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Abstract

We propose a fast algorithm for the probabilistic solution of boundary value
problems (BVPs), which are ordinary differential equations subject to boundary
conditions. In contrast to previous work, we introduce a Gauss–Markov prior
and tailor it specifically to BVPs, which allows computing a posterior distribution
over the solution in linear time, at a quality and cost comparable to that of well-
established, non-probabilistic methods. Our model further delivers uncertainty
quantification, mesh refinement, and hyperparameter adaptation. We demonstrate
how these practical considerations positively impact the efficiency of the scheme.
Altogether, this results in a practically usable probabilistic BVP solver that is (in
contrast to non-probabilistic algorithms) natively compatible with other parts of
the statistical modelling tool-chain.

1 Boundary value problems in computational pipelines

This work develops a class of algorithms for solving ODE boundary value problems; that is, ordinary
differential equations (ODEs)

ẏ(t) = f(y(t), t) (1)

subject to left- and right-hand side boundary conditions Ly(t0) = y0 and Ry(tmax) = ymax. The
vector field f : Rd → Rd, as well as L ∈ RdL×d, R ∈ RdR×d, t0 ∈ R, tmax ∈ R, y0 ∈ RdL , and
ymax ∈ RdR are given. It is no loss of generality to consider a first-order boundary value problem
because higher-order problems can be transformed into first-order problems [1].

Loosely speaking, solving BVPs amounts to following the law of a dynamical system when “connect-
ing two points”. This setting is relevant to several scientific applications of machine learning. As
motivation, we consider three examples, all of which are depicted in Figure 1. First, recovering the
trajectory of a pendulum between two positions amounts to solving the ODE ÿ(t) = −9.81 sin(y(t))
subject to the positions as boundary conditions. If the positions were interpolated without the ODE
knowledge, the output would be physically meaningless. Second, BVPs arise when inferring the
evolution of the case counts of people that fall victim to an infectious disease. A lack of counts of (a
specific subset of) non-infected people at the initial time-point can be made up for by available counts
of infected people at the final time-point of the integration domain. Third, efficient manifold learning
necessitates repeated computation of (geodesic) distances between two points, which amounts to
solving BVPs [2, 3]. Depending on application details, the ability to produce structured output
uncertainty or to enhance the algorithm by including additional sources of information can be crucial.
Probabilistic numerical algorithms respond to these challenges by solving problems of numerical
simulation with probabilistic inference. For initial value problems, probabilistic solvers share linear-
time complexity, adaptive step-size selection, and high polynomial convergence rates with their
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Figure 1: Recovering the trajectory of a pendulum between two positions is a BVP (LEFT). Lack
of initial values can be made up by boundary values in an SEIR model (MIDDLE). Straight lines on
manifolds give distance measures and demand solving a BVP (RIGHT; depicted are the mean and ten
samples of the probabilistic solution; principal components of 1000 MNIST images of the digit “1”).
In all three figures, the ball/diamond markers express boundary conditions.

non-probabilistic counterparts [4–7], and further provide functionality to quantify uncertainty within
probabilistic programs [8, 9].

Probabilistic BVP solvers have not yet reached this level of quality. Existing probabilistic treatments
of BVPs [10–12] iteratively condition a Gaussian process on approximately “solving the BVP”.
Each such iteration requires solving a generic least-squares problem of size equal to the number of
employed grid points. The resulting cubic complexity puts severe upper limits on grid resolution.
Traditional, non-probabilistic BVP solvers (for instance, those presented in [1]) are very efficient
but do not provide probabilistic output. Thereby, they would have to serve as black-boxes inside
probabilistic programs. In this work, we close this gap. The main idea of this paper is that computing
a probabilistic solution of BVPs is fast if the prior is Markovian (Section 2). Probabilistic modelling
provides additional advantages. In particular, algorithmic parameters can be estimated automatically
(including those that must be provided by the user in traditional methods; Section 3–5).

