
Probabilistic Progress Bars

Martin Kiefel, Christian Schuler, Philipp Hennig

Max Planck Institute for Intelligent Systems, Tübingen, Germany

Abstract. Predicting the time at which the integral over a stochastic
process reaches a target level is a value of interest in many applications.
Often, such computations have to be made at low cost, in real time. As
an intuitive example that captures many features of this problem class,
we choose progress bars, a ubiquitous element of computer user interfaces.
These predictors are usually based on simple point estimators, with no
error modelling. This leads to fluctuating behaviour confusing to the user.
It also does not provide a distribution prediction (risk values), which are
crucial for many other application areas. We construct and empirically
evaluate a fast, constant cost algorithm using a Gauss-Markov process
model which provides more information to the user.

1 Introduction

The problem of predicting when the integral over a random rate will reach a
certain level, i.e. to solve

R =

∫ T

0

r(t) dt (1)

for T , where r(t) is a draw from a random process (below we will focus on
specific Gaussian processes), is at the heart of a number of applied problems. For
motivation, consider the following examples:

– Retailers need to predict the point at which their reserves of individual
products run out, an event that incurs a big loss. For products which are sold
at sufficiently fine increments such that stocks are essentially a continuous
quantity, a stochastic rate of sale is a realistic model.

– The onboard computer of a car needs to predict the remaining range while
the fuel tank is slowly emptying. Changes in the drive speed, steepness of
the road and wind conditions continuously change the fuel efficiency of the
car, making prediction nontrivial.

– A startup company that is trying to attract crowd funding needs to predict
the point at which funding goals will likely be reached, to efficiently prepare
production (Section 4.2).

In this manuscript, we will focus on a fourth example application which shares
many of the fundamental properties of the ones above, and adds the complication
of a particularly restrained computational budget: Plotting a progress bar to

2 Martin Kiefel, Christian Schuler, Philipp Hennig

Fig. 1. A graphical representation of uncertainty about the remaining runtime of a
download, resulting from the algorithm described below. The top half of the interface
shows a classic progress bar, while the bottom half shows, in red, a cloud of uncertainty
representing the weighted set of hypotheses over the remaining download time. The
shown implementation is available as an open-source plugin. (Note that the plugin
currently only works in the pull-down dialogue from the address bar, as shown in the
figure, not in the separate download window also provided by Firefox).

predict the completion time of a file download on a desktop computer, under a
stochastically varying connection bandwidth.

Although progress bars are ubiquitous elements of user interfaces, they are
often treated as ‘eye candy’, at the margins of both the users’ and the designers’
attention. Visual design aspects of these pieces of graphical user interface have
sometimes been studied [8], but the algorithms behind them are usually simplis-
tic, a combination of simple moving averages, with ad-hoc backstops to avoid
pathological values. The resulting predictions are not just unreliable, they are
also qualitatively, visually unsatisfying: They give quickly varying predictions,
which are confusing to the user, who has to mentally compute the averages.

Instead, we will develop a probabilistic progress bar algorithm, which returns a
nonparametric probability distribution over the completion-time of a file download.
This distribution can be shown graphically to the user (Figure 1), providing a
less volatile, and more informative interface.

The mathematical ‘lever’ central to our derivations of a low-cost algorithm is
the fact that Gaussian distributions, including nonparametric Gaussian process
models, are closed under linear projections, and thus in particular also under
integration: The integral over a Gaussian process is itself a Gaussian process.
This observation is not new, and has been used repeatedly in the past to establish
connections between numerical quadrature rules and Gaussian process regression
[1, 3, 6, 7]. The twist in the progress bar setting (and related problems) is that
the problem is inverted: Instead of predicting the value of the integral over a
stochastic process at a particular time, one needs to predict the time at which
the integral over the process reaches a particular value. This complicates the
computation and typically gives non-Gaussian predictions (Figure 2).

