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Abstract
Likelihood-free (a.k.a. simulation-based) infer-
ence problems are inverse problems with expen-
sive, or intractable, forward models. ODE inverse
problems are commonly treated as likelihood-free,
as their forward map has to be numerically approx-
imated by an ODE solver. This, however, is not a
fundamental constraint but just a lack of function-
ality in classic ODE solvers, which do not return
a likelihood but a point estimate. To address this
shortcoming, we employ Gaussian ODE filtering
(a probabilistic numerical method for ODEs) to
construct a local Gaussian approximation to the
likelihood. This approximation yields tractable es-
timators for the gradient and Hessian of the (log-)
likelihood. Insertion of these estimators into ex-
isting gradient-based optimization and sampling
methods engenders new solvers for ODE inverse
problems. We demonstrate that these methods
outperform standard likelihood-free approaches
on three benchmark-systems.

1. Introduction
Inferring the parameters of dynamical systems that are de-
fined by ordinary differential equations (ODEs) is of impor-
tance in almost all areas of science and engineering. Despite
the wide range of available ODE inverse problem solvers,
simple random-walk Metropolis methods remain the go-to
solution; see e.g. Tarantola (2005, Section 2.4). That is
to say that ODE inverse problems are routinely treated as
if their forward problems were black boxes. The reason
usually cited for this generic approach is that ODE forward
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many 3Bosch Center for Artificial Intelligence, Renningen, Ger-
many. Correspondence to: Hans Kersting <hans.kersting@uni-
tuebingen.de>, Nicholas Krämer <nicholas.kraemer@uni-
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Figure 1. Inference on the logistic ODE. First twelve sampled pa-
rameters of likelihood-free inference and our proposed method.
Details in text.

solutions are highly non-linear and numerically intractable
for all but the most trivial cases. Therefore, it is common
to consider ODE inverse problems as ‘likelihood-free’ infer-
ence (read: intractable likelihood)—a.k.a. simulation-based
inference or, in the Bayesian case, Approximate Bayesian
Computation (ABC); see Cranmer et al. (2020) for an up-to-
date examination of these closely-related areas.
We here argue that, at least for ODEs, this approach is
mistaken. If a dynamical system is accurately described
by an ODE, its explicit mathematical definition should be
exploited to design efficient algorithms—not ignored and
treated as a black-box, likelihood-free inference problem.
To this end, we construct a local Gaussian approximation
of the likelihood by Gaussian ODE Filtering, a probabilistic
numerical method (PNM) for ODE forward problems. (Ap-
pendix A provides a concise introduction to Gaussian ODE
filtering; Tronarp et al. (2019) offer a more detailed presen-
tation. See Hennig et al. (2015) or Oates & Sullivan (2019)
for a broad introduction to PNMs.) The key insight of our
work is that there is a likelihood in simulations of ODEs,
and in fact it can be approximated cheaply, and analytically:
The mean estimate mθ of the forward solution computed
by Gaussian ODE filters can be linearized in the parameter
θ, so that gradient, Hessian, etc. of the approximated log-
likelihood can—via a cheap estimator J of the Jacobian of
the map θ 7→mθ—be computed in closed form (Section 5).
In this way, the probabilistic information from Gaussian
ODE filtering yields a tractable, twice-differentiable like-
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lihood for ‘likelihood-free’ ODE inverse problems. This
enables the use of first and second-order optimization or
sampling methods (see Figure 1).
Much thought has been devoted to improving the slow run-
times of ODE inverse inference—which is due to the labori-
ous explicit numerical integration per parameter. In machine
learning, e.g., authors have proposed to reduce the amount of
necessary parameters by active learning with Gaussian pro-
cess (GP) surrogate likelihoods (Meeds & Welling, 2014),
or even to avoid numerical integration altogether by gradi-
ent matching (Calderhead et al., 2008). This paper adds a
new way to reduce the amount of parameters by employing
gradient (and Hessian) estimates of the log-likelihood.

Contributions The main contributions are twofold: Firstly,
we introduce tractable estimators for the gradients and Hes-
sian matrices of the log-likelihood of ODE inverse problems
by Gaussian ODE filtering. To derive these estimators, we
construct a new estimator J for the Jacobian of the forward
map. We theoretically support the use of J by a decomposi-
tion of the true Jacobian into J and a sensitivity term S (see
Theorem 1), as well as an upper bound on its approximation
error (see Theorem 2). Secondly, we propose a range of new
solvers which require gradients and/or Hessians, by insert-
ing these estimators into first and second-order optimization
and sampling methods. The utility of these algorithms is
demonstrated by experiments on three benchmark ODEs
where they outperform their gradient-free counterparts.

2. Problem Setting
We consider a dynamical system defined by the ODE

ẋ(t) = f (x(t), θ) , x(0) = x0 ∈ Rd, (1)

on the finite time domain t ∈ [0,T ] for some T > 0, with
parametrized vector field f : Rd × Rn → Rd. We restrict
our attention to choices of f satisfying the following

Assumption 1. f(x, θ) =
∑n
i=1 θifi(x), for some contin-

uously differentiable fi : Rd → Rd, for all i = 1, . . . ,n.

The necessity for this assumption will become evident in
Section 3.1.1. It is not very restrictive: e.g. the corre-
sponding assumption in Gorbach et al. (2017, eq. (10))
is stronger. In fact, most standard ODEs collected in Hull
et al. (1972, Appendix I), a standard set of ODE benchmark-
ing problems, satisfy Assumption 1 either immediately or
after reparametrization. Otherwise, we can still transform
a non-conforming ODE into a system that obeys Assump-
tion 1, as exemplified for the protein signalling transduction
pathway in Section 7.2.2. While this adds an additional
layer of imprecision, the experiments appear to be equally
good—which suggests a wider applicability of our methods
than Assumption 1.

If the initial value x0 is unknown too (as is often the case in

practice), it can be treated as a parameter by defining a new
parameter vector

(
xᵀ0 , θᵀ

)ᵀ ∈ Rd+n; see eq. (10). Solving
eq. (1), for a given θ, with a numerical method is known as
the forward problem.
For the inverse problem, we assume the dynamical system
described by eq. (1) with unknown true parameter θ∗. The
true trajectory x = xθ∗ is observed under additive, zero-
mean Gaussian noise at M discrete times 0 ≤ t1 < · · · <
tM ≤ T :

z(ti) := x(ti) + εi ∈ Rd, εi ∼ N (0, Σi), (2)

for all i ∈ {1, . . . ,M}. Below we assume, w.l.o.g., that
Σi = Σ, for all i ∈ {1, . . . ,M}. We define the stacked data
across M time points and d dimensions as

z :=
[
z1(t1), . . . , z1(tM ), . . . , zd(t1), . . . , zd(tM )

]ᵀ
,

and analogously, for all θ ∈ Θ, the true solution at these
points as xθ. The inverse problem consists of inferring the
parameter θ∗ that generated the data through eq. (2). For the
sake of readability, we will assume w.l.o.g. that d = 1; this
restriction is purely notational as can be seen from the multi-
dimensional experiments below. Under these conventions,
eq. (2) is equivalent to

p(z | x) = N
(
z;x,σ2IM

)
(3)

for some σ2 > 0, where IM is the M ×M identity matrix.
Heteroscedastic noise can be modelled by replacing σ2IM
with a diagonal matrix with varying diagonal entries.

