STRONG NORMALIZABILITY AND REALIZABILITY

by L. GORDEEV

This is a worked-out version of my handwritten notes of 1986. The content was
explained and discussed on several occasions. In particular, both the approach and the
results of this paper were reported in my talk "On Consistency and Cut Elimination"
at the Logic Meeting '88 in OBERWOLFACH (Nov.6 - Nov.12, 1988), and the
exhaustive abstract circulated.

0. Summary

By the appropriate formalization of the familiar impredicative cut elimination ideas we reduce
strong normalizability in set theoretical language to the consistency of the appropriate
comprehension axioms. In particular, this proves strong normalizability of Quine's New
Foundations minus Extensionality (NF~) within Zermelo Set Theory (Z) extended by the
existence of power—set hierarchy along Nw

1. Preliminaries

1.1. The theory NF".
The language of NF™ includes the following items:

(a) infinite list of variables (abbr.: z, y, 2),
(b) one binary predicate €, and one fixed predicate 1,
(c) two connectives A and =, and one quantifier V,

(d) formulae (abbr.: A, B, F, G, H), which arise from 1)-3) by familiar clauses.
Other formula-expressions are introduced in the familiar "negative" manner, i.e. e.g.
Ao B:= (A=B)A(B-A), 7A: = (A=1), dJzA: = V1A, AvB: = (2 AAB), ete..
The underlying logic of NF~ is the intuitionistic one. Furthermore, NF~ contains all instances
of the stratified (Quine's) comprehension axiom:

(SC)  dyVx(z€y—A), for each stratified formula A that does not contain y free.

1.2. Theories NF® and NFL.

The theory NF? is a conservative extension of NF~ obtained by adding

(e) abstraction~terms (abbr.: p, 7, x) of the form {:c| A} where A is as in (SC) above.
Moreover, while substituting abstraction-terms for variables we simultaneously convert all
subformulae according to the f-reduction TE{;U| A} A[z/7]. So in NF® atomic formulae are
expressions rE{x\ A} where A contains atomic formulae of the rudimentary form p€y.

The corresponding classical theory NF! is specified accordingly.

1.3. Sequent calculi SEQNF? and SEQNFL.

The (finite) intuitionistic sequent calculus SEQNF? standardly extends Gentzen's LI (with cut)
by the following symmetric abstraction rules.

(A3) Alz/p),re{z|A}T 3 H (54) I 3 Als/p]
pE{xlA},F > H r > pE{xIA}




The axioms of SENF? are sequents of the following forms.
(F) 1I'5 H
) pEm, I > pEm.

The corresponding classical (many-succedent) sequent calculus SEQNF! based on
Gentzen's LK is specified accordingly.

1.4. The theory TS™.

Let TS~ be the appropriate intuitionistc variant of Specker's type theory [S] with shift
isomorphisms. As compared to the language of NF~, the language of TS™ includes:
(a) infitely many typed variables (abbr.: zi, y i 2 for i€N),
() new function symbols ok(- ) for k,meN Wlth the intended meaning oK(-): UM+ Uk
The terms of TS~ (abbr.: pt, i wtoor sunply p, 7, ©) are built up from variables by applying
o¥(-) such that o¥(r!) is of the type k for 7' ranging over the terms of the type i.

Normal terms, i.e. terms in the normal form, arise by applying reductions

(R) okogM(r1)>ok(r1) and of(r¥)> 7.
Atomic formulae of TS™ are expressions pi€xi*l for any normal terms p' and #'*1 of the types
exposed, from which arbitrary formulae are built up standardly. A formula is called solid if no
ok occurs in it.

Now TS extends the intuitionistic predicate calculus by the following two aixoms.
(9 aveyrlookeskiiem ).

(C) Jyi*Vzi(zi€yi*lesr A), for each solid A that does not include yi*l free.

1.5. The theory TS®.

The correlated conservative extension TS? is defined by analogy to NF? ie. by adding in the
above definition of the terms all abstraction—terms {xi | A} of the type i+1, where A is as in
(C). Moreover, arbitrary terms may occur as parameters in the fomula A involved.