In addition, our application requires a very low computational cost profile:
Progress bars, as elements of the graphical user interface, must not cause serious
computational overhead. We thus strive here to develop a algorithm of radically
low, constant cost both in memory and computation time. This is achieved

Probabilistic Progress Bars 3

0 200 400 600 800 1,000

0

100

200

t [s]

r
[k
B
/
s]

0 200 400 600 800 1,000
0

2

4

6
·104

t [s]

R
[k
B
]

Fig. 2. Gauss-Markov process rate model. Left: an observed download rate r(t) (black)
gives rise to a Gauss-Markov process posterior belief about the future r(t) (red, thick
mean function, one and two standard deviations in decreasing red intensity, three
samples from the belief in faint red). Right: The belief over the integral R(t) =

∫ t
t0
r(t̃)dt̃

is also a Gaussian process (green, same scheme as left). The belief for when a particular
amount Rtarget is reached is a (normalised) cut through this Gaussian belief along a
particular output value. In particular, it is not a Gaussian distribution (blue lines).

by using a nonparametric Gauss-Markov process prior for the download rate,
with a parametric mean function, which leads to a filtering method [11] that
has constant, very low cost, while capturing the important features of the rate
distribution. Our algorithm has been implemented as a plugin for the open-source
Firefox browser, available on the project page1.

To simplify exposition and ease intuition, the remainder of this text will
use concepts like the ‘download rate’ and ‘data volume’ specific to the example
application of web browser’s download progress bar. The results translate easily
to other applications (e.g. the download rate could be replaced with the rate of
products being sold, the rate at which funding pledges arrive, etc.).

2 Model

We assume that the algorithm has access to a rate function r(t) : R → R at
recurring (not necessarily regularly spaced) time locations, describing the rate
at which data accumulates. Crucially, observations y = [y(t1), . . . , y(tN)] of r(t)
at times T = [t1, . . . , tN] can be made without observation noise, i.e. with Dirac
likelihood p(y | r) = δ(r(T)−y). This is a realistic assumption for a web browser,
and reasonable for many other applications (e.g. retailers have, of course, noiseless
access to individual orders arriving).

We consider a Gaussian process prior over r, with constant mean β and
Ornstein-Uhlenbeck [13] covariance function

p(r |β, θ, λ) = GP(r;β, k); with k(t, t′; θ, λ) = θ2 exp

(
−|t− t

′|
λ

)
. (2)

1 http://people.tuebingen.mpg.de/mkiefel/projects/mlprogressbar/

http://people.tuebingen.mpg.de/mkiefel/projects/mlprogressbar/

4 Martin Kiefel, Christian Schuler, Philipp Hennig

Ornstein-Uhlenbeck processes are a meaningful and relatively conservative prior
for rate functions: Draws from OU processes are stationary (there is no reason
to assume, a priori, that download rates change qualitatively over time), and
continuous, but almost surely not differentiable [9, §4.2.1], allowing for relatively
drastic variations in rate while retaining a degree of extrapolation ability. They
also are first-order Markov processes [10, §I.23], a property that will become
crucial for fast inference.

Further, we assign Gaussian uncertainty p(β) = N (β; 0, b) to the mean, and
allow for arbitrarily large uncertainty on β, by taking b → ∞. These priors
and the Dirac likelihood give a Gaussian process posterior on r with mean and
covariance functions [9, §2.7]

µ(t) = ktTK
−1
TTy +Rᵀ

t β̄ and (3)

V(t, t′) = ktt′ − ktTK−1TT kTt′ +Rᵀ
tA
−1Rt′ . (4)

This is using the widely adopted notation kab = k(a, b) for kernel Gram matrices:
if a has na elements and b has nb elements, then kab is a matrix of size na × nb.
We will shorten KTT ≡ K from now on. The other objects in the equation are the
residual projection Rt ≡ 1−1ᵀK−1kTt, the mean of the belief over the empirical
mean β̄ ≡ A−11ᵀK−1y and its precision A ≡ 1ᵀK−11. The marginal likelihood,
the evidence p(y |T, θ, λ) for the data, is also Gaussian. Its logarithm is

log p(y |T, θ, λ) = −1

2

[
yᵀK−1y −A−1(yᵀK−11)

2
(5)

+ log |K|+ log |A|+N log 2π
]
.

For efficient inference on the signal variance θ2, we separate it from the kernel
matrices, defining K̃ ≡ θ−2K and Ã ≡ θ2A. The log evidence, as far as it relates
to θ, can then be written up to additive terms as

log p(y |T, θ, λ) = − 1

2θ2

[
yᵀK̃−1y − Ã−1(yᵀK̃−11)

2
]

+
N

2
log θ−2 + const. (6)

For hierarchical inference, we introduce a Gamma prior on θ−2:

log p(θ−2 | a, b) = a log b− logΓ (a) + (a− 1) log θ−2 − b

θ2
, (7)

to get a Gamma posterior on θ−2 with

a′ = a+
N

2
; b′ = b+

1

2

[
yᵀK̃−1y − Ã−1(yᵀK̃−11)

2
]
, (8)

which has its mean at a/b, its maximum at (a− 1)/b, and has variance a/b2.