3. Likelihoods by Gaussian ODE Filtering
The prevailing view on the uncertainty in inverse problems
only considers the aleatoric uncertainty Σi from eq. (2)
and ignores the epistemic uncertainty over the quality of
the employed numerical approximation x̂θ of xθ. In other
words, the likelihood of the forward problem, p(xθ | θ), is
commonly treated as a Dirac distribution δ(xθ − x̂θ) which
yields the uncertainty-unaware likelihood

p(z | θ) =

∫
p(z | xθ)p(xθ | θ) dxθ (4)

=

∫
p(z | xθ)δ(xθ − x̂θ) dxθ (5)

eq. (3)
= N

(
z; x̂θ,σ

2IM
)

. (6)

as the ‘true’ intractable likelihood. This, however, ig-
nores the epistemic uncertainty over the accuracy x̂θ which
leads to overconfidence. This uncertainty is due to the dis-
cretization error of the numerical solver used to compute
x̂θ, and can only be avoided for the most trivial ODEs. This
problem has previously been recognized in, e.g., Conrad
et al. (2017, Section 3.2) and Abdulle & Garegnani (2020,
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Section 8) who, as a remedy, construct a ‘cloud’ of possible
solutions by running a classical solver multiple times with
a prespecified accuracy. This, unfortunately, requires the
computational invest of several forward solves for the same
θ, which could instead be used for additional θ, or higher
accuracy.
To obtain such uncertainty quantification more cheaply,
we employ Gaussian ODE filtering with a once-integrated
Brownian motion (IBM) prior on x; see Appendix A.2 for
a short introduction. This amounts—e.g. in the notation of
Tronarp et al. (2019)—to setting q = 1. Gaussian ODE
filtering has the advantage over other numerical solvers,
probabilistic or classical, that we can compute gradients
of the likelihood, as demonstrated below. For a given θ,
the Gaussian ODE filter computes a multivariate normal
distribution over xθ at a set of N = T/h, for notational
simplicity, equidistant time points {0,h, . . . ,Nh} with step
size h > 0. This set is, w.l.o.g., assumed to contain the
data time points {t1, . . . , tM} from eq. (2), i.e. we assume
the existence of a set of integers {l1, . . . , lM} such that
ti = lih. (The w.l.o.g. assumption can otherwise be satis-
fied by interpolating along the dynamic model; see eq. (36)
in Appendix A.)

3.1. The Filtering Distribution

The Gaussian ODE filter returns the so-called (posterior)
filtering distribution over the ODE solution xθ, given by

p(xθ | θ) = N (xθ;mθ,P ), (7)

with mθ ∈ RM and P ∈ RM×M given below by eq. (10)
and eq. (18), respectively. This probabilistic likelihood
yields the new uncertainty-aware likelihood

p(z | θ) =

∫
p(z | xθ)N (xθ;mθ,P ) dxθ (8)

eq. (3)
= N (z;mθ,P + σ2IM ) (9)

which has two advantages over the uncertainty-unaware
likelihood from eq. (6):

1. The filtering mean mθ can be linearized in θ, as speci-
fied below in eq. (10). This yields an estimate J of the
Jacobian matrix of θ 7→mθ which implies estimators
of gradients and Hessian matrices of the likelihood;
see eqs. (26) and (27). These estimators are useful to
guide samples of θ into regions of high likelihood by
the gradient-based sampling and methods defined in
Section 6 below.

2. The variance P captures the average-case squared
(epistemic) error ‖mθ − xθ‖2, and can be added to the
(aleatoric) variance Σi; see eq. (9). Unless P � σ2IM ,
this prevents over-confidence, as visualized in Figure 2.

Figure 2. Uncertainty-(un)aware likelihoods, eqs. (6) and (9)
w.r.t. (θ1, θ2) of Lotka-Volterra ODE, eq. (30), with fixed
(θ3, θ4) = (0.05, 0.5). θ1 on x and θ2 on y-axis. Black cross
is true parameter. The unaware likelihood is overconfident for
the large step size (h = 0.2), i.e. for large P , while the aware
likelihood has calibrated uncertainty. For the small step size
(h = 0.025) this effect is less pronounced as P is small.

In the following two subsections, we provide explicit formu-
las for mθ and P . A detailed derivation of these formulas
is given in Appendix B.

3.1.1. THE FILTERING MEAN

Under Assumption 1, the filtering mean mθ =
[mθ(t1), . . . ,mθ(tM )]ᵀ is given by

mθ =
[
1M J

] [x0

θ

]
= x0 · 1M + Jθ ∈ RM , (10)

where 1M = [1, . . . , 1]ᵀ denotes a vector ofM ones. Hence,
mθ is linear in θ as well as in the extended parameter vector
[x0, θᵀ]ᵀ. (A more detailed derivation of eq. (10) is provided
in Appendix B.3.) Here,

J := KY ∈ RM×n (11)

is an estimator of the Jacobian matrix of the map θ 7→mθ,
as we show in Theorem 1 below. This estimator is equal
to the product of the kernel prefactor K and the evaluation
factor Y . The kernel prefactor K is given by

K :=
[
κ1, . . . ,κM

]ᵀ ∈ RM×N , (12)

whose i-th row is

κi :=
[
κ̃ᵀi , 0, . . . , 0

]ᵀ ∈ RN , (13)

which is defined by

κ̃i :=
[
K∂ ∂(h : ti) +R · Ili

]−1
k∂(h : ti, ti) ∈ Rli ,

(14)
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for some measurement variance R ≥ 0. Here, k∂ =
∂k(t, t′)/∂t′ and k∂ ∂ = ∂2k(t, t′)/∂t∂t′ are derivatives
of the IBM kernel k, and, analogously, the cross-covariance
w.r.t. the kernel k∂ and the kernel Gram matrix w.r.t. the
kernel k∂ ∂ up to time ti are denoted by

k∂(h : ti, ti) :=
[
k∂(ti,h), . . . , k∂(ti, ti)

]ᵀ
, and (15)

K∂ ∂(h : ti) :=

[
k∂ ∂(h,h) · · · k∂ ∂(lih, lih)

.

.

.
. . .

.

.

.
k∂ ∂(lih,h) · · · k∂ ∂(lih, lih)

]
. (16)

Now, recall Assumption 1. For a given θ, the entries of the
evaluation factor Y ∈ RN×n are

yij := fj(m
−
θ (ih))− fj(x0), (17)

for all i = 1, . . . ,N and j = 1, . . . ,n, where m−θ (ih) is
the predictive mean of the ODE Filter at t = ih. Note
that the Gaussian ODE Filter computes the fj(m−θ (ih)) and
fj(x0) for every forward solve as intermediate quantities,
to evaluate the right-hand side of eq. (1). Hence, Y is
freely accessible with every filtering distribution, eq. (7).
However, as an estimate of xθ(ih), m−θ (ih) depends on θ
in a nonlinear and potentially sensitive way. By ignoring
this dependence in the above notation, we, strictly speaking,
also omit the dependence of Y and, thereby, J on θ (more
in Appendix B.3). For this reason, J is not the true Jacobian
of θ 7→mθ but only an estimator (see Section 3.2).

3.1.2. THE FILTERING COVARIANCE

The entries of the covariance matrix P :=
diag(P (t1), . . . ,P (tM )) ∈ RM×M of the filtering
distribution from eq. (7) coincide with the GP-posterior
variances, i.e.

P (ti) =

[
k(h,h) · · · k(lih, lih)

.

.

.
. . .

.

.

.
k(lih,h) · · · k(lih, lih)

]
− k∂(h : ti, ti)

ᵀ

×
[
K∂ ∂(h : ti) +R · Il

]−1
k∂(h : ti, ti), (18)

and are hence independent of θ. (See Appendix B.2 for a
detailed derivation of eq. (18).)

3.2. Decomposition of the True Jacobian

Next, we give an explicit decomposition of the true Jacobian
into the estimator J , the kernel prefactor K and a sensitivity
term S.

Theorem 1. Under Assumption 1, the true Jacobian
Dmθ ∈ RM×n of θ 7→mθ has the analytic form

Dmθ := [∇θm(t1), . . . ,∇θm(tM )]ᵀ = J +KS, (19)

where the sensitivity term S is defined by

S :=
[
Λᵀ

1θ, . . . , Λᵀ
Nθ
]ᵀ ∈ RN×n. (20)

Here, Λj =
[
λkl(jh)

]
kl

is the n× n matrix with entries

λkl(jh) :=
d

dx
fl(m

−
θ (jh)) · ∂

∂θk
m−θ (jh). (21)

Proof. See Appendix C.