By substituting terms for variables we simultaneously convert all subformulae
according to the B- reductlon T‘E{:c | A} > A[zi/ri]. Thus, in TS® normal terms are of the
either form {x IA} or ¥, ( {:c IA}) for m#k, such that all atomic formulae occurring in A
are of the form pl€yi*l,

1.6. The sequent calculus SEQTS®.
The corresponding sequent calculus SEQTS? extends LI by the following symmetric rules.
Alz"/oR(pM)] pheoiti({a" [ADT = H
pkEO‘Ilﬁﬂ({xm IA}),F > H

(A=)

I 3 A["/of(p")]
I3 preofti({«"[4})

(=A)

The axioms of SEQTS® are sequents of the following forms.
(F) 1, > H
®  erir 3 ok(pmeoki(a),



1.7. The theory TS*.

The language of TS* extends the typed terms of TS™ by:
(g) infinitely many untyped variables (abbr.: n, m, k) which are thought to range over N,
(h) untyped number theoretical operations 0,4, as acting on [N.
(Typed terms are thought to range over the proper sets.) The corresponding untyped number—
theoretical terms (abbr.: @, b, ¢) arise accordingly.

Formulae of TS* standardly arise from the following atomic formulae:

a=b, pi= 7! and (a,p))Exi*l.

A formula is called solid if no 0¥ occurs in it. Now TS* extends the intuitionistic predicate

calculus by Peano axioms (with induction) for untyped objets, and the following two aixoms.
®  (na"EY" o (nof(e)ETKII(Y"

© Jy WV zi((n,z')Eyitles A), for each solid A that does not contain yi*1 free.
2. Results

2.1. THEOREM. NF® proves A iff 3 A is deducible in SEQNF®. NF® proves =A iff A3 1 is
deducible in SEQNF®. NFL proves A iff 3 A is deducible in SEQNFL. NF! proves = A iff A= .1 is
deducible in SEQNFL,

2.9. THEOREM. TS® proves A iff 3 A is deducible in SEQTS®. TS® proves 7 A iff A3 1 is
deducible in SEQTS®.

Proof These are obvious by the Gentzen's approach. O

2.3. THEOREM. Strong normalizability in SEQTS® implies strong normalizability in
SEQNF®. Strong normalizability in SEQNF® implies sirong normalizability in SEQNFL,

Proof Sketch. The first claim easily follows from the Specker's interpretation [S] of
NF~ within TS~ by deleting all symbols o¥ from a given cut free deduction in SEQTS®. The
second claim follows by the ———interpretation and the interpretation of Fy,...,F = Gy,...,Gy in
the intuitionistic form -Gy,...,"Gy,Fy,...,Fy> L. It should be observed that with any given
chain of classical reductions is associated the corresponding chain of intuitionistic reductions. O

2.4. THEOREM. The consistency of TS implies strong normalizability in SEQTSO.

The proof will be sketched in the next two sections.

92.5. THEOREM. The consistency of Z extended by the existence of power-set hierarchy
along Nw implies the consistency of TS*.

Proof Sketch. This follows by the Jensen's approach [J]. Recall that Jensen described
an interpretation of TS~ (in fact, with classical logic) within the initial segment of power—set
hierarchy whose levels satisfy Ramsey's theorem. Since Ramsey's theorem holds in w, this
segment can be bounded by w, and hence the theory of all finite power—set levels is strong
enough. The analogous treatment of TS* is possible within the initial ordinal-segnent [0,x)
satisfying the following combinatorial property.

For any m< w, any function F:wx[K]™=2, there is an infinite homogeneous set H C &,
i.e. such one that (Vn< w)(Va,BE[H]™)(F(n,a) = F(n,f)).

This principle easily reduces to the familiar combinatorial statement
(Vm < w)(k+(w)3)

which has a solution K= Nm (assuming GCH, which is proof-theoretcally irrelevant). O

2.6. COROLLARY. The consistency of Z extended by the exisience of power-set hierarchy
along Nw implies strong normalizability in both SEQNF® and SEQNFL 0



3. Proof of Theorem 2.4. Preliminary case

We prove strong normalization by the appropriate specification of the familiar approach of
Girard [G] and Martin-Lof [M]. For some reasons, we prefer to argue in Kleene's terms of
realizability, as familiar in the intuitionistic proof theory. The underlying idea is as follows.
For the sake of brevity, we first consider pure type—theoretical formalisms T?, T* and SEQT®
obtained by deleting from TS? TS* and SEQTS® all shift-isomorphisms ok(-). Thus all
atomic formulae are of the form pi€xi*l or simply p€n, where ritl = {:ci | A}.