2.1 Fast Gauss-Markov Inference

General matrix inversion is computationally expensive if the size of the ma-
trix grows with the number of datapoints. Furtunately, because the Ornstein-
Uhlenbeck process is first-order Markov and the input domain (time) is scalar,

Probabilistic Progress Bars 5

the Gram matrix K can be inverted analytically, which gives rise to a light-
weight, constant cost filtering algorithm.2 Let there be N observations at sorted
locations t1 < t2 < · · · < tN , and let the scaled distance between locations
be δi = (ti+1 − ti)/λ, i = 1, . . . , N − 1. Then a straightforward but tedious
inductive argument shows that the inverse of the Gram matrix K with Kij =

θ2e
−∑max(i,j)−1

k=min(i,j)
δk is given by the symmetric tri-diagonal matrix

K−1 = θ−2



c1 b1 0 · · · 0

b1 c2 b2
...

0 b2 c3
. . . 0

0 0
. . . cN−1 bN−1

0 · · · 0 bN−1 cN


with

bi = −e−δi
1−e−2δi

c1 = 1
1−e−2δ1

cN = 1

1−e−2δN−1

ci 6=1,N = 1−e−2(δi+δi+1)

(1−e−2δi)(1−e−2δi+1)
.

(9)
To simplify notation for the following derivations, we use the shortcut ∆i =
exp(−δi). Neatly, the starting case (N = 0) can be incorporated by considering an
effective additional datapoint at −∞ without changing the results, showing that
the matrixK−1 is actually circular. We also find that log |K̃−1| = −

∑N−1
i=1 log(1−

e−2δi). From the derivations in the preceding section, we observe that the sufficient
statistics for inference are the scalar objects 1K̃−11, 1K̃−1y and yK̃−1y. Using
the aforementioned datapoint at −∞, which amounts to δ0 = δN =∞ and thus
bN = 0, we get the compact form

α ≡ 1iK̃
−1
ij yj =

N∑
i=1

ciyi + bi(yi + yi+1) Ã = 1iK̃
−1
ij 1j =

N∑
i=1

ci + 2bi (10)

γ ≡ yiK̃−1ij yj =

N∑
i=1

ciy
2
i + 2bi(yiyi+1). (11)

Up to this point, calculation of the different parts of the inference still is linear in
the number of observables. For a constant-cost filtering rule, we treat the update
from N to N + 1 data points explicitly. A few lines of algebra show that updates
for the three sufficient statistics, after collecting a new observation ynew at time
step tnew, and given the observation yold and statistics from the previous time
step told, at distance ∆← exp[−(tnew − told)/λ], are

Ã← Ã+
1−∆
1 +∆

α← α+
ynew − yold∆

1 +∆
(12)

γ ← γ +
(ynew − yold∆)2

1−∆2
told ← tnew yold ← ynew (13)

2 The expositions in this section could also be formulated more generally (for Matérn-
class covariances) in the framework of state-space models and associated filters [11].
The derivations here only work for our specific choice of the Ornstein-Uhlenbeck
kernel (the first member of the Matérn class), but they allow a more straightforward
treatment of the uncertainty on the parametric mean.

6 Martin Kiefel, Christian Schuler, Philipp Hennig

To perform this computation at any point in time, we only need to keep the
variables told, yold, Ã, αold, γold, a, and b in memory. Due to the first order
Markovianity of the Ornstein Uhlenbeck process, mean and covariance of the
Gaussian posterior can then be found using the simple forms [11]

∆∗ ≡ exp[−(t∗ − told)/λ] R = (1−∆∗) (14)

µ(t∗) = ∆∗yold +Rᵀβ̄ V(t∗) = θ2[(1−∆2
∗) +RᵀÃ−1R]. (15)