Thus, KS is the exact approximation error of J .

4. Bound on Approximation Error of J
In this section, we provide a bound on the approximation
error of J under the following assumptions.

Assumption 2. The first-order partial derivatives of fi, 1 ≤
i ≤ N , are bounded and globally L-Lipschitz, for L > 0.

Assumption 2 is required to bound the global error of the
ODE forward solution by Kersting et al. (2019, Thm. 6.7).

Assumption 3. For the computation of J we only use a
maximum of N̄ ≤ N time points, for some finite N̄ ∈ N.

Assumption 3 precludes the condition number of the K
and S from growing arbitrarily large, thereby preventing
numerical instability. While this restriction is necessary for
Theorem 2, it is not relevant in practice because we are
computing with a non-zero step size h > 0 anyway so that
many different parameters θ can be simulated.

Theorem 2. If Θ ⊂ Rn is compact and R > 0, then it
holds true, under Assumptions 1 to 3, that

‖J −Dmθ‖ ≤ C(T ) (‖∇θxθ‖+ h) (22)

for sufficiently small h > 0, where C(T ) > 0 is a constant
that depends on T .

Proof. See Appendix D.

Intuitively, this upper bound can be thought of as a decompo-
sition of the approximation error of the ‘sensitivity-unaware’
estimator J into a summand proportional to the ignored
sensitivity ‖∇θxθ‖ and the global integration error of the
ODE filter, which is bounded by C(T )h (Kersting et al.,
2019, Thm. 6.7).

5. Gradient and Hessian Estimators
We observe that the uncertainty-aware likelihood, eq. (9),
can be written in the form

p(z | θ) =
e−E(z)

Z
, (23)
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with evidence Z > 0 and negative log-likelihood

E(z) :=
1

2
[z −mθ]

ᵀ [
P + σ2IM

]−1
[z −mθ] (24)

eq. (10)
=

1

2
[z − x0 · 1M − Jθ]ᵀ

[
P + σ2IM

]−1

× [z − x0 · 1M − Jθ] . (25)

For a given value of the Jacobian estimator J , the thereby-
implied gradient and Hessian estimators are, by application
of the chain rule,

∇̂θE(z) := −Jᵀ
[
P + σ2IM

]−1
[z −mθ] , and (26)

∇̂2
θE(z) := Jᵀ

[
P + σ2IM

]−1
J . (27)

(See Figure 3 for a visualization of these estimators.) Ap-
pendix E provides versions of these estimators for Bayesian
inference of θ.
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Figure 3. Directions of gradient descent (GD) and Newton using
eqs. (26) and (27); around mode (left) and globally (right) of the
likelihood, based on the logistic ODE. Globally, GD points more
directly to the high-probability region. Within this region, however,
Newton is better directed to the mode.

6. New Gradient-Based Methods
By deriving gradient and Hessian estimators of the negative
log-likelihood, we have removed the need for ‘likelihood-
free’ inference. This enables the use of two classes of infer-
ence methods for θ which could not otherwise be applied:
gradient-based optimization and gradient-based sampling.

6.1. Gradient-Based Optimization

In principle, all first and second-order optimization algo-
rithms (e.g. Bottou et al. (2018)), are now applicable by
eqs. (26) and (27)—such as (stochastic) gradient descent
(GD), (stochastic) Newton (NWT), Gauss-Newton and nat-
ural Gradient descent. This application of the estimators
(26) and (27) unlocks fast computation of single param-
eter estimates by maximum-likelihood estimation, as we
demonstrate in the experiments (see Section 7).

6.2. Gradient-Based Sampling

Likewise, all gradient-based MCMC schemes are now avail-
able. Classical gradient-based samplers include Langevin
Monte Carlo (LMC) (Roberts & Tweedie, 1996) and Hamil-
tonian Monte Carlo (HMC) (Betancourt, 2017). They
are known to be more efficient than gradient-free sam-
plers in finding and covering regions of high probability
(MacKay, 2003, Section 30.1). While their standard form
only makes use of gradients, more sophisticated versions
include second-order information as well: When the like-
lihood is ill-conditioned (i.e. it varies much more quickly
in some directions than others), it is advantageous to pre-
condition the proposal distribution with a suitable matrix
(Girolami & Calderhead, 2011). A popular choice for the
preconditioner is the Hessian (Qi & Minka, 2002). Hence,
we can precondition LMC and HMC that use eq. (26) as
a gradient with the Hessian estimator from eq. (27). For
LMC, this leads to the proposal distribution

π(θi+1 | θi) = θi − ρ[∇̂2
θEθi(z))]−1∇̂θEθi(z)) + ξi,

(28)

ξi ∼ N (0, 2ρ[∇̂2
θEθi(z))]−1), (29)

where ρ is the proposal width. (Analogous formulas hold for
HMC.) Below, we refer to the so-preconditioned versions of
LMC and HMC as PLMC and PHMC. In Section 7, we show
that the gradient-based versions more aptly explore regions
of high likelihood than their gradient-free counterparts.

6.3. Algorithm

The generic method that we propose is outlined in Algo-
rithm 1. It includes all above-mentioned classical optimiza-

Algorithm 1 Gradient-based sampling/optimization
1: Precompute K and (P + σ2IM )−1 (see eqs. (12), (6))
2: Initialize θ = θ0

3: repeat
4: Solve ODE with θ (this generates Y ; see eq. (17))
5: Compute J = KY (see eq. (11))
6: Compute [∇̂θE, ∇̂2

θE] (see eqs. (26), (27))
7: Update θ with gradient-based sampler/optimizer
8: until convergence/mixing

tion and sampling methods (by a corresponding choice in
Line 7). The only difference, compared to all of these exist-
ing gradient-based methods, are the additional Lines 5 and
6 where we compute our gradient and Hessian estimators
from eqs. (26) and (27).

6.4. Computational Cost

The additional computational cost—on top of the employed
classical optimization/sampling methods—is equal to the
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cost of computing the inserted gradient (and Hessian) es-
timators: precomputation of K (Line 1 in Algorithm 1)
requires the inversion of the M kernel Gram matrices
{ K∂ ∂(h : ti), i = 1, . . . ,M}, which can have a maxi-
mum dimension of (N − 1) × (N − 1). This inversion
can, however, be executed in linear time since k∂ ∂ is a
Markov kernel (Hartikainen & Särkkä, 2010). Hence, K is
in O(MN) and, as M ≤ N , in O(N2). The cost of invert-
ing theM×M matrix [P +σ2IM ] is inO(N3), asM ≤ N .
Since K and P are independent of θ, this O(N3) cost is
only required once. The Jacobian estimator J = KY (Line
5 in Algorithm 1) is, by eq. (11), a matrix product of the
precomputed kernel prefactorK and the evaluation factor Y .
Y is almost free, as it is by eq. (17) only composed of terms
that the Gaussian ODE filter computes anyway; see eq. (45)
in Appendix A.2. Given J and [P + σ2IM ]−1, computing
the gradient and Hessian estimators (Line 6 in Algorithm 1)
is of the same complexity as computing J . Thus, the addi-
tional computational cost is in O(N3) w.r.t. the number of
time steps N = T/h executed once and otherwise linear
(but almost negligible) w.r.t. the number of simulated pa-
rameters θ. As a large number of θ is usually required, the
overall overhead is small.

6.5. Choice of Hyperparameters

Recall that the parameters σ and R stem from the data
and the accuracy of the ODE model (Kersting et al., 2019,
Section 2.3), and that we only consider once-integrated
Brownian motion priors in this paper. Therefore, the only
remaining hyperparameter is the diffusion scale σdif which
controls the width of the variance P ; see Supplements B.1
and B.2. There are two ways to set it: either as a local
(Schober et al., 2019, eq. (46)) or as a global (Tronarp
et al., 2019, eq. (41)) maximum-likelihood estimate, which
can both be computed from intermediate quantities of the
forward solves.