3.1. Let D be any strongly normalizakle deduction (sn.d.) of the sequent
I'Fy,..,Fi > G. D acts on s.n.d. as a k—ary function as follows. Let Dy,...,Di be s.n.d. such that
every D; is a deduction of the sequent ;= F; for some L;. Then let D[Dy,...,.Dy] denote the
deduction of the correlated sequent T',%y,...,.E > G that arises by successively applying cuts on
Fy,...,Fy, whose left—hand premises are deduced by Dy,...,Dy, respectively. Now D[Dy,...,.Dy] is
well-defined if it is s.n.d., which we abbreviate by D[Dy,...,Dy] .

3.2. For any typed term 7 of T?, let 7 be some fixed term of T* which has the same
type and the same parameters as 7. With respect to this fixed assignment, the corresponding
notion of realizability is defined as follows.

3.3. In T*, we define binary relation DYTS: "A s.n.d. D realizes a sequent S in SEQT?"
by transfinite recursion on w-1th(S)+1th(Dy), where Dy is the (uniquely determined by the
Church-Rosser property) normal deduction of S to which D must eventually reduce.

3.3.1. Let S=(Fy,...,Fy>G) where k>0. Set DTS iff D is a s.n.d. of the sequent
T,Fy,....Fy > G, for some T, such that DY(= G) holds, and for any s.n.d. Dy,...,Dy, if D;T(3F;)
holds for all 0<i< k, then D[Dy,...,.Di]} and D[Dy,...,D] T(2 G) holds.

3.3.2. Set DT(2G) iff D is a s.n.d. of the sequent I'3 G, for some I', such that one of
the following holds.

3.3.2.1. G=1.
3.3.2.2. G= (p€x) and (DT p*)€x*, where D1 is the Godelnumber of D.

3.3.2.3. G= (AAB) and the following holds. If Dy ends by some elimination—rule, and Py is the
immediate subdeduction in Dy of any premise with the succedent minor-predecessor G, then
PyT(2 G) holds. Otherwise, if Dy ends by the (uniquely determined) introduction-rule, and
Py and Qy are immediate subdeductions in Dy of premises with the succedent main-prede-
cessors A and B, respectively, then both PyT (2 A) and QxY (2 B) hold.

3.3.2.4. G=(A=B) and the following holds. If Dy ends by some elimination-rule, and Py is
the immediate subdeduction in Dy of any premise with the succedent minor—predecessor G,
then PyT(2 G) holds. Otherwise, if Dy ends by the (uniquely determined) introduction-rule
with the immediate subdeduction Py, then PyT (A= B) holds.

3.3.2.5. G=(Vzld) and the following holds. If Dy ends by some elimination-rule, and Py is
the immediate subdeduction in Dy of any premise with the succedent minor—predecessor G,
then PNT(= G) holds. Otherwise, if Dy ends by the (uniquely determined) introduction-rule
with the immediate subdeduction Py, then YziPyT (= A4) holds.

This completes the definition in T* of the realizability relation DTS relative to the
term-assignment 7+ 7%, It is readily seen that for any sequent S, the above definition results
in the appropriate formula 2 TS of T* whose parameters extend the ones of S by the new
parameter n (as ranging over the Godelnumbers of D).

In order to prove that all deductions in SEQT? are strongly normalizable, it will suffice
to find a suitable assignment 7+ r* for which all deductions realize their concluding sequents.
In fact, we prove the following soundness theorem.

3.4. THEOREM. There is an assignment 7% such that the following is provable in TX.
For any deduction D of Fy,....Fy= G in SEQT?, D realizes every subsequent of Fy,...,Fi ;3 G, i.e.
DY(II=2 G) holds for any I C Fy,..., Fy.



Proof Sketch. Arguing in TX, by straightforward verification by induction on 1th(D),
the following condition 3.4.1 is sufficient for the required soundness of realizability.

Let p be any term of T? of the type i, let 7 be any abstraction—term {z'| A} of TO of
the type i+1, and let C be the set of all n satisfying (n,p*)E{:l:i ] A}*. Then

3.4.1. C is the minimal set of n= 'D! such that for some T', D is a s.n.d. in SEQT® of
the sequent I'3 p€x, and one of the following holds.

