APPENDIX ¹

L.Gordeev

1 General conclusion.

Definition 1 Let $\mathbb{Z}_0 := \mathbb{Z} - \{0\}$. For any $0 < s \in \mathbb{N}$ let $\mathbf{s} := \{0, ..., s-1\}$. For any finite sets A, B denote by $A \to B$ the set of all functions from A to B. Let $0 < m, n \in \mathbb{N}$. For any $\overrightarrow{z} = \langle z_0, ..., z_{mn-1} \rangle \in (\mathbb{Z}_0)^{mn}$ define $\Omega_{m,n}(\overrightarrow{z}) \in \mathbb{N}$ by $\Omega_{m,n}(\overrightarrow{z}) := \sum_{f \in \mathbf{n} \to \mathbf{m}} \prod_{i < j < n} \left(z_{mi+f(i)} + z_{mj+f(j)} \right)^2$.

Definition 2 Let $x \ominus y := \max (0, x - y)$ and $x \odot y := (1 \ominus (1 \ominus |x|)) \cdot y$. Let $0 < s, \ell \in \mathbb{N}$ and $\overrightarrow{v} = \langle v_0, ..., v_{s-1} \rangle$ (variables). Denote by $\mathbb{QP}_{s,\ell}$ the (s,ℓ) -quasipolynomials, which are as follows. Suppose $P \in \mathbb{QP}_s$ arises by applying the following clauses 1-6 at most ℓ times, in arbitrary order. Then $P \in \mathbb{QP}_{s,\ell}$.

- 1. Let $1 \in \mathbb{QP}_s$
- 2. For any k < s, let $v_k \in \mathbb{QP}_s$
- 3. If $P,Q \in \mathbb{QP}_s$ then let $P+Q \in \mathbb{QP}_s$
- 4. If $P,Q \in \mathbb{QP}_s$ then let $P-Q \in \mathbb{QP}_s$
- 5. If $P,Q \in \mathbb{QP}_s$ then let $P \ominus Q \in \mathbb{QP}_s$
- 6. If $P,Q \in \mathbb{QP}_s$ then let $P \odot Q \in \mathbb{QP}_s$

Remark 3 Obviously, for every $\Omega_{m,n}$ there exists a $P \in \mathbb{Q}_{mn,(n^2-n+4)m^n+mn}$ such that $\Omega_{m,n}(\overrightarrow{z}) = 0 \Leftrightarrow P[\overrightarrow{v} := \overrightarrow{z}] = 0$ holds for all $\overrightarrow{z} \in (\mathbb{Z}_0)^{mn}$.

Conjecture 4 For every $c \in \mathbb{N}$ there are $0 < m, n \in \mathbb{N}$ such that for every $P \in \mathbb{QP}_{mn,\max(m,n)^c}$ there is a $\overrightarrow{z} \in (\mathbb{Z}_0)^{mn}$ with $\Omega_{m,n}(\overrightarrow{z}) = 0 \Leftrightarrow P[\overrightarrow{v} := \overrightarrow{z}] = 0$.

Theorem 5 Conjecture 4 implies $P \neq NP$.

Remark 6 It would suffice to weaken the conjecture by assuming that P in question is in fact determined by $\langle m, n \rangle$ while being polynomial in $\max(m, n)$. The corresponding weak variant of Conjecture 4 is equivalent to $P \neq NP$.

Conjecture 7 (Π^0_2 variant of Conjecture 4). For every $c \in \mathbb{N}$ there are $0 < m, n \in \mathbb{N}$ such that for every $P \in \mathbb{QP}_{mn,\max(m,n)^c}$ there is a $\overrightarrow{z} \in (\mathbb{Z}_{\leq mn})^{mn}$ with $\Omega_{m,n}(\overrightarrow{z}) = 0 \Leftrightarrow P[\overrightarrow{v} := \overrightarrow{z}] = 0$, where $\mathbb{Z}_{\leq s} := \{x \in \mathbb{Z}_0 : |x| \leq s\}$.

Conjecture 8 (Strong Π_3^0 variant of Conjecture 4). For every $c \in \mathbb{N}$ there is a $N \in \mathbb{N}$ so large that for every $N < n \in \mathbb{N}$ and every $P \in \mathbb{QP}_{3n,n^c}$ there is a $\overrightarrow{z} \in (\mathbb{Z}_{\leq 3n})^{3n}$ with $\Omega_{3,n}(\overrightarrow{z}) = 0 \Leftrightarrow P[\overrightarrow{v} := \overrightarrow{z}] = 0$.

Tübingen, January 2002

¹See the author's source "Proof theory and Post-Turing analysis" in: Proc. Proof Theory in Computer Science, Dagstuhl 2001, LN in Comp. Sci. 2183 (2001), 130-152