quantities are plotted in the upper and lower parts of the figure. The

upper panel shows ϑ500(P̂UP), with ϑ500(0) towards the top. The lower part of

the figure shows ϑ500(P̂LO), with ϑ500(0) towards the bottom. Thus it is possi-

ble to imagine the MLE in the centre of the figure, with the points spreading

upwards and downwards away from the centre. If they reach, and cross, the

broken line, then target coverage has been achieved in that direction.

If the results were plotted in the standard format, we would see that, rel-

ative to the BCa method, the expanded method increases ĉ68 and ĉ95 without

any great change in spread, which was the aim, but unfortunately it greatly

increases the spread of â68 and â95—this effect can be seen by the differences

in the spread of points between the upper and lower panels of the figures.

It is more interesting, however, to plot the coverage of the upper and lower

halves of the confidence interval separately, because the expanded method is

a conservative measure intended to compensate for the shortcomings of other

methods, and thereby achieve minimum standards of coverage. We are in-

terested in knowing at what expansion level such standards can be achieved.

From figure 3.15, it appears that an expansion level of 0.5 guarantees, for

all the sampling schemes studied in the chosen range of N , that coverage

is sufficient in both the upper and lower half of the confidence interval, at

both target coverage levels. At a level of 0.25, a few of the points are still

more than one standard error away from their targets, in both the upper

and lower parts of the confidence interval, and at both 68.3% and 95.4%. A

similar picture emerges for slopes in figure 3.16.

Expanded methods have a tendency to exaggerate the sensitivity of some

sampling schemes. Though it is true that schemes • and � are more suscep-
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Fig. 3.15: Results of Monte Carlo coverage tests for expanded bootstrap BCa threshold intervals obtained
from aWeibull psychometric function in the realistic 2-AFC case. Symbol shapes denote the seven sampling
schemes of figure 1.2. See section 3.3.5 for details.
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tible to bootstrap error, the expanded method, even at a level of 0.125, has

a tendency to over-correct for this fact. Their greater apparent sensitivity,

as measured by the expanded method, is illustrated by the fact that they

are over-covering the true underlying values to a greater extent than other

sampling schemes. Therefore Wichmann and Hill,10 who used expanded con-

fidence interval lengths as an index of a scheme’s susceptibility to bootstrap

error, may have unfairly exaggerated the disadvantages of such schemes.†

There is, of course, room for potential improvements in the expanded

confidence interval algorithm, as it is largely heuristic in nature (see sec-

tion 2.2.6). Perhaps a different number of repetitions (other than 8), at

points distributed in parameter space according to slightly different criteria,

might reduce the differences between different sampling schemes’ estimated

coverage and imbalance values. However, as it stands, the expanded BCa

method at a level of 0.5 seems as if it might at least offer a reliable way of

ensuring minimum levels of coverage.

3.4 Comparison with probit methods

The following two sub-sections compare the performance of probit methods

(see section 2.1) with that of the BCa bootstrap method, in both idealized

and realistic conditions. Other studies of probit methods have generally used

the cumulative normal psychometric function, so the bootstrap simulations

of sections 3.2.1–3.2.2 and 3.3.1–3.3.2 were repeated using the cumulative

normal for greater congruence with previously published work. Section 3.4.1

† This is still a debatable point, however. Whereas the simulations of the current chap-
ter define sampling schemes relative to the true underlying psychometric function, the
simulations reported in chapter 5, and by Wichmann and Hill, take a different hypothet-
ical starting point: they are designed to compare widths of the confidence intervals that
an experimenter might actually measure, as a function of sampling scheme, so sampling
schemes are defined relative to the experimenter’s estimate of the psychometric function.
The results of such a test show an experimenter which sampling scheme to aim for—the
positions that the data points should occupy relative to the estimated curve. However, as
the true psychometric function is unknown, there will be some error involved in achieving
that sampling scheme, and an expanded bootstrap method provides a rough indication of
the risk associated with such error.
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deals with yes-no designs, and section 3.4.2 deals with 2-AFC designs.

3.4.1 Probit methods in yes-no designs

The simulated yes-no experiments of sections 3.2.1 and 3.2.2 were repeated,

using the cumulative normal function with αgen = 0 and βgen = 1 instead of

the logistic function. Bootstrap-t intervals were not calculated, but probit

intervals were calculated. The results are filed under

• simulations/coverage/yesno/g0f0l0f0/cumnorm/with_expanded0125/

• simulations/coverage/yesno/g02l01/cumnorm/with_expanded0125/

For the bootstrap standard error, basic bootstrap, bootstrap percentile

and BCa methods, results were very similar to those obtained with the logistic

function, in both the idealized and realistic cases. These results will not

therefore be shown, except for the BCa method which, being generally the

best of the bootstrap methods, will provide a convenient standard against

which to compare the performance of the probit interval methods.

Figures 3.17 and 3.18 show results for 95.4% threshold and slope con-

fidence intervals, respectively. In each figure, probit results from both the

idealized and realistic cases are shown, alongside BCa results for comparison.

The first thing to note is that, in the idealized case with λ and γ fixed

at 0, probit methods perform just as well as bootstrap methods. Probit

fiducial limits on thresholds, and the probit standard method for slopes,

both produce coverage and imbalance estimates that are as closely grouped

around the target values as those for the BCa method. Therefore, while the

results of section 3.2.1 support Swanepoel and Frangos’ finding6 that the

bootstrap-t method provides good coverage, the current results suggest that

its coverage is no better than that of much less computationally expensive

asymptotic methods, at least for 120 ≤ N ≤ 960.

The addition of λ and γ as constrained free parameters is detrimental

to the performance of probit methods as well as bootstrap methods. Note

that, where performance of the BCa method is now poor, performance of
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Fig. 3.17: Results of Monte Carlo coverage tests for 95.4% threshold confidence intervals obtained from
the cumulative normal function in a simulated yes-no experiment. Results are shown for both the idealized
case (first three groups) and the realistic case (second three groups). Symbol shapes denote the seven
sampling schemes of figure 1.3. See sections 3.1.3 and 3.4.1 for details.
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Fig. 3.18: Results of Monte Carlo coverage tests for 95.4% slope confidence intervals obtained from the
cumulative normal function in a simulated yes-no experiment. Results are shown for both the idealized case
(first two groups) and the realistic case (second two groups). Symbol shapes denote the seven sampling
schemes of figure 1.3. See sections 3.1.3 and 3.4.1 for details.
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the probit methods has become even worse, in that coverage estimates are

more widely spread out for thresholds, and both coverage and imbalance are

more widely spread out for slopes, when probit methods are used. (However,

despite its wide spread of imbalance values for slopes, the probit standard

error method does not suffer from such extreme values as the BCa method,

which is even completely unbalanced for schemes � and � at N = 960.)

3.4.2 Probit methods in 2-AFC designs

The simulated 2-AFC experiments of section 3.3 were repeated, using the cu-

mulative normal function with αgen = 5 and βgen = 0.2 instead of the Weibull

function. Bootstrap-t intervals were not calculated, but probit intervals were.

The results are filed under

• simulations/coverage/2AFC/l0f0/cumnorm/

• simulations/coverage/2AFC/l01/cumnorm/

for the idealized and realistic cases respectively.

Results were found to be qualitatively different for 68.3% intervals and

95.4% intervals. Therefore, results will be shown separately at the two cov-

erage levels. Figures 3.19 and 3.20 show results for thresholds, at 68.3% and

95.4%, respectively. Figures 3.21 and 3.22 will show results for slopes in the

same way. In each figure, probit results from both the idealized and realistic

cases are shown, alongside the BCa results for comparison.

Bootstrap results were very similar to those obtained with the Weibull

and logistic functions (section 3.3). The majority of bootstrap results will not

therefore be shown, with the exception of the BCa method which provides

a standard against which to compare the performance of the probit interval

methods.

As in the yes-no case, the change from idealized to realistic assumptions

(the addition of the parameter λ as an unknown with a non-zero underlying

value) has had detrimental effects on all the methods, most notably a drop in

mean overall coverage for both thresholds and slopes. At 68.3%, the probit
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(ĉ
)

co
vera

g
e
ĉ
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Fig. 3.19: Results of Monte Carlo coverage tests for 68.3% threshold confidence intervals obtained from the
cumulative normal function in a simulated 2-AFC experiment. Results are shown for both the idealized
case (first three groups) and the realistic case (second three groups). Symbol shapes denote the seven
sampling schemes of figure 1.2. See sections 3.1.3 and 3.4.2 for details.
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Fig. 3.20: Results of Monte Carlo coverage tests for 95.4% threshold confidence intervals obtained from the
cumulative normal function in a simulated 2-AFC experiment. Results are shown for both the idealized
case (first three groups) and the realistic case (second three groups). Symbol shapes denote the seven
sampling schemes of figure 1.2. See sections 3.1.3 and 3.4.2 for details.
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Fig. 3.21: Results of Monte Carlo coverage tests for 68.3% slope confidence intervals obtained from the
cumulative normal function in a simulated 2-AFC experiment. Results are shown for both the idealized
case (first two groups) and the realistic case (second two groups). Symbol shapes denote the seven sampling
schemes of figure 1.2. See sections 3.1.3 and 3.4.2 for details.
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Fig. 3.22: Results of Monte Carlo coverage tests for 95.4% slope confidence intervals obtained from the
cumulative normal function in a simulated 2-AFC experiment. Results are shown for both the idealized
case (first two groups) and the realistic case (second two groups). Symbol shapes denote the seven sampling
schemes of figure 1.2. See sections 3.1.3 and 3.4.2 for details.
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methods are very little different from the BCa in either the idealized or real-

istic case. At 95.4%, as in the yes-no case, probit methods performed worse

than the BCa: imbalance values for the probit standard error method are

more spread out for thresholds, and a strong negative imbalance was found

in both probit fiducial limits for thresholds and probit standard errors for

slopes. The pattern of results differs from that found in the yes-no simula-

tions, however, in that probit methods exhibit such problems at 95.4% even

in the idealized case. It seems, therefore, that probit methods are potentially

suitable for yes-no experiments, and are good for estimating short confidence

intervals (of the order of ±1 standard error) even in 2-AFC experiments.

They should not, however, be used in 2-AFC experiments to compute larger

confidence intervals (of the order of ±2 standard errors) even if it assumed

that the problem of unknown λ can be safely disregarded.

3.5 Summary and discussion

The current chapter used Monte Carlo simulation to investigate the accuracy

of coverage of various bootstrap methods that can be used to compute two-

tailed confidence intervals for psychophysical thresholds and slopes. Yes-no

experiments and 2-AFC experiments were simulated, and in each paradigm

an idealized case, in which it is known that the observer never guesses or

lapses, was compared with a more realistic case in which λ (and γ in the yes-

no case) took a small non-zero value and was treated as an unknown nuisance

parameter. Seven sampling schemes were tested, each at four different values

of N . Several bootstrap methods were tested, and their performance was

compared with that of asymptotic-theory confidence intervals from probit

analysis. Overall coverage was estimated for two-tailed confidence intervals,

as well as imbalance between coverage in the two sides of the interval.

Previous studies by Swanepoel and Frangos6 and by Lee4 used Monte

Carlo simulation to test the coverage of confidence intervals of the parameters

of psychometric functions. Good results were reported for the bootstrap-t

method. However, they considered only the yes-no experimental paradigm,
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only the logistic function, only the idealized case, and only the bootstrap-t

method. Results from section 3.2.1 are consistent with the findings of both

studies, in that the bootstrap-t method was found to be fairly accurate for

slopes in the idealized yes-no case, although it suffered from low coverage

on thresholds when the range of the sampling scheme was narrow—the BCa

method performed better in this case.† However, at the range of N values

studied here, which very nearly encompasses the values studied by Swanepoel

and Frangos,6 no bootstrap method performed better than probit analysis

under the same conditions (section 3.4.1). In yes-no experimental designs, it

was only in the realistic case that bootstrap methods were superior to the

probit method.

Thus, when it is safe to assume γ = λ = 0 in a yes-no context, it is

advisable to use the far less computationally expensive methods of probit

fiducial limits (for thresholds) and probit standard errors (for slopes), rather

than bootstrap methods. This conclusion is unlikely to hold for very low

values of N , however. Another Monte Carlo simulation study by Foster and

Bischof11 compared the bootstrap standard error and probit standard error

methods using the cumulative normal psychometric function. Again, only the

idealized yes-no case was addressed. They found the accuracy of bootstrap

standard errors to be relatively insensitive to changes in the value of N ,

whereas probit standard errors became much less accurate, particularly for

slopes, when N dropped below about 50 (psychophysical experiments rarely

use block designs with N < 100, although there is a temptation towards

such designs in some clinical settings where psychometric function slope is

important but it is difficult to take large numbers of observations). Probit

standard errors were found by Foster and Bischof to be more accurate than

bootstrap standard errors for the range of N considered in this chapter. The

simulations of sections 3.2.1 and 3.4.1 supported this finding, in that probit

† Note that the performance of the bootstrap-t method may vary according to the method
used within it to estimate v̂. The current study used a parametric method, relying on the
asymptotic Fisher approximation to the parameter covariance matrix. It may therefore
have been more vulnerable to error at low values of N and in sampling schemes which
included samples at very high or low performance values.
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methods were found to be at least as good as the best of the bootstrap

methods tested, and the bootstrap standard error method was not the best

(the bootstrap percentile and BCa methods were better for thresholds, and

the bootstrap-t and BCa methods were better for slopes). Foster and Bischof

were concerned with the accuracy of standard error estimates rather than the

coverage accuracy for larger confidence intervals, but the current simulations

found the results to be comparable: there was little difference between the

trends at 68.3% and those at 95.4% in the idealized yes-no case.†

In an earlier paper,13 Foster and Bischof also investigated the bootstrap

standard error method in the idealized 2-AFC case, for which they found the

results to be less accurate than those of the idealized yes-no case. The boot-

strap method was found to be vastly superior to an “incremental” method

(based on “combination of observations” and described by Foster14). In sec-

tion 3.3.1, simulation results show that the bootstrap standard error method

to be inferior to other bootstrap methods such as the bootstrap percentile

and BCa. Probit methods were found to be inferior to the BCa method in

2-AFC experiments, being suitable for short confidence intervals of the order

of ±1 standard error, where their performance was similar to that of the

BCa but unsuitable for longer confidence intervals of the order of ±2 stan-

dard errors, where they were poorly balanced. This is consistent with the

findings of McKee et al.15 who demonstrated that probit methods produced

poor approximations to the standard error of thresholds from a known 2-AFC

psychometric function, particularly when N < 100 or when the function is

poorly sampled. The poor performance of probit methods in the 2-AFC case

was an exception to the general trend, in that their performance was poor

in both the idealized and the realistic case. For most of the simulations, the

addition of unknown nuisance parameters γ and/or λ caused coverage accu-

† Note that the accuracy of the standard error estimate is a direct indicator of the accuracy
of confidence interval length (“correctness”), but not a direct indicator of the accuracy of
confidence interval coverage, so Foster and Bischof’s results may not be directly compara-
ble to those presented here. Coverage relies not only on mean confidence interval length
but also on the magnitude and direction of the correlation between confidence interval
length and estimation error |û − u|. Hall12 provides a more detailed theoretical treatment
of this distinction.



3. Testing the coverage of confidence intervals 120

racy for most confidence interval methods to deteriorate. The simulations of

section 3.3.4 suggest that this is at least partly because of the difficulty of

estimating small values of λ and γ accurately.

Some test sets used different psychometric function shapes from others.

In the yes-no simulations, the logistic function was used in order to allow

more direct comparison with previous Monte Carlo coverage studies. In the

2-AFC simulations, the Weibull function was tested because of its widespread

use in current vision research employing 2-AFC methods. However, when one

set of 2-AFC tests was repeated using the logistic function, and when both

the yes-no and the 2-AFC tests were repeated using the cumulative normal,

results were qualitatively indistinguishable. This is reassuring, to the extent

that it suggests that the properties of confidence interval methods are not

dependent on a particular mathematical form of the psychometric function,

but rather on the observer performance levels predicted by the function.

The use of a set of fixed sampling schemes contrasts with the approach

of Lee,4 who used a probabilitistically generated sampling scheme on each

Monte Carlo replication of the experiment. Lee’s method has the advantage

of realism, in that it emulates the inevitable randomness of stimulus place-

ment on an unknown function, but it has the disadvantage of averaging out

variations in coverage accuracy that might occur from one experiment to the

next due to random variation in sampling scheme. Much of the variability in

the coverage and imbalance estimates of the current chapter was associated

with differences in sampling scheme and in N . Some methods (for example,

the BCa method) were more stable in this regard than others (such as the ba-

sic bootstrap method). The relationships between sampling schemes, N and

coverage accuracy were not straightforward, however. In many cases there

was no clear trend in the results as N increased from 120 to 960. Where a

trend was visible, its direction could change depending on sampling scheme

or on confidence interval method. For example, in the bootstrap standard

error and basic bootstrap clusters in the upper panel of figure 3.5, ĉ95 for �
drops towards the target level from above as N increases, whereas � rises

towards the target level from below. In the upper panel of figure 3.1, ĉ95
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for � drops towards the target level from above in the bootstrap standard

error cluster, but rises towards the target level from below in the bootstrap-t

cluster. In most cases, where a trend was visible, it was usually towards

better coverage accuracy as N increased, as in all the forgoing examples.

However, this was not always the case; for example, in figure 3.3 some sam-

pling schemes, (including � in the BCa cluster, and most of the schemes in

the basic bootstrap cluster) show the opposite trend, with more accurate

coverage at lower values of N .

Coverage accuracy, and in particular the consistency of results across

different sampling schemes and different values of N , was better for some

bootstrap methods than for others. In general, the bootstrap standard er-

ror and basic bootstrap methods performed worst, the bootstrap-t method

slightly better, and the bootstrap percentile and BCa methods were the best.

Theoretical treatments5,12,16 generally predict that the BCa and bootstrap-t

methods should be the best, as they display the properties of second-order

accuracy and second-order correctness that the others lack. The bootstrap-t

method may fall short in the current study because of its reliance on the

parametric approximation to v̂. It would be instructive to compare some of

the other methods that can be employed within the bootstrap-t—for exam-

ple, the more computationally intensive jackknife-based methods explored by

Swanepoel and Frangos.6

The BCa method generally produced the most consistent results across

different sampling schemes and values of N . For this reason, it is the fairest

available method with which to compare the efficiency of sampling schemes,

and it will be used for such a purpose in chapter 5. Also, the BCa method was

generally found to be the most balanced of the methods studied. However,

simulations in section 3.3.4 suggest that the balance of threshold confidence

intervals from the BCa method may depend on the value of λgen,
† because

the accuracy of estimation of lambda varies, so no general correction for BCa

coverage can be proposed. For thresholds the bootstrap percentile method

† Naturally one would anticipate similar problems with both γ and λ in the realistic yes-no
case.
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often has a more accurate overall coverage level than the BCa, and results

are nearly as tightly grouped together as those of the BCa. However, the

bootstrap percentile method is slightly more prone to imbalance, and its

poor balance between confidence intervals for threshold at different detection

levels, even in the idealized case (see section 3.3.3), serves as a warning that

its good performance is likely to be contingent on fortuitously managing to

centre one’s sample points close to the true threshold.

When realistic psychophysical conditions were assumed (i.e. when λ

and/or γ took non-zero values and were treated as unknowns), the coverage

of the BCa method was consistently too low. Such problems may be com-

pensated for by inflating one’s target coverage when computing confidence

intervals (for example, aiming for 0.99 when 0.954 is desired), or by using an

expanded interval to obtain highly conservative estimates of confidence in-

terval bounds.† Given that the performance of the BCa method (reflected in

the balance of rejection probabilities in the two tails of a confidence interval)

depends on an unknown parameter, the latter solution would be more advis-

able. For the expanded method, the simulations of section 3.3.5 indicate that

an expansion level of 0.5 is advisable to ensure adequate coverage in both

sides of the confidence interval. Another approach might be to forgo the use

of one-dimensional confidence intervals and instead using a two-dimensional

confidence region—this is dealt with in chapter 4.

† Note that no such solution adds power for free to the hypothesis test associated with
the confidence interval. Rather, inflation of the target coverage level, or the use of the
expanded method, naturally increases the width of the confidence interval relative to that
of the ordinary BCa interval, the intention being to correct for the fact that the width and
coverage of the ordinary interval are lower than they should be. Without correction, and
if the interval were assumed to have reached its target coverage, the test would appear to
be more powerful than it actually is, leading to a higher type I error rate than intended.
Unfortunately, no definite rule can be given for the required magnitude of the

correction—section 3.3.4 shows that, using current methods, this would depend on the
(unknown) true value of λ.
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4. Coverage properties of joint

confidence regions

4.1 Introduction

Psychophysical studies in general, and research from the psychophysical lit-

erature concerning bootstrap methods in particular, have tended to focus

on one-dimensional confidence interval methods. Possibly this is because

many psychophysical hypotheses are formulated in terms of a single dimen-

sion (usually threshold) although it may also be due in part to the scarcity

or relative novelty of accessible two-dimensional methods. There are ad-

vantages to a two-dimensional approach, however: assuming that there is

theoretical justification for both threshold and slope to vary according to the

parameters of a psychophysical experiment, then for the psychometric func-

tion as for any other multivariate setting, a joint hypothesis test may be more

powerful and more informative than a test based on a single dimension of

variability, or on two separate dimensions. An example of the application of

two-dimensional methods might be the assessment of whether an observer’s

behaviour is more consistent with the ideal observer for a signal known ex-

actly, or with the ideal observer for a signal known only statistically: the

former predicts both a lower threshold and a shallower slope than the latter,

according to the formulation of Green and Swets.1

In two or more dimensions, a confidence interval becomes a confidence

region—an area, volume or hypervolume within which the true value of a

parameter vector can be asserted to lie with a given confidence level c. Many

interval methods, including all of the bootstrap methods examined in chap-
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ter 3, can be generalized to multiple dimensions, according to either of two

methods:

• Simultaneous confidence intervals are defined using multiple con-

fidence statements of the form Ru(θ) < %u, where Ru(·) is a scalar

value computed by applying some function (a “root” function) R(·) to
a linear combination of parameters uTθ. For each direction of interest

u, a limit %u is computed, and the resulting statements are asserted

simultaneously. The number and distribution of directions of interest

determine the shape of the interval—the set {u}may be finite, in which
case the resulting region has straight sides, or infinite, in which case

it is smooth. Bootstrap methods for obtaining %u, using a Studentiz-

ing transformation for R(·), are detailed by Beran2,3 for the general

case, and adapted for the purposes of logistic regression by Lee.4,5 The

bootstrap method was shown to be better balanced than the older

asymptotic alternatives of Scheffe, of Tukey and of Bonferroni, both in

theory2–4 and by Monte Carlo simulation.5

• Likelihood-based confidence regions are regions in parameter space
which are bounded by a contour of constant likelihood (or log-likelihood)

defined by ,(θ) = % (thus, a point θ is included in the region if

,(θ) ≥ %). Asymptotically, as N → ∞, likelihood distributions be-

come normal (see Kendall and Stuart,6 page 59ff.) so the asymptotic

form of the confidence region is always symmetrical about the MLE

in any given direction, its boundary being described by an ellipse or

ellipsoid. The size, shape and orientation of the ellipse are determined

by the parameter covariance matrix V , which may be estimated as the

inverse of the expected or observed Fisher information matrix or by

other means. The method can easily be applied to the logistic or other

regression estimator,7 and has been used in the context of psychometric

functions by Hawley.8,9

However, the symmetry of the ellipses may be the major drawback of

the asymptotic approach—as Efron and Tibshirani10 warn, “the most



4. Coverage properties of joint confidence regions 127

serious errors made by standard intervals are due to their enforced

symmetry” (page 180). This is potentially true when N is of the order

of magnitude encountered in psychophysical experiments, as illustrated

by Jennings11 who noted and quantified the mismatch between normal-

theory ellipses and actual likelihood contours in logistic regression for

N = 400. A potentially good alternative is the bootstrap. Hall12

describes a bootstrap approach to the generation of likelihood-based

confidence regions, showing that the bootstrap-t method can produce

asymptotically second-order correct region boundaries. The likelihood-

based bootstrap approach will be adopted here.

The requirements for a good confidence region are similar to those for a

good one-dimensional confidence interval. Besides the need for accuracy of

the region’s overall coverage level c, it is also desirable that the region be bal-

anced (see section 3.1.1). In general terms, this means that the probability

that the true parameter set θgen lies inside the region should be indepen-

dent of the direction in which θgen lies relative to the estimate θ̂0, for all

directions of interest. For simultaneous confidence intervals, balance sim-

ply means that the coverage of each component statement Ru(θ) < %u is

equal, and imbalance can be quantified by taking the difference between the

measured coverage probabilities of two such components,5 or the maximum

difference between any two components.3 For the likelihood-based regions

used in the current chapter, the two-dimensional space of threshold and slope

estimates will be divided into a limited number of sectors, and the rejection

probabilities in each sector will be compared graphically.