(a) D is the axiom p€m, 23 pEr.

(b) Dy ends by some eliminatien-rule, and TPy EC provided that Py is the immediate
subdeduction in Dy of any premise with the succedent minor-predecessor p€n.

(c) Dy ends by the introduction-rule (3A), and PyY(2 A[21/p*]) holds for the (uniquely
determined) immediate subdeduction Py.

It is now readily seen from the above definition of the realizability predicate n TS that
the assignment 7+ 7* satisfying 3.4.1 is explicitly definable in T* by recursion on compexity of
7 by the comprehension axiom (C). Namely, we first set 7*: = 7 for each untyped term 7 and
for each variable r=2z!. Now for any term 7= {inA} of T?, define 7* in T* by (C) as the
minimal set consisting of {n,z!), where n codes a s.n.d. in SEQT® of the sequent I'3p€x for
some ' and p, such that either condition (a), (b) or (c)” holds. Here (a) and (b) are as above,
whereas (¢)” is obtained by replacing, in (c), PyYT (2 A[z!/p*]) by the corresponding relation
PNT (2 A) that is defined with respect to the assignment 7+ 7* on the parameters of A. O

3.5. COROLLARY. The consistency of T* implies strong normalizability in SEQT?. O
4. Proof of Theorem 2.4

Let D be any s.n.d. in SEQTS? of the sequent I'2pEn, where 7 is of the type k+1. Since by
definition = (as well as p) is normal, it uniquely determines the corresponding pure abstract-
term 7' = {xmlA} such that == g &*1(x"). Moreover, 7= 7' holds in the case m=k. It is
readily seen that D uniquely determines the corresponding isomorphic s.n.d. D* of the sequent
FZ}O’{?(p)EW*. Having this, we specify as follows the previous notion of realizability 3.1-3.3.
4.1. The applicability D[Dy,...,Dy] on s.n.d. in SEQTS? is defined analogously to 3.1.

4.2. As in 4.1, we fix some assignment 7+ 7*. For any typed term 7 of TS® 7* is some
term of TS* which has the same type and the same parameters as 7.

4.3. Arguing in TSX, we define binary relation DYS: "A sn.d. D realizes a sequent S
in SEQTS®" by transfinite recursion on w-1th(S)+1th(Dy) where, as above, Dy is the normal
form of D. The definition is analogous to the previous definition 3.3, except for the following
modified treatment of 3.3.2.2.

4.3.2.2. G= (p€r) and ('DT1 p¥)er*, where 'D'1 is the Godelnumber of D' (see above).

For each sequent S, the resulting definition provides us with the appropriate formula
2 TS of TS* whose parameters extend the ones of S by the new parameter n (as ranging over
the Godelnumbers of D), which formalizes the realizability relation DTS for SEQTS® relative

to the term—assignment 7+ 7%,

4.4. THEOREM. There is an assignmeni 75 7F such that the following is provable in TS*.
For any deduction D of Fy,...,Fy=> G in SEQTS®, D realizes every subsequent of Fy,...Fi > G, i.e
DY (112 G) holds for any T C Fy,..., Fy.

Proof Sketch. As compared to the proof of 3.4, there is one new point. Namely, in
order to prove that every axiom (I) is realizable, and in particular, in order to establish

{premm i ok (meak (="} T(pmer 13 ok (M eo ki),



we must be sure that D realizes = p"€x"*l iff it realizes = oX(p™eckii(ax"*1). By the
clause 4.3.2.2, this yields the following assertion

(d) (D™ pfea* « (IO afi(p)*)eafiti(m*

Now observe that (d) is derivable in TS* from the crucial axiom (§), provided that the
following condition holds for every term 7 of the type i

(e) oli(n)* = ok ().

(Clearly, the realizability of (I) from SEQT? is established by the identity of T*.)

By this observation, the following condition 4.4.1 proves the required soundness of
realizability provided that (e) is satisfied.

Let p be any term of TS® of the type k, let 7 be any term 7= gK+1(z") of TS® of the
type k+1, where 7' = {:1:"' |A}, and let C be the set of all n satisfying (n,p*)€7*. Then

4.4.1. C is the minimal set of n= 'D1 such that for some I', D is a s.n.d. in SEQTS®
of the sequent '3 pEx, and one of the following holds.