2 Boundary value problems as probabilistic inference tasks

2.1 Generative model

Let σ > 0. We define the process Y = [Y0, ..., Yν ]
>

: [t0,∞) → Rd(ν+1) as the solution of the
stochastic differential equation

dY (t) = AY (t) dt+B dW (t), Y (t0) ∼ N (m0, σ
2C0), (2)

driven by a d-dimensional Wiener process W : [t0,∞) → Rd with diffusion Γ = σ2I ∈ Rd×d,
and initial parameters m0 ∈ Rd(ν+1), C0 ∈ Rd(ν+1)×d(ν+1) [4]. For the moment, we set σ = 1,
m = (0, ..., 0), and C0 = I , and will discuss parameters calibration later. Let A ∈ Rd(ν+1)×d(ν+1)

and B ∈ Rd(ν+1)×d be such that the zeroth component Y0 of Y is the integrated Wiener process.
The qth component Yq of Y is the qth derivative of the integrated Wiener process. In this setup, Y0
models the BVP solution y, and Yq models the qth derivative of the BVP solution y: Yq(t) ≈ y(q)(t),
q = 0, ..., ν [6, Equation 2]. This is the prior for the probabilistic BVP solver. Other choices are
possible, too [5, Section 2.1].

For ODE solvers, the likelihood is best described in terms of an information operator [13]. For BVPs,
there are two sources of information: first, the boundary conditions

`L(Y ) := LY0(t0)− y0 and `R(Y ) := RY0(tmax)− ymax, (3)

and second, the differential equation, encoded by the information operator

`(Y )(t) := Y1(t)− f(Y0(t), t). (4)

Similar models are used in the gradient matching literature [14, 15]. Different to the likelihoods from
conventional Bayesian inference, information operators used in probabilistic numerics are noise-free
and often map between (possibly infinite-dimensional) vector spaces of functions [16, Section 2].
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Let T := (t0, ..., tN = tmax) be a grid on [t0, tmax]. For now, we assume this grid is given; Section 4
introduces a strategy for iterative mesh-refinement based on error-control. We will abbreviate
`n(Y ) := `(Y )(tn) and `0:n = (`0, ..., `n), n = 0, ..., N . Using T, as well as the likelihoods in
Equations (3) and (4), the approximate ODE solution is captured by the posterior distribution

p (Y (t) | `L(Y ) = 0, `0:N (Y ) = 0, `R(Y ) = 0) . (5)

Unfortunately, the full posterior (5) is intractable because of the non-linearity of f (which implies
non-linearity in all `n). We will thus approximate it with a Gaussian: the probabilistic BVP solution.

2.2 Approximate Gaussian posterior inference

While the full posterior in Equation (5) cannot be computed in closed form, a maximum-a-posteriori
(MAP) estimate is obtained by finding the minimum

arg minY (T) {− log p(Y (T)) : `L(Y ) = 0, `R(Y ) = 0, `0:N (Y ) = 0} . (6)

This constrained optimisation problem can be solved with the iterated extended Kalman smoother
(IEKS). The IEKS is a state-space implementation of a Gauss–Newton algorithm [17]. As such, one
step of the IEKS computes the closed-form minimum of Equation (6) with a Kalman smoother, where
the non-linear `0:N is replaced by its first-order Taylor approximation around the previous iterate.
Under mild assumptions on the non-linearity of f and the magnitude of the objective at the optimum,
Gauss–Newton methods are locally convergent with linear rate [18].

Each iteration of the IEKS returns a mean and covariance function. Eventually, the scheme approaches
a variant of the Laplace approximation of the posterior (note the shorthand of Equation (5))

YMAP(t) ∼ N (mMAP(t), CMAP(t)) ≈ p(Y (t) | `L, `0:N , `R), (7)

(this is a non-standard Laplace approximation in so far as it employs a Gauss–Newton approximation
of the Hessian). A more detailed explanation is in Appendix A. The mean mMAP(t) is the MAP
estimate, because it minimises the objective in Equation (6). The covariance CMAP(t) is the inverse
(approximate) Hessian of the negative log-posterior distribution, evaluated at mMAP(t).

The Gaussian posterior returned by the IEKS is a probabilistic BVP solution. Thus, this basic version
of the algorithm is already a valid BVP solver. But some degrees of freedom remain, whose efficient
selection improves performance significantly. These will be the concern of the remainder of this
work. Table 1 presents an outline.

Table 1: Configuration of the remaining degrees of freedom.