7. Experiments
To test the hypothesis that the gradient and Hessian esti-
mators [∇̂θE(z), ∇̂2

θE(z)] of the log-likelihood are useful
despite their approximate nature, we compare the new opti-
mization and sampling methods from Section 6—which use
these estimators as if exact—with the standard ‘likelihood-
free’ approach, i.e. with random search (RS) optimization
and random-walk Metropolis (RWM) sampling.

7.1. Setup and Methods

As benchmark systems, we choose the popular Lotka–
Volterra (LV) predator-prey model and the more challenging
biochemical dynamics of glucose uptake in yeast (GUiY).
For more generality, we add the chemical protein signalling
transduction (PST) dynamics which violate Assumption 1

and have to be linearized. We consider our hypothesis vali-
dated if the new gradient-based algorithms outperform the
conventional ‘likelihood-free’ methods (RS, RWM) on these
three systems. All datasets are, as in eq. (3), generated by
adding Gaussian noise to the solution xθ∗ for some true
parameter θ∗.
Out of the new family of gradient-based optimizers and
samplers introduced in Section 6, we evaluate only the most
basic ones: gradient descent (GD) and Newton’s method
(NWT) for optimization, as well as PLMC and PHMC for
sampling. This isolates the impact of the gradient and Hes-
sian estimators more clearly. The required gradient and
Hessian estimators are computed as detailed above. We
employ the original fixed step-size RS by Rastrigin (1963),
and the RWM version from MacKay (2003, Chapter 29).
For all optimizers, we picked the best the step size and,
for all samplers, the best proposal width within the interval
[10−16, 100] which is wide enough to contain all plausible
values. To make these experiments an ablation study for
the gradient and Hessian estimators, we use Gaussian ODE
filtering as a forward solver in all methods—which is similar
to classical solvers anyway (Schober et al., 2019, Section 3).
Since in all below experiments P � σ2IM , the gradient
and Hessian estimates are scale-invariant w.r.t. hyperparam-
eter σ2

dif, as can be seen from eqs. (26) and (27): In this
regime, P simply scales the step-size of the gradient, and P
cancels out of the Hessian, making it invariant to this scale.
The same applies in the regime P � σ2IM ; adaptation of
their relative scale, by choosing σ2

dif as in Section 6.5, only
matters when both error-sources are of comparable scale.

7.2. Results

We evaluate the performance of these methods over the first
few iterations (steps), comparing the values of the negative
log-likelihoodE as well as the relative error in the parameter
space,

∥∥θi − θ∗∥∥/‖θ∗‖. For optimizers, low values in both
metrics indicate success and, in fact, both are important:
ODE inverse problems are inherently ill-posed and can have
parameters with high likelihood and large inference error
that fit the data as well as the true parameter. Finding these
parameters would not be a failure of the algorithms, but a
success, as they are a mode of the true posterior.

Samplers, on the other hand, try to identify and explore
regions of high probability (the typical set); see e.g. Betan-
court (2017, Section 2). We opt for plotting the relative
error in the parameter space additionally to the negative
log-likelihood values to emphasize that, once a sampler
creates samples near the typical set, MCMC methods keep
exploring suitable values instead of relying on a single esti-
mate with high likelihood. Despite maintaining a low near-
constant negative log-likelihood, the error in the parameter
space of a sampler may have (some) variation.
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The details and results for each benchmark systems are
presented next, in ascending order of complexity.

7.2.1. LOTKA–VOLTERRA

First, we study the Lotka–Volterra (LV) ODE (Lotka, 1978)

ẋ1 = θ1x1 − θ2x1x2, ẋ2 = −θ3x2 + θ4x1x2, (30)

the standard model for predator-prey dynamics. We used
this ODE with initial value x0 = [20, 20], time interval
[0, 5] and true parameter θ∗ = [1, 0.1, 0.1, 1]. To generate
data by eq. (3), we added Gaussian noise with variance
σ2 = 0.01 to the corresponding solution at time points
[0.5, 1, 1.5, 2, 2.5, 3., 3.5, 4., 4.5]. The optimizers and sam-
plers were initialized at θ0 = [0.8, 0.2, 0.05, 1.1], and the
forward solutions for all likelihood evaluations were com-
puted with step size h = 0.05. In order to turn this θ0 into a
useful initialization for the Markov chains, we accepted the
first 45 states generated by PHMC and PLMC—the same
would be counterproductive for RWM since a proposed
sample may be further away from the region of nonzero
probability. The results for optimization and sampling are
depicted in Figure 4. In the case of optimizers, NWT out-
performs GD which, in turn, outperforms RS. After roughly
25 samples, NWT generates iterations with relative error
of less than 10−3. While PLMC and PHMC quickly reach
and explore regions of high probability, RWM does not find
likelihood values within the first 250 samples. Thus, the
gradient and Hessian estimators indeed appear to work well
on LV.

7.2.2. PROTEIN SIGNALLING TRANSDUCTION

Next, we consider the protein signalling transduction (PST)
pathway. It is governed by a combination of mass-action
and Michaelis–Menten kinetics:

Ṡ = −θ1 × S − θ2 × S ×R+ θ3 ×RS,

˙dS = θ1 × S,

Ṙ = −θ2 × S ×R+ θ3 ×RS + V × Rpp

Km +Rpp
,

ṘS = θ2 × S ×R− θ3 ×RS − θ4 ×RS,

˙Rpp = θ4 ×RS − θ5 ×
Rpp

Km +Rpp
.

For more details, see Vyshemirsky & Girolami (2008). Due
to the ratio Rpp

Km+Rpp , Assumption 1 is violated. As a rem-
edy, we follow Gorbach et al. (2017) in defining the latent
variables [x1,x2,x3,x4,x5] := [S, dS,R,RS, Rpp

Km+Rpp ].

This gives rise to the new linearized ODE

ẋ1 = −θ1x1 − θ2x1x3 + θ3x4, (31)
ẋ2 = θ1x1, (32)
ẋ3 = −θ2x1x3 + θ3x4 + θ5x5, (33)
ẋ4 = θ2x1x3 − θ3x4 − θ4x4, (34)
ẋ5 = θ4x4 − θ5x5, (35)

which is an approximation of the original ODE, since
eq. (35) ignores the factor (Km + Rpp)

−1. We used
this ODE with initial value x0 = [1, 0, 1, 0, 0] on
time interval [0, 100]. We set the true parameter to
θ∗ = [0.07, 0.6, 0.05, 0.3, 0.017]. To generate the data
by eq. (3), we added Gaussian noise with variance
σ2 = 10−8 to the corresponding solution at time points
[1., 2., 4., 5., 7., 10., 15., 20., 30., 40., 50., 60., 80., 100.].
The optimizers and samplers were initialized at
θ0 = [0.24, 1.8, 0.15, 0.9, 0.05], and the forward so-
lutions for all likelihood evaluations were computed with
step size h = 0.05. We use the same burn-in procedure
as on the Lotka-Volterra example, accepting the first 100
samples.
The results for optimization and sampling are depicted in
Figure 5.

Again, the new methods outperform the conventional ones
in both optimization and sampling. For optimization,
NWT converges particularly fast. The final estimate that
is returned by NWT is, rounded to two digits, θ200 =
(0.07, 0.60, 0.05, 0.30, 0.02), and hence recovers four out
of five parameters exactly. For sampling, both gradient-
based samplers (after a fairly steep initial improvement)
steadily stay in regions of high likelihood, while RWM only
increases the likelihood in a much slower pace. Hence, the
gradient and Hessian estimators are beneficial on PST as
well—although we had to linearize the ODE first.

7.2.3. GLUCOSE UPTAKE IN YEAST

Last, we examine the challenging biochemical dynamics of
glucose uptake in yeast (GUiY), as seen in Schillings et al.
(2015). This ODE is 9-dimensional, has 10 parameters,
and satisfies Assumption 1; see Appendix F for a complete
mathematical definition and parameter choices. The results
for optimization and sampling are depicted in Figure 6.