(a) D is the axiom (I) of the form of(p)€olii(n), L= pEm.

{b) Dy ends by some elimination-rule, and !—PNH €C provided that Py is the immediate
subdeduction in Dy of any premise with the succedent minor-predecessor p€r.

(c) Dy ends by the introduction-tule (2A), and PyT(2A[z"/0f(p*)]) holds for the
(uniquely determined) immediate subdeduction Py.

The assignment r+7* satisfying (e) and 4.4.1 is explicitly definable in TS* by

recursion on compexity of 7 by the comprehension axiom (€). As in the preliminary case 3.4,
we first set r*:=r for each untyped term 7 and for each variable 7= z!. For any term 7=
okti(r?) where 77 = {2" | A}, m#k, we set 7= gK1i((r7)*). Now for any abstraction—term
7= {xi A} of TS?, we define 7* in TS* by (C) as the minimal set consisting of (n,z}), where n
codes a s.n.d. in SEQTS® of the sequent ©=pEx for some ¥ and p, such that either condition
(a), (b) or {¢)” holds. Here (a) and (b) are as above, whereas (c)” is obtained by replacing, in
(¢), PNT(2 A[2" /o] (p*)]) by the corresponding relation PyT (=2 A) that is defined with respect
to the assignment 7+~ 7* on parameters of A.

This completes the proof of Theorem 4.4, and thereby completes the proof of Theorem
24.0

4.5. REMARK. In this framework, strong normalizability of a given purely
comprehensive set theory reduces to the consistency of a theory that extends Peano Arithmetic
by the appropriate extended comprehension axioms. That we used typed language is
unimportant — it is possible to formalize our proof of strong normalizability for SEQNFY in the
analogous stratified extension of NF? NF¥* based upon the untyped language of (n,z)€y
instead of of 2€y. The crucial observation is that our assignment 7+ 7% preserves the
stratification. (The only reason for the choice of the typed theory TS* is the proof theoretical
estimate given in Theorem 2.5.) On the other hand, this approach does not preserve Zermelo's
comprehension axiom JyVe(z€yerzE7AA(z)), since by definition the required set #* should
consist of (n,z)€y for which only (m,z)€7*, for some m, but not (n,z)€7*, is required. Indeed,
strong normalizability in known to fail in very rudimentary fragments of Z.
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Foundations. Synthese 19, 250~263

[M]: Martin~Lof, P. Haupisaiz for intuilionistic stmple type theory. Logic, Methodology and
Philosophy of Science 1V, 279-290 (North-Holland, Amsterdam, 1973)

[S]: Specker, E. Typical ambiguity. Logic, Methodology and Philosophy of Science, 116-124
(Stanford Univ. Press, 1960) '



L.GORDEEV: On consistency and cut-elimination.(OBERWOLFACH'88:Exhaustive Abstract)

I write SEQ to mean the weak rule free extension by two (symmetrical) abstraction rules

s€{x| B(x)}.0(s).Tr Lo w(s)
se{x| f(x}.Try L' mse{x | A}
of purely " ="€"~variant of Gentzen's intuitionistic sequent calculus. In this language,

abstraction terms are built up from variables and constants Cg,...,Cp (possibly sorted) as

{x] @;(x)}, i=0,..,n, and are closed under substitutions, where 0,...,0t, are some fixed

stratified (in Quine's sense) formulae with one distinguished parameter x, possibly including

other parameters from a fixed list z. Moreover, I assume that all abstraction terms under
consideration are in the normal form, 1.e. are irreducible under the ordinary abstraction term
reduction S€{x|(x)}>H(S). Proper abstraction terms (PAT) are abstraction terms which are
not variables. A subformula-occurrence ¢ in a PAT a = {x|ﬂ(x)} is such an occurrence of ¢ in

3 that does not occur in any PAT occurring in (3. The Minc-style elementary (cut-)reduction

operator Rg is defined by an obvious abstraction rule specification of the standard definition

(cf. e.g. APAL 38(1) p.49). Strong normalizability (SNorm) expresses that for any derivation d

in SEQ, every sequence of Rg-reductions in d terminates. I describe the appropriate SE(-

translation in the terms of realizability of the familiar (for Natural Deduction, say) Girard-
style strong normalizability proof in pure intuitionistic Type Theory (ITT). For any type-level