What? How? Where?
Initialisation of the IEKS ODE filter with Gaussian bridge Section 3
Mesh T Error control Section 4
Diffusion σ Quasi-maximum likelihood estimation Section 5
Initial parameters m0, C0 Expectation-maximisation Section 5

3 An initial guess is not strictly necessary

Like every optimisation algorithm, the IEKS needs appropriate initialisation. Not only does the
number of iterations depend on the proximity of the initial guess to the optimum, but BVPs often
allow multiple solutions, and the algorithm can find only one of them [19, p. 10]. Non-probabilistic
solvers outsource this issue to the user by expecting that an initial guess is provided.1 While the same
strategy is available for the probabilistic solver, there are natural alternatives in non-iterative Gaussian
smoothers (Section 3.1), which further benefit from combination with a bridge prior (Section 3.2).

1For example, at the time of this writing, the BVP solvers in SciPy, Matlab, and DifferentialEquation.jl
require the user to pass a vector of initial guesses of the solution at an initial grid to the algorithm [20–22].
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Figure 2: Construct a bridge by considering boundary values first. Graphical depiction of the
inference problem (LEFT). Samples from the Gauss–Markov (CENTRE) and bridge prior (RIGHT).

3.1 Initialisation with an extended Kalman smoother

If the target of a Laplace approximation of the BVP posterior is relaxed to only some Gaussian
approximation, an initial guess can be computed with an extended Kalman smoother (EKS) [13, 5].
Like the IEKS, the EKS linearises the non-linear ODE measurements `0:N with a first-order Taylor
series. It differs from the IEKS in the position around which the approximation is constructed. The
IEKS linearises all `0:N at once after each completed forwards-backwards pass. The EKS linearises
each `n on the fly during the forward pass, at the respective predictive mean [23]. In other words, the
EKS does not need an initial guess, which is why it is the tool of choice to construct one [5].

If the BVP is linear, the EKS computes the true posterior [23, 24]. If the BVP is non-linear, the EKS
introduces a significant linearisation error wherever the predictive distribution deviates strongly from
the true posterior. Unfortunately, in its standard implementation, the EKS necessarily starts with
incomplete information about the state y(t0) and higher-order derivatives (initialisation of which is
crucial to probabilistic initial value problem solvers as well [7]). Ensuring that the prior distribution
satisfies the boundary conditions by construction solves this problem because the iteration can never
drift too far away from the optimum. The following Section 3.2 explains more.

3.2 Changing the order of updates to build a bridge prior

Recall that there are three sources of information: the left-hand side boundary condition `L, the
right-hand side boundary condition `R, and the ODE measurements `0:N . If the initial and terminal
state of the prior distribution are forced to accommodate `L and `R before conditioning on `0:N ,
samples from the resulting Gaussian bridge satisfy the boundary conditions by construction; see
Figure 2. The linear-time complexity of Gaussian filtering/smoothing is preserved through this change
in the order of updates, because the Markov property of Y yields

p(Y (T) | `L, `R) = p(Y (t0) | `L, `R)

N−1∏
n=0

p(Y (tn+1) |Y (tn), `R). (8)

The transition densities p(Y (tn+1) |Y (tn), `R) as well as the initialisation p(Y (t0) | `L, `R) are
available in closed form (Appendix B). A reader familiar with the prediction-correction nature of
Gaussian filtering can think of the implementation as follows: Roughly speaking, each prediction
step of the EKS with a bridge prior involves extrapolating from the current state to the terminal state,
conditioning on the boundary condition `R, and smoothing back to the current state. Therefore, the
computational complexity of an EKS forward-backward pass with the bridge prior is about twice as
large compared to an EKS forward-backward pass with the conventional prior. Precise derivations
are in Appendix B.

Figure 3 shows that this extra cost is made up for by the improved linearisation behaviour because
encoding the boundary conditions into the prior improves the initialisation drastically. Following the
forwards-backwards pass with the EKS, the IEKS requires only a few more iterations to find a fixed
point similar to the truth. Not using either the bridge prior or the EKS results in an initial guess that
takes more iterations to find a fixed point of a lower approximation quality. Abandoning both options,
which aligns with initialisation of traditional BVP solvers, is least efficient since it converges to an
inaccurate fixed-point.
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Figure 3: In combination, EKS and bridge prior initialise well. Initialisation and five iterations of the
IEKS depicted from light to dark on the 20th problem in [25] (truth in black). Without bridges, and
with an initial guess of constant twos, the fixed-point of the Gauss–Newton scheme is inaccurate on
N = 6 points (LEFT). Using either a bridge prior (CENTRE LEFT) or the EKS (CENTRE RIGHT) lessens
this problem. The bridge/EKS combination finds an accurate estimate almost immediately (RIGHT),
because due to the bridge prior, the EKS linearises around a more accurate location than it would
with a conventional prior during the first forward-pass.

