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Abstract 

Quantitative and qualitative information about land-use and buildings are important for spatial planning 

decision processes. The proposed study determines the suitability of multispectral information and 

stereoscopic-derived heights of Pléiades tri-stereoscopic satellite imagery for the identification of building 

footprints and the assessment of building heights. The study area is the Nyarugenge sector in the center of the 

City of Kigali. A tri-stereoscopic Pléiades satellite scene was used to process a digital surface model. An 

object-based image analysis provided the basic geometries and respective variables, which served as input 

features for a Support Vector Machine based classification. The comparison of the building footprints with 

ground reference information indicates a high accuracy. The assessment of building heights led to mixed 

results. The heights of buildings were derived with medium to high accuracies for building blocks with a well-

developed road network or open spaces, which allowed the assessment of the elevation of the terrain surface. 

In densely built-up areas, with a lack of road accessibility and located mainly on steep slopes, the derived 

heights of single buildings or building blocks did not produce satisfying results. However, for urban planners, 

policy and decision makers, the method yields a high potential in analyzing and monitoring urban areas. 
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1. Introduction 

Dynamically changing urban environments in countries of the Global South experience rapid changes in their 
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urban structure, due to a growth of population and socioeconomic developments. For different purposes, such 

as the monitoring of the housing sector, spatial and infrastructure planning, frequent information on the 

qualitative and quantitative status and the changes in settlement structure are necessary. A cost effective 

method to gather urban land-use data, assess information on built-up areas and identify the characteristics of 

single buildings, is the application of high-resolution multispectral imagery (Wurm, et al., 2014). The last 

aerial photography mission resulted in orthophotos covering nearly the entire territory of Rwanda, took place 

in the summers of 2008 and 2009 (Sagashya, 2014). Rapid changes in urban environments, especially in a 

dynamic city like Kigali, require up-to-date information. Spaceborne remote sensing images provide large 

spatial and high temporal coverage. Yet, the spatial resolution of satellite-based images is low, compared to 

aerial images. Hence, effective classification methods are required to achieve reliable information on urban 

land-use and land-cover (LULC). The use of height information may be used to improve the image analysis 

and provide additional information of objects on the ground, like buildings and trees. The access to LIDAR-

based digital surface models (DSM) is mostly limited or not available at all. This may be overcome by 

stereoscopic spaceborne image acquisitions, like from the Pléiades satellite system (Gleyzes, et al., 2012). 

Various studies addressed the extraction of information or urban environments from high-resolution optical 

satellite data. Aytekın, et al. (2012) used spectral and spatial properties of image segments to derive roads and 

buildings automatically in complex urban environments. Comber, et al. (2012) and Singh, et al. (2015) used 

shadows in remote sensing images to extract buildings and to determine building heights. For the detection 

and classification of build-up structures, LIDAR based DSMs proved to be beneficial (Sohn and Dowman, 

2007; Priestnall, et al., 2000; Malpica, et al., 2013). DSMs from optical stereo satellite images provide also 

the opportunity to enable and improve urban land-use and building identification (Poli, et al., 2013; Poli, et 

al., 2014). Shaker, et al. (2011) combined multispectral analysis with DSM information to identify buildings 

in Cairo, Egypt. Qin, et al. (2015) used multitemporal spectral and spaceborne height information for building 

detection. Sirmacek, et al. (2010) show that also DEMs can be improved by building footprint information 

from satellite images. Bernard, et al. (2012) proved that multi angle stereo acquisitions reduce the occlusions 
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behind buildings and that a stereoscopic image acquisition, with a nadir image and two opposed oblique 

images, result in high accuracies of DSMs. 

The objective of this study is to determine the applicability of Pléiades data to identify and to extract building 

footprints for the City of Kigali. For this case study, a subset of the Pléiades scene was selected, which focuses 

on the Nyarugenge Sector. A DSM was processed of tri-stereoscopic Pléiades data, topographic derivatives 

and multispectral information of the satellite scene were utilized. If successful, the methodology will be able 

to support urban planners, policy and decision makers in monitoring changes, updating cadastral information 

and improving planning solutions. 

2. Study area, data and methods 

2.1.  Study area 

 

 

Figure 1: Location of the study area: a) Pléiades subset; b) The sectors of Kigali 
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Kigali is the capital city of Rwanda. It is a dynamically developing city with a population of 1,132,686 (2012 

census). The Nyarugenge sector has a population of 21,302 (NISR and MINECOFIN, 2015). The study area 

covers also areas of the Muhima (N), Gitega (W), Rwezamenyo (SW) and Kigarama (SE) sectors. The 

Nyarugenge sector and its’ neighbouring sectors are characterized by a heterogeneous building structure (Fig. 