Using β̄ = α
Ã

. Because of the conjugacy of the Gamma prior to precisions of
Gaussians, the posterior over θ is also inverse Gamma, with

a = a0 +
N

2
and b = b0 +

1

2

(
γ − α2

Ã

)
. (16)

which can be marginalized to give a Student-t prediction for the rate (see Equation
(23) and following below). We initialise the set of variables to

told ← −∞ yold ← 0 Ã← Ã0 (17)

αold ← α0 γold ← 0 a← a0 b← b0 (18)

with sensible values for Ã0, α0, a0, b0, which can be used to propagate experience
from past runs of the algorithm. For example, if the average download rate in
previous runs was r̄ with an empirical variance of σ2

r , we set α0 = r̄, Ã0 = 1,
b0 = 1e − 2, a0 = σ2

rb0 to get a broad Gauss-Gamma prior. For the very first
download on a particular network connection, Algorithm 1 below contains sensible
standard values for the progress bar setting, with rates measured in kB/s.

3 Constructing Predictions

The Gaussian family is closed under linear operations L:

p(t) = N (t;m,V) ⇒ p(Lt) = N (Lt;Lm,LV Lᵀ). (19)

Since integration is a linear operation, a belief over the integral over the rate,
the accumulated data at time t∗, d(t∗) =

∫ t∗
t0
r(t) dt, can be constructed from the

Gaussian process posterior mean µ(t) and covariance V(t, t′) as

p(d(t∗) | θ) = N
(
d(t∗);

∫ t∗

t0

µ(t) dt,

∫∫ t∗

t0

V(t, t′) dt dt′
)

(20)

= N
(
d(t∗); kt∗TK

−1y + Rᵀ
t∗ β̄, κt∗t∗ − kt∗TK

−1kTt∗ + Rᵀ
t∗A
−1Rt∗

)
,

with the integrated projection operators (assuming the predictive distribution is
only evaluated for future time points t > tN)

kt∗T =

∫ t∗

t0

k(t, T) dt, Rt∗ =

∫ t∗

t0

Rt dt, and κt∗t∗ =

∫∫ t∗

t0

k(t, t′) dt dt′.

(21)

Probabilistic Progress Bars 7

In fact, as pointed out above, due to the first-order Markovianity of the Ornstein
Uhlenbeck process, µ(t) and marginal variance V(t, t) only depend on the last
observed function value, yold = r(told). The integral prediction is simply given by

p(d(t∗) | θ) = N
[
d(t∗); kt∗toldytold + Rt∗told β̄, θ

2[κt∗t∗ − k2t∗told + Rᵀ
t∗toldÃ

−1Rt∗told]

]
≡ N

[
d(t∗);µ∫ (t∗), θ

2σ2∫ (t∗)

]
(22)

with kt∗told = λ

(
1− exp

(
− t∗ − told

λ

))
and Rt∗told = (t∗ − told)− kt∗f and κt∗t∗ = 2λ [(t∗ − told)− kttold]

The uncertainty in θ is incorporated by marginalisation, using the Gamma
posterior from Equation (8). The resulting marginal over d(t∗) is a Student
t-distribution [e.g. 2, §2.3]

p(d(t∗)) =

∫ ∞
0

p(d(t∗) | θ)G(θ−2 | a, b) dθ−2

=

∫ ∞
0

ba exp(−b/θ2)θ−2(a−1)

Γ (a)
√

2πθ2σ2∫ (t∗)
exp

−θ−2
2

(
d(t∗)− µ∫ (t∗)

σ∫ (t∗)

)2
 dθ−2

=
ba√
2π

Γ
(
a+ 1

2

)
Γ (a)

[
b+

(d(t∗)− µ∫ (t∗))
2

2σ2∫
]−a−1/2

= St(d(t∗)/σ
2∫ ;µ/σ2∫ , a/b, 2a). (23)

To construct a density for the probability of target D being reached at time t∗, we
interpret the density of Eq. (23) as p(d(t∗) = D) for every t∗, and normalise. Doing
so causes a small error: The physical rate is strictly positive r(t) ≥ 0, so there is
one and only one correct D. But our Gaussian model puts a small amount of
probability mass on negative rates. Hence interpreting a normalised p(d(t∗) = D)
as a density on D puts too much mass on “late” times, which are only possible
under negative rates. The exact correction — enforcing strictly positive rates
everywhere — involves an intractable integral. One could consider constructing a
correction through an additional term multiplied with p(D = d(t∗)), decaying for
large t∗. Another, simpler option is to use a “warped GP” strictly positive prior
[12]. Inference in such models can be performed approximately by linearization
[5]. However, our empirical studies suggest that the error is small overall, and
can simply be ignored. The resulting overall procedure is given in Algorithm 1.
It requires the storage of eight floating point numbers, whose update involves
two exponential functions, one logarithm, and a handful of sums and products of
floats. The procedure Predict returns the (logarithm of) the probability pd(t∗)=D
that the download volume D will accumulate form the current time ti > tnew to