Linear BVPs undo the effect of the bridge prior because the full posterior is computed accurately
with a conventional Kalman smoother [23]. Likewise, an IEKS iteration linearises all `0:N at once,
outside of the forwards-backwards pass, which renders the bridge obsolete as well. In other words,
the changed order of updates is only relevant for the initialisation.

Of course, a fixed point of the IEKS is not necessarily a reliable BVP solution: its accuracy depends
on the number and distribution of mesh points. The following Section 4 develops a principled and
probabilistic approach to error control and mesh refinement in the BVP solver.

4 Estimate the error and refine the mesh

So far, the mesh T was assumed as given. The larger the size of this mesh is, the more accurate the
solution becomes; but computational cost grows linearly with the mesh size. Low error tolerances
thus require smart meshing via error control. There are two (plus one) natural candidates for error
estimators, all of which connect to the probabilistic formulation of solving BVPs.

Standard deviation: The output of the IEKS is a Gaussian process, which can be evaluated at any
point in the domain of the boundary value problem [24, Chapter 10]. Its associated standard deviation
provides an error estimator. The advantage over the alternatives explained below is that it comes
(essentially) for free as part of the dense output of the posterior. A potential downside of this intrinsic
error estimator is its dependence on the calibration of a hyperparameter (more on this in Section 5).

Residual: The inference problem (Equation (5) and Figure 2) is constructed by conditioning the
prior Y on attaining consistently small values in its residual `(Y )(t) = Y1(t)− f(Y0(t), t). Recall
that if Y0 were the true ODE solution, and Y1 were its derivative, `(Y ) would be zero on the whole
domain. Thus, the residual of the posterior mean of the approximate ODE solution estimates the
error, which is a common approach in traditional, non-probabilistic algorithms as well (for instance
[19] or [1, Section 9.5.1]). On a side note, considering the full posterior distribution implies that
the residual would be a deterministic transformation of a random variable. Thus – in principle – a
random variable might make a more appropriate model for the residual error than a point estimate
(see Remark 1). However, this quantity will reveal itself as inaccurate in the benchmarks below.
Remark 1. For a Gaussian process posterior Y , the law of `(Y ) is intractable in general. Lineari-
sation of ` (at the previous iterate, like in the IEKS) unlocks a Gaussian approximation: denote the
Gaussian random variable Z(t) ≈ `(Y )(t). An upper bound of the probability of ‖Z‖ exceeding
some tolerance,

p
(
‖Z(t)‖2 > tol2

)
<
(
Trace[Cov(Z(t))] + ‖E(Z)(t)‖22

)
/tol2, (9)

is due to the Markov inequality and a third approach to error control. The numerator of the right-hand
side will be treated as an error estimator in the benchmarks below. The main difference to the point
estimate is that the probabilistic version punishes magnitude and uncertainty in the residual.
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All three options (which we denote by a generic e from now on) estimate the error at a given t. For
mesh refinement, however, it is more instructive to consider the accumulated error on each interval

εn :=

(∫ tn+1

tn

‖e(t)‖22 dt
)1/2

, n = 0, ..., N − 1. (10)

If each εn is sufficiently small, the BVP solution is adequately accurate and the mesh appropriately
fine. On those intervals where εn is too large, we introduce new grid points as follows. Assuming
that the integrated error is of order ρ > 0, εn ∈ O(hρ), splitting the interval into two equally large
parts reduces the error by a factor 2−ρ, and splitting it into three equal parts by a factor 3−ρ. We use
these threshold values to guide where to introduce one point and where to introduce two points. Like
Kierzenka and Shampine [26], we never introduce more than two at once. For the experiments herein,
and ν-times integrated Wiener processes, we use ρ = ν + 1/2 (which has not been proved yet but
seems like a reasonable conjecture in light of Theorem 3 of Tronarp et al. [5] and our experiments).