1). The central and north-western part of the study area is characterized by the central business district (CBD), 

with mid- to high-rise commercial buildings. The eastern part is dominated by single-family detached houses, 

with a high percentage of urban green space. The southern and south-western part dominates low-rise 

unplanned squatter housing. Characteristic for the topography of Kigali is the elevated position of the CBD 

on a ridge, which is surrounded by slopes. 

2.2. Data 

A Pléiades tri-stereoscopic satellite image (2015-08-09) is the base data for the analysis. The two satellites of 

the Pléiades mission (1A and 1B) were launched in 2011 and 2012. The satellite constellation provides images 

with a resolution 70 cm for the panchromatic channel and 2.8 m for the 4 multispectral channels. The physical 

resolution is resampled to 50 cm, respectively 2 m, ground sampling distance (GSD) (Gleyzes et al., 2012). 

In consistence with the local topography and urban morphology, we decided for an acquisition with medium 

wide stereo angles (Table 1).  

Table 1: Characteristics of Pléiades-1B panchromatic triplet 

 Image 1 Image 2 Image 3 

Along-track (°) 18.53 -16.91 2.02 

Across-track (°) -5.46 2.16 -1.81 

Acquisition time 8:30:27 8:29:28 8:29:59 

Solar Azimuth (°) 51.96 52.23 51.96 

Solar Elevation (°) 60.50 60.30 60.50 
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To contribute to the calibration of the building extraction and the validation of the results, reference 

information of buildings was collected for 481 buildings in November 2014, June 2015 and November 2015 

(Fig. 1). The reference data collection includes information on the respective GPS position, building type, roof 

material and roof type. The location of the reference points was moved manually to the center of the roofs of 

the respective buildings, to allow an evaluation of the processing results. For 337 of these reference buildings, 

the building height was measured with a laser measure handheld.  

2.3. Digital Elevation Model processing 

A DSM was generated, using the Rational Polynomial Coefficients (RPCs) to describe the exterior and interior 

orientation of each image of the Pléiades triplet (Fig. 2) (Topan, et al., 2013; Hu, et al., 2016). Ground control 

points (GCPs) were defined and for each image pair more than 100 tie points were automatically generated 

and visually checked for their consistency. Semi-Global Matching (SGM) was applied, which minimizes a 

one dimensional and multi-directional global cost function following epipolar lines in stereo pairs 

(Hirschmüller, 2008; Hirschmüller, 2005). The SGM approach allows DSM generation at image GSD. The 

resulting point cloud was filtered and interpolated to a raster surface (Fig. 3). The DSM was used for the ortho-

correction of the Pléiades image (Fig. 2, image 3). A Digital Terrain Model (DTM), which represents the 

elevation of the terrain without built-up objects or vegetation, is necessary for the calculation of object heights. 

A preliminary LULC classification (compare with section 2.4) was used to identify non-elevated land-cover 

as roads, open space, bare earth and barren land. For those areas, the elevation points of the DSM original 

point cloud were extracted and used to interpolate a DTM. By subtracting the DTM from the DSM, a 

normalised DSM is generated, indicating the object heights in the study area. Statistics for the pixels 

underlying each building footprints were extracted of the normalized DSM.  

Image 1 Image 2 Image 3 
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Figure 2: Example of the Pléiades-1B panchromatic triplet of Kigali City centre 

 

 

Figure 3: 2.5-dimensional representation of Kigali City centre 
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2.4. Land-use and Land-cover classification 

For the delineation of LULC, an object based image analysis approach was chosen (Blaschke, 2010; Blaschke, 

et al., 2014). The method groups neighbouring pixel with similar spectral or thematic values into image 

segments (Benz, et al., 2004). For these segments rulesets were developed, which comprise spectral and height 

values, geometrical features, as well as spatial relationships between image objects. Additionally, the 

Normalized Differential Vegetation Index (NDVI) (Rouse, 1974) was generated from the red and near-

infrared bands. The Topographic Position Index (TPI) (Guisan, et al., 1999; Weiss, 2001; De Reu, et al., 2013) 

with varying radii was computed from the DSM to support the differentiation between elevated objects and 

ground surface. The index calculates the distance between a central point (z0) and the average elevation (𝑧̃) of 

a kernel, which is predefined by a radius (R). 

TPI = z0 – 𝑧̃         (1) 

𝑧̃ =
1

𝑛𝑅
∑ 𝑧𝑖𝑖∈𝑅         (2)  

Negative TPI values indicate relative low positions of z0, while positive values indicate elevated positions. 