As was the case for one-dimensional intervals, the coverage and balance of

a confidence region should ideally be stable, in the sense of being independent

of sampling scheme and of N . In order to test the stability of bootstrap

confidence region methods, the same set of tests was applied as in chapter 3:

each of seven sampling schemes was tested at four different values of N .
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4.2 Methods

The general method is the same as that described in section 3.1.1: from the

true psychometric function ψgen(x; θgen), C = 500 simulated data sets are

generated, and a function is fitted to each one. Each fitted function is used

to obtain a confidence region by one of four bootstrap methods described

below, and the estimated coverage score ĉ is equal to the observed propor-

tion of occasions on which the generating parameter set θgen lies within the

confidence region.

The principle of the likelihood-based bootstrap method is to find an ap-

proximation to the likelihood function ,(θ) and to obtain a bootstrap dis-

tribution of likelihood values ,∗1 . . . ,
∗
R. The likelihood contour value % for a

region of target coverage c is then simply equal to the (1− c) quantile of the

distribution ,∗. Thus, the region contains the highest cR bootstrap likeli-

hood values. A point θ lies inside the region iff ,(θ) ≥ %, a condition which

can be restated as

cpe{,(θ); (,∗1 . . . ,∗R)} ≥ 1− c. (4.1)

Therefore, all that need be recorded for each simulated experiment is the

cumulative probability estimate of ,(θgen) in ,∗. Estimated coverage ĉ is

then equal to the proportion of such values that equal or exceed one minus

the target coverage level c.

A number of different bootstrap methods can be applied within this

framework, differing only in the way in which ,(θ) is obtained. Computa-

tionally the simplest way is to evaluate the log-likelihood of equation (B.43)

at each of the bootstrap parameter estimates, given the original data. Thus

,(θ; r0) is compared against the distribution of ,(θ̂
∗
1; r0) . . . ,(θ̂

∗
R; r0), where

r0 is the observed data set. This is equivalent to a bootstrap version of the

well-known likelihood ratio (or “deviance”) method (see Davison and Hink-

ley, 1997,13 page 234), and will therefore be referred to as the bootstrap

deviance method in the following. It is also used in the fitting software as

a basis for the “expanded” bootstrap method (see section 2.2.6). For the

purposes of the expanded method it is useful in that the region reflects likely
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estimation error in all the parameters, including nuisance parameters. How-

ever, when the method is used directly to find a confidence region boundary

for the purposes of hypothesis testing, while it has the desirable property

of transformation-invariance, its inability to separate the dimensions of in-

terest (α and β) from any nuisance parameters (γ and/or λ) is its principal

disadvantage.†

Alternative methods estimate ,(θ) using a smoothed density estimate of

the distribution of bootstrap parameter sets. This approach has two advan-

tages. First, density estimation can be carried out after the bootstrap points

are “flattened” with respect to the dimensions of any nuisance parameters,

so the resulting region reflects only variation in the parameters of interest.

Second, the coordinates of the bootstrap points can be transformed in other

ways before density estimation, allowing, in principle, any of the bootstrap

confidence interval methods of section 2.2 to be adapted for two or more di-

mensions. The bootstrap percentile method, for example, uses the bootstrap

parameter estimates θ̂
∗
1 . . . θ̂

∗
R without transformation. The basic bootstrap

method reflects them about the initial estimate to obtain a distribution of

2θ̂0 − θ̂
∗
i . The bootstrap-t method performs the reflection after Studentiza-

tion using the estimated parameter covariance matrix V̂ , so that the density

estimate is based on θ̂0 − V̂ 0

1
2 V̂

∗
i

− 1
2 (θ̂

∗
i − θ̂0). This is very similar to the

bootstrap-t method presented by Hall,12 except that Hall’s method performs

the density estimation on the pivotal distribution of N− 1
2 V̂

∗
i

− 1
2 (θ̂

∗
i − θ̂0),

obtains a region boundary, and then transforms the boundary coordinates

back into appropriately scaled parameter space with pre-multiplication by

† Note that, although a hypothesis test that uses the bootstrap deviance method makes a
decision by comparing the deviance of the MLE parameter set, given the observed data,
against a simulated distribution of deviance values, it should not be confused with a
Monte Carlo goodness-of-fit test based on deviance, of the sort advocated by Wichmann
and Hill.14 The former compares �(θ; r0) for some θ against the bootstrap distribution of
�(θ̂

∗
i ; r0), and the power of the test depends upon N . The latter is a relatively weak test for

over- or under-dispersion that compares �(θ̂0; r0) against the Monte Carlo distribution of
�(θ̂

∗
i ; r∗i ), and whose result does not depend on N , but rather on the explanatory accuracy

of the model and on whether the variability of the process that generated the data was
truly binomial around truly stationary generating probability values.
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N
1
2 V̂ 0

1
2 and reflection about the initial estimate. Such a procedure is not

followed here because the existence of the nuisance parameter λ (and, in the

yes-no case, γ) means that pre-multiplication by V̂ 0

1
2 is a 3- (or 4-) dimen-

sional transformation, whereas we are only interested in defining a boundary

in 2 dimensions. Transformation back into meaningful parameter space might

compromise the contiguity of the two-dimensional projection of the region.

Density estimation is therefore carried out in actual (α, β) space, after

transformation. A two-dimensional Gaussian kernel is used in order to obtain

a smoothed density estimate, so that

,(α, β) = g
R∑

i=1

exp


−1

2


(α− α̂∗

i

hα

)2

+

(
β − β̂∗

i

hβ

)2



 , (4.2)

where g is a constant which can be disregarded, and hα and hβ are the

smoothing parameters of the kernel. These are proportional to the stan-

dardizing denominator values for the distributions of α̂∗ and β̂
∗
, respec-

tively, for which the half-width of the central 68.3% non-parametric per-

centile interval will be used (see page 272). Thus hα = h wnpi68{α̂∗}/2
and hβ = h wnpi68{β̂

∗}/2. Hall,12 operating on data that were assumed al-

ready to have been standardized by the Studentizing transform, recommends

a value of h between 0.6 and 0.7 when R = 2000. Hall chose these values

“by eye” in order to provide smooth and convex contours—they were a lit-

tle larger than the value of 0.5 indicated by the cross-validation method of

Bowman.15 In pilot simulations for the current study, the value h = 0.65 did

indeed seem to give smooth, convex results in a broad random selection of

simulated experiments. Therefore, h = 0.65 was chosen.

The basic bootstrap, bootstrap-t, bootstrap percentile and bootstrap de-

viance methods were all tested using a 2-AFC logistic function as the gener-

ating psychometric function, with αgen = 2.737 and βgen = 0.494. Realistic

experimental conditions were assumed—thus the observer’s lapse rate was

assumed to be unknown, and the true value λgen was set at 0.01. Each of the

seven 2-AFC sampling schemes from section 1.5.1 was tested atN = 120, 240,
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480 and 960. Regions of target coverage 68.3% and 95.4% were measured,

based on R = 1999 bootstrap simulations on each of C = 500 repetitions.

4.3 Results

4.3.1 Coverage

The graphical conventions of section 3.1.3 are used in figure 4.1 to show

the overall coverage of the four confidence region methods: the shape of

each symbol corresponds to one of the seven sampling schemes of figure 1.2,

and the size of each symbol corresponds to the total number of trials N .

Coverage estimates ĉ are transformed using the Freeman-Tukey transform of

section 3.1.2, assuming C = 500.† The standard error of the transformed

value ϑ500(ĉ) is approximately 0.045 at all values of ĉ (except ĉ = 1, which

does not occur at all in the results shown in figure 4.1).

Lighter symbols show the coverage of regions whose target coverage was

68.3%, and darker symbols show the results for regions of 95.4% target cov-

erage. The two target levels are indicated by the red broken lines. The

bootstrap deviance method performs particularly well, if a little too conser-

vatively: the coverage of the region exceeds both target levels for nearly all

the tests, and the points are fairly well grouped together, indicating that the

coverage of the region is not greatly susceptible to variation due to different

sampling schemes and values of N . The other methods perform less well:

their coverage estimates are more spread out from one sampling scheme or

value of N to another, and the general tendency is for coverage to be too

low. The performance of the bootstrap-t method at 95.4% is a promising ex-

ception, however—coverage is more accurate, with relatively little variation.

Table 4.1 compares the overall coverage of the one- and two-dimensional

version of each method. The one-dimensional results are taken from the set

† The maximum number of invalid results on any of the 28 tests was 6 out of 500, which
corresponds to a fractional increase in asymptotic standard error of 6%, and a negligible
perturbation of the variance-stabilizing effect of the transform.
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(ĉ
)

co
vera

g
e
ĉ
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Fig. 4.1: Results of Monte Carlo coverage tests for 68.3% and 95.4% joint confidence regions obtained from
the logistic function in the realistic 2-AFC case, using four different likelihood-based bootstrap methods.
Symbol shapes denote the seven sampling schemes of figure 1.2. See section 4.3.1 for details.
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of logistic simulations mentioned in section 3.3,† which is stored in the archive

under:

• simulations/coverage/2AFC/l01/logistic/with_bootstrap_t/ .

The current two-dimensional simulation results are stored under:

• simulations/coverage/2AFC/l01/logistic/regions/ .

The table shows that neither the basic bootstrap nor the bootstrap percentile

method performs better in two dimensions than it did in the dimensions of

threshold and slope separately. For the bootstrap percentile method, cover-

age is lower, less accurate and less stable. The basic bootstrap method may

be very slightly more stable in its two-dimensional form, but the mean cover-

age level is lower and further away from its target. The bootstrap-t method,

on the other hand, shows great improvement at 95.4% relative to its one-

dimensional performance: the target coverage probability is attained with

greater accuracy and greater precision when the two-dimensional method is

used than when either dimension is considered separately.

4.3.2 Imbalance

Besides the requirement of accurate overall coverage, there is also the ques-

tion of a confidence region method’s balance. Figures 4.2–4.5 show results

separately for each of the four region methods, and in order to given an idea

of the magnitude and direction of any imbalance in the regions, the space in

which threshold and slope can vary is divided into sectors. Threshold is on

the horizontal, and slope is on the vertical axis of each figure, as indicated by

the “compass” in the centre. The sectors are the two-dimensional equivalent

of the “tails” of a two-tailed test, and the ideal result is that all the sectors

have equal unconditional false-rejection probability. For each of the 500 es-

timated parameter sets, a position vector consisting of a threshold and slope

† These logistic simulation results were not plotted in section 3.3, because they were very
similar to the Weibull results already shown in figures 3.7 and 3.8. The logistic results
are used here, however, in order to provide the fairest possible comparison with the region
method simulations, which also used the logistic function.
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Basic Bootstrap-t Bootstrap
bootstrap percentile

(68.3% target) 1.94 1.94 1.94
1-D thresholds 1.93± 0.14 1.77± 0.12 1.92± 0.06
1-D slopes 2.04± 0.15 1.74± 0.07 1.91± 0.08
2-D regions 1.70± 0.13 1.86± 0.11 1.90± 0.10

(95.4% target) 2.71 2.71 2.71
1-D thresholds 2.70± 0.17 2.46± 0.18 2.68± 0.06
1-D slopes 2.56± 0.12 2.28± 0.17 2.60± 0.10
2-D regions 2.50± 0.10 2.67± 0.09 2.59± 0.10

Table 4.1: For three different bootstrap methods at two different tar-
get coverage levels, the accuracy and precision of overall coverage is
compared between one-dimensional and two-dimensional cases. For
each target coverage probability, the corresponding Freeman-Tukey-
transformed value is given, followed on successive rows by the mean
± the standard deviation of the group of 28 transformed coverage
estimates from one-dimensional threshold confidence intervals, one-
dimensional slope confidence intervals, and two-dimensional confi-
dence regions.
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value, (t̂0.5, ŝ0.5)i, was computed. The vector was then subtracted from the

vector corresponding to the true psychometric function, (t0.5, s0.5)gen, to ob-

tain the difference vector (∆t,∆s)i which indicates the direction in which

the true values lie relative to the estimate. The distribution of ∆t’s was then

standardized by dividing by 1
2
wnpi68, (see page 272) and the distribution of

∆s’s was likewise standardized by its own 1
2
wnpi68. The simulations were

then binned into 8 sectors of equal angular width, according to the angles ϕi

of their standardized difference vectors,† and the observed unconditional cov-

erage probability in each of the sectors is transformed by the Freeman-Tukey

function and plotted radially. Effectively, the format is analogous to that of

figures 3.15 and 3.16 in that the estimate θ̂0 can be imagined in the centre of

the figure, with coverage probability spreading outwards. Results for 68.3%

regions are shown, which means that the target coverage probability in each

sector is 0.960. For all the region methods, the pattern of results for 95.4%

intervals was found to be very similar to that for 68.3%. The 95.4% results

are less informative, however, because the very small expected number of

false rejections in each sector (2.8 as opposed to 19.8) meant that, very of-

ten, none were observed. Darkened symbols indicate the cases in which no

false rejections were observed in a given sector (ĉ = 1).

All the methods show the same general trend: an imbalance between the

upper and lower sectors. Coverage tends to be too high when the true slope

value lies above the estimate, and too low when it lies below. The imbalance

is most pronounced for the percentile method, and least pronounced for the

deviance method, with the basic bootstrap and bootstrap-t being interme-

diate, and very similar to one another. Note that, despite its lower overall

coverage, the basic bootstrap method may not actually be any worse than

the bootstrap-t: in those sectors where coverage is too low, the two methods

† Although it is a somewhat imprecise approach to compute the region in (α, β) space and
then report the balance results in (t0.5, s0.5) space, the latter representation was chosen
because, as previously discussed in section 1.2.2, it provides a standard means of expression
that does not rely on the chosen mathematical form of the psychometric function, and
which also allows more intuitively straightforward comparison with the results of chapter 3.
When the angle ϕ is computed from α and β instead of t0.5 and s0.5, the results are appear
qualitatively indistinguishable from those presented.
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Fig. 4.2: Results of a Monte Carlo coverage test for a 68.3%
likelihood-based joint confidence region obtained by the bootstrap de-
viance method. Rejection probabilities for each of 8 sectors is plotted
radially to indicate the balance of the region’s coverage with regard
to the direction of the estimation error. Symbol shapes denote the
seven sampling schemes of figure 1.2. See section 4.3.2 for details.
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strap method. Rejection probabilities for each of 8 sectors is plotted
radially to indicate the balance of the region’s coverage with regard
to the direction of the estimation error. Symbol shapes denote the
seven sampling schemes of figure 1.2. See section 4.3.2 for details.
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Fig. 4.4: Results of a Monte Carlo coverage test for a 68.3%
likelihood-based joint confidence region obtained by the bootstrap-t
method. Rejection probabilities for each of 8 sectors is plotted radi-
ally to indicate the balance of the region’s coverage with regard to
the direction of the estimation error. Symbol shapes denote the seven
sampling schemes of figure 1.2. See section 4.3.2 for details.
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Fig. 4.5: Results of a Monte Carlo coverage test for a 68.3%
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are very similar, but where the bootstrap-t brings the overall coverage level

back up by over-covering in other sectors, the basic bootstrap is simply more

accurate. Using either method, the experimenter would have to remember

that the confidence region probably does not extend far enough towards low

slope values. Using the bootstrap-t, it is also probably the case that the

region extends too far up towards higher slope values.

4.3.3 Bootstrap deviance and experimental design

So far only the realistic 2-AFC case has been considered. Being the exper-

imental context of principal interest in the current research, and the one in

which statistical inference in one dimension has thus far proved most diffi-

cult, only this case was selected in order to test the bootstrap methods that

relied on density estimation. The bootstrap deviance method, is very easy to

perform if a bootstrap distribution of parameter estimates has already been

obtained. It was therefore practicable to combine a test of the bootstrap

deviance method with each of the sets of simulations reported in chapter 3.

Figure 4.6 shows overall coverage for four of the sets, reflecting four dif-

ferent combinations of experimental design and experimental assumptions:

ideal yes-no (γ and λ both fixed at 0); realistic yes-no (γgen = 0.02, λgen =

0.01, must be estimated); ideal 2-AFC (λ fixed at 0); and realistic 2-AFC

(λgen = 0.01, must be estimated). All four sets used the cumulative normal

psychometric function. Some of their one-dimensional results have already

been reported (section 3.4). They are stored as:

• simulations/coverage/yesno/g0f0l0f0/cumnorm/with_expanded0125/

• simulations/coverage/yesno/g02l01/cumnorm/with_expanded0125/

• simulations/coverage/2AFC/l0f0/cumnorm/

• simulations/coverage/2AFC/l01/cumnorm/

There is little noticeable difference between results for the four cases. Be-

tween idealized and real cases there is a slight decrease in stability, but the
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direction of the trend for individual results is generally upwards—in other

words, the addition of unknown nuisance parameters tends to make the test

slightly more conservative. The effect is very small, however. Differences in

balance between the four cases (not shown) were also small—all four cases

produced a pattern very similar to that of figure 4.2. This is perhaps sur-

prising, given the rather marked effect on one-dimensional slope coverage

observed in chapter 3 when nuisance parameters were added. However, it

should be borne in mind that such effects were primarily due to the fact that

λ and γ are correlated with slope, and are themselves difficult to estimate

accurately or precisely, leading to bias and imprecision in the slope estimates.

The bootstrap deviance method, being based on the single dimension of like-

lihood without any attempt to remove λ and γ from the hypothesis test, does

not separate the parameters and thus largely avoids such problems. Natu-

rally this limits its use somewhat in the realistic cases, because hypotheses

cannot be formulated that are wholly independent of the nuisance parameter

values.

4.4 Summary and concluding remarks

For the realistic 2-AFC case, the bootstrap deviance method provides con-

sistent and conservative confidence regions, and is well balanced with respect

to the dimensions of threshold and slope. It is therefore highly suitable for

the purposes of the expanded bootstrap method (section 2.2.6), in which it is

used to estimate the likely error in all the estimated parameters. When it is

used as a confidence region method in its own right, the bootstrap deviance

method shows excellent coverage properties for both yes-no and 2-AFC ex-

periments in the idealized case (i.e. when there are no nuisance parameters),

and unlike one-dimensional methods, its performance was not seriously de-

graded in 2-AFC relative to yes-no. Under more realistic assumptions, the

overall coverage and balance of the method are still good, but great care must

be taken that an apparently significant difference between psychometric func-

tions is not simply due to a difference in the estimated nuisance parameters
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γ and/or λ. A potentially valuable future development of the method might

be to compute the coordinates of the region boundary explicitly, and then

“flatten” them with respect to the dimensions of γ and λ.

Three other likelihood-based bootstrap methods were assessed in the re-

alistic 2-AFC case: the basic, bootstrap-t and percentile methods. All three

used non-parametric density estimation in the α–β plane, and thus could po-

tentially separate the effects of threshold and slope differences from the effects

of nuisance parameters. The bootstrap-t was a modified form of the method

presented by Hall,12 which he demonstrated to have better asymptotic cov-

erage properties than the basic bootstrap method, for general purposes. In

the current application, its overall coverage was indeed better than that of

the other two methods, appearing if anything slightly too conservative. How-

ever, its apparent superiority to the basic bootstrap proved to be because its

under-coverage of shallow slope values was compensated by over-coverage of

steep slopes.

The general trend towards positive imbalance with regard to slopes was

shared by all four methods studied, to a greater or lesser extent. This proba-

bly reflects the general tendency of psychometric function slopes to be over-

estimated (see section 5.1.1), which is exacerbated in the realistic 2-AFC

case because of the difficulty of obtaining an accurate estimate of λ when

λgen = 0.01 (see also sections 3.3.4 and 5.5.5).

Nevertheless, the two-dimensional version of the bootstrap-t method per-

formed better than the one-dimensional version, being less susceptible to

variation in coverage between different sampling schemes and values of N .

It would be interesting to know whether further improvements in perfor-

mance of the bootstrap-t might be possible, using different (non-parametric)

methods to estimate V ∗ rather than the asymptotic Fisher approximation.

It would also be interesting to adapt the BCa method to the problem of

generating two-dimensional confidence regions.
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5. Towards optimal sampling of the

2-AFC psychometric function

The bias and precision of one’s estimator of a threshold or slope are affected

significantly by the “sampling scheme” one uses, that is to say the particu-

lar arrangement of sample points on the stimulus axis, and the performance

levels at which those samples consequently strike the psychometric function.

This fact is what motivated the development of adaptive psychophysical pro-

cedures, which aim to place stimuli at points which maximize the efficiency of

threshold estimation, but it is equally true of the set of stimulus values used

in a “method of constant stimuli” or block-design experiment. This chapter

will define the relevant measures of efficiency by which a block-design ex-

periment can be assessed, and explore the ways in which such measures are

affected by sampling scheme.

Several studies have used Monte Carlo simulation to explore the way in

which the placement of trials may affect the bias and efficiency of threshold

and slope estimation. Lam and colleagues1–3 investigated the differences in

sampling precision for threshold and slope estimates that depend on sampling

placement, for a limited set of 2-, 3- and 4-point sampling schemes. They

found2 that careful placement of 4 blocks of trials yielded more efficient slope

estimates than a more conventional even spread of 11 blocks, for a comparable

total number of trials, and also3 that the optimal spread of stimulus values

changed according to the number of blocks k, the total number of trials

N and the experimental design (yes-no, 2-AFC, 3-AFC or 4-AFC). Teller4

and McKee, Klein and Teller5 examined the effect of the mid-point and

extent of the stimulus range on the efficiency of threshold estimation for
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evenly spaced 2- to 5-point schemes. Wichmann and Hill6 examined the seven

hand-picked 6-point sampling schemes shown in figure 1.2, and demonstrated

significant differences among them with regard to the efficiency of estimation

of both thresholds and slopes. Some of the differences they found depended

on aspects of the uneven distribution of stimulus values in the schemes, which

goes against the common assumption, expressed by Watson and Fitzhugh,7

that “the method of constant stimuli has only two important parameters. . .

the number of sample points. . . [and] the step in strength between sample

points.”

Wichmann and Hill’s results will be replicated and reported in a revised

and extended form in section 5.4. A wider range of sampling schemes will

then be explored in section 5.5, with the aim of expressing the effect of

stimulus distribution independently of the effects of the number of blocks

k and the total number of observations N . The results should be useful in

providing generalized rules, and guidelines for building suitable algorithms,

for efficient stimulus placement.

5.1 Criteria for scoring sampling schemes

The way in which a sampling scheme is evaluated depends on which particular

measures are of interest: the particular detection levels at which thresholds

are measured, and the relative importance of threshold and slope measure-

ments (see section 1.2.2). In the simulations of this chapter, thresholds t0.2,

t0.5 and t0.8, and the slope s0.5 were measured. Generally, only results for t0.5

and s0.5 will be reported. Results will be reported separately for threshold

and slope confidence intervals, without attempting to combine the two scores

according to any assumptions about their relative importance.

For every estimate of interest, an experimenter will want to know both

how accurately a given sampling scheme estimates the correct value, and

how precisely or efficiently. Definitions of bias and efficiency are given in the

following subsections.
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5.1.1 Bias

Bias is often reported in terms of the numerical difference between the ex-

pected value of a simulated estimate and the true underlying value. It should

be noted, however, that the magnitude of the bias in one’s estimate of a quan-

tity u is only meaningful in terms of the variability of that same estimator (or

in terms of other estimators that the experimenter will use to obtain values

for comparison with u). A small numerical mean or median bias might still

be unacceptable if the estimator’s variability is even smaller, as this would

lead to hypothesis-testing errors either of type I (finding apparently signifi-

cant differences between conditions where none exist) or type II (failing to

find a true difference between experimental conditions).

“Bias”, in the results of this chapter, will therefore be defined in the sense

of equation (2.14): the probability (estimated by Monte Carlo simulation) of

obtaining an estimate less than or equal to the true value is passed through

the inverse of a cumulative normal function with zero mean and unit variance,

so that the bias score w is expressed as the equivalent number of standard

deviations of the standard normal distribution. Efron and Tibshirani8 recom-

mend, as a rough guide, that a good estimator should be biased by no more

than a quarter of its own standard deviation (hence −0.25 ≤ w ≤ +0.25). A

negative value of w indicates over-estimation, and a positive value indicates

under-estimation.

O’Regan and Humbert,9 examining the logistic function, report that

maximum-likelihood estimation can often produce biased estimates of psy-

chometric function slope, particularly when the number of trials is small.

They note that slope bias is greater in 2-AFC than in yes-no (an effect also

noted in the adaptive procedure study of Leek, Hanna and Marshall10), and

also report biases in the estimation of threshold.† Swanson and Birch11 and

Maloney12 also note the tendency to overestimate the β parameter of a 2-AFC

† The biases found by O’Regan and Humbert were reported to be “significant” and indeed
they were, in the sense that they were significantly unlikely to have occurred purely because
of the inherent randomness of Monte Carlo simulation. However, for most of the sampling
schemes they tested, the bias was of small magnitude relative to the estimator’s own
variability.
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Weibull function, the latter reporting in addition that the Monte Carlo dis-

tribution of β is noticeably skewed when N is below about 500. The added

difficulty associated with the accurate estimation of λ (see sections 1.2.3

and 3.3.4) can be expected to exacerbate the problem of slope bias.

The relationship between w and N will be of interest. Some biased sam-

pling schemes may be acceptable for small N , where variability is high, but

they may be significantly biased at larger N if variability decreases relative

to the magnitude of the error of estimation. For others, the magnitude of

error might decrease along with variability, providing a stable estimate for

all N .