The integral that underlies εn can usually not be computed in closed form but needs to be approximated
by a numerical integration scheme. We use Bayesian quadrature (BQ) [27]. Not only does it fit neatly
into the probabilistic framework, but it also allows us to place quadrature nodes freely in each domain
[tn, tn+1). If viewed as an integral from 0 to 1, we choose quadrature nodes at 0, 0.33, 0.5, 0.67, 1.
These locations include the boundary points of the domains (0 and 1), as well as the nodes that will
be introduced in case the error is too large (either 0.5, or 0.33 and 0.67). This has the advantage that,
at the start of the next iteration, we reuse the evaluation of the posterior at the new mesh points. If the
residual estimates the error, there is another advantage. Since the IEKS approximation is a minimum
of a constrained optimisation task, the residual is zero at the boundaries of each interval. In this case,
the integral is only computed on the three interior nodes. For the same reasons, non-probabilistic
solvers with residual control usually employ Gauss–Lobatto schemes [19].

A final motivation for BQ is that we can tailor an integration kernel to e. For instance the following
reproducing kernel Hilbert spaces (RKHSs) are known [5]: (i) the RKHS of ν-times integrated
Wiener process priors Y (·) is the Sobolev space of (ν + 1)-times weakly differentiable functions;
(ii) under some regularity assumptions on the ODE vector field, as well as on the (assumed to be)
unique solution of the ODE, the RKHS of the residual `(Y )(·) is the Sobolev space of ν-times weakly
differentiable functions. Therefore, we base the BQ scheme on a (ν − 1/2)th order Matérn prior,
which has the same native space as the residual [28] (we use an exponentiated quadratic kernel for
ν > 3 because the required kernel embeddings are easier to compute [29, Appendix J]). The accuracy
of the quadrature approximation improves with increasing ν [29]. Matching the BQ kernel to the
ODE prior parallels the choices of quadrature schemes in non-probabilistic solvers [19], and ensures
that the accuracy of the numerical integration does not limit the validity of the error estimate.

Which one is the most reliable error estimate? As a first testbed, we use the seventh in a collection
of test problems for BVP solvers by Mazzia [25] (which will feature heavily in the remainder of
this work). The derivative of the solution of this linear BVP approaches a singularity if a specific
parameter is chosen sufficiently small (we use 10−3). This poses challenges for error estimators and
mesh-refinement strategies. The error estimates are visualised in Figure 4. They suggest that at high
tolerances, the standard deviation is more accurate than the residual; at low tolerances, the situation
is reversed. This trend is preserved when moving to more challenging setups (see Section 6).

To conclude, the probabilistic framework introduces three options for error estimation and comes
with a natural algorithm to compute accumulated errors in BQ. With everything explained so far,
we can solve BVPs with an algorithm that adaptively refines the mesh when the solution is not
sufficiently accurate. After each mesh refinement, the iteration is restarted. While it may be clear
that the initial guess for the new IEKS implementation should be the approximate posterior from the
previous computation, beginning a new Gauss–Newton scheme offers the chance to update the choice
of other hyperparameters and thus set up a more appropriate probabilistic model for free (Section 5).

5 Calibration of hyperparameters with maximum-likelihood and EM

Thus far, an approximate BVP solution has been computed with σ, m0, and C0 set to default values.
Maximum-likelihood estimates of these hyperparameters can be computed by coordinate ascent,
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Figure 4: Error estimation on the seventh testproblem in [25]. Evaluated at N = 5 (LEFT), N = 25
(CENTRE LEFT), N = 125 (CENTRE RIGHT), and N = 625 equidistant grid points (RIGHT). Standard
deviation (TOP ROW) and residual (BOTTOM ROW) respectively the probabilistic residual (BOTTOM ROW).
True error in black. A good estimate accurately measures the magnitude of the error as well as the
location of large deviation. On few points, the latter is less important so the well-calibrated standard
deviation provides a good estimate. On many points, it is underconfident. Since for large N , the
location of the error becomes increasingly important, the residual should be used; the probabilistic
residual is consistently underconfident. The “winners” of each column have a darker colour.