The classification of the image segments, which were not classified by the ruleset approach, was conducted 

with Support Vector Machines (SVMs). SVMs is a classification method, which maximizes the boundaries 

between intended classes within an n-dimensional feature space, by applying kernel functions (Burges, 1998; 

Vapnik, 1998). Within this study the Support Vector Classifier (C-SVC) from the Library for Support Vector 

Machines (LIBSVM) developed by Chang and Lin (2011) was utilized. The method is widely used in remote 

sensing applications (Esch, et al., 2009; Bachofer, et al., 2015).  

Target classes for the LULC classification were “Tree”, “Meadow / Shrub”, “Asphalt Road”, “Barren land / 

Dirt Road” and “Buildings”. The building footprints were subdivided into different roofing materials. 

Subsequently, the resulting building footprints were simplified and artifacts deleted.  
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3. Results 

The analysis resulted in basic land-use information and building footprints of the study area. Figure 4 shows 

exemplary the results for a small focus area. 447 of 475 reference points (94 %) were located in the shape of 

the identified buildings. Misclassifications occurred between rusty roofs and adjacent dirt roads. In addition, 

an increased number of false matching points were identified in the villa area in the eastern part of the study 

area.  

The extraction of the object heights for the building footprints led to mixed accuracies. Table 2 illustrates the 

mean error of the Pléiades derived average building heights to the measured maximum building height. For 

the CBD and for Biryogo Cell, the error is relatively low, compared to the average building height and the 

standard deviation of the building heights. For the eastern villa dominated area and the unplanned settlements, 

the mean error is considered as relatively high. 
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Figure 4: Focus area showing the LULC result (2) and the derived building footprints (3) 

Table 2: Statistical evaluation of building heights extraction (STDEV = standard deviation) 

Urban structure 

No. of reference 

points with height 

information 

Average building 

height (from 

reference) 

Mean error in m 

1. CBD 34 

7.08 m 

(STDEV 5.06 m) 

2.33 m 

(STDEV 2.56 m) 

2. Single-family 

villa-type 
53 

6.01 m 

(STDEV 3.15 m) 

5.04 m 

(STDEV 3.70 m) 

3. Biryogo regular 36 3.95 m 1.95 m 
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spaced pattern (STDEV  0.80 m) (STDEV  1.48 m) 

4. Unplanned 

settlement on slope 
205 

3.75 m 

(STDEV  0.92 m) 

3.40 m 

(STDEV  2.94 m) 

 

4. Discussion and conclusions 

The extraction of building footprints by multispectral and height information of a Pléiades satellite scene led 

to promising results with a high accuracy. Nevertheless, various difficulties occurred during the processing, 

which had a negative impact on the classification accuracy. The unplanned squatter areas with a high building 

density and relatively small share of bare ground made it difficult to distinguish between single buildings and 

to identify the building heights. The TPI helped to differentiate very well between single detached buildings. 

The index improved the result in some areas, but could not increase the accuracy in densely built-up areas 

located on steep slopes. Roofs consisting of rusty corrugated metal proved to be another difficulty. They 

showed the same spectral properties as open soil for the four spectral channels. Since rusty roofs and open soil 

/ dirt roads occur often adjacent to each other, the segmentation was compromised and misclassifications 

occurred. Dark asbestos roofs of single-family detached buildings in the eastern part of the study area proved 

to be spectral similar to vegetation shadows. Since trees often surround this kind of building, positive matches 

of building footprints were low.  

A big challenge is the generation of a valid DTM, which would improve the identification of buildings 

significantly. Slopes, densely build-up areas, as well as shadows made it difficult to identify the elevation of 

the bare ground. Especially for the assessment of a reliable DTM on horizontally and vertically convex and 

concave slopes, a high density of elevation points on bare ground are needed. Thus, the error caused by a low 

number of elevation points is introduced into the assessment of the building heights. Even though the results 

are satisfying so far (Fig. 5), further investigations are necessary on the influence of roofing material and roof 

shape on the derivation of heights.  
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Figure 5: 2.5D model of the Kigali City centre 

The methodological approach may support the monitoring of built-up structures in Kigali. For flat areas even 

object heights can be computed and can be used to evaluate building structures. In areas with a more complex 

topography, manual post-processing of the analyst will be necessary to remove classification artifacts. 

Anyhow, the method has the potential to reduce the effort for manual digitization tremendously. Thus, it can 

improve the work of spatial planers, policy and decision makers. 

The use of supplementary data may further improve the classification results. The inclusion of a remote 

sensing sensor with a higher spectral resolution, like WorldView-3, will presumably allow to distinguish better 

between different roofing materials. The use of additional thematic information, like cadastral data, may 

contribute to the delineation between adjacent buildings with similar roofing materials. 
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