5.1.2 Efficiency

Efficiency can be defined as precision per unit effort. Taylor and Creelman13

defined “sweat factor” K = Nσ2 as a metric for comparing the efficiency of

sampling strategies, once a measure of variability σ has been obtained by

simulation (in their paper, σ is the standard error of a threshold estimate).

The relative efficiency of two estimators is simply the ratio of their sweat

factors, usually expressed as a percentage. Taylor and Creelman further

define the ideal sweat factor Kmin, which provides the numerator for the

calculation of an absolute measure of the efficiency of threshold estimation

performance of a sampling scheme S (which coincides with the standard

definition of efficiency):

efficiencyS = 100
Kmin

KS

, (5.1)

where Kmin =
p(1− p)

[dp/dx]2
, (5.2)

and where p is the performance value ψ(x), and dp/dx the derivative ψ̇(x),

evaluated at the threshold x = t. The derivation of Kmin for thresholds

effectively assumes that all N trials are positioned at exactly the correct

threshold value—under which assumption the above expression for Kmin can

be obtained from equation (2.2). Thus it represents an unattainable lower



5. Towards optimal sampling of the psychometric function 150

bound on K, and all measured efficiencies will be less than 100%. Taylor14

notes thatKmin is also the asymptotic sweat factor of a realizable process (the

Robbins-Monro15 stochastic approximation method) and is thus a greatest

lower bound forK (representing, in Taylor’s words, “not just an upper bound,

but a least upper bound on the performance of realizable techniques”.)

The computation of an ideal sweat factor for slopes is less straightfor-

ward, as the ideal approach is clearly not to place all one’s trials at the same

stimulus value. In equation (2.3), variance is minimized by maximizing the

weighted variance of stimulus values about their weighted mean, where the

weighting for each point depends on its predicted performance value and

performance gradient. The exact spacing of points for ideal slope measure-

ment therefore depends on the functional form F (x) one chooses for the

psychometric function. A working value of Kmin for slopes will be obtained

using a heuristic method, following the two-point approach of Wetherill16

and O’Regan and Humbert9—see section 5.3.1.

Using the normal-theory assumption that variance decreases linearly with

N , the sweat factor metric is useful because, in theory, it will be constant for a

given sampling scheme, independent ofN . As with all normal-theory approx-

imations, however, we cannot guarantee that its assumptions hold sufficiently

accurately for real psychophysical data. In fact, as we shall see, there are

differences, depending on one’s sampling scheme, not only in the coefficient

that relates the widths of confidence intervals to N , but also in the exponent

of N (where normal theory would predict an exponent of −0.5) which means

that the efficiency score of equation (5.1) is not invariant with respect to N .

So, the relative efficiency of two sampling schemes might change according to

how many observations are taken, one being better for small N and another

better for large N . This can be observed even using asymptotic methods

to measure K, and was illustrated by Finney17 for thresholds in the yes-no

context. His table 8.1 lists values of a metric similar to sweat factor, for a

number of 2- and 3-point sampling schemes, and shows that narrower sam-

pling schemes are favoured, relative to wider schemes, to a greater extent at

higher than at lower values of N .
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5.2 Aims

The current chapter aims to investigate the same issue as that explored by

Finney’s17 table 8.1, viz. the way in which the relative merits of different

sampling schemes change with k and with N . The 2-AFC experimental

situation will be considered here, however, whereas the situation examined

by Finney was equivalent to a yes-no experiment in which it is assumed that

γ = λ = 0.

The 2-AFC psychometric function has received relatively little attention

in the statistical literature. This is unfortunate, given its wide use in psy-

chophysical research, and in any case the 2-AFC experimental design is par-

ticularly interesting from the statistical point of view, because it poses a more

subtle question of sample placement than the yes-no design due to its asym-

metric nature. Expected binomial variability decreases from the bottom of

the function to the top, and so it is often more efficient, and “safer” in terms

of susceptibility to bootstrap error, to place one’s sample points with a shift

towards higher performance levels. Given this, exactly how far is it safe to

go with such a shift? To what extent are improved efficiency and reduced

sensitivity to bootstrap error offset by the risk of estimation bias that may

arise due to the asymmetry of one’s samples?

Teller and colleagues4,5 have examined in some detail the effect of sam-

pling scheme on threshold interval length in the idealized (known λ) 2-AFC

situation, concentrating on N ≤ 150. Both papers categorize sampling

schemes according to the number of points k, the width of the stimulus

range xmax −xmin, and the mean stimulus value x̄. For both probit intervals4

and Monte Carlo percentile intervals5 it is reported that a wider stimulus

range is “safer” in that it tends equalizes the expected confidence interval

widths at different values of x̄ (if the stimulus values are tightly grouped,

then they must be closer to the threshold to avoid the width of the interval

becoming very large). Teller4 also reports a main effect of range on interval

width, although McKee, Klein and Teller5 report that the effect is small if not

insignificant over the set of range values studied, when Monte Carlo intervals
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rather than probit intervals are considered. Probit intervals were generally

found to be inaccurate at smaller values of N (they were too large, partic-

ularly on the lower side, when compared with the Monte Carlo intervals).

However, McKee et al. state that probit intervals can generally be consid-

ered approximately correct for N ≥ 100. This is somewhat at odds with the

findings in chapter 3, where probit intervals were found to be inaccurate in

the 2-AFC case even at higher values of N—they were unbalanced, with too

few rejections in the lower tail.†

The current chapter aims to explore the issues of sampling scheme bias

and efficiency in greater detail, taking a greater range of values of k and

including larger values of N , such as are more regularly used in adult 2-AFC

psychophysics (120 ≤ N ≤ 960). It aims to obtain bias and efficiency mea-

sures for slopes as well as for thresholds, and also aims to test the difference

between results from the Monte Carlo approach and the bootstrap approach

(see section 5.3.2, below). Results from chapter 3 indicate that when one

takes the bootstrap approach, BCa intervals are more accurate than either

probit intervals or intervals based on unadjusted Monte Carlo percentiles in

the 2-AFC case, particularly for intervals whose coverage is of the order of

95%, which is the coverage level considered by Finney,17 Teller4 and McKee

et al.5 Therefore the relative efficiency of slope estimation of different sam-

pling schemes may differ according to whether one takes the BCa results or

the Monte Carlo results, the BCa results being the more relevant.

Simulations will use psychometric functions whose upper asymptote is

slightly less than 1.0, and must be estimated—this more realistic situation is

more interesting to the psychophysicist, because it allows for the inevitable

tendency of observers to “lapse”. Since the maximum-likelihood estimates

of slope and of the lapse-rate parameter λ co-vary, it is to be expected that

† One potential reason for the discrepancy is that a coverage test tends to involve somewhat
tougher tests of a confidence interval method than a Monte Carlo test of interval length, in
that poorer sampling schemes may arise in the former than are usually chosen for testing
in the latter. A related reason is that coverage accuracy not only relies on the correctness
of the interval bounds, but the relationship between interval bound correctness and the
error of one’s threshold estimate—see the footnote on page 119.
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the inclusion of λ as a (constrained) free parameter will affect the relative

efficiency of different sampling schemes with regard to slope.

A wider range of sampling schemes will be explored than those consid-

ered by Teller and her colleagues.4,5 Values of k up to 12 will be considered,

which poses the challenge of categorizing sampling schemes in a meaningful

way—as each of k points may be positioned independently, sampling schemes

may theoretically vary in k dimensions. The two simple dimensions of stim-

ulus range and mean stimulus value considered by Teller and colleagues may

be inadequate to explain some of the differences between sampling schemes.

Note in particular the results of section 5.4, in which Wichmann’s 7 sam-

pling schemes (defined in section 1.5.1) are tested: despite having similar

mean stimulus values and stimulus range, slight differences in the distribu-

tion of stimulus values within that range yield qualitatively and significantly

different results for the sampling schemes �, � and �. After consideration of

the seven illustrative examples in section 5.4, a more thorough investigation

of sampling schemes will be conducted.

5.3 Methods

5.3.1 Simulation

To test a given sampling scheme, a psychometric function shape Fgen is cho-

sen, along with a set of generating parameters θgen. The Weibull function

will be used here, with parameters α = 3, β = 4, γ = 0.5, λ = 0.01.† The sam-

pling scheme is used to determine the vector of stimulus values x and the

vector of block sizes n. Simulated data sets are then generated from the

curve—in each data set, the number of correct responses at stimulus value xi

is drawn from the binomial distribution Bi [ni, ψ(xi; θgen)]. A curve is fitted

† The parameters α = 3 and β = 4 were chosen, here and in section 3.3, purely because
they provided a good fit to a particular set of masked grating detection data that was
often used as an example when testing the software. Pilot simulations indicated that a
change in parameter values, and even a change in psychometric function shape, had no
appreciable effect on the bias or efficiency results (see also page 213).



5. Towards optimal sampling of the psychometric function 154

to the simulated data, using the same psychometric function shape Fgen to

obtain parameter estimates θ̂
∗
, from which threshold and slope values are

calculated. The process is repeated R times (R = 1999 for the purposes of

this chapter), yielding distributions of simulated threshold and slope values

t∗ and s∗, from which confidence intervals of coverage 68.3% and 95.4% are

computed.

Confidence interval widths are then scaled to be applicable to a psycho-

metric function whose slope is equal to 1 at F (x) = 0.5. The variance of a

slope estimate is expected to increase in proportion to s0.5
2, and the variance

of a threshold estimate is proportional to s0.5
−2. So, all threshold confidence

interval widths are multiplied by s0.5(θgen), and all slope confidence interval

widths are divided by s0.5(θgen) before being reported.†

Bias and efficiency scores for the sampling scheme are then measured,

as described in sections 5.1.1 and 5.1.2. Efficiency scores for a measure of

interest u will be based on the width of a confidence interval (wci) computed

from the distribution of u∗. Sweat factors for 68.3% intervals will be given

by K = N
(

1
2
wci68

)2
, and sweat factors for 95.4% intervals by N

(
1
4
wci95

)2
.

Efficiency is then obtained by dividing K into the ideal sweat factor Kmin.

For a threshold tf ,Kmin is given by equation (5.2), in which p = γ+(1−γ−
λ)f and dp/dx = (1−γ−λ)sf . Bearing in mind that confidence intervals are

scaled to correspond to s0.5 = 1, scaled slope values for the Weibull function

and θgen = (3, 4, 0.5, 0.01)T are s0.2 = 0.684, s0.5 = 1 and s0.8 = 0.752. This

yields ideal sweat factors of 2.14, 0.79 and 0.71 for thresholds t0.2, t0.5 and t0.8,

respectively.

A working value of Kmin for the slope value s0.5 was obtained by exam-

ining all possible pairs of stimulus values whose performance values ψ(x)

were drawn from {0.51, 0.515 . . .0.975, 0.98}, and computing the sweat fac-

tor N se2
s for each using equation (2.3). For a 2-AFC Weibull function with

parameters θgen = (3, 4, 0.5, 0.01)T, and assuming ni to be constant across

† An experimenter who wishes to apply the results to his own experimental situation could
therefore simply divide the threshold confidence interval widths quoted here (and multiply
the slope confidence interval widths) by his own s0.5(θ̂0)—provided, of course, that the
shape of the psychometric function is sufficiently similar.
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blocks, the best 2-point sampling scheme was found to consist of performance

values p = {0.61, 0.965}, corresponding to a sweat factor of 8.03s0.5
2. As the

slope intervals from sampling scheme tests will be standardized to correspond

to a generating slope of 1, the value Kmin = 8.03 is therefore appropriate.†

5.3.2 Confidence interval types

There are at least three possible approaches to the calculation of the confi-

dence interval, depending on one’s interpretation of θgen:

1. θgen represents the true psychometric function: In this case, an interval

is calculated using the relevant percentiles of the Monte Carlo distribu-

tion u∗, which are (as R → ∞) true confidence limits for the estimates,

assuming that the sample values have been positioned correctly on an

already known psychometric function. The experimenter could there-

fore only quote these values if θ were known already, a situation which

would never occur in practice.

2. θgen represents the experimenter’s maximum-likelihood estimate of

some unknown parameter set: In this interpretation, u∗ is treated as

a bootstrap distribution, and a confidence interval is computed using

bootstrap methods. Since the ψ values of a certain sampling scheme

S refer to values on the MLE psychometric function rather than an

unknown function, the bias and efficiency measures obtained from the

simulation are more useful to an experimenter: if it is reported in

this chapter that a certain sampling scheme S has a good bootstrap

confidence interval width score, then it is a good idea for the experi-

menter to aim to reproduce that sampling scheme, choosing stimulus

intensities x which will produce the same ψ values as S when trans-

formed through the experimenter’s own maximum-likelihood estimate

of the psychometric function. The method used to obtain bootstrap

† The performance values and sweat factor thus obtained are similar to those given by
O’Regan and Humbert9 for the logistic function (allowing for differences between the
shape of the logistic and the shape of the Weibull).
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confidence intervals will be the BCa method, based on its performance

in the coverage simulations of chapter 3. The low absolute coverage

coverage values of the BCa method on many measures will not be a

cause for concern in the current chapter: the tests of chapter 3 showed

that the BCa method was generally the fairest for comparing sampling

schemes against each other, because it showed least variability in cov-

erage and imbalance estimates across sampling schemes and between

different values of N .

3. θgen represents a curve at which the experimental results may arrive,

more or less accurately: In this interpretation, the experimenter wishes

to reproduce a certain sampling scheme S, but cannot do so reliably

because the estimate must be built up as the experiment proceeds.

For example, the experimenter’s approach might be to take some pilot

data, using a small number of trials or perhaps an adaptive procedure,

to obtain a working estimate of the parameter set. Using this working

estimate, the experimenter chooses x values so as to replicate the pat-

tern S as closely as possible, and then begins taking data in earnest.

However, there will be a discrepancy between the working estimate and

the final estimate on which the final confidence interval is based, so the

stimulus values x will have effectively “slipped” relative to the curve.

The expanded bootstrap method of section 2.2.6 explores the neigh-

bourhood of a parameter set, in a way that reflects the likelihood of

“slipping”. It therefore provides an approximate way of reflecting the

“risk” of trying to reproduce a certain S.

All three interval types were measured, with wci scores being based on

equal-tailed 68.3% and 95.5% confidence intervals. Expanded confidence in-

tervals used m = 8 repeats of the bootstrap run, placing the generating

parameter sets on the boundary of a confidence region of coverage 0.5 (see

section 2.2.6). Results from the expanded confidence intervals should be

considered along with the caveat that they are probably too conservative,

over-emphasizing the effect of N (see section 3.3.5). In the main, results
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from approach 2 (bootstrap BCa results) will be considered.

5.4 The performance of Wichmann’s 7

sampling schemes

Wichmann and Hill6 demonstrated the differences in efficiency and sensitivity

between the sampling schemes described in section 1.5.1, noting in particu-

lar that the placement of one or more samples above 95% greatly reduced

the sensitivity of confidence interval width to errors in the MLE. Their ob-

servations are repeated and extended here, the major differences being as

follows:

• The BCa method is now also used to obtain confidence intervals, where

Wichmann and Hill used the bootstrap percentile method: the results

of chapter 3 suggest that the BCa method allows for fairer comparison

between sampling schemes on slopes.

• A likelihood-based joint confidence region in α and β is now used for

obtaining expanded confidence intervals, as described in section 2.2.6,

whereas Wichmann and Hill originally used rectangular confidence re-

gions of less accurate coverage.

• A wider range of values of N is explored, including lower values than

those examined by Wichmann and Hill, in order to examine the changes

in bias and efficiency that occur with N .

• The entire set of simulations was repeated 10 times in order to obtain

an indication of the intrinsic variability of the bootstrap method.

Each of the sampling schemes was tested using R = 1999 simulation

runs as described above, and the test was repeated 10 times at each of nine

different values of N : N = 24, 48, 72, 96, 120, 168, 480 and 960.

The figures of this section will all use the same format. Bias or efficiency

for the seven sampling schemes will be plotted on the ordinate, against N on
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a log-scale abscissa. Symbol shapes denote the different sampling schemes

in the manner shown in figure 1.2. Symbol positions will indicate the mean

bias, or the efficiency corresponding to the mean confidence interval width,

obtained over 10 repetitions. The error bars around each point show the full

range of values measured in the 10 repetitions.

5.4.1 Threshold results

The upper panel of figure 5.1 shows the efficiency scores for the seven sam-

pling schemes on thresholds t0.5, using 68.3% BCa confidence intervals as the

measure. The different sampling schemes have different efficiency scores, as

Wichmann and Hill6 previously found. For most of the values of N studied,

the most efficient scheme by a large margin is �, which has five points clus-

tered close to the threshold and a single point at a very high performance

level (98.5% correct). It seems to have struck a good compromise between

sampling near to the target value, and making use of the low variability at

the high end of the function. The scheme with the widest spacing of sample

points, �, generally performs worst.

Most of the schemes have a fairly constant efficiency score for all studied

values of N , but it is important to note that the behaviour of • and � is

not constant. These two sampling schemes are well clustered close to the

threshold point (particularly •), but they neglect to have a single point at

high performance values. The result is that they are only efficient when N

is large.

The optimal sampling strategy changes as N increases, just as Finney17

observed in his table of yes-no sampling schemes. In the upper panel of

figure 5.1, • is the most efficient sampling scheme at the highest values of

N (N ≥ 480). The changeover between • and �, which are very similar

except for the one high point in �, happens at roughly N = 360—it seems,

therefore, that it is worth taking no more than about 60 trials at the high

point before concentrating on stimulus values closer to the threshold. On the

other hand, at the very lowest value of N (N = 24), • is one of the least

efficient schemes, or at best it is highly unreliable. This has implications for
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Fig. 5.1: Taylor-Creelman efficiency of estimation of threshold t0.5

for seven 2-AFC sampling schemes is plotted against N , which is on a
logarithmic scale. The upper and lower panels show efficiency scores
based on 68.3% and 95.4% bootstrap BCa intervals, respectively. See
section 5.4 for further details.
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the use of most classical adaptive procedures, which aim to replicate exactly

this situation: a small number of trials concentrated as closely as possible

around threshold.†

The lower panel of figure 5.1 shows the results for 95.4% bootstrap in-

tervals, in which the effect of N is even more pronounced. All sampling

schemes, except for � with its very wide spread of stimulus values, decrease

in efficiency when N is less than about 100–200. The effect on • and �, the

two schemes without a single point above 90% correct, is very pronounced.

Now, at all values of N lower than 240, they are very poor relative to the

other schemes, and although • eventually rises to be the most efficient, the

crossover with � occurs later, at around N = 750. Thus, if confidence inter-

vals of large coverage are desired, it is highly advisable to place at least one

sample point at a high expected performance level (above 90%, or preferably

above 95%).

Monte Carlo results for t0.5 (interpretation 1 in section 5.3.2) were found to

be almost indistinguishable from the BCa results, and so will not be shown

separately. Expanded bootstrap results (interpretation 3) are instructive.

The upper and lower panels of figure 5.2 show the results for 68.3% and

95.4% expanded intervals, respectively. The effect of N is enhanced even

further, and is very pronounced even for 68.3% intervals (the results at the

two confidence are in fact very similar). As was the case for BCa intervals, •
and � are much worse than the other schemes, but now the other schemes are

closer in performance to one another. The exception is �, which performed

badly on the Monte Carlo and bootstrap BCa measures, but is now the best

scheme for lower values of N : its wide spread of stimulus values is clearly an

effective “hedge” against possible stimulus placement error.

All schemes are relatively free of threshold estimation bias at all the values

† Adaptive procedures are generally more efficient than we might infer from this.7,13,18

Sensible experimental procedure is to start at a high stimulus level and work down towards
the target threshold, lest the observer become disheartened early on by the difficulty of the
task. As a result adaptive runs usually have more observations above threshold than below,
and their distribution may be more akin to that of � or F than •. Another contributing
factor may be that higher performance levels than 75%, where expected variability is
smaller, are often targeted.
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Fig. 5.2: Taylor-Creelman efficiency of estimation of threshold t0.5

for seven 2-AFC sampling schemes is plotted against N , which is on a
logarithmic scale. The upper and lower panels show efficiency scores
based on 68.3% and 95.4% expanded bootstrap intervals, respectively.
See section 5.4 for further details.
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Fig. 5.3: Bias in the estimation of threshold t0.5 for seven 2-AFC
sampling schemes is plotted against N , which is on a logarithmic
scale. See section 5.4 for further details.
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of N studied: as figure 5.3 shows, the bias term w remains well within the

range ±0.25.
An additional, perhaps somewhat surprising example will help to reinforce

the point that the most efficient estimator of a threshold is not necessarily

the one that places stimulus values closest to the threshold value. Figure 5.4

shows the efficiency scores for bootstrap BCa intervals on the lower perfor-

mance threshold t0.2. Note that � is not efficient, either with regard to 68.3%

or 95.4% intervals, despite being the scheme most closely centred around the

target threshold point. In fact, only • is less efficient. By contrast, � gives

consistently smaller confidence intervals, despite having all its sample points

above the target level; it yields low variability at all threshold levels because

it simultaneously constrains both threshold and slope tightly, thus pinning

down the entire psychometric function. However, its bias in slope estimation

(see section 5.4.2) is also reflected in its bias in the estimation of t0.2, as fig-

ure 5.5 shows. To strike a reasonable balance of low bias and high efficiency,

the widely spread schemes � and � are probably the best choices, depending

on the number of trials.

5.4.2 Slope results

A rather different pattern emerges in the bootstrap interval results for slopes,

shown in figure 5.6. Again, the upper panel shows efficiency scores based on

wci68, and the lower panel shows scores based on wci95. In the upper panel,

• and � now stay constant, and remain the least efficient schemes at all the

values of N studied, whereas the more efficient schemes decline in efficiency

as N increases. Note that the schemes which produce the smallest intervals

are, once again, the ones with at least one point at very high performance lev-

els (> 95%—remember also that the “ideal” slope sampling scheme for this

psychometric function had one of its two points at the 96.5% performance

level). Some measurements, notably those from � at N = 24, occasionally

exceeded 100% efficiency. This serves as a reminder that bootstrap mea-

surements of variability are themselves only estimates, and prone to error,

particularly when a small number of observations has been taken.
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Fig. 5.4: Taylor-Creelman efficiency of estimation of threshold t0.2

for seven 2-AFC sampling schemes is plotted against N , which is on a
logarithmic scale. The upper and lower panels show efficiency scores
based on 68.3% and 95.4% bootstrap BCa intervals, respectively. See
section 5.4 for further details.
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Fig. 5.5: Bias in the estimation of threshold t0.2 for seven 2-AFC
sampling schemes is plotted against N , which is on a logarithmic
scale. See section 5.4 for further details.
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Fig. 5.6: Taylor-Creelman efficiency of estimation of slope s0.5 for
seven 2-AFC sampling schemes is plotted against N , which is on a
logarithmic scale. The upper and lower panels show efficiency scores
based on 68.3% and 95.4% bootstrap BCa intervals, respectively. See
section 5.4 for further details.
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The lower panel of figure 5.6 shows that, when efficiency is measured by

the width of 95.4% confidence intervals, N has a much greater effect on all

the results. Efficiency generally increases with N , and none of the schemes

reaches peak efficiency until around N = 120. The most widely sampled

scheme, �, is a late developer: while it ends up as the most efficient scheme

it does not overtake the others until N exceeds about 240, by which time �
has already begun to decline.

Unlike the threshold results of section 5.4.1, the slope results show con-

siderable differences between bootstrap intervals and Monte Carlo percentile

intervals.† The latter are shown in figure 5.7. The 68.3% interval results

from Monte Carlo intervals, shown in the upper panel, look very similar to

the 95.4% bootstrap results of figure 5.6, and the 95.4% Monte Carlo results

show an even greater positive influence of N . The fact that the Monte Carlo

and bootstrap results differ qualitatively indicates that one’s criteria of ef-

ficiency may apply very differently depending on which method is used to

compute intervals. Clearly one should be careful in one’s choice of interval

method if wishing to compare the efficiency of slope estimation of different

sampling strategies. The results of chapter 3 suggest that, while neither

method is very good for slopes in a realistic context, the BCa method is the

more accurate bootstrap method of the two, in both idealized and realistic

conditions (see figures 3.6 and 3.8).

Figure 5.8 shows the expanded bootstrap interval results for slopes. As

in the threshold results, many of the differences between sampling schemes

have dissolved, and N has taken over as the most important factor affecting

efficiency: the higher the value of N , the more efficient all the sampling

schemes are at estimating slope, if we take the expanded confidence interval

widths as our criterion for efficiency.

The bias of slope estimation must be considered as well as efficiency, how-

ever. Figure 5.9 shows that all the schemes that produced the smallest slope

† The Monte Carlo intervals are constructed from percentiles of the distribution of simulated
estimates without adjustment or reversal. This method can also be applied as a bootstrap
technique, in which context it is called the bootstrap percentile method (section 2.2.4).
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Fig. 5.7: Taylor-Creelman efficiency of estimation of slope s0.5 for
seven 2-AFC sampling schemes is plotted against N , which is on a
logarithmic scale. The upper and lower panels show efficiency scores
based on 68.3% and 95.4% Monte Carlo percentile intervals, respec-
tively. See section 5.4 for further details.
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seven 2-AFC sampling schemes is plotted against N , which is on a
logarithmic scale. The upper and lower panels show efficiency scores
based on 68.3% and 95.4% expanded bootstrap intervals, respectively.
See section 5.4 for further details.
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interval widths also display considerable bias, consistently overestimating the

slope of the psychometric function. Bias generally decreases as N increases,

but most of the schemes only come within the ±0.25 range at N = 960. The

bias seen here is the same phenomenon as that discussed in section 3.3.4.