GD outperforms RS, and NWT converges even much faster
than GD. Remarkably, NWT already finds parameters that
are exact up to two relative digits after only five iterations
which would take RS extremely long on this 10 dimensional
domain. The gradient-based samplers (PLMC, PHMC),
again, stay steadily within the region of significant likeli-
hood, while RWM has difficulties sampling from this high
dimensional problem in an efficient manner. Thus, this
benchmark system also reaffirms the utility of the gradient
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Figure 4. Results for optimization (a, b) and sampling (c, d) on Lotka-Volterra. Comparison of negative log-likelihood E(z) =
Eθi(z) (a and c, resp.) and relative error

∥∥θi − θ∗∥∥/‖θ∗‖ (b and d, resp.). 100 iterations of optimization (only every fifth iteration has a
marker) and 250 Metropolis-Hastings samples (only every other sample has a marker).

Figure 5. Results for optimization (a, b) and sampling (c, d) on PST. Comparison of negative log-likelihood E(z) = Eθi(z) (a and
c, resp.) and relative error

∥∥θi − θ∗∥∥/‖θ∗‖ (b and d, resp.). 200 iterations of optimization (only every tenth iteration has a marker) and
500 Metropolis-Hastings samples (only every fourth sample has a marker).

and Hessian estimators.

7.3. Summary of Experiments

On all three benchmark ODEs, the Jacobian and Hessian
estimator proved useful to speed up both sampling and op-
timization. In the case of optimization, the new gradient-
based methods consistently outperformed the classical ran-
dom search. Notably, the second-order optimization was
always significantly more sample-efficient than plain gra-
dient descent—which indicates that not only the gradient
but also the Hessian estimator is accurate enough to be
useful. In the case of sampling, the gradient-based sam-
pling methods, which were preconditioned by the Hessian,
consistently outperformed the classical approach as well:
PLMC and PHMC steadily explored regions of elevated
likelihood, while the conventional random-walk Metropolis
methods hardly ever reached regions of nonzero probability
and wasted computational budget on less likely parameters.
Overall, we consider these experiments first evidence for the
hypothesis that the proposed gradient-based methods require
drastically fewer samples than the standard ‘likelihood-free’
approach.

8. Related and Future Work
The following research areas are particularly closely related
to this paper.

Probabilistic numerical methods (PNMs) There are
two lines of work on PNMs for ODE forward problems:
sampling- and filtering-based solvers; an up-to-date compar-
ative discussion of these two approaches is given in Kersting
et al. (2019, Section 1.2.). While this paper is the first to
use filtering-based PNMs for inverse problems, there are
previous methods—starting with Chkrebtii et al. (2016)—
that use sampling-based solvers to integrate a non-Gaussian
uncertainty-aware likelihood (cf. the Gaussian eq. (9)) into
a pseudo-marginal MCMC framework; see Conrad et al.
(2017), Teymur et al. (2018), Lie et al. (2019), and Abdulle
& Garegnani (2020). Notably, Matsuda & Miyatake (2019)
recently proposed to model the numerical errors as random
variables without explicitly employing PNMs. On a related
note, there are also first PNMs for PDE inverse problems;
see Cockayne et al. (2017) and Oates et al. (2019).

GP-surrogate methods Modelling expensive likelihoods
by GP regression is a common approach in statistics; see
e.g. Sacks et al. (1989) and O’Hagan (2006). Notably,
Meeds & Welling (2014) incorporated this approach into
an ABC framework, and Perdikaris & Karniadakis (2016),
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Figure 6. Results for optimization (a, b) and sampling (c, d) on GUiY. Comparison of negative log-likelihood E(z) = Eθi(z) (a and
c, resp.) and relative error

∥∥θi − θ∗∥∥/‖θ∗‖ (b and d, resp.). 100 iterations of optimization (only every fifth iteration has a marker) and
250 Metropolis-Hastings samples (only every other sample has a marker).

on the other hand, into a non-Bayesian setting by efficient
global optimization. While these methods also compute a
GP approximation to the likelihood, they are fundamentally
different as they globally model the likelihood with a GP
(instead of constructing a local Gaussian approximation (see
eq. (9)), and do not exploit the shape of the ODE at all.

Gradient Matching This approach fits a joint GP model
of the solution and its derivatives by conditioning on the
ODE. Since introduced by Calderhead et al. (2008), it has
received much attention in machine learning; see Macdonald
& Husmeier (2015) for a detailed review, Wenk et al. (2019,
Section 1) for an up-to-date overview, and Gorbach et al.
(2017) for a paper that uses a slightly stronger version of our
Assumption 1. As it avoids explicit numerical integration
altogether, gradient matching is fundamentally different
from our method (and PNMs in general).

Sensitivity analysis This field studies the derivatives of
ODE solutions with respect to parameters; see, e.g., Rack-
auckas et al. (2018) for an overview spanning continu-
ous (adjoint) sensitivity analysis and automatic differen-
tiation. Therefore, the Jacobian estimator J of the map
θ 7→ mθ ≈ xθ from eq. (11) can be interpreted as fast,
approximate sensitivity analysis. This link is particularly
interesting for modern machine learning, as sensitivity anal-
ysis is the mathematical corner stone of the recent advances
by, e.g., Chen et al. (2018) in training neural networks as
ODEs. It should be possible to use J for neural ODEs—as
well as for all other applications of sensitivity analysis.

Future Work

We hope that this is the beginning of a new line of work
on ODE inverse problems by ODE filtering. Here, we only
used Gaussian ODE filtering with once-integrated Brow-
nian motion prior. Future work could not only examine
different priors (Kersting et al., 2019, Section 2.1), but also
draw from the wide range of additional ODE filters (EKF,
UKF, particle filter, etc.) that were unlocked by Tronarp
et al. (2019). Notably, particle ODE filtering represents the

belief over the ODE solution by a set of samples (particles),
and could, therefore, be integrated in the above-mentioned
existing framework for sampling-based PNMs.
The utility of the Jacobian estimator J is, however, not lim-
ited to inverse problems. As it constitutes fast, approximate
sensitivity analysis, it should be compared with established
methods, such as automatic differentiation and continuous
sensitivity analysis (Rackauckas et al., 2018). If S (eq. (20))
could also be estimated with low overhead, it is in light of
eq. (19) conceivable that the approximation error of J could
be further reduced.
Either way, future work should examine which optimiza-
tion and sampling methods are optimal—given that they
received the (approximate) gradient and Hessian estima-
tors [∇̂θE(z), ∇̂2

θE(z)]. For instance, the approximation
error on these estimators might—according to Bottou et al.
(2018, Section 3.3)—warrant optimization by stochastic
methods such as SGD. On a related note, it should be ex-
amined whether classical theorems on limit behavior of the
employed optimization and MCMC methods remain true
when using these estimators, and whether our approach is
indeed applicable to ODEs that violate Assumption 1—as
the results from Section 7.2.2 suggest. Finally, this work
should be, by the methods of lines (Schiesser & Griffiths,
2009), extendable to PDEs and, by John et al. (2019), to
boundary value problems.