1, the modified proof of the corresponding ( < n)-restricted statement SNorm(SEQ('TT,)) easily

reduces to certain simple axioms provable in iTTnﬂ extended by the axioms formalizing

elementary number theory at level 0. Furthermore, strong normalizability of the corresponding
classical "many-succedent" sequent calculus SEQ(TT,) follows (provably in the 21d order
conservative extenison of HA) directly from SNorm(SEQ(IIT,)) by Godel's ~—-interpretation
together with the familiar intuitionistic interpretation of classical sequents. Using Jensen's
treatment of Quine's New Foundation minus extensionality (NF-Ext), for both intuitionistic
and classical sequent calculi I reduce by similar techniques the statement SNorm(SE{J(NF-Ext))
to a combinatorial principle provable well within ZF. However, a similar approach in the
presence of the w-rule for abstraction terms would certainly assume (at least) the truth of the

Domain Completion Axiom (DCA) of the form (Vy)VPAT(y), where VPAT(y) (i.e. in words: "y is

the value of some PAT") is an abbreviation of (W ¢u)(y = C)V(Jz)(V i<, )(Vx)(xEy8ai(x,2)). Let

SEP be the corresponding separation axioms (M j¢,)(dy)(Vx)(xEy&a;(x)). 1 ask under which

assumptions SEP4+DCA is consistent.

1 I conjecture that the following condition (C) implies the consistency of SEP4DCA.

(C):  "Let & be PAT, (Qx)@(x) be any subformula-occurrence in & (Q =V,3). Let &7, a" be
obtained by substituting (Qx)(@(x)AVPAT(x)), resp. (Qx)(((x)V-VPAT(x)) for (Qx)¢(x)
in &. Then a’, 8" are both PAT modulo provability in classical Predicate Calculus."

Fact. In the particular case of 15¢ order unsorted purely "g"-language without constants,

this logical conjecture implies Con(NF).

1.1 Let me explain the latter underlined expression. First of all, NF-Ext appears very

natural and remarkably simple in formalization (as compared to TT), while still satisfying

strong normalizability ~ contrary to more familiar formal set theoretical systems (s.a.

Zermelo's 7) based on nonstratified separation. Secondly, the axiom of extensionality, although

having (so far) no plausible explanation in purely logical terms, classically proves the axiom of

infinity (Specker) and thus dramatically increases both expressive and proof theoretical
strength (Jensen) of NF-Ext.

Now turning to the above conjecture (let me call it Cl1), I say that a given list
(co,...,cm;al,...,an) of constants and stratified formulae with parameters x,z is Herbrand-
consistent (H-consistent) iff SEP+DCA is consistent (in the ordinary sense of being contra—
diction free). The notion of H-consistency seems natural and important because by asserting
only SEP we wish to "construct" the universe consisting of PAT ¢;, {x| a;(x)} - this will
resemble the familiar number theoretical formalism where objects are thought to be generated
from 0 by the successor operation Ax.S(x) so that eventually we get (Vx)(x = 0V(dz)(x = S(2))).
It seems something must go wrong if the separation axioms SEP suddenly become incompatible
with DCA. Let me now briefly illustrate the notion of H-(in)consistency.

==)]

[see



For arbitrary constants Cg,...,Cp, any list of quantifier free formulae is H-consistent,
and obviously satisfies (C). Moreover, so is any complete list of formulae, i.e. such that every
stratified separation term is PAT. That complete lists do exist follows from the finite
axiomatizability of NF-Ext. Loosely speaking, <co,...,cm;a/0,...,an> certainly is H-consistent if
it includes "reversable" formulae, i.e. if something like (Vx)(x€y&x€U{y}) can be expressed in
the terms of (,...,(¢;)-separations. On the other hand, the list (c;(VY)~(x€Y)) is H-
inconsistent already in 2"d order logic. For take A:= {x|(VY)(x€Y)}, then DCA expresses
(VY)(Vx)(xEY&XEA), hence CEA & ce{x|(VY)(x€Y)} & (VY)(CEY) &pca) ~(CEA). Clearly,
(B;(Vy)~(x€y)) is H-inconsistent also in 15% logic via a€a & ae{x|(Vy)~(x€y)} & (Vy)-(a€y)
&mch) ~(a€a) for a: = {x|(Yy)-(x€y)}. Note that these counter-examples do not satisfy (C).
For otherwise (in the latter case, say) in 15% order classical logic we would derive (Vy)-(x€y) &
(V) (~(x€y)A(Vu) (u€xa(Vv)~(uev))) & (Vy)(-(xEy)V-(Vu)(u€y&(Vv)~(u€v))). However, the
first equivalence is easily refutable. For example, take the two—element structure {0,1} with
the only relation 1€1, then (Vy)=(0€y) holds but 1€1&(Vv)-(1€v) obviously fails.