The consistent over-estimation of slope can also be seen in figure 3.13 (t0.2 is

over-estimated, and t0.8 is under-estimated). Figure 3.13 also suggests that

the magnitude of the problem varies depending on the unknown value of

λgen. Unless more reliable methods can be developed for dealing with lapses

(a more robust loss function than the regular binomial likelihood formula,

for example), then the best policy for obtaining accurate slope estimates will

sometimes be, paradoxically, to use the sampling schemes which would, in an

idealized situation in which λgen were known, be the least suitable schemes

for slope measurement. The two schemes that produced the largest slope

intervals, • and �, show relatively little bias in figure 5.9, and this is a

combination of two factors: the first is that, lacking sample points at high

performance values, they are less influenced by λ than the other schemes

and therefore tend to produce smaller numerical discrepancies between the

true slope value and the observed value; the second second factor is that,

precisely because their confidence intervals are so much larger than those of

other schemes, they render the same numerical discrepancy less significant

than would a more efficient scheme.

The decision to use a strategy of inefficient estimation or “efficient mis-

estimation” must depend on the magnitude of the psychophysical slope effect

under study, and the consequent desired confidence interval width. For exam-

ple, suppose an experimenter takes N = 275 trials, and aims to use a scheme

similar to •, which is more appropriate than � because of the relatively large

bias of the latter. However, at this number of trials the relative efficiency of

� to •, computed using 95% bootstrap confidence intervals, is roughly 3.5.

Suppose that, in order to be appropriate for the experimental situation, the

slope confidence interval needs to be smaller by a factor of more than
√
3.5.

Therefore, N must be increased by a factor of more than 3.5, to over 960

(in figure 5.6, the efficiency curve for • is flat in this region, indicating that
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confidence interval width is roughly proportional to N− 1
2 ). The experimenter

continues taking more samples, aiming for the performance levels dictated

by •. At N = 960, there is still a little way further to go, but at this large

number of trials the bias of � has been reduced to a much smaller value,

which the experimenter might have deemed acceptable, and its efficiency is

still roughly 3 times that of •. Therefore, if the experimenter had chosen

� instead of •, the experiment would already be over. In this example, the

optimum strategy might be to begin sampling at low or central performance

levels in the manner of • or �, and then to spread out the sample points in

the manner of � after a certain number of trials has been taken. The more

accurate slope estimates of the early samples will (on average, across a num-

ber of similar experiments) be beneficial for positioning the later samples (if

slope were over-estimated during the early samples, the later ones would be

less spread out than the experimenter intended). The details of how many

trials to take, whether to spread out, when to start doing so and how far to

spread, will depend on the experimental situation and the particular level of

precision it demands.

5.4.3 Summary

As Wichmann and Hill6 found, some sampling schemes are more efficient

than others, and the current simulations suggest that such differences are

significantly greater than the variation in estimated confidence interval width

that occurs between successive repeats of the bootstrap process. For thresh-

olds, the most efficient sampling patterns are not necessarily those that are

the most closely concentrated around the target threshold value. The inclu-

sion of one or more points at high performance levels (above 90%, or better

still above 95%) greatly decreases the widths of confidence intervals for both

thresholds and slopes. While this is certainly an advantage for threshold

estimation, for which bias is generally small, it may lead to significant bias

in slope estimation, which occurs because of the difficulty of obtaining accu-

rate estimates of λ, with which slope co-varies. For all the sampling schemes

studied, slope bias tended to decrease as N increased, but sampling schemes
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Fig. 5.9: Bias in the estimation of slope s0.5 for seven 2-AFC sampling
schemes is plotted against N , which is on a logarithmic scale. See
section 5.4 for further details.
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with points at high performance levels were slower to reduce to acceptable

levels of bias than those without.

The relationship between confidence interval width and N is not necessar-

ily the familiar inverse-square relationship that normal theory predicts. This

fact can be identified from that fact that efficiency scores may change as N

increases, and the manner in which they change depends on sampling scheme.

So, the optimal choice of sampling scheme can be different at different values

of N . For example, the sampling schemes which are most closely clustered

around target threshold values become more efficient threshold estimators,

relative to other sampling schemes, asN increases. This is consistent with the

observations made by Finney,17 who also found that the relative efficiency of

different 2- and 3-point sampling schemes in yes-no experiments also changed

with N . The optimal choice of sampling scheme also depends on whether

one looks at short intervals of the order of ±1 standard deviation, or longer

intervals of the order of ±2 standard deviations or more. Consideration of

longer rather than shorter intervals increases the extent to which efficiency

is correlated with N or, to put it another way, tends to increase the penalty

associated with small values of N for all sampling schemes. Consideration of

expanded bootstrap intervals also enhances the reliance of efficiency on N ,

and also favours those sampling schemes that are more widely spread.

5.5 Wider exploration of possible sampling

schemes

If some sampling schemes are better than others, how can we ensure that we

use a good one? Wichmann’s 7 sampling schemes are good for illustrating

the existence of differences, but they are only isolated examples in an infinite

set of possible sampling schemes. They suggest that it is a good idea to

bias one’s placement of sample points towards higher performance levels,

but do not tell us exactly how far to go. They also leave one important

dimension entirely unexplored, because they all have 6 points—we still want
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to know whether, for a constant total number of observations, it is better

to group those observations in a small number of sample points or to spread

them over a larger number.† If the exact placement of stimuli makes such

a difference, is it even possible to make a fair comparison between, say, a

sampling scheme with k = 3 points and another with k = 8—might any

effect of k be confounded by the question of exactly where the extra 5 points

are placed?

The simulations described in this section aimed to explore a wide range

of possible sampling schemes in order to study the effect of k and N , and

any interactions between k and N , on bias and efficiency of threshold and

slope estimation. The values k = 3, 4, 5, 6, 8, 10 and 12 were investigated,

at N = 120, 240 and 480. In order to provide a basis for comparison of

sampling schemes that had different numbers of points, a parametric and

a non-parametric system were developed for generating sampling schemes.

These are described in the following two sub-sections.

5.5.1 Parametric sampling scheme generation

A method was developed for the purposes of parametrizing the differences in

a subset of possible sampling schemes, whose f -values were defined using a

modified beta distribution. The beta distribution, which is given by

B(f ; b1, b2) =
f (b1−1)(1− f)(b2−1)∫ 1

0
t(b1−1)(1− t)(b1−1) dt

, 0 ≤ f ≤ 1, (5.3)

can, depending on its parameters, approximate many functions including nor-

mal, uniform, linear increasing, linear decreasing and parabolic distributions,

as well as positively and negatively skewed distributions—see figure 5.10 for a

few examples. As the beta function is so versatile, and because its domain is

† This question has a psychological side to it as well as the straightforward statistical one:
the greater the number of observations performed at a single stimulus level, the more
practice the observer gets at that level, but the greater the probability that the observer’s
attention might wane. For the purposes of this investigation the question will be considered
from only the statistical angle, which can be answered by examining a computer-simulated
observer free of any such effects.
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[0, 1], it is very useful as a parametric function for defining sampling schemes

in terms of their f -values.

(b1, b2) = (2, 1)

(b1, b2) = (5, 5)

(b1, b2) = (2, 2)

(b1, b2) = (1, 1)

(b1, b2) = (6, 2)

(b1, b2) = (1, 6)

(b1, b2) = (10, 15)
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Fig. 5.10: Examples of beta distributions, using various different pa-
rameter pairs (b1, b2). See equation (5.3), page 174.

One way of using the beta function to generate sampling schemes would

be to define a fairly large number of sample points (say, k = 20) at the fixed

values f = (1, 2 . . . k)/(k + 1), and then determine the relative proportions

of the total number of trials to be taken at each f -level by the relative heights

of the distribution at each point, for a chosen pair of parameter values: thus,

define ñi = B(fi; b1, b2), then take ni = Nñi/
∑k

j=0 ñj, rounded to the nearest

integer. This method will be referred to as the unequal block distribution

method.

A second method, the equal block distribution method, asymptotically

(as k → ∞ and N → ∞) distributes individual trials with the same pattern

as the unequal method, but it allows the number of trials per block to be
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constant. Block sizes are therefore given by ni = N/k, but the locations

of the blocks are given by the inverse cumulative of the beta distribution,

evaluated at points (1, 2 . . . k)/(k + 1). Thus, the f -points mark out equal

areas under the distribution curve.

Graphical examples of the two block distribution methods will be given,

but first a refinement will be added to the generating equation. Using either

of the above block distribution methods in conjunction with the beta distri-

bution defined in equation (5.3), a wide variety of sampling schemes might be

generated: depending on the chosen values of b1 and b2, trials might be con-

centrated at the high or low end of the psychometric function, concentrated

in the middle close to t0.5, or more evenly spread over the whole psychometric

function. However, the beta distribution allows only very limited scope for

bimodal distributions of trials. Since bimodality might very probably be a

characteristic of a number of very efficient sampling schemes (particularly

where slopes are concerned), a third “asymmetry” parameter will be added

to the distribution, as follows:

B3(f ; b1, b2, b3) =
1 + b3

2
B(f ; b1, b2) +

1− b3

2
B(f ; b2, b1). (5.4)

Thus, when the asymmetry parameter b3 is equal to 1, equation (5.4) re-

duces to equation (5.3). When b3 = 0, the resulting distribution is always

symmetrical, as it is an equally weighted sum of the plain beta distribution

B(f ; b1, b2) and a copy of the plain distribution reflected about f = 0.5.

Intermediate values of b3 result in unequal weighting between the plain beta

distribution and the reflected copy.

Figure 5.11 shows examples of sampling schemes generated using equa-

tion (5.4). The upper panel shows a B3 function with parameters (9, 2, 0.3).

Note that the use of an asymmetry parameter less than 1 has resulted in

a bimodal distribution with unequal peaks. The open triangles represent a

scheme that was generated from the curve using the unequal block distribu-

tion method with k = 20 and N = 480. The size of the points is related to

the number of trials to be taken at each f -level, determined by the height
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of the curve. The filled triangles represent the results of the equal block

distribution method with k = 8. The areas marked out by the broken lines

under the curve are equal.

In the lower panel, the triangles show how the two schemes from the

upper panel translate into stimulus units, using the Weibull function with

θ = (3, 4, 0.5, 0.01)T which is also shown for comparison. Broken lines mark

the positions of t0.2, t0.5 and t0.8, corresponding to performance levels of 0.598,

0.745 and 0.892, respectively. Additional examples of sampling schemes gen-

erated by the equal block distribution method, using a number of different

parameter triplets (b1, b2, b3), are represented by the filled circles.

The result is that, with three parameters, a very wide range of sampling

schemes can be defined. When b1 = b2, the scheme is always symmetrical,

and the width of the range of stimulus values depends on the parameter value:

values less than 1 produce a U-shaped distribution in which the points tend

to cluster at the extreme upper and lower ends of the function, b1 = b2 =

1 produces a uniform distribution of expected performance values, and as

the values increase above 1, the distribution becomes narrower and tends

more towards the normal. Symmetric bimodal distributions (with less of an

extreme separation between the peaks than the U-shaped function) can be

achieved when b1 �= b2 and b3 = 0, and a variety of asymmetric sampling

schemes can be generated with b1 �= b2 and b3 �= 0.

The space defined by the three parameters (b1, b2, b3) was explored by

taking 20 values for each parameter, and generating sampling schemes from

each of the 8000 combinations. Possible values for b3 were linearly spaced in

the range [0, 1], and possible values for b1 and b2 were geometrically spaced

in the range [0.8, 10]. Some of the sampling schemes corresponding to the

extreme corners of the parameter space thus defined, such as (10, 0.8, 1) and

(10, 10, 0), can be seen in the lower panel of figure 5.11.

Using the equal block distribution method, 8000 sampling schemes were

tested for each combination of k and N (21 combinations, for a total of

168,000 sampling scheme tests, which involved a total of 3.36 × 108 fits to

simulated data sets). Using the unequal block distribution method, 8000
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Fig. 5.11: Examples of sampling scheme generation using a modified
beta distribution. See section 5.5.1 for details.
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sampling schemes were tested at {k = 20, N ≈ 240} and at {k = 20, N ≈
480}. can be found in the results archive under:

• simulations/optimal/2AFC/para/equal/l01/weibull/

• simulations/optimal/2AFC/para/unequal/l01/weibull/

for the equal and unequal methods, respectively.

5.5.2 Non-parametric sampling scheme generation

While the parameterization of section 5.5.1 includes many sampling schemes,

it does not quite succeed in approximating all sampling schemes of interest—

for example, no set of parameters (b1, b2, b3) comes very close to capturing

the essential characteristics of scheme � from figure 1.2, which has many of

its points clustered around the mid-point of the psychometric function and

just one high point.

To explore sampling scheme characteristics still further, a random non-

parametric generation method was developed. First, the sampling scheme

was defined by the sequence f = (1, 2 . . . k)/(k + 1). Such a set of values

defines k points and k + 1 “gaps”—there is a gap between 0 and the first

point, between each consecutive pair of points, and between the kth point

and 1. The points were then “shuffled” 100 times: a single shuffle involved

choosing one of the points at random, and moving it to the centre of a

randomly chosen gap. All points had equal probability of selection, and all

eligible gaps had equal probability of selection, but only gaps greater than

0.3/(k + 1) were eligible (thus, there was a lower bound of 0.15/(k + 1) on the

spacing between successive f -values). Block sizes were all equal: ni = N/k.

Examples of 8-point sampling schemes generated by the random method

are shown in figure 5.12.

Sets of 1000 random sampling schemes were tested at a time. One set

was run at each of the combinations of values of k and N (21 sets in all, for a

total of 21,000 tests or 4.20×107 fits). For a given k, the same 1000 schemes

were tested at each N . Results can be found in the archive under:
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Fig. 5.12: Eight examples of 8-point sampling schemes generated by
the random method of section 5.5.2. A 2-AFC Weibull function is
shown for comparison, with lines marking the thresholds t0.2, t0.5 and
t0.8 (corresponding to performance levels of 0.598, 0.745 and 0.892,
respectively).
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• simulations/optimal/2AFC/nonpara/l01/weibull/

5.5.3 Representation of results

The parametric sampling scheme generation space (section 5.5.1) was sam-

pled at regular intervals in each of its three dimensions, because it had been

intended to present the results (bias or efficiency scores) as a function of the

three dimensions without smoothing. Smoothing in three dimensions was

considered undesirable because any failure of the parameterization to ac-

count for variation in the scores (which would show up as sharp apparently

random changes) would then go unnoticed.

Three-dimensional representation of the results will not be necessary be-

cause the results from the parametric simulations were found to be gener-

ally smooth even when re-represented on a two-dimensional plot. A two-

dimensional format will therefore be used for all the results: the dependent

variable (bias or efficiency) is plotted as a function of the weighted standard

deviation σp of the sampling scheme’s performance levels (on the ordinate),

and the weighted mean performance level p̄ (on the abscissa). The weights

used were simply equal to the number of observations used at each perfor-

mance level,† so p̄ and σp are equal to the first moment and second central

moment, respectively, of the distribution of expected performance values cor-

responding to each individual trial location:

p̄ =

k∑
i=1

pini, (5.5)

and σp =

[
k∑

i=1

ni(pi − p̄)2
] 1

2

. (5.6)

Figure 5.13 shows the way in which sampling schemes map onto the space

† Other mapping methods were attempted, including the weighted mean and standard de-
viation of the stimulus values rather than the performance levels, and the weighted mean
and standard deviation using the probit weights of equation (2.1). However, none of the
alternatives produced noticeably smoother results, and p̄ and σp as defined above were
found to produce the most conveniently shaped and intuitively interpretable space.
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defined by p̄ and σp. The first column shows the layout of the parametrically

generated 3-, 6- and 12-point sampling schemes using the 8000 parameter sets

of section 5.5.1. In the first panel, the dots mark the positions corresponding

to the sampling schemes explored by McKee et al.5 at k = 3 (the positions

corresponding to their 4- and 5-point schemes are almost identical to these).

The second column shows the sets of 1000 3-, 6- and 12-point sampling

schemes generated by the random method of section 5.5.2. The third column

shows what would happen if the sampling schemes were generated by drawing

each f -value independently from a uniform distribution on the interval (0, 1).

Note that when the parametric system is used, there is considerable overlap

in the space covered by sampling schemes with different numbers of blocks—

this facilitates examination of the effect of k. The area covered by the random

method of section 5.5.2 is not quite so invariant with respect to k, but the

method is better in that regard than the purely random independent selection

of performance values.

Bias and efficiency scores will be denoted by colour. For bias scores w, a

linear scale will be used, in which black denotes zero bias, “hot” colours de-

note w > 0 (underestimation of the measure of interest), and “cold” colours

denote w < 0 (overestimation)—see, for example, figure 5.20. For inter-

val width scores, an ordinal scale will be used, because inefficient sampling

schemes (notably those with all sample points below the mid-point t0.5) oc-

casionally yielded extremely large numbers. The distributions of interval

widths from a set of 8000 (or 1000) sampling scheme tests often had such

long, thin upper tails that even a log transform did not allow the whole range

to be represented while preserving sufficient precision at the low end. In fig-

ure 5.14 and others like it, the colour of each point is therefore determined by

the rank of each interval width score within the set of 8000 or 1000 to which

it belongs, dark blue denoting the lowest values, and dark red denoting the

highest. The bar at the side of the figure shows how the colours relate to

the actual interval width values, and also shows the distribution of widths in

the form of a histogram. The text at the top of the bar indicates that (for

example, in the lower panel of figure 5.14) the top 15.2% of values, up to a
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Fig. 5.13: Distribution in (p̄, σp) space of some of the test sets used in the simulations of section 5.5.
From left to right, the columns show parametrically generated test sets (section 5.5.1), non-parametrically
generated test sets (section 5.5.2), and (for comparison) sampling schemes with independent uniformly
distributed performance values. Black dots in the top left panel show the schemes used by McKee et al.5
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maximum interval width of 362, are not represented on the histogram.

To investigate the effect of k and N on bias and efficiency scores, two

methods of analysis will be used. The first is to examine how the minimum

moves with changes in k or N , the minimum being the location in (p̄, σp)

space where the smallest absolute biases or smallest interval widths occur.

To find the minimum, the best 1% of the schemes of a particular test set are

identified (e.g. the 80 sampling schemes with the smallest interval widths out

of a parametrically generated set of 8000) and the median p̄ value, median

σp value and median interval width from that group are reported. This

method of finding the minimum was chosen in preference to smoothing the

results and reporting the location of the minimum smoothed value, because

interval widths may not always vary smoothly in (p̄, σp) space—if the best 80

sampling schemes happened to be intermingled with the worst 80, then a

smoothing technique would not reveal the location of the minimum because

the smoothed score in that region would reflect an average of the adjacent

low and high scores. Effectively, the chosen method asks where the best

schemes are located in (p̄, σp) space, rather than which location in (p̄, σp)

space is best. An example of the results is figure 5.15.

The second test is to examine the effect of k and N on the magnitudes of

non-optimal scores, i.e. the rest of the space, outside of the optimum region.

To do this, some method had to be found of comparing, fairly, the distribution

of score values in, a k = 3 test set with those in a k = 12 set. Simply to

compare, for example, the median of the 1000 scores from a non-parametric

test set with k = 3, with the median from the non-parametric set with k = 12,

would not be fair with regard to the respective distributions of the two sets

in (p̄, σp) space: the former contains a greater concentration of sampling

schemes at low values of σp than the latter, which may affect the distribution

of interval widths, confounding any direct effect of k. Therefore, for this

test, a smoothing method will be used: first the space is divided into a grid

with resolution 0.01 in the p̄ dimension and 0.005 in the σp dimension. The

smoothed score value at each grid location is then obtained by weighted local

averaging, using a Gaussian kernel with a standard deviation of 0.02 in the p̄
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dimension and 0.01 in the σp dimension (the kernel is truncated after ±1.67
standard deviations, in order to limit spatially the influence of very large

values). Then, only grid locations within the rectangle defined by 0.65 ≤
p̄ ≤ 0.85 and 0.05 ≤ σp ≤ 0.18 are considered—judging by figure 5.13, this

is roughly the area in which all the parametric and non-parametric test sets

overlap. The rectangle contains 567 grid locations or “pixels”, and quantiles

of the distribution of these 567 pixel values are reported in, for example,

figure 5.16.

5.5.4 Threshold results

Efficiency

Results from a typical parametric test set are shown in figure 5.14, using the

graphical conventions of section 5.5.3. In this example, k = 6, N = 240,

and the dependent measure is the width of bootstrap intervals for threshold

t0.5—the upper panel shows the results for 68.3% intervals, and the lower

panel shows results for 95.4% intervals. In each panel, a triangle marks the

median position of the most efficient 1% of the test set.

Three aspects of figure 5.14 are of particular interest. First, interval width

scores vary smoothly with changes in p̄ and σp. Second, the surfaces are only

very slightly asymmetric, and only noticeably so for 95.4% intervals: in the

lower panel, when σp is very low (i.e. when the performance values of the

scheme are grouped close together) sampling schemes with a mean perfor-

mance value below the mid-point produce larger interval widths than those

with mean performance value that lies an equal distance above the mid-point

(the mid-point is at p̄ = 0.745, which is the performance level corresponding

to threshold t0.5). Otherwise, the surfaces are generally symmetrical, and the

smallest interval widths are to be found with means close to the mid-point

(p̄ ≈ 0.745). This is perhaps surprising given the asymmetry of expected bi-

nomial variability about the mid-point. Nevertheless it is consistent with the

results of McKee et al.,5 who also found stimulus ranges centred on the mid-

point to be maximally efficient. The third thing to notice about figure 5.14
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Fig. 5.14: Widths of 68.3% (upper panel) and 95.4% (lower panel)
bootstrap BCa intervals for threshold t0.5 are shown as a function of
the weighted mean p̄ and weight standard deviation σp of the per-
formance values comprising each of 8000 sampling schemes. Schemes
were generated using the parametric method of section 5.5.1 with
k = 6 and ni = 40. The triangle marks the median position of the
most efficient 1% of the test set. See sections 5.5.3 and 5.5.4 for further
details.
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is that the position of the minimum depends on the desired coverage of the

interval. The optimal strategy is to place samples closer to the mean if one is

interested in 68.3% intervals (optimum σp ≈ 0.07), than at 95.4%, (optimum

σp ≈ 0.11). At 95.4%, the optimum strategy is to centre the stimulus values

around the mid-point, but clearly not to target the mid-point as closely as

possible: in the k = 6 test set, the narrowest grouping around the mid-point

occurs at (p̄ = 0.745, σp = 0.039), and this particular sampling scheme yields

a bootstrap interval width of 1.69, which is a factor of about 6 larger than the

minimum interval width, a ratio which corresponds to a relative efficiency of

roughly 3%.

Although the above result may seem counter-intuitive when one considers

that the Taylor-Creelman “ideal” is to concentrate all trials at the mid-point,

it must be borne in mind that the Taylor-Creelman ideal is only ideal as

N → ∞ and the distribution of threshold values becomes perfectly normal.

Thus, the following advice, from researchers over the past 30 years, should

be treated as applying only in the limit, when N exceeds the values typically

found in psychophysical experiments:

“If one is interested in estimating [threshold level]Xp,. . . one should

place observations as close to Xp as possible.”

Levitt (1971)19

“Presentation on many trials far above or far below threshold is

a waste of time, because the responses to such stimuli have little

bearing on the question of the location of the threshold.”

Emerson (1984)20

“Standard error is minimal for a normalized intensity of 0 corre-

sponding to 50% probability of seeing [in a yes-no experiment].

This will be true for any value of n.”

King-Smith and Rose (1997)21

“The optimal placement level should be equal to the mean, which

is located at the 50% point for the yes/no paradigm and the 75%
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point for the 2-AFC paradigm.”

Yuan (1999)22

For realistic block sizes and numbers of blocks, the finding that a widely

spread sampling scheme can produce lower threshold variability than a nar-

rowly spaced scheme has been previously noted by O’Regan and Humbert9

in their Monte Carlo simulation study. The benefit of sampling at very high

or very low performance values was also reported by Hawley and Colburn,23

who used an asymptotic confidence region method to plot bands similar to

Finney’s fiducial bands17 around the psychometric function (see also Hawley,

1990,24 Appendix B). The effect can readily be predicted from the probit

equation for threshold limits, equation (2.5), as can the finding that the op-

timum spacing of samples increases as the desired coverage of the interval

increases. The latter effect can be seen in table 8.1 from Finney (1971),17

where both 95% and 99% intervals are considered for 2- and 3-point sam-

pling schemes on a yes-no psychometric function. Indeed, in the current

study, bootstrap BCa interval widths are highly correlated with the probit

interval lengths: their rank correlation coefficient is 0.91, indicating a high

correspondence between the shapes of the surfaces defined by the two interval

methods.† (Section 5.5.6 will examine the correspondence between interval

methods in more detail, using the rank correlation coefficient measure.)