9. Concluding Remarks
We introduced a novel Jacobian estimator for ODE solu-
tions w.r.t. their parameters which implies approximate es-
timators of the gradient and Hessian of the log-likelihood.
Using these estimators, we proposed new first and second-
order optimization and sampling methods for ODE in-
verse problems which outperformed standard ‘likelihood-
free’ approaches—namely random search optimization and
random-walk Metropolis MCMC—in all conducted experi-
ments. Moreover, the employed Jacobian estimator consti-
tutes a new method for fast, approximate sensitivity analysis.
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Tübingen AI Center (FKZ: 01IS18039A); and funds from
the Ministry of Science, Research and Arts of the State
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A. Short Introduction to Gaussian ODE
Filtering

A.1. Gaussian Filtering for Generic Time Series

In signal processing, a Bayesian Filter (Särkkä, 2013,
Chapter 4) does Bayesian inference of the discrete state
{xi; i = 1, . . . ,N} ⊂ Rn from measurements {yi; i =
1, . . . ,N} ⊂ Rn in a probabilistic state space model con-
sisting of

a dynamic model xi ∼ p(xi | xi−1), and (36)
a measurement model yi ∼ p(yi | xi). (37)

Usually, the state xi is assumed to be the discretization
of a continuous signal x : [0,T ] → Rn which is a priori
modeled by a stochastic process. Absent very specific expert
knowledge, this prior is usually chosen to be a linear time-
invariant (LTI) stochastic differential equation (SDE):

p(x) ∼ X(t) = FX(t) dt+ L dB(t), (38)

where F and L are the drift and diffusion matrix, respec-
tively. The corresponding dynamic model (eq. (36)) can
be easily constructed by discretization of the LTI SDE
(eq. (38)), as described in Särkkä & Solin (2019, Chap-
ter 6.2). If an LTI SDE prior with Gaussian initial condition
is used, p(x) is a GP which implies a Gaussian dynamic
model

p(xi | xi−1) = N (Axi−1,Q) (39)

for matrices A,Q that are implied by F ,L from eq. (38). If
additionally the measurement model (eq. (37)) is Gaussian,
i.e.

p(yi | xi) = N (Hxi,R) (40)

for matrices H,R, the filtering distributions p(xi | y1:i),
i = 1, . . . ,N , can be computed by Gaussian filtering in
linear time. Note that the filtering distribution p(xi | y1:i)
is not the full posterior distribution p(xi | y1:N ) which can,
however, also be computed in linear time by running a
smoother after the filter. See e.g. Särkkä (2013) for more
information.

A.2. Gaussian ODE Filtering

A Gaussian ODE filter is simply a Gaussian filter, as defined
in Appendix A.1, with a specific kind of probabilistic state
space model eqs. (36) and (37), to infer the solution x :
[0,T ] → Rd of the ODE eq. (1), at the discrete time grid
{0 ·h, . . . ,N ·h} with step size h > 0. The dynamic model
is—as usual, recall eqs. (38) and (39)—constructed from
a GP defined by a LTI SDE that incorporates the available
prior information on x. The measurement model, however,
is specific to ODEs as we will see next: Recall that, after

i− 1 steps, the Gaussian filter has computed the (i− 1)-th
filtering distribution

p(xi−1 | y1:i−1) = N (mi−1,Pi−1), (41)

which is Gaussian with mean mi−1 and covariance matrix
Pi−1, and computes the predictive distribution

p(xi | y1:i−1) = N (m−i ,P−i ) (42)

by inserting eq. (39) into eq. (41). Analogous to the logic

f(x̂(t)) ≈ f(x(t)) = ẋ(t) (43)

of classical solvers, the Gaussian ODE Filter treats evalu-
ations at the predictive mean m−i —which is a numerical
approximation like x̂—as data on ẋ(ih). This yields the
measurement model

p(yi | xi) = N (Hxi,R), (44)

with data

yi := f(m−i ) ≈ ẋ(ih). (45)

The probabilistic state space model is thereby completely
defined. Gaussian ODE filtering is equivalent to running a
Gaussian filter on this probabilistic state space model.
For more details on Gaussian ODE filters, see Kersting
et al. (2019) or Schober et al. (2019). An extension to more
Bayesian filters—such as particle filters—is provided by
Tronarp et al. (2019).

B. Equivalent Form of Filtering Distribution
by GP Regression

Recall from Appendix A that any Gaussian filter computes
a sequence of filtering distributions

p(xi | y1:i) = N (mi,Pi) (46)

from a GP prior on x eq. (38) and a linear Gaussian measure-
ment model (eq. (40)) with derivative data (eq. (45)). Hence,
the classical framework for GP regression with derivative
observations, as introduced in Solak et al. (2003), is appli-
cable. It a priori models the state x and its derivative ẋ as a
multi-task GP:

p

([
x
ẋ

])
= GP

([
x
ẋ

]
;

[
µ
µ̇

]
,

[
k k∂

k∂ k∂ ∂

])
, (47)

with

k∂ =
∂k(t, t′)

∂t
, k∂ =

∂k(t, t′)

∂t′
, k∂ ∂ =

∂2k(t, t′)

∂t∂t′
. (48)
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B.1. Kernels for Derivative Observations

In this paper, we model the solution x with a integrated
Brownian motion kernel k or, in other words, we model ẋ
by the Brownian Motion (a.k.a. Wiener process) kernel, i.e.

k∂ ∂(t, t′) = σ2
dif min(t, t′), ∀t, t′ ∈ [0,T ]. (49)

Here, σdif > 0 denotes the output variance which scales the
diffusion matrix L in the equivalent SDE (eq. (38)). Inte-
gration with respect to both arguments yields the integrated
Brownian motion (IBM) kernel

k(t, t′) = σ2
dif

(
min3(t, t′)

3
+ |t− t′|min2(t, t′)

2

)
(50)

to model x. The once-differentiated kernels in eq. (47) are
given by

k∂(t, t′) = k∂ (t′, t) = σ2
dif

{
t ≤ t′ : t

2

2 ,

t > t′ : tt′ − t′2

2

. (51)

A detailed derivation of eqs. (49) to (51) can be found in
Schober et al. (2014, Supplement B).

B.2. GP Form of Filtering Distribution

Now, GP regression with prior (eq. (47)), likelihood
(eq. (46)) and data y1:i yields an equivalent form of the
filtering distribution eq. (46):

mi =µ+ k∂(h : ih, ih)ᵀ
[
K∂ ∂(h : ih) +R · Ii

]−1

× [y1 − µ̇(h), . . . , yi − µ̇(ih)]
ᵀ

, (52)

Pi =

[
k(h,h) . . . k(ih, ih)

.

.

.
. . .

.

.

.
k(ih,h) . . . k(ih, ih)

]
− k∂(h : ih, ih)ᵀ

×
[
K∂ ∂(h : ih) +R · Il

]−1
k∂(h : ih, ih), (53)

with y1:i = [y1, . . . , yi]
ᵀ, where we used the notations from

eqs. (15) and (16). The derivation of eq. (18) is hence
concluded by eq. (53).

B.3. Derivation of Equation (10)

In this subsection, we will use the ODE-specific nota-
tion from above instead of the generic filtering notation—
e.g. mθ(ih) instead of mi, f(m−(ih)) instead of yi etc. To
derive the missing eq. (10), we first observe that, by eq. (52),
m(ih) is linear in the data residuals:

mθ(ih) = µ+ βih × (54)[
f(m−(h))− µ̇(h), . . . , f(m−(ih))− µ̇(ih)

]ᵀ
βih := k∂(h : ih, ih)ᵀ

[
K∂ ∂(h : ih) +R · Ii

]−1
.

Now recall that, in ODE filtering, the prior mean in eq. (47)
is set to be [µ, µ̇] ≡ [x0; f(x0)] (or [µ, µ̇] ≡ [m0; f(m0)]

for some estimate m0 of x0, in the case of unknown x0).
Consequently, application of Assumption 1 to eq. (54) yields

mθ(ih) = x0 + Jihθ, with (55)

Jih := βih

 f1(m−θ (h)) − f1(x0) . . . fn(m
−
θ
(h)) − fn(x0)

.

.

.
. . .

.

.

.
f1(m

−
θ
(ih)) − f1(x0) . . . fn(m

−
θ
(ih)) − fn(x0)


= βihY1:i , (56)

where Y1:i denotes the first i rows of Y ; see eq. (17). We
omit the dependence of Jih on θ to obtain a linear form.
Recall from Section 3 that we may w.l.o.g. assume that the
time points {t1, . . . , tM} lie on the filter time grid, i.e. ti =
lih from some li ∈ N. Therefore, eq. (55) implies

mθ(ti)
eq. (14)

= x0 + κ̃iY1:i
eq. (13)

= x0 + κiY (57)

for all data time points ti, i = 1, . . . ,M . Here, we used that
κ̃i is equal to βlih by eq. (14). We conclude the derivation
of eq. (10) by observing that the i-th entry of eq. (10) reads
eq. (57) for all i = 1, . . . ,M .