which repeats alternating updates

σnew := arg maxσ log p(`L, `0:N , `R |σ,mnew
0 , Cnew

0 ), (11a)
mnew

0 , Cnew
0 := arg maxm0,C0

log p(`L, `0:N , `R |σnew,m0, C0), (11b)

until some stopping criterion is satisfied [30]. A quasi-maximum likelihood update for σnew (Equation
11a) is available in closed form as a by-product of the forward-pass of each IEKS iteration. This is
also true for the specific order of updates detailed previously in Section 3.2 (Proposition 2 below).
Proposition 2. Assume that the initial covariance and the diffusion of the Wiener process depend
multiplicatively on the scalar σ2 (recall Equation (2)). If `L, `R, and `0:N are noise-free (which
herein they always are), the covariance of the posterior process depends multiplicatively on σ2 and a
quasi-maximum likelihood estimate for σ is available in closed form.

The proof of this proposition is similar to the proof of Proposition 4 of Tronarp et al. [13] yet requires
a few additional manipulations because of the boundary value information contained in the bridge. A
derivation – and the precise formula for the quasi-MLE – are in Appendix C.

While σ is tuned with quasi-maximum likelihood estimation, the parameters m0 and C0 of the
initial distribution are separately calibrated with a single step of the expectation-maximisation (EM)
algorithm [31, 32] whenever the mesh needs to be refined, which implies a restart of the IEKS. In
other words, this “outer loop” around calls to the IEKS is already part of the computational budget;
therefore, sensible updates to the initial distribution parameters m0 and C0 are free. The general idea
of EM is to maximise a lower bound of Equation (11b) instead of maximising it directly, by computing
alternating E- and M -steps. For parameter estimates in state-space models, the E-step of the EM
algorithm is the posterior distribution in Equation (5) (see e.g. [33]), a Gaussian approximation of
which is available through the IEKS: recall YMAP(t) ∼ N (mMAP(t), CMAP(t)). The M -step consists
of [23, Theorem 12.5 and Algorithm 12.7]

mnew
0 = mMAP(t0) (12a)

σ2Cnew
0 = σ2CMAP(t0) + (mnew

0 −mold
0 )(mnew

0 −mold
0 )>. (12b)

EM steps always increase the likelihood, and for exponential families, convergence to a stationary
point of the likelihood function is guaranteed [34, 32]. Thus, computing alternating E- and M -steps
until convergence (which we do not do) would eventually yield a good estimate of the parameters.
But already in the pre-asymptotic regime and for a fixed total number of IEKS iterations, making an
EM update every few steps helps convergence of the IEKS in subsequent iterations (Figure 5).
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Figure 6: Results on Bratu’s problem. The higher-order solvers converge at least as fast as the SciPy
reference (LEFT) and the wall-clock time grows linearly with the number of grid points (CENTRE

RIGHT; linear complexity reference line in the background). Our research code is slower by factor ∼
100 than this highly optimised code base, which is a success compared to prior implementations of
probabilistic BVP solvers (CENTRE LEFT). The χ2-statistic remains within 95% confidence (RIGHT;
intervals shaded in gray, mean (= 1) in black). To show mesh refinement, the initial grid consisted
of only three points; the probabilistic solver initialises with EKS and bridge, and uses the standard
deviation as an error estimate.

6 The solver converges quickly on test problems

Now that all parts are in place, we evaluate the performance of the solver on a range of scenarios. All
experiments use the CPU of a consumer-level laptop. An efficient probabilistic numerical method
should provide both a good point estimate (through its posterior mean) and error estimate (through
its posterior covariance). First, the approximation error should decrease rapidly with the number
of grid points; we report root-mean-square errors – the lower, the better. Second, the width of the
posterior distribution should be representative of the numerical approximation error (which has, to
some extent, been shown in Section 4 already); we use the χ2-statistic [35]. If it is close to 1, the
posterior uncertainty is calibrated. A simulation of Bratu’s problem [36] for varying tolerances and
orders ν suggests that the solver performs well in both metrics (Figure 6). Reassuringly, higher orders
of the solver lead to faster convergence, which motivates the analysis of convergence rates akin to
the analysis of Tronarp et al. [5] for initial value problem solvers. The experiments also suggest that
the uncertainties are calibrated but tend to be under-confident. This phenomenon is known from
probabilistic initial value problem solvers [cf. 6]. It has been studied for general Gaussian process
approximations by [37].
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Figure 7: The solver efficiently computes (mostly) calibrated posteriors on many problems. Proba-
bilistic solver (O; ν = 6) versus SciPy’s BVP solver (♦). Markers are annotated with the number of
grid points and runtime (in seconds). The tolerances are 10−1 (GRAY) and 10−6 (BLUE). The closer a
coloured marker is to its reference line, the better. The fewer grid points and the less time required
the better. Fill-color describes calibration: χ2 is within 80 % (GREEN), within 99% (ORANGE), or
outside of these ranges (RED). SciPy does not allow a notion of calibration.