The results from Monte Carlo percentile intervals were almost identical

to the bootstrap BCa intervals, with a rank correlation coefficient of 0.99 for

both 68.3% and 95.4% intervals. Therefore, they will not be shown sepa-

rately.

Threshold results are highly consistent across variations in k. This can

be seen in figure 5.15, which shows the location of the surface minimum

as a function of k. Symbol size denotes N—the smallest size corresponds

† There were slight differences, however, which may reflect the inaccuracy of the probit
method as revealed in chapter 3: the lowest probit scores were slightly larger than the
corresponding BCa scores, and the minimum of the surface defined by the probit scores
was shifted noticeably to the left, to about p̄ = 0.73 (the former discrepancy would not be
picked up by the rank correlation measure, but the latter probably accounts for most of
the 9% shortfall in correlation). See section 5.5.6 for more correlation results.
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to N = 120 and the largest to N = 480. Lighter symbols denote 68.3%

bootstrap intervals, and darker symbols denote 95.4% intervals. As described

in section 5.5.3, the minimum was located by finding the median p̄ and

median σp of the best 1% of the test set. The corresponding minimum

interval width score, wcimin, was taken to be the median of the best 1%

of interval widths.

The left panel of figure 5.15 shows the p̄ location of the minimum as a

function of k, the central panel shows the σp location, and the right panel

shows the Taylor-Creelman efficiency score computed from the wcimin. Note

that both efficiency and the location of the minimum are virtually indepen-

dent of k. However, there are differences as N increases from 120 to 240

to 480: the optimal spread of performance values becomes narrower, as the

threshold distributions become more normal and come closer to the Taylor-

Creelman ideal. Accordingly, the Taylor-Creelman efficiency score increases.

The effect can be seen at both the 68.3% level and the 95.4% level, although

threshold distributions behave more normally (tighter sampling schemes are

favoured more highly, and efficiency is higher) when only the central 68.3%

is considered.

Note that in each panel of figure 5.15, the last column of results is marked

“unequal”—this shows the results of the unequal block distribution method

(see section 5.5.1) for which results were taken at N = 240 and N = 480

with k equal to 20. The locations of the minima are very similar to those for

the equal block distribution method.

Not only does k have little effect onwcimin and on the location of the min-

imum, it also has little effect on the distribution of interval widths as a whole.

Efficiency values corresponding to quantiles {0.025, 0.159, 0.5, 0.841, 0.975}
of the distribution of bootstrap interval widths (obtained by the smoothing

method described in section 5.5.3) are plotted in figure 5.16 as a function

of k. From left to right, the three panels show the results for N = 120,

N = 240 and N = 480. Again, lighter symbols denote 68.3% intervals and

darker symbols denote 95.4% intervals. Circles denote the median values,

upward triangles denote the higher efficiencies that correspond to quantiles
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Fig. 5.15: For bootstrap BCa threshold intervals in sets of parametrically generated sampling schemes
(section 5.5.1), p̄ (left panel), σp (central panel) and Taylor-Creelman efficiency (right panel) corresponding
to wcimin are shown. The number of blocks k is on the abscissa, and symbol size relates to the total
number of trials N . Lighter symbols denote 68.3% intervals, and darker symbols denote 95.4% intervals.
See section 5.5.4 for details.
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0.025 and 0.159 of the distribution of interval widths, and downward trian-

gles denote the lower efficiencies corresponding to quantiles 0.841 and 0.975

of the interval width distribution. Note that, as was also the case in sec-

tion 5.4.1, efficiency generally improves as N increases. There are few trends

to be discerned as k varies however. One possible exception is that, when

N = 480, the worst sampling schemes (lowest chain of symbols) are more

efficient at higher values of k.

What do the optimally efficient sampling schemes from the parametric

test sets look like? Figure 5.17 shows the sampling schemes with the small-

est 95.4% bootstrap threshold intervals in the parametric test sets—the up-

per, middle and lower panels shows the best schemes from the sets in which

N = 120, 240 and 480, respectively. In all three cases, the best sampling

schemes from the parametric test sets are generally evenly spaced. How-

ever, simulations from the non-parametric test sets show that the parametric

system does not fully capture the possible range of sampling schemes.

The results of the non-parametric test set at (k = 6, N = 240) are plotted

in figure 5.18. Again, the upper panel shows the results for 68.3% BCa

bootstrap intervals in thresholds, and the lower panel shows the results for

95.4% intervals. The general shape of the surface is very similar to that of

the parametric results in figure 5.14. However, there are a few exceptions.

For example, in the lower panel of figure 5.18, the point at (0.798, 0.131),

coloured red, corresponds to a sampling scheme with performance values

{0.52, 0.77, 0.84, 0.86, 0.88, 0.91} which yields an interval width of 1.52. Yet

this inefficient red point is surrounded by more efficient blue: for example,

very close to it is the point at (0.796, 0.134) which represents a very different

sampling scheme: {0.59, 0.68, 0.75, 0.89, 0.92, 0.96} yielding an interval width
of 0.33. The schemes are very different despite having almost identical values

of p̄ and σp.

Such exceptional cases are rare. In general, the surface is nearly as smooth

as that of the parametric results. Nevertheless, the exceptional cases can

sometimes be among the most efficient sampling schemes. Figure 5.19 shows

the best sampling schemes from the non-parametric test sets, in the same
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Fig. 5.16: Efficiency scores corresponding to certain quantiles of the distribution of widths of bootstrap
BCa intervals on thresholds t0.5 are shown as a function of k. See sections 5.5.3 and 5.5.4 for details.
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Smallest bootstrap BCa interval widths (95.4%) for thresholds t0:5
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Fig. 5.17: For each set of 8000 sampling schemes generated by the
parametric method (section 5.5.1), the sampling scheme with the
smallest 95.4% threshold interval, obtained by the bootstrap BCa

method, is shown. Results from the test sets in which N = 120,
N = 240, and N = 480 are shown in the upper, middle and lower
panels, respectively.
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Fig. 5.18: Widths of 68.3% (upper panel) and 95.4% (lower panel)
bootstrap BCa intervals for threshold t0.5 are shown as a function of
the weighted mean p̄ and weight standard deviation σp of the per-
formance values comprising each of 1000 sampling schemes. Schemes
were generated using the non-parametric method of section 5.5.2 with
k = 6 and ni = 40. The triangle marks the median position of the
most efficient 1% of the test set. See sections 5.5.3 and 5.5.4 for further
details.
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Smallest bootstrap BCa interval widths (95.4%) for thresholds t0:5

ψ
(x
)

x

N = 120

ψ
(x
)

x

N = 480

ψ
(x
)

x

N = 240

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 5.19: For each set of 1000 sampling schemes generated by the
non-parametric method (section 5.5.2), the sampling scheme with the
smallest 95.4% threshold interval, obtained by the bootstrap BCa

method, is shown. Results from the test sets in which N = 120,
N = 240, and N = 480 are shown in the upper, middle and lower
panels, respectively.
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manner as figure 5.17. The similarity in the sampling schemes with different

numbers of blocks is striking: there is a tendency for the best schemes to be

characterized by a single very high-performance block (or perhaps two blocks,

depending on the total number), with the rest very close to each other in the

region of the threshold. They are very reminiscent of Wichmann’s sampling

scheme s6 (� on figure 1.2). However, there is a surprising tendency to

group the majority of blocks below the threshold, which has the effect of

balancing the high point somewhat and bringing the mean performance level

back towards the mid-point p̄ = 0.745, whereas Wichmann’s � has a slightly

higher mean value, p̄ = 0.78. The coordinates of these winning sampling

schemes, along with their bootstrap interval widths, are given in columns 6–

8 of table 5.1 (the preceding three columns contain the same information for

the winners of the parametric test sets shown in figure 5.17). The last column

of the table gives the efficiency of the best randomly-generated sampling

scheme, relative to the best parametrically generated sampling scheme. Note

that the best random schemes are, in most cases, a little better than the best

parametric ones, particularly at N = 120, where they bring anything up to

a 30% increase in efficiency. Even this is slight, however,† and the difference

disappears by the time N reaches 480.

Bias

Figure 5.20 shows bias w in the estimation of threshold t0.5, as a function of

p̄ and σp, for the parametric test set (upper panel) and the non-parametric

test set (lower panel) in which k = 6 and N = 240.

For both parametric and non-parametric test sets, there is a prevalence

of positive rather than negative bias (hence, thresholds are generally under-

estimated), but the magnitude of the bias was generally low. In particular, it

is important to note that the location of the most efficient sampling schemes

(see the lower panels of figures 5.14 and 5.18) is an area of low bias (w < 0.2).

† A relative efficiency of 130% corresponds to a 12% decrease in interval width, and the
interval widths of roughly 0.4 are already very small (the widths quoted are standardized
as described in section 5.3.1, so they must be considered in relation to a psychometric
function with a slope of 1).
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parametric non-parametric relative
N k p̄ σp wcimin p̄ σp wcimin efficiency

120 3 0.73 0.13 0.431 0.80 0.12 0.393 120.7 %
4 0.74 0.12 0.431 0.78 0.12 0.384 125.5 %
5 0.75 0.12 0.433 0.78 0.11 0.378 131.7 %
6 0.74 0.11 0.426 0.77 0.12 0.387 121.5 %
8 0.74 0.13 0.422 0.76 0.10 0.394 115.0 %
10 0.71 0.12 0.436 0.73 0.07 0.389 125.6 %
12 0.75 0.12 0.445 0.72 0.07 0.401 123.2 %

240 3 0.74 0.09 0.280 0.77 0.11 0.282 99.1 %
4 0.76 0.10 0.279 0.73 0.05 0.274 103.5 %
5 0.75 0.10 0.281 0.79 0.10 0.255 121.0 %
6 0.75 0.10 0.281 0.75 0.11 0.271 107.5 %
8 0.74 0.10 0.282 0.74 0.10 0.266 112.5 %
10 0.73 0.11 0.285 0.78 0.11 0.268 112.8 %
12 0.74 0.11 0.276 0.72 0.11 0.275 101.0 %

480 3 0.72 0.09 0.186 0.73 0.10 0.186 100.9 %
4 0.74 0.10 0.188 0.74 0.08 0.185 102.8 %
5 0.74 0.09 0.189 0.79 0.10 0.177 114.1 %
6 0.74 0.09 0.187 0.78 0.09 0.182 105.1 %
8 0.75 0.10 0.185 0.78 0.09 0.186 99.0 %
10 0.75 0.08 0.185 0.77 0.10 0.185 99.8 %
12 0.73 0.09 0.187 0.73 0.10 0.193 94.1 %

Table 5.1: The coordinates (p̄, σp) and the interval width score are
given for the sampling scheme with the smallest 95.4% bootstrap
threshold interval in each set of 8000 sampling schemes generated by
the parametric method of section 5.5.1 (columns 3–5), and in each set
of 1000 sampling schemes generated by the non-parametric method
of section 5.5.2 (columns 6–8). The last column gives the efficiency
of the best non-parametric scheme relative to the best corresponding
parametric scheme.
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Fig. 5.20: Bias in the estimation of threshold t0.5 is shown as a func-
tion of the weighted mean p̄ and weight standard deviation σp of the
performance values comprising each of 8000 parametrically generated
sampling schemes (upper panel) and 1000 non-parametrically gener-
ated sampling schemes. All schemes had k = 6 and ni = 40. See
sections 5.5.3 and 5.5.4 for further details.
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In the parametric test sets, no sampling schemes in this region had a value of

w exceeding 0.25, although there are a few schemes with large biases (yellow

points) in the non-parametric sets—these are all schemes with p̄ < 0.745, so

it is clearly better to place sample points a little too high, rather than a little

too low, to avoid bias.

Figure 5.21 shows, as a function of k, quantiles {0.025, 0.159, 0.5, 0.841,
0.975} of the distribution of bias values obtained by the smoothing method

described in section 5.5.3. The magnitude of bias shows little effect of k or

of N . (When N = 120, there is a slight tendency for the distribution to be

more skewed towards negative bias scores as k increases, but in any case the

absolute values of the bias scores involved, even at the extreme ends of the

distribution, are small).

5.5.5 Slope results

Efficiency

Bootstrap BCa interval widths for slopes are plotted in figure 5.22 for the

parametric test set with k = 6 and N = 240, and in figure 5.23 for the non-

parametric test set with the same values of k and N . As before, the upper

panels show 68.3% intervals and the lower panels show 95.4% intervals.

The parametric results are smooth, as they were for thresholds. This

time, however, the surfaces are distinctly asymmetric, with the most efficient

sampling schemes generally being those with higher mean performance levels.

The narrower the spread of the sampling scheme σp, the higher the optimum

mean level p̄, hence the diagonal boundary between efficient and inefficient

schemes. For 68.3% intervals, there is no ceiling, among the sampling schemes

studied, on the desirable spread of performance values. For 95.4% intervals,

on the other hand, the minimum occurs at a slightly lower value of σp, larger

values being less efficient.

The non-parametric results of figure 5.23 show a similar general trend,

with the most efficient sampling schemes lying in the same general area of

the space, but there is a great deal of “noise” corresponding to those sam-
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Fig. 5.21: Certain quantiles of the distributions of bias in the estimation of threshold t0.5 are shown as a
function of k. See sections 5.5.3 and 5.5.4 for details.
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Fig. 5.22: Widths of 68.3% (upper panel) and 95.4% (lower panel)
bootstrap BCa intervals for slope s0.5 are shown as a function of the
weighted mean p̄ and weight standard deviation σp of the performance
values comprising each of 8000 sampling schemes. Schemes were gen-
erated using the parametric method of section 5.5.1 with k = 6 and
ni = 40. The triangle marks the median position of the most ef-
ficient 1% of the test set. See sections 5.5.3 and 5.5.5 for further
details.
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Fig. 5.23: Widths of 68.3% (upper panel) and 95.4% (lower panel)
bootstrap BCa intervals for slope s0.5 are shown as a function of the
weighted mean p̄ and weight standard deviation σp of the performance
values comprising each of 1000 sampling schemes. Schemes were gen-
erated using the non-parametric method of section 5.5.2 with k = 6
and ni = 40. The triangle marks the median position of the most
efficient 1% of the test set. See sections 5.5.3 and 5.5.5 for further
details.
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pling schemes that the parametric system does not adequately capture. The

mapping of sampling schemes using the coordinates (p̄, σp) is therefore not

ideal for representing the efficiency of slope estimation—a more sophisticated

system is required. Unfortunately the parametric system of section 5.5.1 does

not fill this requirement, for it only includes schemes that make up a smooth

surface in (p̄, σp) coordinates.

Some of the differences between the parametric and non-parametric sys-

tems can also be seen by comparing figures 5.24 and 5.25, which show

the most efficient parametrically and non-parametrically generated sampling

schemes, respectively. As was also the case for thresholds, the best paramet-

ric schemes are more evenly spaced than the best non-parametric schemes,

although there is perhaps more correspondence between the results from the

two generation methods than there was for thresholds. The non-parametric

schemes have a tendency to divide their sample points between two clusters,

at performance levels of around 0.65 and 0.92, but there is also a tendency to

add a single block at a higher performance level, around 0.98 or 0.99 (N.B. as

we saw in section 5.4.2, and will see again in section 5.5.5, schemes containing

very high performance values are particularly prone to bias).

Table 5.2 gives the coordinates (p̄, σp) and the interval widths wcimin, for

the schemes shown in figures 5.24 and 5.25, as well as the efficiency of the

best non-parametric scheme relative to the best corresponding parametric

scheme. The difference in efficiency between the two sets is generally larger

than it was for thresholds, and it does not disappear asN increases. However,

it still represents only a small benefit, of around 10–15% in terms of absolute

interval width.

Note that there is considerably more apparently random variation in p̄

and σp than there was in the threshold results of table 5.1. This can also be

seen in the locations of the minima found by taking the median positions of

the best 1%: figure 5.26 shows the relationship between k and the location of

the minimum to be somewhat noisy. Both the location of the minimum and

the efficiency ofwcimin, seem to be more stable with respect to variation in N

when k is large than when k is small. Most such instability is confined to the
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Smallest bootstrap BCa interval widths (95.4%) for slopes s0:5
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Fig. 5.24: For each set of 8000 sampling schemes generated by the
parametric method (section 5.5.1), the sampling scheme with the
smallest 95.4% slope interval, obtained by the bootstrap BCa method,
is shown. Results from the test sets in which N = 120, N = 240, and
N = 480 are shown in the upper, middle and lower panels, respec-
tively.
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Smallest bootstrap BCa interval widths (95.4%) for slopes s0:5
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Fig. 5.25: For each set of 1000 sampling schemes generated by the
non-parametric method (section 5.5.2), the sampling scheme with the
smallest 95.4% slope interval, obtained by the bootstrap BCa method,
is shown. Results from the test sets in which N = 120, N = 240, and
N = 480 are shown in the upper, middle and lower panels, respec-
tively.
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parametric non-parametric relative
N k p̄ σp wcimin p̄ σp wcimin efficiency

120 3 0.85 0.16 1.603 0.77 0.09 1.347 141.6 %
4 0.89 0.08 1.495 0.79 0.16 1.320 128.1 %
5 0.87 0.10 1.512 0.80 0.14 1.276 140.5 %
6 0.82 0.11 1.548 0.74 0.16 1.392 123.6 %
8 0.83 0.11 1.552 0.73 0.13 1.337 134.8 %
10 0.85 0.12 1.627 0.78 0.13 1.387 137.8 %
12 0.78 0.13 1.610 0.79 0.14 1.368 138.5 %

240 3 0.71 0.14 1.010 0.73 0.13 0.917 121.4 %
4 0.76 0.17 1.074 0.79 0.16 0.965 124.0 %
5 0.80 0.15 1.084 0.78 0.13 0.960 127.6 %
6 0.79 0.15 1.050 0.74 0.15 0.944 123.7 %
8 0.83 0.11 1.034 0.83 0.14 0.891 134.6 %
10 0.81 0.13 1.061 0.73 0.14 0.957 123.0 %
12 0.79 0.13 1.042 0.70 0.15 0.967 116.0 %

480 3 0.70 0.16 0.628 0.82 0.17 0.587 114.1 %
4 0.67 0.14 0.712 0.69 0.14 0.614 134.4 %
5 0.65 0.14 0.754 0.75 0.16 0.685 121.1 %
6 0.81 0.15 0.752 0.72 0.15 0.698 116.0 %
8 0.74 0.17 0.761 0.83 0.14 0.654 135.1 %
10 0.75 0.17 0.754 0.73 0.15 0.687 120.4 %
12 0.76 0.16 0.758 0.79 0.15 0.672 127.0 %

Table 5.2: The coordinates (p̄, σp) and the interval width score are
given for the sampling scheme with the smallest 95.4% bootstrap slope
interval in each set of 8000 sampling schemes generated by the para-
metric method of section 5.5.1 (columns 3–5), and in each set of 1000
sampling schemes generated by the non-parametric method of sec-
tion 5.5.2 (columns 6–8). The last column gives the efficiency of the
best non-parametric scheme relative to the best corresponding para-
metric scheme.
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region where k ≤ 5. Of particular interest is the interaction between k and

N with regard to optimum efficiency: when N = 120, there is an advantage

to sampling with 6 blocks or more whereas, at N = 240 and N = 480, 3- or

4-point sampling is more efficient (this suggests that the best strategy would

be to use a large number of blocks in the early stages of the experiment and

then “home in” on a small number of points once a certain number of trials,

perhaps 200, have been taken). There is little relative advantage between

larger values of k (in the region where k ≥ 6), and results from the unequal

block distribution method are similar to those for the equal block distribution

method with large k.

For 95.4% intervals, the optimal spread of performance values, σp, in-

creases as N increases (this is the reverse of the trend observed for thresh-

olds). For 68.3% intervals, the optimal value for σp is more or less constant

at around 0.17 or 0.18. This suggests that the increasing trend in σp for

95.4% intervals may asymptote at this value, because as N increases, we

can expect increasing similarity between the results for 68.3% and those for

95.4% as the likelihood distribution of slopes becomes more normal. For

thresholds, the optimal values for σp for 68.3% and 95.4% intervals converge

at 0 as N → ∞, corresponding to the Taylor-Creelman ideal of sampling at

a single point. For slopes they appear, from the middle panel of figure 5.26

to converge at around 0.17 or 0.18, a figure which is consistent with the

“ideal” 2-point sampling scheme found in section 5.3.1: for the ideal pair

p = {0.61, 0.965}, p̄ = 0.788 and σp = 0.178.

The pattern of figure 5.26 is echoed in figure 5.27, which shows quantiles

{0.025, 0.159, 0.5, 0.841, 0.975} of the distribution of bootstrap slope inter-

vals, obtained using the smoothing method described in section 5.5.3, as a

function of k. There is little change in the middle and lower parts of the

distributions as k varies, but the more efficient sampling schemes, like the

optimum of figure 5.26 show an advantage for low k. Note also the general

increase in efficiency as N increases (left → centre → right panel): this is

noticeable for 95.4% intervals, but negligible for 68.3% intervals, which are

already, for N ≥ 120, behaving in the normal-ideal manner.
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Fig. 5.26: For bootstrap BCa slope intervals in sets of parametrically generated sampling schemes (sec-
tion 5.5.1), p̄ (left panel), σp (central panel) and Taylor-Creelman efficiency (right panel) corresponding
to wcimin are shown. The number of blocks k is on the abscissa, and symbol size relates to the total
number of trials N . Lighter symbols denote 68.3% intervals, and darker symbols denote 95.4% intervals.
See section 5.5.5 for details.
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Fig. 5.27: Efficiency scores corresponding to certain quantiles of the distribution of widths of bootstrap
BCa intervals on slopes s0.5 are shown as a function of k. See sections 5.5.3 and 5.5.5 for details.
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One further thing to note about the slope interval widths is that the gen-

eral tendency towards negatively biased slope estimates (see section 5.5.5)

means that the bias-corrected (BCa) intervals on slopes are different from the

Monte Carlo percentile intervals, and in fact they give different information

about the relative efficiency of sampling schemes at different points in the

space. Figure 5.28 shows 68.3% and 95.4% Monte Carlo intervals for the ex-

ample test set (k = 6, N = 240), in the upper and lower panels, respectively.

Comparison with figure 5.22 shows that the optimum sampling scheme has

rather different characteristics, depending on whether one takes Monte Carlo

interval width or bootstrap interval width as the criterion. This is reflected

in the low rank correlation coefficient between interval widths computed by

the two methods: in this set, for 95.4% intervals, the coefficient is 0.54 (from

table 5.4). Note also, in table 5.4, that intervals from the probit standard

error method are better correlated with the bootstrap intervals than with

the Monte Carlo intervals. The bootstrap intervals should be taken as the

more reliable guide to efficiency when the underlying psychometric function

is not known, given that both the BCa method and the probit standard er-

ror method were found to have better coverage properties than unadjusted

percentile intervals (compare performance of the BCa and probit methods of

figure 3.22 with that of the bootstrap percentile method in figure 3.8).

Bias

Figure 5.29 shows bias w in the estimation of slope s0.5, as a function of p̄

and σp, for the parametric test set (upper panel) and the non-parametric test

set (lower panel) in which k = 6 and N = 240.

Slope is consistently overestimated by almost all the sampling schemes

tested, leading to negative w values at nearly all points on both the para-

metric and non-parametric surfaces. This is likely to be the same effect as

that previously discussed in section 5.4.2, and can be attributed to the diffi-

culty in obtaining accurate estimates of λ when λgen = 0.01. The least biased

schemes are those with a low mean performance value and very closely spaced

sampling, similar to �, which is the least biased scheme in figure 5.9. As
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Fig. 5.28: Widths of 68.3% (upper panel) and 95.4% (lower panel)
Monte Carlo percentile intervals for slope s0.5 are shown as a func-
tion of the weighted mean p̄ and weight standard deviation σp of
the performance values comprising each of 8000 sampling schemes.
Schemes were generated using the parametric method of section 5.5.1
with k = 6 and ni = 40. The triangle marks the median position of
the most efficient 1% of the test set. See sections 5.5.3 and 5.5.5 for
further details.
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Fig. 5.29: Bias in the estimation of slope s0.5 is shown as a func-
tion of the weighted mean p̄ and weight standard deviation σp of the
performance values comprising each of 8000 parametrically generated
sampling schemes (upper panel) and 1000 non-parametrically gener-
ated sampling schemes. All schemes had k = 6 and ni = 40. See
sections 5.5.3 and 5.5.5 for further details.
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before, the least biased schemes are the ones with the largest interval widths

with regard to slopes.

Comparing the upper panel of figure 5.29 and the lower panel of fig-

ure 5.14, it appears that area of optimum sampling with regard to 95.4%

threshold intervals is just within the area in which slope bias is acceptable

(w > −0.25). If accurate slope estimation is important, it may be advisable

to err on the side of too-narrow rather than too-wide spacing. Comparison

with the lower panel of figure 5.14 reveals the unfortunate fact that optimally

efficient sampling, with regard to 95.4% slope intervals, cannot be unbiased,

at least when λgen = 0.01.