Thus the question concerning nontrivial sufficient conditions to H-consistency appears
quite natural from the ordinary "algebraic-logical" viewpoint. The counter—example above
may suggest that sometimes H-inconsistency fails simply because that list of PAT is too small,
i.e. is not closed under certain "logically obvious" operations (e.g. the negation). In this
context observe that the condition (C) is minimal w.r.t. the provability in classical Predicate
Calculus, since the subformula ¢(x) is equivalent to both ¢(x)AVPAT(x)) and @(x)V-VPAT(x))
under the desired assumption DCA. On the other hand, the real structure of H-consistent
theories is far more complicated, and certainly it cannot be explaind in the (C)-terms. For
example, one can extend H-inconsistent list (@;(Vy)-(x€y)) (see above) by adding the
negation (Jy)(x€y). The extended list {@;(Vy)~(x€y),(Iy)(x€y)) is H-consistent since the
corresponding theory SEP-+DCA has the two-element model {0,1} with 0€1€1, but it does not
satisfy the condition (C).

Finally, observe that the conjecture (C1), i.e. (C)2Con(SEP+DC4), is "logically neutral"

in the sense that its intuitionistic variant (1C1): (C)3Con(i(SEP4DCA)) is of the same proof
theoretical strength. For in the intuitionistic formalism, G&del's ——-interpretation yields
classical model of SEP+DCA provided that each formula ¢; does not include V,3. The latter is
easily achievable since the condition {C) is invariant w.r.t. classically valid transformations of
subformulae in ;. In other words, from the intuitionistic viewpoint it suffices to apply (C) to
negative formulae ¢@; for which intuitionistic and classical provability are essentially
equivalent. Thus (1C1) implies the consistency of NF.(with classical logic and Extensionality)
just as well as (C1) (see above). This refers to a more complicated situation concerning the
latter theory, because it is unknown whether INF is proof theoretically as strong as NF, or even
whether the infinity axiom is provable in 'NF. For the same reasons, the conjecture (C1) (if it
should be true) would present the theory of (possibly) infinite sets in somewhat "logical" way,
as compared to the familiar set theories which need a special axiom postulating the existence
of an infinite set {otherwise, these set theories would proof theoretically collapse into the
theory of numbers).
2. My second conijecture (C2) is (C)3SNorm(SEQW(ISEP)) i.e. in words: "The intuitio-
nistic sequent calculus corresponding to SEP, ertended by two symmetrical w-rules for
abstraction terms instead of Gentzen's finite V~introduction and 3-elimination, respectively, is
strongly normalizable". As usual in Proof Theory, already the corresponding primitive recursive
conjecture (PRC2) seems to be sufficiently strong, where in (PRC2) I consider only primitive
resursive infinite derivations and primitive recursive sequences of reductions. Note that by
standard arguments, (PRC2) implies (C)3Con(i(SEP+DCA4+PATIND)), and hence by Giddel's
——-interpretation, (PRC2) also implies (C)3Con(SEP+DCA+PATIND). Here PATIND stands for
the corresponding PAT-induction axiom expressing that for any formula ¢(x), (Vx)(x) holds
provided that ¢ holds for each constant C; and is hereditarily closed under each operation
{x| @j(x)}. By the previous arguments, (C2) implies (C)»SNorm(SEQ®(SEP)). Moreover, by
similar arguments which show, loosely speaking, that strong normalizability is closed under
syntactical interpretations, (C2) seems to imply (C)2SNorm(NF) for both intuitionistic and
classical variants of NF with Extensionality w.r.t. the "naturally” defined notion of reduction
in the presence of the corresponding (symmetrical) extensionality rules.
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