C. Proof of Theorem 1
Proof. We start by computing the rows of

Dmθ = [∇θm(t1), . . . ,∇θm(tM )]ᵀ. (58)

By eqs. (10) and (11) and the fact that the kernel prefactor
K does not depend on θ, we obtain, for all i = 1, . . . ,M ,
that

∇θm(ti) = ∇(κ̃(i)ᵀv(θ))

= [Dv(θ)]
ᵀ
κ̃(i) + [Dκ̃(i)]

ᵀ︸ ︷︷ ︸
=0

v(θ) (59)

= [Dv(θ)]
ᵀ
κ̃(i), (60)

with v(θ) = Ỹ θ. Here,

Ỹ = Y [1 : li, :] = [Y1(θ), . . . ,Yli(θ)]
ᵀ (61)

is defined by

Yj(θ) = [yj1, . . . , yjn]ᵀ ∈ Rn, (62)

the j-th row of Y = Y (θ) (recall eq. (17)), for j = 1, . . . , li.
Next, we again compute the rows of the missing Jacobian
of eq. (60)

Dv(θ) = [∇θ[v(θ)]1, . . . ,∇θ[v(θ)]li ]
ᵀ (63)

by the chain rule, for all j ∈ {1, . . . , li}:

∇θ[v(θ)]j = ∇θ[Yj(θ)ᵀθ] = [DYj(θ)]
ᵀ
θ + Yj(θ). (64)

Again, we compute the rows of the final missing Jacobian

DYj(θ) = [∇θyj1(θ), . . . ,∇yjn(θ)]ᵀ. (65)
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The definition of yij from eq. (17) implies, in the notation
of eq. (21), that

[∇θyjk(θ)]l = λlk(jh), (66)

for all l = 1, . . . ,n. Now, we can insert backwards. First,
we insert eq. (66) into eq. (65) which yields

DYj(θ) = Λj , (67)

where Λj =
[
λkl(jh)

]
k,l=1,...,n

. Second, insertion of
eq. (67) into eq. (64) provides that

∇θ[v(θ)]j = Λᵀ
j θ + Yj(θ). (68)

Third, insertion of eq. (68) into eq. (63) implies that

Dv(θ) =
[
Λᵀ

1θ, . . . , Λᵀ
li
θ
]ᵀ

+ Y [: li, :], (69)

where

Y [: li, :]
eq. (68)

= [Y1(θ), . . . ,Yli(θ)]
ᵀ eq. (62)

=

[
y11 . . . y1n

.

.

.
. . .

.

.

.
yli1

. . . ylin

]
.

Fourth, we insert eq. (69) into eq. (60) and obtain

∇θm(ti) =
(
[Y [: li, :]]

ᵀ
+
[
Λᵀ

1θ, . . . , Λᵀ
li
θ
])
κ̃i

= [Y [: li, :]]
ᵀ
κ̃i +

[
Λᵀ

1θ, . . . , Λᵀ
li
θ
]
κ̃i. (70)

By eq. (13), it follows that

[Y [: li, :]]
ᵀ
κ̃i

eq. (17)
= Y ᵀκi, and (71)[

Λᵀ
1θ, . . . , Λᵀ

li
θ
]
κ̃i

eq. (20)
= Sᵀκi. (72)

This implies via eq. (70) that

∇θm(ti) = (Y ᵀ + Sᵀ)κi, (73)

Fifth and finally, we, by insertion of eq. (73) into eq. (58)
and application of eq. (12), obtain

Dmθ = K(Y + S)
eq. (11)

= J +KS. (74)

D. Proof of Theorem 2
We first show some preliminary technical lemmas in Ap-
pendix D.1 which are needed to prove bounds on ‖K‖ and
‖S‖ in Appendix D.2 and Appendix D.3, respectively. Hav-
ing proved these bounds, the core proof of Theorem 2 simply
consists of combining them by Theorem 1, as executed in
Appendix D.4.

D.1. Preliminary lemmas

The following lemma will be needed in Appendix D.2 to
bound ‖K‖.
Lemma 3. Let Q > 0 be a symmetric positive definite and
Q′ ≥ 0 a symmetric positive semi-definite matrix in Rm×n.
Then, it holds true that∥∥∥[Q+Q′]

−1
∥∥∥
∗
≤
∥∥Q−1

∥∥
∗, (75)

for the nuclear norm

‖A‖∗ = trace
√
A∗A =

m∧n∑
i=1

σi(A), (76)

where σi(A), i ∈ {1, . . . ,m ∧ n}, are the singular values
of A.

Proof. Recall that, for all symmetric positive semi-definite
matrices, the singular values are the eigenvalues. Therefore∥∥∥[Q+Q′]

−1
∥∥∥
∗

=

m∧n∑
i=1

1

λi(Q+Q′)

≤
m∧n∑
i=1

1

λi(Q)
=
∥∥Q−1

∥∥
∗. (77)

In eq. (77), we exploited the fact that Q ≤ Q+Q′ (i.e. that
(Q+Q′)−Q = Q′ is positive semi-definite) and therefore
λi(Q) ≤ λi(Q + Q′) for ordered eigenvalues λ1(Q) ≤
· · · ≤ λm∧n(Q) counted by algebraic multiplicity. This fact
is an immediate consequence of Theorem 8.1.5. in Golub &
Van Loan (1996).

The next lemma will be necessary to prove a bound on ‖S‖
in Appendix D.3.

Lemma 4. Let g(x,λ) ∈ C ([0,T ]× Λ;R) on non-empty
compact Λ ⊂ Rn with continuous first-oder partial deriva-
tives w.r.t. the components of λ. If

sup
λ∈Λ

g(x,λ) ∈ O(h(x)) (78)

for some constant C > 0 and some strictly positive h :
[0,T ]→ R, then also

sup
λ∈Λo

∣∣∣∣ ∂∂λk g(x,λ)

∣∣∣∣ ∈ O(h(x)), (79)

where Λo denotes the interior of Λ.

Proof. Assume not. Then, there is a k ∈ {1, . . . ,n} and a
λ̃ ∈ Λo such that∣∣∣∣ ∂∂λk g(x, λ̃)

∣∣∣∣ /∈ O(h(x)). (80)
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Since, for all x ∈ [0,T ], ∂
∂λk

(x, ·) is uniformly continuous
over the bounded domain Λo, there is a δ > 0 such that∣∣∣∣ ∂∂λk g(x, λ̃)

∣∣∣∣ /∈ O(h(x)), for all λ ∈ B2δ(λ̃). (81)

Let us w.l.o.g. (otherwise consider −g) assume that

∂

∂λk
g(x, λ̃) ≥ 0, for all λ ∈ B2δ(λ̃). (82)

Now, on the one hand, we know by the fundamental theorem
of calculus that∫ 0

−δ

∂

∂λk
g(xn, λ̃+ δ̃ek) dδ̃

= g(x, λ̃)︸ ︷︷ ︸
∈O(h(x))

− g(x, λ̃− δek)︸ ︷︷ ︸
∈O(h(x))

∈ O(h(x)). (83)

However, on the other hand, we know from our assumption
that

0
eq. (82)
≤

∫ 0

−δ

∂

∂λk
g(xn, λ̃+ δ̃ek) dδ̃ (84)

≤
∫ 0

−δ

∣∣∣∣ ∂∂λk g(xn, λ̃+ δ̃ek)

∣∣∣∣︸ ︷︷ ︸
/∈O(h(x)), by eq. (81)

dδ̃ /∈ O(h(x)), (85)

which implies∫ 0

−δ

∂

∂λk
g(xn, λ̃+ δ̃ek) dδ̃ /∈ O(h(x)). (86)

The desired contradiction is now found between eqs. (83)
and (86).