Additional simulations were conducted with the logistic function (αgen =

0, βgen = 1), using the non-parametric generation method with k = 6 and

N = 240, under three conditions: λgen = 0.01, λgen = 0.025 and an “ideal-

ized” condition in which λgen = 0 and λ was fixed at 0 during fitting. Results

from the first set produced results that were indistinguishable, on any mea-

sure of bias or efficiency, from the corresponding Weibull set. Results from

the second and third conditions produced almost identical patterns of slope

bias to the first, but with reduced magnitude: when λgen was equal to 0.025,

slope bias was reduced by a factor of about 2. When λgen was known exactly,

bias was reduced by a factor of about 3 (although it is interesting to note

that, even in the idealized condition when the bias values were very low,

they were still nearly all negative). These results are consistent with the

idea that it is mis-estimation of λ, which is particularly problematic when

the unknown underlying value λgen takes a very low value such as 0.01, that

is the root cause of the slope bias problem. Results from the three logistic

conditions will not be shown here, but can be found in the results archive

under:

• simulations/optimal/2AFC/nonpara/l01/logistic/

• simulations/optimal/2AFC/nonpara/l025/logistic/

• simulations/optimal/2AFC/nonpara/l0f0/logistic/
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Figure 5.30 shows the effect of k and N on the distribution of smoothed

bias values, obtained by the method described in section 5.5.3. There is some

improvement as N increases, with each distribution contracting towards 0.

There is also a noticeable effect of k: the median the distribution moves

towards 0 as k decreases, although the distribution retains its long negative

tail. Given that efficient sampling of either threshold or slope requires the use

of a non-optimal sampling scheme with regard to slope bias, this indicates

that it is sensible to divide the total number of observations into a smaller

rather than a larger number of blocks (fewer than, say, 6) when an unbiased

estimate of slope is important.

5.5.6 Comparison with probit methods

In addition to the bootstrap BCa and Monte Carlo percentile intervals dis-

cussed above, 95.4% probit interval widths were also calculated for each of

the parametric and non-parametric test sets described above, using equa-

tion (2.5) for thresholds and equation (2.4) for slopes.

Previous studies that have tested the validity of probit threshold intervals

using Monte Carlo simulation5,25 have generally them to be fairly accurate,

even in 2-AFC,5 once N exceeds about 100. Nevertheless, a considerable

improvement was found in the current study, between N = 120 and N = 240.

The measure used was not the correspondence between the actual inter-

val widths produced by the probit method and those produced by simula-

tion, but rather the correspondence between the way in which the probit

and bootstrap methods rank sampling schemes relative to each other. First,

sampling schemes were discarded wherever they produced invalid results on

either of the two interval width scores to be compared—for example in the

(k = 6, N = 240) parametric test set, 1295 of the 8000 results were removed

because of undefined probit limits, and all BCa results were valid, so no ad-

ditional results had to be removed. Then, the rank correlation coefficient

was computed between the two sets of interval widths from the remaining

results, indicating the degree of correspondence between the surfaces defined

by the two methods.
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Fig. 5.30: Certain quantiles of the distributions of bias in the estimation of slope s0.5 are shown as a
function of k. See sections 5.5.3 and 5.5.5 for details.
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Table 5.3 shows the coefficients relating to 95.4% intervals on threshold

t0.5. B ↔ P denotes the correlation between bootstrap and probit intervals,

M ↔ P denotes the correlation between Monte Carlo and probit intervals,

and B ↔ M denotes the correlation between bootstrap and Monte Carlo

intervals. As was mentioned in section 5.5.4, there is almost perfect cor-

respondence between the Monte Carlo and bootstrap BCa results. Probit

calculations correspond quite well with the BCa results, with a coefficient

of at about 0.7 or more. There is a considerable increase in correlation, of

about 10–15%, between N = 120 and N = 240.

Table 5.4 shows the coefficients for 95.4% slope intervals. As discussed in

section 5.5.5, the correlation between the Monte Carlo and bootstrap BCa

results is poor, although there is some improvement as N increases. At

N = 120 and N = 240, there is very little correlation between the probit

standard errors and Monte Carlo percentile intervals, but probit results are

fairly well correlated with the bootstrap BCa results. This is consistent

with the results of chapter 3, in which it was found that both the probit

standard error method and the BCa method were better, for slopes, than the

unadjusted percentile method.

5.5.7 Summary

With regard to thresholds, the optimally efficient sampling strategy was

found to be to centre sample points on the threshold, despite the asym-

metry of expected variability in a 2-AFC context. However, for a realistic

total number of trials, the best strategy is not to try to group sample points

as closely as possible around the threshold. Rather, the optimal spacing in-

creases as the desired coverage of the interval increases, or as N decreases,

both of which effects are predicted by the probit formulae. The strategy of

placing a single block at a high performance level, and the rest of the blocks

grouped close together slightly below threshold, was found to be the most

efficient of the schemes studied. However, the gain in efficiency, relative to a

(more conventional) evenly spaced sampling scheme of optimal spread, was

found to be small.
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parametric non-parametric
N k B ↔ P M ↔ P B ↔ M B ↔ P M ↔ P B ↔ M

120 3 0.68 0.78 0.99 0.66 0.74 0.98
4 0.73 0.81 0.99 0.70 0.76 0.97
5 0.76 0.82 0.99 0.66 0.69 0.97
6 0.78 0.83 0.99 0.66 0.69 0.96
8 0.81 0.85 0.98 0.68 0.66 0.95
10 0.82 0.85 0.98 0.70 0.66 0.93
12 0.83 0.85 0.97 0.67 0.58 0.92

240 3 0.90 0.93 0.99 0.85 0.87 0.99
4 0.90 0.93 0.99 0.83 0.85 0.99
5 0.91 0.93 0.99 0.83 0.84 0.98
6 0.91 0.93 0.99 0.82 0.83 0.97
8 0.91 0.93 0.99 0.83 0.82 0.98
10 0.92 0.93 0.99 0.86 0.84 0.97
12 0.92 0.93 0.99 0.82 0.78 0.97

480 3 0.96 0.96 0.99 0.92 0.93 0.99
4 0.95 0.96 0.99 0.91 0.91 0.99
5 0.95 0.95 0.99 0.91 0.90 0.99
6 0.94 0.95 0.99 0.90 0.89 0.99
8 0.94 0.95 0.99 0.92 0.91 0.99
10 0.94 0.94 0.99 0.92 0.90 0.98
12 0.95 0.94 0.99 0.90 0.87 0.98

Table 5.3: For parametrically generated (columns 3–5) and non-
parametrically generated schemes (column 6–8), rank correlation co-
efficients are given between the 95.4% threshold interval widths com-
puted using the BCa, probit and Monte Carlo interval methods. See
section 5.5.6 for details.
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parametric non-parametric
N k B ↔ P M ↔ P B ↔ M B ↔ P M ↔ P B ↔ M

120 3 0.68 0.54 0.74 0.69 0.52 0.75
4 0.68 0.37 0.62 0.62 0.27 0.58
5 0.67 0.24 0.49 0.59 0.09 0.49
6 0.65 0.15 0.44 0.50 0.01 0.44
8 0.69 0.08 0.41 0.50 -0.14 0.43
10 0.68 0.03 0.41 0.44 -0.19 0.40
12 0.66 -0.01 0.43 0.33 -0.28 0.40

240 3 0.80 0.60 0.86 0.72 0.55 0.87
4 0.82 0.44 0.74 0.66 0.32 0.77
5 0.82 0.32 0.62 0.65 0.16 0.67
6 0.81 0.22 0.54 0.58 0.08 0.63
8 0.81 0.14 0.49 0.61 0.03 0.56
10 0.81 0.11 0.48 0.58 -0.02 0.52
12 0.79 0.09 0.49 0.56 -0.02 0.53

480 3 0.88 0.74 0.92 0.75 0.62 0.93
4 0.91 0.67 0.86 0.67 0.42 0.88
5 0.91 0.60 0.81 0.68 0.34 0.83
6 0.90 0.55 0.77 0.62 0.25 0.79
8 0.89 0.48 0.72 0.69 0.25 0.73
10 0.89 0.46 0.71 0.66 0.23 0.73
12 0.89 0.45 0.71 0.65 0.27 0.75

Table 5.4: For parametrically generated (columns 3–5) and non-
parametrically generated schemes (column 6–8), rank correlation co-
efficients are given between the 95.4% slope interval widths computed
using the BCa, probit and Monte Carlo interval methods. See sec-
tion 5.5.6 for details.
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For slopes, the most efficient sampling schemes generally had a wide spac-

ing, which was wider for larger numbers of observations, and wider for 68.3%

intervals than for 95.4%. The most efficient schemes also tended to place

more sample points at high expected performance levels than at low levels,

but this is unfortunately associated with a considerable level of bias in slope

estimation. Slope bias is linked to bias in the estimation of λ: when λ itself

can be estimated without bias, as is the case when λgen = 0.025, or when λ is

known exactly, slope estimation bias need not be large enough to cause con-

cern, even for fairly efficient schemes. However, a λgen value of around 0.01

is particularly problematic in this regard.

For thresholds, the optimum value of the mean performance level p̄, the

optimum spread of performance levels σp, and optimum efficiency (corre-

sponding to the smallest interval width wcimin) all show little or no depen-

dence on the number of blocks k. Furthermore, where results were taken for

the unequal block distribution method, they are very similar to those of the

equal block distribution method. Taken together these two findings indicate

that, if the mean and standard deviation of the performance values that make

up a sampling scheme remain constant, the number of blocks into which the

total number of trials is divided does not matter. Slopes are a slightly dif-

ferent matter: the advantages of lower bias and increased efficiency are to

be gained by concentrating trials into fewer blocks, particularly when N is

high.† For both thresholds and slopes, the effect of k on the distributions of

non-optimal bias and efficiency scores follows a similar pattern to the effect

on the optimal sampling scheme.

Despite the inaccurate coverage of probit threshold intervals, probit anal-

† This is probably a consequence of the fact that the sampling schemes explored in both
the parametric and non-parametric simulations had a certain minimum spacing between
stimulus values. If the optimal sampling strategy with regard to efficient slope estimation
is to concentrate all observations at two particular points, as has been suggested,19,21 the
lower limit on inter-stimulus spacing prevents all but two of the blocks from occupying the
two optimal positions. This constraint is of course artificial, and in a real experiment there
is no restriction on running more than one block at the same stimulus level. Therefore the
set of possible sampling schemes at, for example, k = 6 should really be considered to be
a super-set of the possible sampling schemes at k = 3.
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ysis can be used to make fairly accurate predictions of the relative efficiency

of different sampling schemes, with regard to thresholds. Accuracy improves

as N increases, and there is still some substantial improvement at values of

N above 120. For slopes, the probit predictions are less accurate, but they

are more accurate predictors of the bootstrap interval widths that an ex-

perimenter would actually report, than are Monte Carlo percentile intervals

based on variation from a known psychometric function.

The fact that the most efficient sampling schemes are sometimes unevenly

spaced means that the parameterization proposed by McKee et al.,5 which

uses the mid-point and extent of the range of the stimulus values used, is

inadequate to represent fully the possible variations in sampling schemes.

The representation of sampling schemes by the pair of coordinates (p̄, σp),

which are the first moment and second central moment of the distribution of

expected performance values of the individual trials, proved to be useful in

that it is easily interpretable, and captures most of the variation in threshold

efficiency, threshold bias and slope bias smoothly. With regard to threshold

efficiency, there was just a small number of exceptions that did not fit into

a smooth pattern, as figure 5.18 showed. For measures of slope efficiency,

however, the two-dimensional representation was poor, as can be seen in

figure 5.23. A more sophisticated representation was attempted, using three

parameters (section 5.5.1). While the three-parameter method provided a

useful, smoothly varying set of bias and efficiency scores from which to draw

conclusions, the parameterization did not wholly succeed, in the sense that

it captured little more of the possible variation in slope estimation efficiency

than did the two parameters (p̄, σp).
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6. A note on sequential estimation

6.1 Introduction

The simulations of chapter 5 indicate that, for a constant total number of

trials N , the number of blocks k into which the trials are divided makes

little difference from the point of view of bias or efficiency. For thresholds,

the optimal mean location and spread of the trial positions did not change

as k increased, and neither the optimum efficiency nor the distribution of

non-optimal efficiencies was affected. When k was larger than about 4, the

same was also true of slope estimation.

In any real experiment, however, one clear advantage to the division of

trials into a larger number of blocks is that there are more opportunities to

stop, assess the data gathered so far, and estimate the best stimulus value

for the next block of trials. The logical extreme is to re-assess the data after

every individual trial, positioning each separate observation at the current

estimate of the optimal location.† The advantage of updating after every

trial is that, in theory, the number of non-optimally placed stimuli is min-

imized. The concomitant drawback is that early estimates of the optimal

stimulus location are based on small numbers of trials, and are accordingly

† Such a strategy is an example of a single presentation design, in which every individual
trial plays a rôle, either in deciding whether to update the stimulus value yet (and if so,
in which direction), or in contributing to the estimate of the optimal stimulus value for
the next trial. By contrast, experiments in which a predetermined number of consecutive
trials (ni > 1) is presented at each stimulus level will be referred to as block designs
(the term “constant stimuli” is deliberately avoided here, for reasons to be discussed).
The usual connotation of the term “adaptive procedure” in psychophysics is that a single
presentation design is in use, but there is no reason why the sequential selection of fixed-
size blocks should not also be described as adaptive, or why one of the many available
adaptive procedures1 should not be applied to the problem.
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prone to error. This may be a particular problem if, for example, “lapses”

occur at a high stimulus level early in the adaptive run. Some adaptive pro-

cedures are better than others at recovering from such a situation: Taylor,

Forbes and Creelman2 argue that pest3 is more robust in this respect than

some maximum-likelihood adaptive procedures,4–6 and simulations by Madi-

gan and Williams7 confirm that Taylor and Creelman’s pest is indeed less

seriously affected by lapses than Pentland’s Best pest,4 although Watson

and Pelli’s quest6 was in fact superior. King-Smith et al.8 give an elegant

graphical illustration of the way in which their minimum-variance adaptation

of quest is even better than the original at recovery from early lapses.

Nevertheless, there are other considerations which may affect the choice

of k, and there are situations in which a block design may be preferable,

even to one of the more robust single-presentation adaptive procedures. The

performance of real subjects can be non-stationary, either due to learning or

to fatigue in the course of a block of trials. Such effects depend on the psy-

chophysical phenomenon under study, as subjects learn more quickly in some

tasks than in others, and seem to have greater stamina in some tasks than

in others. Measurable decreases9,10 and increases11 in a subject’s threshold

have both been reported over a relatively small number of trials. Running a

small number of practice trials before each block, in order to allow the ob-

server to acclimatize to the stimulus level to be measured and thus stabilize

performance, may be advisable in the former circumstance, particularly if

the observer uses a different cue at low stimulus levels from those available

at high levels—in such a case (such as that reported by Henning, Millar and

Hill12) an adaptive procedure that changes the stimulus level rapidly on suc-

cessive trials might be counter-productive. An experimenter must decide on

the optimal block size for an experiment, depending on the task and on the

subject.

When a block design is used, it is sometimes referred to as the “method

of constant stimuli”, a name which applies to a subset of block designs but

which is often somewhat imprecisely applied to all. This can lead to misun-

derstanding. In 1988 an article by Simpson13 entitled The Method of Con-
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stant Stimuli is Efficient demonstrated by Monte Carlo simulation that the

efficiency of a block-design experiment compared favourably with that of a

single-presentation maximum-likelihood adaptive procedure, adding weight

to the earlier statement of McKee, Klein and Teller14 that the variability

of estimates from adaptive methods “can never be less than those from the

method of constant stimuli selected for the optimal deployment of trials.” A

subsequent study by Watson and Fitzhugh,15 entitled The Method of Con-

stant Stimuli is Inefficient , used Monte Carlo simulation to demonstrate the

converse finding. Watson and Fitzhugh took the literal, classical interpreta-

tion of the phrase “constant stimuli” in which all the stimulus positions are

predetermined at the beginning of each simulated experiment, their positions

presumably based on pilot data, and are not adjusted during the course of

the experiment. The imprecision of the initial guess therefore means that the

psychometric function is often poorly sampled, which leads to large variance

in the estimated threshold, as Watson and Fithugh’s simulations showed. By

contrast, the adaptive procedure quest, which does not commit itself in ad-

vance to particular (imprecisely chosen) stimulus values, naturally performed

more efficiently under the same initial conditions of uncertainty.

In their conclusion, referring to the statement of McKee et al., Watson

and Fitzhugh write:

“We must presume that ‘optimal deployment’ means ‘optimal

based on the true location of the threshold.’ Of course, if this

location is known, there is no need to run the experiment. In

the real world, threshold is never known exactly, even after the

experiment is completed.”

It is unlikely, however, that McKee et al. were simply being näıve about the

problem of estimating an unknown quantity. More probably, they consid-

ered optimal or close-to-optimal sampling schemes worthy of study because

they were quite accustomed to producing something roughly similar to the

“optimal deployment of trials” in block-design experiments of their own. In

practice it is not difficult to do so, if the experimenter stops after every block
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or small number of blocks to assess the best stimulus value for the next. Often

this is done “by eye”, but nonetheless it should be considered a kind of adap-

tive procedure, because it is an algorithm (albeit an algorithm which cannot

be written down, and which varies from experimenter to experimenter) for

computing the next stimulus level based on the data gathered so far. If this

is truly what McKee et al. meant (as seems probable given their use of the

word “selected”) then their mistake was not in the assumption of prescience

on the part of the experimenter, but rather in ambiguous application of the

term “constant stimuli.”†

Section 5.5 took the approach of McKee et al.14 in asking what the opti-

mal block-design sampling patterns look like, and how accurate and precise

they are, without specifying how the experimenter is supposed to achieve

such a sampling pattern. In effect, the results provide a target to aim for,

without specifying how best to hit that target. By contrast, the adaptive

approach provides an array of (more or less accurate) methods of successive

approximation to a target, which generally aim for a non-optimal target:

when attempting to find a threshold, most adaptive procedures follow the ad-

vice of Levitt16 in aiming directly for the threshold performance level. Such

a strategy is unfortunately only asymptotically optimal (see section 5.5.4).

Some adaptive procedures are exceptions to this, and take a broader view of

optimal sampling. They include:

• ape by Watt and Andrews,17 which updates after every four blocks,

based on a sliding estimate of the psychometric function parameters—a

description is also provided by Treutwein;1

• the Minimum Variance Method of King-Smith and colleagues,8,18 a

Bayesian method which minimizes the predicted variance of the poste-

rior distribution of thresholds at each step, and which is shown8 to be

more efficient at threshold estimation than three variations of quest

(the method could also be adapted to optimize slope estimation19,20);

† Simpson, incidentally, explicitly took the same classical definition of “method of constant
stimuli” as Watson and Fitzhugh, so the latter authors were probably right to point out
that he had failed to take account of its vulnerability to initial uncertainty.
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• the Ψ Method of Kontsevich and Tyler,21 another Bayesian method,

whose stimulus selection algorithm is based on the “entropy” measure

of Pelli’s Ideal Psychometric Procedure22—this cost function minimizes

the expected variance of prediction for the whole psychometric function,

and thus provides a way of measuring the “optimal” sampling position

with respect to thresholds and slopes simultaneously.

Any of the above procedures might be adapted in order to select the position

of blocks rather than individual trials (in fact, ape was formulated specifically

with block designs in mind). A fourth option is the “by eye” method, which

works according to unknown, variable, and probably non-optimal principles,

but which nevertheless should not be underestimated in its ability to produce

accurate and efficient sampling patterns.

Watson and Fitzhugh15 observe that, in simulation and in the laboratory,

the method of constant stimuli “is inefficient largely because threshold may

lie outside the testing interval.” Yet it is highly unusual to see a published set

of psychophysical data from a block design in which the threshold of inter-

est lies outside the range of stimulus values at which trials were performed.

Indeed, to conclude one’s study in such a situation would be viewed as bad

experimental procedure. It is therefore probable that the majority of practi-

tioners of block-design experiments respond to their data in some way while

gathering it: either they update the stimulus intensity after every block (or

perhaps after every two or three blocks) taking into account the data so far,

or they genuinely determine the stimulus levels in advance according to the

method of constant stimuli, and then perform extra observations afterwards

if the threshold of interest does not lie within the stimulus range. The lat-

ter strategy is inefficient, to be sure, but it is still, in an important sense,

adaptive because the stimulus intensities for the new trials are determined

by the old data. It is therefore quite common for the experimenter to play

an adaptive rôle in stimulus selection.

The simulations of chapter 3, in common with previous Monte Carlo

studies by Foster and Bischof,23,24 Swanepoel and Frangos,25 and Lee,26 do

not take into account the possibility of adaptive sequential stimulus selection.
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With the exception of Lee,26 all the above studies assume that the stimuli

occur at fixed intensities xgen, relative to the true curve ψ(x; θgen). All

the different xgen examined (with the possible exception of the scheme �
from figure 1.2) were fairly reasonable distributions of stimulus levels for

estimating the threshold and/or slope of the psychometric function, assuming

that the true psychometric function were already known. The inaccuracy

of such an assumption meant that repeated Monte Carlo simulation of the

experiment would sometimes produce situations that would never happen in

practice. Due to random variation in the simulated data, all the measured

performance levels might, for example, happen to fall below the generating

curve on one particular replication. The initial fit θ̂0 would therefore indicate

a higher threshold than the true threshold from θgen, and consequently the

stimulus values xgen would appear to the experimenter to lie on a lower part

of the curve than they in fact do. On some such occasions, the threshold

level of interest might even appear to lie outside the stimulus range, and

it is in counting such a case that the Monte Carlo simulation with fixed

xgen is unrealistic. In reality the experimenter would not be satisfied: he or

she would either perform additional observations to remedy the situation, or

would have selected the stimulus values carefully in an adaptive sequence in

order to prevent the situation from occurring in the first place.

To summarize: in a real experiment the experimenter usually takes steps

to ensure that the psychometric function appears well sampled—in other

words, that the sampling scheme looks reasonable† relative to the estimated

curve ψ(x; θ̂0). There will be some error in θ̂0, which means that the sam-

pling scheme might not always appear so reasonable if it were possible to

† “Reasonable” here is a loose criterion that means simply “however the experimenter would
ideally like the pattern of stimulus values to appear, to within some subjective tolerance.”
Depending on the demands of the experimental context, a “reasonable” sampling scheme
might be one that is approximately optimal for the estimation of a particular threshold
level, or for the estimation of slope, or for simultaneous threshold and slope estimation
according to some compromise measure of efficiency. Alternatively, a reasonable sampling
scheme might simply be one that is roughly evenly spaced and which covers a wide range
of performance levels. The important point is not what the experimenter’s criterion for
reasonableness is, but rather that such a criterion exists and is applied.
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plot it against the true psychometric function ψ(x; θgen). However, the fixed-

stimulus Monte Carlo approach simulates the converse set of circumstances:

the stimulus locations may be reasonable relative to the true psychometric

function but, during simulation, they do not necessarily constitute a sam-

pling pattern of the sort than an experimenter would accept, relative to the

estimated curve.

Lee26 takes a different approach, in which the generating stimulus levels

are not fixed, but are instead drawn independently from a uniform distribu-

tion on each replication of the experiment. This does not, however, solve the

problem, because the sampling schemes are not selected for their reasonable-

ness relative to the true psychometric function or the estimated psychometric

function.†

What are the implications for hypothesis testing? Sequential selection

may present a problem for the application of bootstrap methods because,

in the form applied here and by others23,24,28–32 to psychometric functions,

bootstrap confidence intervals themselves are based on simulations that as-

sume fixed stimulus levels. In a real experiment it is more likely that each

stimulus value xi is chosen by an algorithm that uses the previous observed

performance levels y1 . . . yi−1, which are themselves variable, but the boot-

strap simulations do not take into account the extra variability that this

entails. Therefore, the bootstrap may underestimate the variability of the

estimated parameters. Another way of viewing the same effect is to say that

the apparent “reasonableness” of the distribution of stimulus values in each

observed data set, ensured each time by the experimenter, means that the

bootstrap variability around the estimate θ̂0 is less than the variability of

estimates around the true parameter set θgen, because the pattern of stim-

ulus values tends to be less reasonable relative to the true curve. Either

argument leads to the same prediction, namely that coverage is too low.

† This was not, in fact, Lee’s intention. His approach was adopted from Gong,27 who intro-
duced random regressors in a logistic regression problem in order to represent naturally
occurring phenomena (clinical markers that might explain deaths from chronic hepati-
tis) whose values are beyond the control of the investigator. In such a context, random
independent selection of xgen is more appropriate.
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The same arguments may even be applied in the case of the strict method

of constant stimuli—even though the stimulus levels are chosen in advance

and left unchanged throughout the experiment, the assumption that they are

fixed during bootstrap simulation may lead to underestimation of variability

because the stimulus levels were in fact usually chosen on the basis of pilot

data, for which the process of collection is ill-defined but certainly prone to

random variation, and presumably in some sense adaptive.

6.2 Simulations

6.2.1 Method

In order to investigate the possible effects of sequential stimulus selection on

confidence interval coverage, four further sets of coverage tests were run. In

each, a cumulative normal function with αgen = 0 and βgen = 1 was taken to

be the true psychometric function. The four conditions were identical to the

four general cases used in chapter 3:

• Idealized yes-no: γgen = 0, λgen = 0, and both γ and λ were fixed

at 0 during fitting.