Efficient mesh refinement and fast convergence are evident when considering a wider range of test
problems. Figure 7 depicts the results of simulating five BVPs (all from Mazzia [25]): the 7th
problem approaches a singularity in its derivative, the 23rd problem has a boundary layer at tmax, the
24th problem describes a fluid mechanical model of a shock wave, the 28th problem has a corner layer
at tmin, and the 32nd problem involves fourth-order derivatives. On all problems, the probabilistic
solver efficiently computes calibrated posteriors at specified tolerances.

7 Related work

How does the proposed algorithm fit into the context of state-of-the-art probabilistic and non-
probabilistic BVP solvers? Headway on the probabilistic solution of BVPs has been made by Hennig
and Hauberg [10], Arvanitidis et al. [11], and John et al. [12]. Hennig and Hauberg [10] and Arvani-
tidis et al. [11] focus on the application of BVP solvers to Riemannian statistics. None of the three
algorithms exploit the state space structure of the prior with its beneficial computational complexity,
nor are they concerned with error estimation, mesh refinement, and the other computational aspects
to the extent that this work is. Other, conceptually different probabilistic algorithms for BVPs have
been proposed by Skilling [38], Chkrebtii et al. [39], Conrad et al. [40], O’Leary and Harker [41].

Algorithm 1: BVP Solver
Input: BVP, mesh, order (ν), tolerances.
Output: Probabilistic BVP Solution
Initialise with bridge and ODE filter;
while ∃ ≥ 1 interval with large error do

Run IEKS;
Update m0 and C0 (Equation (12));
Update σ ;
Compute error between gridpoints;
Refine mesh where necessary;

end

In terms of accuracy and cost, the present approach
should rather be compared to off-the-shelf non-
probabilistic BVP solvers: for instance, those im-
plemented in Matlab [42, 19, 26], Python/SciPy [43],
and Julia [44]. These toolboxes contain algorithms
that implement collocation formulas and gain linear-
time complexity from sparse system matrices. The
Markov property makes our algorithm equally fast
(in terms of the number of grid points N ) (Table
2). The computational complexity of Algorithm 1 is
O(IMeshIIEKSNν

3d3), where IIEKS is the number of
IEKS iterations, and IMesh is the number of mesh re-
finements. In our experiments, we found IIEKS to be
small, usually bounded by 10. The mesh refinement
is designed to make IMesh as small as possible. Linear
complexity in N stems from the state space implementation of the IEKS and could potentially be
reduced to logN by temporal parallelisation [45]. The cubic complexity in ν and in d stems from
the matrix-matrix operations that are required in a Kalman filter step [23]. Cubic complexity in d
suggests that high-order BVPs should be solved directly, without transforming them into first-order
[46]. This is not uncommon for BVP solvers [1, Section 5.6] and is used herein (a version of `n that
is suitable to high order ODEs is explained in Appendix D).
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Table 2: Comparison of probabilistic and non-probabilistic BVP solvers.

Non-probabilistic Probabilistic (present work)

O(N) achieved by Sparse matrices Markov property
Error estimates Residual (point estimate) Many options, e.g. standard deviation
Initial guess Mandatory Optional
Uncertainty quantification No Yes

8 Conclusion

We have arguably provided the first practically usable probabilistic BVP solver. Our method
achieves the same linear computational complexity as off-the-shelf solvers, with high-quality point
estimates and calibrated uncertainty. Algorithmic parameters can be set automatically by the method,
including some that have to be set manually for non-probabilistic solvers. Our method thus closes a
methodological gap in the toolbox of probabilistic numerics.
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