D.2. Bound on ‖K‖

Lemma 5. Under Assumption 3 and for all R > 0, it holds
true that

‖K‖ ≤ C(T ), (87)

where C(T ) > 0 is a constant that depends on T .

Proof. First, recall eqs. (12) to (16) and observe that

∥∥k∂(h : ti, ti)
∥∥ ≤ Cσ2

2

∥∥[h2, . . . ,T 2
]∥∥
∞ = C

(
2−

1
2σT

)2

,

for all i = 1, . . . ,M . Second, Lemma 3 implies that∥∥∥[ K∂ ∂(h : ti) +R · Ili
]−1
∥∥∥ eq. (75)
≤ C

∥∥R−1 · Ili−1

∥∥
∗

≤ C
∥∥R−1 · IN̄−1

∥∥
∗ ≤ CRN̄ .

Now, by eq. (13), we observe

‖κi‖1 = ‖κ̃i‖1
≤
∥∥∥[ K∂ ∂(h : ti) +R · Ili

]−1
∥∥∥ · ∥∥k∂(h : ti, ti)

∥∥
≤ C(T ), (88)

where we inserted the above inequalities in the last step.
Finally, we obtain eq. (87) by plugging eq. (88) into

‖K‖ ≤ C‖K‖∞
eq. (12)

= max
1≤i≤M

‖κi‖1. (89)

D.3. Bound on ‖S‖

Before estimating ‖S‖, we need to bound how far the entries
of S (recall eq. (20)) deviate from the true sensitivities
∂
∂θk

xθ(T ).

Lemma 6. If Θ ⊂ Rn is compact, then it holds true, under
Assumptions 1 and 2, that

sup
θ∈Θo

∥∥∥∥ ∂

∂θk
m−θ (T )− ∂

∂θk
xθ(T )

∥∥∥∥ ∈ O(h). (90)

Proof. First, recall that the convergence rates of O(h) pro-
vided by Theorem 6.7 in Kersting et al. (2019) only depend
on f through the dependence of the constant K(T ) > 0 on
the Lipschitz constant L of f . But this L is independent of θ
by Assumption 1. Hence, Theorem 6.7 from Kersting et al.
(2019) yields under Assumption 2 that

sup
θ∈Θo

m−θ (T )− xθ(T ) ∈ O(h). (91)

Moreover, Theorem 8.49 in Kelley & Peterson (2010) is
applicable under Assumption 1 and implies that xθ(t) is
continuous and has continuous first-order partial derivatives
with respect to of θk. By construction—recall eq. (10)—the
filtering mean mθ(t) has the same regularity too. Hence,
application of Lemma 4 with x = h, Λ = Θ, λ = θ,
g(x,λ) = m−θ (T )−xθ(T ) is possible, which yields eq. (90)
from eq. (91).

Lemma 7. If Θ ⊂ Rn is compact, then it holds true, under
Assumptions 1 to 3, that

‖S‖ ≤ C (‖∇θxθ‖+ h) , (92)

for sufficiently small h > 0.

Proof. By Assumption 3 and the equivalence of all matrix
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norms, we observe

‖S‖ ≤ C‖S‖2 = C‖Sᵀ‖2 ≤ C‖S
ᵀ‖2,1 (93)

eq. (20)
= C

N̄∑
j=1

∥∥Λᵀ
j θ
∥∥

2
(94)

≤ C
N̄∑
j=1

∥∥Λᵀ
j

∥∥
2

‖θ‖2︸︷︷︸
≤C, since Θ bounded

, (95)

where ‖·‖2,1 denotes the L2,1 norm. We conclude, using
Assumption 2 and Lemma 6, that

∥∥Λᵀ
j

∥∥
2

eq. (21)
≤ Lmax

jk

[
∂

∂θk
m−θ (jh)

]
(96)

eq. (90)
≤ C (‖∇θxθ‖+ h) . (97)

D.4. Proof of Theorem 2

Proof. By Theorem 1 and the sub-multiplicativity of the
induced p-norm ‖·‖p, we observe that

‖J −Dmθ‖ = ‖KS‖ ≤ C‖KS‖p ≤ ‖K‖p‖S‖q
≤ C‖K‖‖S‖, (98)

for some p, q ≥ 1. Application of Lemmas 5 and 7 con-
cludes the proof.

E. Gradient and Hessian Estimators for the
Bayesian Case

In the main paper, we only consider the maximum likelihood
objective; see eq. (23). Nonetheless, the extension to the
Bayesian objective, with a prior π(θ), is straightforward:

− log (p(z | θ)π(θ)) = − log (p(z | θ))− log (π(θ))

Accordingly, the gradients and Hessian of this objective are

∇θ [− log (p(z | θ)π(θ))]
eq. (26)

= ∇̂θE(z)−∇θ log (π(θ)) ,

∇2
θ [− log (p(z | θ)π(θ))]

eq. (27)
= ∇̂2

θE(z)−∇2
θ log (π(θ)) .

Hence, for a Gaussian prior π(θ) = N (θ;µθ,Vθ), the
Bayesian version of the gradients and Hessian estimators in
eqs. (26) and (27) are hence given by

∇̂θE(z)Bayes := −Jᵀ
[
P + σ2IM

]−1
[z −mθ]

− V −1
θ [θ − µθ] , and (99)

∇̂2
θE(z)Bayes := Jᵀ

[
P + σ2IM

]−1
J + V −1

θ . (100)

F. Glucose Uptake in Yeast
The Glucose uptake in yeast (GUiY) is described by mass-
action kinetics. In the notation of Schillings et al. (2015),
the underlying ODE is given by:

ẋeGlc = −k1x
e
Ex

e
Glc + k−1x

e
E–Glc

ẋiGlc = −k2x
i
Ex

i
Glc + k−2x

i
E–Glc

ẋiE–G6P = k4x
i
Ex

i
G6P + k−4x

i
E–G6P

ẋiE–Glc–G6P = k3x
i
E–Glcx

i
G6P − k−3x

i
E–Glc–G6P

ẋiG6P = −k3x
i
E–Glcx

i
G6P + k−3x

i
E–Glc–G6P

− k4x
i
Ex

i
G6P + k−4x

i
E–Glc

ẋeE–Glc = α
(
xiE–Glc − ẋeE–Glc

)
+ k1x

e
Ex

e
Glc

− k−1x
e
E–Glc

ẋiE–Glc = α
(
xeE–Glc − ẋiE–Glc

)
− k3x

i
E–Glcx

i
G6P

+ k−3x
i
E–Glc–G6P + k2x

i
Ex
i
Glc − k−2x

i
E–Glc

ẋeE = β
(
xiE − xeE

)
− k1x

e
Ex
e
Glc + k−1x

e
E–Glc

ẋiE = β
(
xeE − xiE

)
− k4x

i
Ex
i
G6P + k−4x

i
E–G6P

− k2x
i
Ex
i
Glc + k−2x

i
E–Glc,

where k1, k−1, k2, k−2, k3, k−3, k4, k−4, α, and β
are the 10 parameters. Note that this system satisfies
Assumption 1. Following Schillings et al. (2015) and
Gorbach et al. (2017), we used this ODE with initial
value x0 = 1M , time interval [0., 100.] and true parameter
θ∗ = [0.1, 0.0, 0.4, 0.0, 0.3, 0.0, 0.7, 0.0, 0.1, 0.2]. To gen-
erate data by eq. (3), we added Gaussian noise with variance
σ2 = 10−5 to the corresponding solution at time points
[1., 2., 4., 5., 7., 10., 15., 20., 30., 40., 50., 60., 80., 100.].
The optimizers and samplers were initialized at
θ0 = 1.2·θ∗ = [0.12, 0, 0.48, 0, 0.36, 0, 0.84, 0, 0.12, 0.24],
and the forward solutions for all likelihood evaluations
were computed with step size h = 0.05. To create a good
initialization, we accepted the first 30 proposals for PHMC
and PLMC.
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