• Realistic yes-no: γgen = 0.02, λgen = 0.01, and both γ and λ were

free to vary in the range [0, 0.05] during fitting.

• Idealized 2-AFC: γgen = 0.5, λgen = 0 and λ was fixed at 0 during

fitting.

• Realistic 2-AFC: γgen = 0.5, λgen = 0.01, and λ was free to vary in

the range [0, 0.05] during fitting.

Results from the four test sets are to be found in the result archive under:

• simulations/sequential/yesno/g0f0l0f0/cumnorm/

• simulations/sequential/yesno/g02l01/cumnorm/
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• simulations/sequential/2AFC/l0f0/cumnorm/

• simulations/sequential/2AFC/l01/cumnorm/

The general method is the same as that described in section 3.1.1, except

that the data set in each simulated experiment is generated by an adaptive

stimulus selection method. The first requirement, however, is to generate

randomly varying starting conditions, in other words to simulate conditions

under which an experimenter might start using a sequential stimulus selection

method. To do this, it is assumed that, through some pilot testing method,

the experimenter has succeeded in running two blocks of trials in which

substantially different performance levels were measured. Two f -values are

drawn independently from a uniform random distribution on the interval

(0, 1), the lower of the two being designated as f1 and the higher as f2.

These are the detection levels at which the experimenter has happened to

strike the unknown psychometric function, corresponding to stimulus values

x1 and x2. At each stimulus level, a simulated block of ni trials is run, yielding

observed performance levels y1 and y2, each yi being drawn from the binomial

distribution Bi [ni, ψ(xi; θgen)]. The apparent detection levels f̂1 and f̂2 are

equal to y1 and y2 in the yes-no design, and equal to y1/(1−γ) and y2/(1−γ),

clipped in the range [0, 1], in a forced-choice design. If f̂2− f̂1 ≥ 0.5, the pair

is taken to represent apparently successful pilot data, i.e. the sort of data

that an experimenter might then take as a basis for further exploration using

an adaptive block-by-block stimulus selection method. If not, the process is

repeated until a successful pair is generated.

Any of the adaptive methods mentioned in section 6.1 (ape, the Minimum

Variance Method or the Ψ Method) might have been adapted for the purpose

of selecting subsequent blocks. However, Bayesian methods were avoided

because the requirement for many additional assumptions (specifically the

shape of the prior probability distribution of each parameter, representing

prior experimenter knowledge about the psychometric function) would in-

troduce many new variables into the simulation, a thorough investigation of
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which is beyond the scope of the current research.†

Instead, a rather simpler, non-optimally efficient system is used. To

choose each stimulus value, a psychometric function is first fitted to the

k data points collected so far, to obtain estimated parameters θ̂0. The esti-

mated expected detection levels f̂ are computed using f̂i = ψ(xi; θ̂0). The

values are sorted into ascending order, and then 0 is appended to the be-

ginning and 1 to the end to form a series consisting of (0, f̂1 . . . f̂k, 1). The

f -value corresponding to the next stimulus, f̂k+1, is chosen to bisect the

largest interval between consecutive members of the series. The next stimu-

lus value xk+1 is then equal to F−1(f̂k+1; θ̂0). The method was found to be

fairly robust, and tended to produce widely spread sampling schemes whose

predicted performance levels were quite evenly spaced. At k ≥ 5, the stimu-

lus values nearly always covered most of the estimated psychometric function

from F (x) = 0.2 to F (x) = 0.8.

In each simulated experiment, after the initial randomly generated pair

of blocks, 10 further blocks were simulated, the 10 stimulus values being

chosen in sequence using the above method. After each block, confidence

intervals were computed using the bootstrap standard error, basic bootstrap,

bootstrap percentile, BCa, probit standard error and probit fiducial methods.

Block size ni was taken to be 40. Thus, coverage results were obtained

for 10 conditions of sampling density ranging from k = 3 (N = 120) to

k = 12 (N = 480). As in chapter 3, R = 1999 bootstrap simulations were

performed on each of C = 500 experimental replications. The Freeman-

† Some pilot simulations were run using a method which selected each stimulus value to yield
minimum predicted confidence interval widths from probit analysis, based on a psychome-
tric function fitted to the data so far. However, the procedure occasionally demonstrated
a lack of robustness: after the first two blocks, it was sometimes the case that the method
placed the third block at a stimulus level very close to one of the other two. This could
lead to extreme over-estimation of slope, from which it was difficult for the method to
recover (subsequent blocks were then also placed very close together, because their po-
sition was computed relative to the very steep estimated curve). A practical solution to
this in a real experiment might be to use a Bayesian prior to constrain the fitted slope.
Again, the Bayesian approach was rejected because it compromised the generality of the
simulations—the realism of any particular prior can only satisfactorily be judged in the
context of a specific psychophysical application.
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Tukey transformation described in section 3.1.2 and the graphical conventions

of section 3.1.3 will be used to display the results.

6.2.2 Results

Idealized yes-no

Figures 6.1 and 6.2 show coverage results for thresholds and slopes respec-

tively, at a target coverage probability of 95.4%, in the idealized yes-no con-

dition. They may be contrasted with the results of the fixed-stimulus Monte

Carlo approach shown in figures 3.1–3.2 (bootstrap methods), and 3.17–3.18

(probit methods).

In each group of symbols, the leftmost symbol represents the results for

k = 3, progressing to k = 12 on the right. The size of the symbols also

increases from left to right, as N increases from 120 to 480.

For thresholds, all the confidence interval methods tested perform very

similarly (as was also the case for the fixed-stimulus simulations) and are

highly accurate. The fact that symmetrical methods (the bootstrap and pro-

bit standard error methods) perform as well as the other methods indicates

that the distributions of thresholds are close to normal. Note the slight in-

creasing trend in the intervals’ coverage as the number of blocks (and hence

the total number of observations) increases. Coverage is slightly too low when

fewer blocks have been taken—this is as we might expect, because early in

the experiment there is greater variability in the adaptively selected stimulus

positions, which leads to lower coverage by the argument of section 6.1.

For slopes, on the other hand, the situation has changed: all the proce-

dures except the basic bootstrap have a distinct positive imbalance that was

not present in the fixed-stimulus results. Somewhat surprisingly, the basic

bootstrap is now very accurate and well-balanced.

Realistic yes-no

Figures 6.3 and 6.4 show the threshold and slope results for the realistic

yes-no condition. They may be contrasted with the fixed-stimulus Monte
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Fig. 6.1: Results of Monte Carlo coverage tests for 95.4% threshold confidence intervals obtained from
the cumulative normal function in the idealized yes-no case. Each group of symbols shows, from left to
right, the effect of increasing k from 3 to 12, stimulus values being chosen sequentially by the method of
section 6.2.1. See section 6.2.2 for details.
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Fig. 6.2: Results of Monte Carlo coverage tests for 95.4% slope confidence intervals obtained from the
cumulative normal function in the idealized yes-no case. Each group of symbols shows, from left to right, the
effect of increasing k from 3 to 12, stimulus values being chosen sequentially by the method of section 6.2.1.
See section 6.2.2 for details.
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Carlo results of shown in figures 3.3–3.4 (bootstrap methods), and 3.17–3.18

(probit methods).

There is now a tendency for coverage of the true threshold value to be

too low, and to be unbalanced towards the negative side. The pattern of

threshold results from one confidence interval method to the next is very

similar to that observed in the fixed-stimulus simulations. Note, however, the

trend towards increasing imbalance as k increases: the addition of nuisance

parameters γ and λ interacts with the effect of sequential stimulus selection,

becoming more pronounced as the experiment proceeds. For slopes, the

results are qualitatively similar to those of the idealized yes-no condition,

above, but the positive imbalance of most of the methods is greater. The

basic bootstrap method is still very accurate.

Idealized 2-AFC

Figures 6.5 and 6.6 show the idealized 2-AFC simulation results. The corre-

sponding fixed-stimulus results are found in figures 3.5–3.6 (bootstrap meth-

ods), and figures 3.20 and 3.22 (probit methods).

For thresholds, there is more of a difference between confidence interval

methods than there was in the idealized yes-no case. This was also observed

in the fixed-stimulus simulations of chapter 3. The pattern of imbalance

values between confidence interval methods is also similar to that observed

in chapter 3. However, for nearly all the methods, coverage is too low at

lower values of k (and consequently of N), and rises towards the target as

k and N increase—this trend was not observed with increasing N in the

fixed-stimulus simulations.

For slopes, the sequential selection has again increased the imbalance of

the methods. In 2-AFC unlike yes-no (above), the basic bootstrap is now

negatively unbalanced. The BCa method, which was well-balanced in the

fixed-stimulus simulations, is now highly unbalanced in the positive direction.

The probit method, which was negatively unbalanced under the assumption

of fixed stimuli, is now somewhat positively unbalanced, but it is the most

accurate of the methods studied.
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Fig. 6.3: Results of Monte Carlo coverage tests for 95.4% threshold confidence intervals obtained from
the cumulative normal function in the realistic yes-no case. Each group of symbols shows, from left to
right, the effect of increasing k from 3 to 12, stimulus values being chosen sequentially by the method of
section 6.2.1. See section 6.2.2 for details.
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Fig. 6.4: Results of Monte Carlo coverage tests for 95.4% slope confidence intervals obtained from the
cumulative normal function in the realistic yes-no case. Each group of symbols shows, from left to right, the
effect of increasing k from 3 to 12, stimulus values being chosen sequentially by the method of section 6.2.1.
See section 6.2.2 for details.
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Fig. 6.5: Results of Monte Carlo coverage tests for 95.4% threshold confidence intervals obtained from
the cumulative normal function in the idealized 2-AFC case. Each group of symbols shows, from left to
right, the effect of increasing k from 3 to 12, stimulus values being chosen sequentially by the method of
section 6.2.1. See section 6.2.2 for details.
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Fig. 6.6: Results of Monte Carlo coverage tests for 95.4% slope confidence intervals obtained from the
cumulative normal function in the idealized 2-AFC case. Each group of symbols shows, from left to
right, the effect of increasing k from 3 to 12, stimulus values being chosen sequentially by the method of
section 6.2.1. See section 6.2.2 for details.
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Realistic 2-AFC

Finally, figures 6.7 and 6.8 show the realistic 2-AFC simulation results, which

may be compared with the fixed-stimulus results of figures 3.7–3.8 (bootstrap

methods), and figures 3.20 and 3.22 (probit methods).

The threshold results show a drop in coverage for most of the confidence

interval methods, relative to that observed in the fixed-stimulus simulations.

The only interval method to reach target coverage is the bootstrap percentile

method, which climbs towards the target as k and N increase. All the meth-

ods are somewhat negatively unbalanced, except for the bootstrap standard

error and basic bootstrap methods. The bootstrap standard error method is

the surprising winner, with very good balance and the highest coverage—still

too low, but invariant with respect to k and N over the range studied.

For slopes, the imbalance previously observed in the fixed-stimulus sim-

ulations is now exaggerated, the basic bootstrap and bootstrap percentile

methods in particular being completely unbalanced in many cases. The over-

all coverage of the bootstrap percentile method has also dropped. The probit

method, previously negatively unbalanced in the fixed-stimulus simulations,

is now slightly positively unbalanced. Its overall coverage is a little low at

higher values of k, but is still the closest to target of any of the methods

studied.

6.3 Summary and discussion

Sequential stimulus selection is presumed to occur to some extent in any

psychophysical experiment, even in many experiments that claim to use the

“method of constant stimuli”. The experimenter must always decide where

to place stimuli, and the decision will nearly always be based on previous

measurements, so stimulus placement is itself a stochastically determined

process. In the strict classical method of constant stimuli, the dependency

is between pilot data and the data actually reported. In most cases, there

will be additional stochastic sequential dependency between samples in the

experiment proper, as the experimenter ensures good apparent sampling of
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Fig. 6.7: Results of Monte Carlo coverage tests for 95.4% threshold confidence intervals obtained from
the cumulative normal function in the realistic 2-AFC case. Each group of symbols shows, from left to
right, the effect of increasing k from 3 to 12, stimulus values being chosen sequentially by the method of
section 6.2.1. See section 6.2.2 for details.
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Fig. 6.8: Results of Monte Carlo coverage tests for 95.4% slope confidence intervals obtained from the
cumulative normal function in the realistic 2-AFC case. Each group of symbols shows, from left to right, the
effect of increasing k from 3 to 12, stimulus values being chosen sequentially by the method of section 6.2.1.
See section 6.2.2 for details.
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the psychometric function.

However, in the form in which they have been applied to psychophysics,

bootstrap methods generally assume fixed stimuli.23,24,28,32 Such assumption

may only be appropriate under (non-psychophysical) conditions in which the

explanatory variable is outside the investigator’s control.26,27 The simula-

tions of the current chapter demonstrate that an adaptive algorithm for the

sequential selection of stimulus values can yield somewhat different results

from those that have been previously assumed to be appropriate in Monte

Carlo studies.† The effect on threshold confidence interval methods is to lower

their coverage, and to introduce an increasing relationship between coverage

and the number of observations taken. The latter effect can be understood by

considering that as more blocks are taken, so the variability of the stimulus

positions of subsequent blocks decreases, and so the fixed-stimulus approxi-

mation becomes more accurate. For slopes, intervals tend to become more

positively unbalanced. This last effect suggests that the overestimation of

slope previously noted by some authors28,33 may be greater in sequential se-

lection methods than under the assumption of fixed stimuli. The effects are

more pronounced for slopes than for thresholds, occur to a greater extent

in the 2-AFC design than in the yes-no design, and are exacerbated by the

presence of nuisance parameters in the model.

For both thresholds and slopes, the changes may lead to different con-

clusions about which confidence interval methods are most appropriate (the

basic bootstrap, for example, appears to perform much better for the estima-

tion of slopes than it did under the assumption of fixed stimuli). However,

any such effects may depend on the precise details of the adaptive algorithm

† Note that the simulations of chapter 3 show a somewhat different aspect of confidence
intervals’ coverage properties than those of the current chapter. The former still have
value: they highlight the fact that some confidence interval methods (such as the bootstrap
standard error method) are more sensitive to variations in sampling scheme than others
(such as the BCa method). The current results report coverage probability estimates each
of which is based on a probabilistic combination of 500 different sampling schemes, but
do not show the differences that exist between confidence interval methods in terms of the
reliability of inferences that may be made given any one particular observed pattern of
performance values.
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that the experimenter employs. The solution to the problem is likely to lie

in the recreation of the adaptive algorithm within the bootstrap simulations

themselves, i.e. to base bootstrap confidence intervals on simulated repetition

of the entire experiment, including the process of stimulus selection. Clearly

this cannot be done accurately if stimuli are chosen sequentially “by eye”.

A valuable direction for future research would therefore be to examine the

application of bootstrap simulation methods to adaptive procedures of all

kinds, including those that can be applied to produce efficient block-based

sampling schemes, and assess the coverage accuracy of confidence intervals

that are based on the repeated simulation of the adaptive procedures them-

selves. Bootstrap methods involving sequentially dependent data are at a

relatively early stage of research (see Davison and Hinkley,34 chapter 8), and

adaptation of their theory to account for the complexity of the sequential

dependencies introduced by various adaptive procedures will require consid-

erable development.
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7. Conclusions

Section 7.1 summarizes the principal findings of the current research, and is

reproduced in the Extended Abstract, page 16ff.

Section 7.2 (page 257ff.) summarizes recommendations for the future de-

velopment of hypothesis testing methods applied to psychometric functions.

7.1 Summary of findings

Monte Carlo tests of confidence interval coverage were carried out for a num-

ber of different confidence interval methods applied to the threshold and

to the slope of a psychometric function. The confidence interval methods

studied included five parametric bootstrap methods: the bootstrap standard

error method, the basic bootstrap, the bootstrap-t method incorporating a

parametric Fisher-information estimate for the Studentizing transformation,

the bootstrap percentile method, and the bootstrap BCa method in which

a least-favourable direction vector for each measure of interest was obtained

by parametric methods. In addition, standard-error confidence intervals were

obtained from probit analysis, and fiducial intervals for the threshold were

computed using the method described by Finney.1

The results are reported in chapter 3. In general, most of the confidence

interval methods were more accurate for thresholds than for slopes, better

in yes-no than in 2-AFC designs, and better under idealized conditions (in

which there were no nuisance parameters) than under realistic conditions (in

which there was a small non-zero rate of “guessing” or “lapsing” that the

experimenter must also estimate).

In many cases, confidence interval coverage was found to be inaccurate
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even though the true value of the relevant measure (threshold or slope) lay

within the interval on roughly the correct proportion of occasions: despite

accurate overall coverage, two-tailed intervals sometimes failed to be properly

balanced with equal proportions of false rejections occurring in the two tails.

An example is the probit fiducial method for thresholds in simulated 2-AFC

experiments. Previous studies2,3 have suggested that probit methods are

accurate when the total number of trials N exceeds about 100. However,

while the current study found that the coverage of two-tailed 95.4% intervals

was very accurate overall, it was also found that coverage in the lower part of

the interval was too high, compensating for low coverage in the upper part.

Under the best conditions (thresholds in the idealized yes-no case) all

the confidence interval methods performed in a very similar manner. For

slopes in the idealized yes-no case, there was also little to choose between

the best bootstrap methods and the probit method: the bootstrap-t method

was found to be accurate, as Swanepoel and Frangos4 also found, yet in

the range of N studied by Swanepoel and Frangos and in the current study

(120 ≤ N ≤ 960), the probit method was equally accurate (there is reason

to believe that bootstrap methods may be more accurate than the probit

method at lower N , however3). In other conditions, where the performance

of all confidence interval methods generally deteriorated, some methods were

better than others. The bootstrap percentile and BCa methods were found

to be the most accurate methods for thresholds, and although still far from

perfect, the BCa method was the best choice for slopes. The BCa method

was found to be particularly effective in the idealized 2-AFC case, in that it

was able to produce balanced confidence intervals for thresholds at different

performance levels on the psychometric function: thus it was less sensitive

to asymmetric placement of the stimulus values relative to the threshold of

interest. The bootstrap percentile method, by contrast, was only balanced

when the performance level corresponding to threshold was close to 75%. In

2-AFC, bootstrap methods were generally found to be considerably better

than probit methods in the range of N studied.

One of the observed differences between confidence interval methods was
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their stability , i.e. their sensitivity to variation in N and in the sampling

scheme or distribution of stimulus values on the x-axis. The bootstrap stan-

dard error and basic bootstrap methods, for example, tended to produce very

different coverage results depending on sampling scheme, whereas the BCa

method was generally the most stable. Some previous approaches, in which

stimulus values are chosen randomly and independently in each Monte Carlo

run,5–7 may mask such differences between confidence interval methods.

In all the simulations, a change in the mathematical form of the psycho-

metric function had little effect. In order to allow direct comparison with

a range of existing literature, yes-no simulations were carried out using the

logistic function, and 2-AFC simulations were carried out using the Weibull

function. All the simulations were repeated using the cumulative normal

function, and one set of 2-AFC simulations was repeated using the logistic

function. In none of the cases did a change in the form of the psychometric

function produce any qualitative or appreciable quantitative alteration to the

observed effects of different confidence interval methods, sampling schemes,

and values of N .

Under realistic assumptions, the estimation of the upper asymptote offset

λ (and also the lower asymptote γ in yes-no designs) presents a problem. It

has previously been noted8–10 that the maximum-likelihood estimates of these

“nuisance parameters” of the psychometric function are correlated with the

slope estimate, and that therefore any mis-estimation of γ or λ may lead

to mis-estimation of slope. A particular example of such an effect occurs

when an observer makes stimulus-independent errors or “lapses”, but when

the experimenter assumes idealized conditions in which the observer never

lapses, so that λ is fixed at 0 during fitting. In such a case, the slope of the

psychometric function is under-estimated, and the same is true whenever the

estimated or assumed value of λ is too low. The converse effect, a tendency

to over-estimate slope, can be observed when the estimate of λ is too high,

and such an error exacerbates the natural tendency, which has previously

been noted,8,11,12 for the maximum-likelihood method to overestimate slope

even in idealized conditions.
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The nuisance parameters λ and γ themselves can be difficult to estimate

accurately, a problem which was previously noted by Green13 and illustrated

by Treutwein and Strasburger.9 The bias in the estimation of λ, for exam-

ple, depends on the true underlying value of λ itself. When the true value

is 0.01, as it was in most of the current simulations, there is a tendency, over

the range of N -values studied, for the maximum-likelihood estimate λ̂ to be

larger than 0.01. This leads to overestimation of slope, and inaccuracy in

the coverage of confidence intervals for both threshold and slope. In par-

ticular, slope coverage probability dropped below target for the bootstrap-t

and BCa methods, which were the methods that relied on the asymptotic

approximation to the parameter covariance matrix given by the inverse of

the Fisher information matrix. In the BCa method, coverage probability for

thresholds also dropped, an effect which was found to change according to

the underlying value of λ and the consequent accuracy with which λ could

be estimated.

In addition to the one-dimensional methods listed above, four bootstrap

methods were applied, in chapter 4, to the problem of computing likelihood-

based joint confidence regions which allow inferences to be made about

threshold and slope simultaneously. The basic bootstrap, bootstrap-t and

bootstrap percentile methods were tested, along with a method that used

bootstrap likelihood values directly. The last of these proved to be excep-

tionally accurate, if somewhat conservative—however, it could not separate

inferences about threshold and slope from the effects of nuisance parame-

ters. The coverage of the other bootstrap methods was in some cases better

and in some cases worse than the performance of the corresponding one-

dimensional interval method. All four methods suffered to some extent from

bias in the estimation of slope, and were consequently imperfectly balanced

in their coverage of slope values above and below the maximum-likelihood

estimate.

Further simulations in chapter 5 examined the question of the optimal

placement of stimulus values, in order to achieve maximum efficiency and

minimal bias in the estimation of thresholds and slopes from a 2-AFC psy-



7. Conclusions 255

chometric function.

When efficiency of threshold estimation is the important criterion, probit

analysis predicts that, for finite N , the optimal distribution of sample points

about the threshold to be estimated has a certain non-zero spread, depending

on the number of observations and on the confidence level desired. This is at

odds with the asymptotic assumption voiced by several authors, and widely

followed as a guideline for stimulus placement in adaptive procedures, that

optimally efficient estimation of thresholds is to be achieved by placing all

observations as close to the threshold as possible. Monte Carlo simulation

confirmed the probit predictions: despite the fact that probit intervals tend

to be poorly balanced in their coverage (chapter 3) in 2-AFC, and have

previously been shown to be inaccurate,2,3 the predictions of probit analysis

were found to be qualitatively correct, in that probit interval widths were

highly consistent with Monte Carlo simulations in predicting the relative

threshold estimation efficiency of different sampling schemes.

The mean and spread of sample points proved to be a fairly good pre-

dictor of sampling efficiency with regard to thresholds, and the even spacing

of samples proved to be an efficient strategy, assuming that optimal mean

location and spread could be achieved. However, there were notable cases in

which certain uneven sampling patterns were found to be more efficient: in

particular, one highly efficient strategy proved to be to place a small number

of trials at very a high performance level, and then concentrate on levels

closer to threshold than the optimal spread would otherwise indicate. The

gain in efficiency, relative to evenly spaced sampling, was nevertheless quite

small.

The relationship between efficiency of slope estimation and sampling

scheme was not so straightforward, and was not fully explained by the mean

and spread of stimulus locations. Predictions from probit analysis were also

less consistent with the results of Monte Carlo simulation in the slope results

than in the threshold results. The simulations concentrated on the realis-

tic 2-AFC case, with the underlying value of λ set to 0.01: as mentioned

above, this condition is particularly prone to bias, and nearly all the sam-
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pling schemes studied overestimated the slope of the psychometric function

by a considerable amount.

Within the range of N studied, there was an appreciable change in the op-

timal spread of stimulus values as N increased: for thresholds, the optimally

efficient sampling scheme became narrower, converging towards the asymp-

totic ideal of zero spread. For slopes, optimal spread converged towards the

asymptotically predicted (non-zero) value.

With regard to thresholds, there was little or no effect of k, the number

of blocks into which the N observations were divided: the mean and spread

of the optimally efficient sampling scheme were not affected, nor was the

distribution of bias and efficiency scores measured outside the optimal region.

For slopes, there was little effect when k exceeded 5, although there was a

discernible advantage to sampling with smaller numbers of blocks (k = 3 and

k = 4): the simulations imposed a minimum spacing between blocks, and

the 3- and 4-point schemes were able to concentrate more closely on the two

asymptotically optimal sampling points.

The simulations of chapter 5 addressed the question of what the optimally

efficient sampling schemes look like, without addressing the question of how

such sampling is to be achieved relative to an unknown psychometric func-

tion. In practice, a larger k will be useful from the point of view of sequential

estimation, as it allows a greater number of opportunities to re-position the

stimulus value according to the current best estimate of the optimal loca-

tion. Sequential stimulus selection has so far been ignored in the application

of bootstrap methods to psychometric functions.3,12,14,15 However, it can be

presumed to occur to some extent in many experimental designs (includ-

ing many that are described as “constant stimuli” experiments) whether the

stimuli are selected “by eye” or by a formally specified adaptive procedure.

The simulations of chapter 6 suggest that the assumption of fixed stimuli

can lead bootstrap methods to produce confidence intervals whose coverage

is too low. Furthermore, sequential selection introduces an increasing rela-

tionship between threshold coverage and N , a fact which may undermine

one of the principal advantages of the bootstrap, namely that it is less sen-
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sitive to error than asymptotic methods when N is low. It is recommended

that future developments of bootstrap methods in psychophysics should con-

centrate on formal specification of the algorithm for stimulus selection, and

that bootstrap replications of the experiment should include simulation of

the stimulus selection process, using the same algorithm as that employed

by the experimenter.

7.2 Recommendations

In their current form, bootstrap confidence intervals for the threshold and

slope of a psychometric function should be interpreted with a conservative

eye. Under many circumstances, the observed coverage probability of a con-

fidence interval were found to fall below the target confidence level. In some

cases, even when overall coverage was found to be accurate, the interval was

not well balanced, so that coverage was too low in one of the two tails of

the interval. A heuristic such as the expanded bootstrap method (suggested

by Wichmann and Hill15 and developed in section 2.2.6) may offer a way of

ensuring certain minimum levels of coverage. However, the current version of

the expanded method is not ideal because, notwithstanding its conservatism,

it is somewhat unstable: its coverage may vary widely above the target level,

and may be more or less unbalanced, depending on the distribution of stim-

ulus values relative to the true curve.

The bootstrap-t and BCa methods can offer improvements in stability

for both threshold and slope intervals relative to simpler bootstrap methods.

However, they can also suffer from imbalance and low coverage, which may

be due to their reliance on the parametric approximation to the parameter

covariance matrix obtained by inverting the expected Fisher information ma-

trix. Reliance on the Fisher matrix may be particularly sensitive to parame-

ter mis-estimation: certainly the imbalance of BCa threshold intervals in the

realistic 2-AFC case was linked to inaccuracy in the estimation of λ (see sec-

tion 3.3.4). Future simulations might examine variations on the bootstrap-t

and BCa methods that use non-parametric alternatives to the Fisher matrix.
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Some such alternatives are based on various forms of the jackknife technique,

the application of which is outlined in the general case by Efron and Tib-

shirani16 and by Davison and Hinkley.17 Three different jackknife methods

have been applied to the computation of bootstrap-t confidence intervals in

the context of logistic regression by Swanepoel and Frangos.4

Confidence region methods offer potentially more powerful hypothesis

tests than one-dimensional interval methods. One method in particular, the

bootstrap deviance method, was also found to be fairly well balanced and

very stable with regard to variations of sampling scheme, and tended to

exceed its overall target coverage level. The method requires further devel-

opment however, to adapt it fully for use in a situation in which nuisance

parameters must be estimated. A contour-drawing algorithm might be used,

for example, to compute region boundaries in three or four dimensions, which

are then “flattened” into the two dimensions of interest. Thus, on any given

bearing φ from the initial estimate (α̂0, β̂0), the radial distance dφ from the

estimate to the region boundary would be equal to the maximum dφ encoun-

tered in a series of two-dimensional sections of the three- or four-dimensional

region, each section being indexed by a different set of nuisance parameter

values. Further testing would then be required in order to ensure that the

modified method retained the desirable properties of balance, stability and

conservatism.

All the confidence region methods studied (including, to a relatively minor

extent, the bootstrap deviance method) showed signs of positive imbalance

in the slope dimension, which is consistent with the tendency for slopes to be

over-estimated. Another example of the relationship between the accuracy

of the initial estimate and the accuracy of the confidence interval boundaries

is the link between bias in the estimation of λ (and hence in the estimation

of slope, which co-varies with λ) and imbalance in BCa threshold intervals.

Clearly, it is desirable that fitting methods be developed to address the prob-

lem of estimation bias, not only for its own sake, but also in order to improve

the accuracy of confidence intervals and confidence regions. Potentially sig-

nificant improvements might be made by attempting to reduce the influence
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of the nuisance parameters λ and γ. One approach would be to modify the

fitting procedure to use a loss function that is less sensitive to extreme out-

liers than the likelihood metric. As Finney1 notes, “. . . there is no a priori

reason why minimum χ2 should not be superior to maximum likelihood in

small samples, or why some third method should not be superior to either”

(page 52). The use of a more robust “third method” might reduce the in-

fluence of λ and γ, or perhaps even eliminate the need for them altogether.

Naturally any such revision to the core fitting process would require exten-

sive testing to ensure it achieved reductions in bias and improvements in

confidence interval coverage over a wide range of conditions, while keeping

any concomitant loss of efficiency within acceptable levels.

Finally, as suggested in chapter 6, another valuable line of development

might be to incorporate simulations of sequential stimulus selection algo-

rithms into the bootstrap, in order to address the problem of low coverage

that may occur when stimuli are assumed to be fixed. The application of

improvements such as the bootstrap-t or BCa methods to such a framework

might also be valuable, but is likely to require considerable theoretical devel-

opment.
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Appendix A

Notation

Lower-case Greek, and lower or upper case italic letters generally denote

scalar values (c, k, R, α, σ). Vectors are denoted by lower-case bold symbols

(x, n, θ, δ) and matrices by upper-case bold symbols (I, V ). Estimates are

be denoted by a “hat” (θ̂, â, ŝe).

An asterisk (∗) denotes bootstrap or Monte Carlo replications of a certain

quantity, and a subscript may also denote the simulation number, so that û∗
i is

the i th replication of the estimate û. (N.B. the ∗ is never used for footnotes—

the symbols † and ‡ are used instead.) Without the subscript, the starred

symbol refers to the entire set of simulated values but, even though the set

contains multiple items, the symbol is not made bold unless the item that is

being replicated was itself a vector. Thus, û∗ is a set of simulated scalars û∗
i ,

and θ̂
∗
is a set of simulated vectors θ̂

∗
i . A subscript in parentheses, as in u∗

(ε)

denotes an estimated quantile of a distribution (see page 55).

Φ(·) denotes the cumulative of the standard normal distribution, Pr(·)
probability, exp(·) the exponential and Bi(·) the binomial distribution.

A list of symbols and their specific meanings follows.
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2-AFC Two-alternative forced choice.

a Imbalance of coverage between the tails of a two-tailed interval (sec-
tion 3.1.1).

b Vector of two or three parameters of B(·) or B3(·). See section 5.5.1.

B(·) Beta distribution (section 5.5.1).

B3(·) Modified (three-parameter) beta distribution (section 5.5.1).

Bi(n, p) Binomial distribution, with probability of success p in n trials.

c Coverage probability of a confidence interval or confidence region.

C Number of simulated repetitions of an experiment, each including de-
termination of confidence limits, in a Monte Carlo coverage test.

cpe Cumulative probability estimate. See equation (2.6), page 55.

di Deviance residual (section 1.2.3).

D Deviance or log likelihood ratio, D =
∑k

i=1 d
2
i (section 1.2.3).

E{·} Expected value.

f Detection level f = F (x; α, β).

F (x) The underlying two-parameter “detection probability” function that
defines the shape of the psychometric function. The location and spread
of F (x) are determined by α and β, the first two parameters from the
parameter vector θ. Its range is from 0 to 1, inclusive or exclusive,
and its shape is usually some sort of sigmoid: examples include the
cumulative normal, logistic and Weibull functions (section 1.2.1).

g Used in the computation of fiducial limits on thresholds in probit anal-
ysis (see section 2.1).

gen Subscript denoting the true or “generating” value of a quantity (usually
unknown to the experimenter).

h Smoothing parameter in density estimation (section 4.2).

I{·} The indicator function: 1 when its argument is true, 0 otherwise.

I The Fisher information matrix of the parameters θ (see section B.2).
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k Number of blocks in single set of psychophysical data.

K Sweat factor (section 5.1.2).

L(θ) Likelihood (section B.2).

,(θ) Log-likelihood (section B.2).

m Number of alternatives in a forced-choice task, in which chance perfor-
mance γ = 1/m.

M(·) Any model that is applied to psychophysical data, to fit and predict
the proportion of positive or correct responses in response to stimulus
x given additional explanatory variables ρ.

MLE Maximum-likelihood estimate.

n Number of observations per block. Vector n of length k represents the
block sizes in a single data set.

N Total number of observations in a data set. N =
∑k

i=1 ni.

p Expected proportion of correct or positive responses. Vector p of length
k represents the expected performance values from a fit to a single data
set. pi = ψ(xi; θ).

p̄ Mean of expected performance values pi, weighted by ni. Used to
characterize sampling schemes—see section 5.5.3.

Pr(·) Probability.

r Number of correct or positive responses in a block. Vector r of length
k represents the performance values in a single data set.

R Number of simulated repetitions of an experiment, in a single bootstrap
or Monte Carlo hypothesis test.

se Standard error.

sf Psychometric function slope dF/dx evaluated at x = tf .

tf Psychophysical threshold, i.e. the value of x such that F (x; α, β) = f .

T Transpose operator for vectors and matrices.
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u Generic label for a measure of interest, such as a threshold or slope,
that is computed from parameters θ.

u̇ Vector of derivatives of a measure of interest u with respect to each of
the parameters θ (see section B.1).

v
var{·} Variance.

V The covariance matrix of the parameters θ (see section B.2).

w Bias-correction term (section 2.2.5), and similarly estimation bias (sec-
tion 5.1.1).

Wi Probit regression weighting coefficient for block i (section 2.1).

wci## Width of confidence interval. (wci68 = the width of a 68.3% confi-
dence interval, and wci95 = the width of a 95.4% confidence interval).

wcimin Width of the smallest confidence interval, corresponding to the most
efficient sampling scheme in a set of simulations (section 5.5).

wnpi## Width of non-parametric percentile interval. The wnpi68 of a dis-
tribution X is equal to X(0.841) − X(0.159). The wnpi95 of X is equal
to X(0.977) − X(0.023). Division by 1

2
wnpi68 is sometimes used as a ro-

bust method of standardization (for perfectly normal distributions, it
is equivalent to division by the standard deviation).

x Stimulus intensity. Vector x of length k represents the stimulus values
in a single data set.

y Observed proportion of correct or positive responses. Vector y of length
k represents the performance values in a single data set, yi = ri/ni.

α The first of the four parameters θ of the psychometric function ψ(x; θ),
α is used in the underlying function F (x). Its precise rôle depends on
the form of F (see section B.1), although it is usually related to the
location of the psychometric function relative to the x-axis.

αpr Location parameter in probit regression (section 2.1).

β The second of the four parameters θ of the psychometric function
ψ(x; θ), β is used in the underlying function F (x). Its precise rôle
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depends on the form of F (see section B.1), although it is usually re-
lated to the spread or slope of the psychometric function along the
x-axis.

βpr Scale parameter in probit regression (section 2.1).

γ The third of the four parameters θ of the psychometric function ψ(x; θ),
γ represents the lower asymptote of the curve. In m-AFC designs, γ is
fixed at 1/m. In yes-no designs, it might be fixed at 0 under “idealized”
assumptions, or it might need to be estimated, in which case it gen-
erally takes a small non-zero value that reflects the observer’s “guess
rate”.

δu Least-favourable unit direction vector for inference about a measure of
interest u. Used in the estimation of the skewness correction factor ξ
in the BCa bootstrap method (section 2.2.5).

ε Confidence level corresponding to a confidence limit. For a two-tailed
confidence interval of coverage 1− 2η, εLO = η and εUP = 1− η.

ζ(·) Unknown normalizing transformation (section 2.2.4).

η Significance level associated with a confidence interval tail. In chapter 2
the target coverage probability of a two-tailed interval is 1− 2η.

θ Vector of psychometric function parameters—effectively a shorthand
notation for (α, β, γ, λ)T.

ϑ(·) Freeman-Tukey variance-stabilizing transformation for binomial prob-
abilities (section 3.1.2).

λ The fourth of the four parameters θ of the psychometric function
ψ(x; θ), λ represents the offset between the upper asymptote of the
curve and 1. It might be fixed at 0 under “idealized” assumptions, or
it might need to be estimated, in which case it generally takes a small
value (less than, say 0.05 for a trained adult observer) that reflects the
observer’s rate of stimulus-independent errors or “lapses”.

ξ Skewness correction factor or “acceleration” (section 2.2.5).

ρ Vector denoting additional explanatory variables, besides x, in the gen-
eral model p = M(x,ρ; θ).
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 Confidence limit (sections 2.2.2 and 4.1) or likelihood contour value
(section 4.2).

σp Second central moment of expected performance values pi, weighted by
ni. Used to characterize sampling schemes—see section 5.5.3.

Υ(·) Link function in probit regression (section 2.1).

Φ(·) The cumulative of the standard normal distribution.

ϕ Angle corresponding to joint error in threshold and slope, after stan-
dardization (section 4.3.2).

ψ(x) The psychometric function, predicting the probability of a correct or
positive response to stimulus x. ψ(x) is equal to the underlying function
F (x), scaled between lower and upper bounds γ and 1− λ.

Ω(·) Bayesian prior (section B.2.1).
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Formulae

B.1 The psychometric function and its

derivatives

The psychometric function is written as

ψ (x; α, β, γ, λ) = γ + (1− γ − λ)F (x; α, β) (B.1)

where F (x; α, β) is a monotonic two-parameter function with range 0 to 1

(inclusive or exclusive), such as the cumulative normal (section B.1.1), logis-

tic (section B.1.2) or Weibull (section B.1.3).

In order to compute the likelihood derivatives of section B.2, the first and

second derivatives of ψ with respect to the four parameters are required. The

first derivatives of ψ are as follows:

∂ψ

∂α
= (1− γ − λ)

∂F

∂α
, (B.2)

∂ψ

∂β
= (1− γ − λ)

∂F

∂β
, (B.3)

∂ψ

∂γ
= 1− F (x; α, β) , (B.4)
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∂ψ

∂λ
= −F (x; α, β) , (B.5)

and its second derivatives are given in table B.1:

∂2ψ ∂α ∂β ∂γ ∂λ

∂α (1−γ−λ)
∂2F
∂α2 (1−γ−λ)

∂2F
∂α ∂β

−∂F
∂α

−∂F
∂α

∂β (1−γ−λ)
∂2F

∂β ∂α
(1−γ−λ)

∂2F
∂β2 −∂F

∂β
−∂F

∂β

∂γ −∂F
∂α

−∂F
∂β

0 0

∂λ −∂F
∂α

−∂F
∂β

0 0

Table B.1: Second derivatives of ψ with respect to its four parame-
ters.

First and second derivatives of F are given in the relevant sections below.

Also provided are the formulae for the threshold tf and slope sf of F at any

arbitrary detection level f , along with their first derivatives with respect to

α and β. The derivatives of tf and sf are used to construct the parametric

influence vector:

u̇ =

(
∂u

∂α
,

∂u

∂β
,

∂u

∂γ
,

∂u

∂λ

)T

,

where u is a generic term for a measure of interest, such as a threshold or

slope. Since threshold and slope are defined purely in terms of F (x), they

do not involve the nuisance parameters γ or λ, so the last two elements of u̇

are 0. The derivatives with respect to α and β depend on the shape of F ,

and are given in the following equations:

Cumulative normal: (B.13)–(B.14) and (B.16)–(B.17), page 278.
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Logistic: (B.25)–(B.26) and (B.28)–(B.29), page 279.

Weibull: (B.37)–(B.38) and (B.40)–(B.41), page 281.

The parametric influence vector is used in the BCa bootstrap method to

compute the “least-favourable” direction vector for u (section 2.2.5). When

the i th parameter is fixed, the i th element of u̇ is set to 0.

B.1.1 The cumulative normal function

The cumulative normal function is given by

F (x; α, β) = Φ

(
x− α

β

)
=

1

β
√
2π

∫ x

−∞
e
− (τ−α)2

2β2 dτ,

which is equivalent to

F (x; α, β) =
1

2
erf

(
x− α

β
√
2

)
+
1

2
. (B.6)

Its first and second derivatives with respect to α and β are:

∂F

∂α
=

−1
β
√
2π

e
− (x−α)2

2β2 , (B.7)

∂F

∂β
=

α− x

β2
√
2π

e
− (x−α)2

2β2 , (B.8)

∂2F

∂α2
=

α− x

β3
√
2π

e
− (x−α)2

2β2 , (B.9)

∂2F

∂β2
=

[
2− (x− α)2/β2

]
(x− α)

β5
√
2π

e
− (x−α)2

2β2 , (B.10)

∂2F

∂α ∂β
=

∂2F

∂β ∂α
=

(β + x− α)(β − x+ α)

β4
√
2π

e
− (x−α)2

2β2 . (B.11)
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Threshold tf is given by

tf = α + β
√
2 erf−1(2f − 1), (B.12)

and its derivatives with respect to α and β are

∂tf

∂α
= 1, (B.13)

∂tf

∂β
=

√
2 erf−1(2f − 1). (B.14)

Slope sf is given by

sf =
1

β
√
2π

e−[erf
−1(2f−1)]

2

, (B.15)

and its derivatives with respect to α and β are

∂sf

∂α
= 0, (B.16)

∂sf

∂β
=

−1
β2

√
2π

e−[erf
−1(2f−1)]

2

. (B.17)

B.1.2 The logistic function

The logistic function is given by

F (x; α, β) =
1

1 + e−(x−α)/β
, (B.18)
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and its first and second derivatives with respect to α and β are:

∂F

∂α
=

−e−(x−α)/β

β [1 + e−(x−α)/β]
2 , (B.19)

∂F

∂β
=

(α− x) e−(x−α)/β

β2 [1 + e−(x−α)/β ]
2 , (B.20)

∂2F

∂α2
=

(
eα/β − ex/β

)
e

x+α
β

β2 (eα/β + ex/β)
3 , (B.21)

∂2F

∂β2
=

(x− α) e
x+α

β

[
(x− α+ 2β) e

α
β + (α− x+ 2β) e

x
β

]
β4 (eα/β + ex/β)

3 ,(B.22)

∂2F

∂α ∂β
=

∂2F

∂β ∂α
=

e
x+α

β

[
(x− α + β) e

α
β + (α− x+ β) e

x
β

]
β3 (eα/β + ex/β)

3 .(B.23)

Threshold tf is given by

tf = α− β log

(
1

f
− 1

)
, (B.24)

and its derivatives with respect to α and β are

∂tf

∂α
= 1, (B.25)

∂tf

∂β
= − log

(
1

f
− 1

)
. (B.26)

Slope sf is given by

sf =
f (1− f)

β
, (B.27)
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and its derivatives with respect to α and β are

∂sf

∂α
= 0, (B.28)

∂sf

∂β
=

f (f − 1)

β2
. (B.29)

B.1.3 The Weibull function

The Weibull function is given by

F (x; α, β) = 1− e−(x/α)β

, (B.30)

and is defined only when x ≥ 0, α > 0 and β > 0 (flat discontinuous

Bayesian priors were used to constrain the parameter search to values of α

and β for which the function was defined—see section B.2). The first and

second derivatives of F with respect to α and β are:

∂F

∂α
=

−β (x/α)β

α e(x/α)β , (B.31)

∂F

∂β
=

(x/α)β log (x/α)

e(x/α)β , (B.32)

∂2F

∂α2
=

β (x/α)β
{
1 + β

[
1− (x/α)β

]}
α2 e(x/α)β , (B.33)

∂2F

∂β2
=

(x/α)β
[
1− (x/α)β

]
[log (x/α)]2

e(x/α)β , (B.34)

∂2F

∂α ∂β
=

∂2F

∂β ∂α
=

(
x
α

)β
{
β log

(
x
α

) [(
x
α

)β − 1
]
− 1

}
α e(x/α)β . (B.35)
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Threshold tf is given by

tf = α [− log(1− f)]
1
β , (B.36)

and its derivatives with respect to α and β are

∂tf

∂α
= [− log(1− f)]

1
β , (B.37)

∂tf

∂β
= − α

β2
[− log(1− f)]

1
β log [− log(1− f)] . (B.38)

Slope sf is given by

sf =
β

α
(1− f) [− log(1− f)](1−

1
β ) , (B.39)

and its derivatives with respect to α and β are

∂sf

∂α
=

β

α2
(f − 1) [− log(1− f)](1−

1
β ) , (B.40)

∂sf

∂β
=

1− f

α β
[− log(1− f)](1−

1
β ) {β + log [− log(1− f)]} . (B.41)
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B.2 Log-likelihood and its derivatives

The likelihood L(θ) of a parameter set θ given a set of responses r is equal

to the probability of obtaining responses r given θ, assuming that each ri is

binomially distributed with probability of success pi:

L(θ|r) = Pr(r|θ) =
k∏

i=1

(
ni

ri

)
pi

ri(1− pi)
ni−ri , (B.42)

where pi = ψ(xi; θ). The log-likelihood ,(θ) is therefore given by

,(θ|r) = logL(θ|r) =
k∑

i=1

[logni!− log ri!− log (ni − ri)!]

+
k∑

i=1

[ri log pi + (ni − ri) log(1− pi)] .
(B.43)

Note that the first term of (B.43) is independent of pi and therefore need

not be evaluated in the maximum-likelihood parameter search—likelihood is

maximized simply by maximizing the second sum. Note also that, in (B.42)

the probability of obtaining ri = 0 when pi = 0 is 1, as is the probability

of obtaining or ri = ni when pi = 1. In these cases, terms in (B.43) that

take the apparently undefined value 0 log 0 should therefore be evaluated as 0

(note also that lim
b→0

{a log b} = 0 when a = 0).

The partial first derivative of ,(θ) with respect to one of the parameters

θi is

∂,

∂θi

=
k∑

z=1

(
rz

pz

− nz − rz

1− pz

)
∂ψ

∂θi

∣∣∣∣
xz

, (B.44)

and the partial cross-derivative with respect to two parameters θi and θj is

∂2,

∂θi ∂θj
=

k∑
z=1

{(
rz

pz
− nz − rz

1− pz

)
∂2ψ

∂θi ∂θj

∣∣∣∣
xz

−
[
rz

p2
z

+
nz − rz

(1− pz)
2

]
∂ψ

∂θi

∣∣∣∣
xz

∂ψ

∂θj

∣∣∣∣
xz

}
,

(B.45)
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where the relevant first and second derivatives of ψ are given in section B.1.

Equation (B.44) is used to compute the vector ∂�
∂�T =

(
∂�
∂α

, ∂�
∂β

, ∂�
∂γ

, ∂�
∂λ

)
which is used to estimate the skewness correction factor in the BCa bootstrap

method (section 2.2.5).

Equation (B.45) is used to compute the observed Fisher information ma-

trix,

− ∂2,

∂θ ∂θT

∣∣∣∣
�̂

,

or the expected Fisher information matrix

Î = −E
{

∂2,

∂θ ∂θT

}∣∣∣∣
�̂

. (B.46)

The latter is obtained by making the substitution ri = pini in equations(B.44)

and (B.45), and is used in the current study to provide an approximation to

the parameter covariance matrix V̂ = Î
−1

. When the i th parameter is fixed

(for example, the third parameter, γ, is fixed in forced-choice designs), Îii is

set to 1 and the rest of the i th row and i th column are set to 0. The same

pattern then appears in the corresponding row and column of V̂ .

B.2.1 Bayesian priors

If a Bayesian prior is used to reflect the experimenter’s prior knowledge about

the psychometric function, it takes the form of a probability weighting func-

tion Ω(θ) which acts as a multiplier for L(θ). Therefore, log Ω(θ) is added

to ,(θ). In the current study, only flat priors were used, but they could

be discontinuous. The four parameters of the psychometric function were

treated independently, so

Ω(θ) = Ωα(α) Ωβ(β) Ωγ(γ) Ωλ(λ).
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Flat discontinuous priors were used to constrain λ (and γ in yes-no designs)

within the interval [0, 0.5] so, for example,

Ωλ(λ) = 1 ; 0 ≤ λ ≤ 0.05,

Ωλ(λ) = 0 ; otherwise.

This forces the maximum-likelihood value of λ to lie within the desired in-

terval, because −∞ is added to ,(θ) when λ is outside.

Discontinuity in the likelihood surface will cause problems for many search

algorithms unless special care is taken. Many search procedures use the

approach of gradient descent, in which a sudden jump to , = −∞ provides

no information and causes the parameter estimate to be undefined. The

current study used the simplex search method, however, which automatically

copes with a sheer drop in the log-likelihood surface: whenever log-likelihood

drops (whether by a finite or infinite amount) it simply withdraws its last

step and tries a smaller step. If the MLE lies at or beyond the edge, the

simplex will converge on a point arbitrarily close to the edge, depending on

the maximum number of iterations allowed and the minimum tolerance for

fractional improvement.

The application of the prior Ω(θ) adds

1

Ω(θ)

∂Ω

∂θi

∣∣∣∣
�

to the log-likelihood derivative (B.44), and

1

[Ω(θ)]2
∂Ω

∂θi

∣∣∣∣
�

∂Ω

∂θj

∣∣∣∣
�

+
1

Ω(θ)

∂2Ω

∂θi∂θj

∣∣∣∣
�

to the cross-derivative (B.45). For the current application, using flat priors,

the additions are 0 for all practical purposes.