8 Martin Kiefel, Christian Schuler, Philipp Hennig

Algorithm 1 Probabilistic progress bar. Every time tnew a new rate ynew is ob-
served Inference updates the posterior belief. Using its results, Predict(D, ti, t∗)
returns the likelihood that data volume D will accumulate from time ti to time
t∗. The routine Initialise sets prior assumptions.
1: procedure Initialise

2: told ← −∞, yold ← 0, A← 0, α← 0, γ ← 0, λ← 30[s], a0 ← 0.1, b0 ← 106

3: end procedure

1: procedure Inference(tnew, ynew)
2: ∆← exp[−(tnew − told)/λ] B scaled distance
3: N ← N + 1 B observation count
4: A← A+ 1−∆

1+∆
B residual uncertainty on mean

5: α← α+ ynew−yold∆
1+∆

B sufficient statistics for signal mean

6: γ ← γ + (ynew−yold∆)2

1−∆2 B sufficient statistics for signal variance
7: told ← tnew, yold ← ynew

8: β ← α
A
, a← a0 + N−1

2
, b← b0 + 1

2

(
γ − α2

A

)
9: end procedure

1: procedure Predict(D, ti, t∗; told, yold, A, β, a, b)
Ensure: ti > told ∧ t∗ > ti B assumptions valid?
2: δ∗ ← t∗ − ti
3: k∗ ← λ[e−(ti−told)/λ − e−(t∗−told)/λ]
4: κ← 2λ(δ∗ − k∗) B prior variance of integral
5: µ∗ ← k∗(yold − β) + δ∗β B post. mean
6: σ2

∗ ← κ− k2∗ + (δ∗ − k∗)2/A B post. variance

7: log pd(t∗)=D ← −
(
a+ 1

2

)
log

[
b+

(d(t∗)−µt∗)
2

2σ2
t∗

]
+ const.

8: return log pd(t∗)=D B log Student-t likelihood
9: end procedure

the target time t∗. This output can be used in two different ways, depending on
the task and setting: To construct a graphical output for a probabilistic progress
bar, as in Figures 1 and 2, we evaluate pd(t∗)=D over a set grid of values for t∗
(doing so is less expensive than constructing the graphical output itself). If the
grid is fine enough, this probability (multiplied with a regulariser, if needed) can
also be used to compute mean, variance, and other moments of the distribution
over run times. For applications requiring the most likely time of completion,
this time can be found by an efficient optimization. This can be done very
efficiently, because the domain is one-dimensional, and derivatives of pd(t∗)=D
can be computed to high order, at diminishing cost. So very efficient numerical
optimization techniques, such as Halley’s method, are applicable, which we have
empirically found to converge within one or two steps in this setting.

Probabilistic Progress Bars 9

0 200 400
0

500

1,000

1,500

2,000

2,500

3,000

t [s]

p
(d

(t
∗
))

0 200 400
0

500

1,000

1,500

r
[k
B
/
s]

0 100 200 300
0

500

1,000

1,500

2,000

2,500

t [s]

p
(d

(t
∗
))

0 100 200 300
0

10

20

30

r
[k
B
/
s]

Fig. 3. Behaviour of the probabilistic error bar for two downloads. Left: a fast, consistent
dial up connection for a 605Mb file. Right: a shaky cell phone connection for a 5Mb
file. Download rates in black, scale on right ordinate. True remaining time of download
as linear gray line (scale on left ordinate), probabilistic prediction shaded in green.
The dark green line is the mean of the progress bar algorithm’s posterior predictive
distribution. The edges of the shaded regions mark the 10% and 90% quantiles of the
predictive distribution.

4 Experiments

We tested our model both in the progress bar setting on several pre-recorded
downloads (§4.1), and in a related task (see §1), predicting the time of a crowd-
funding project to reach its target amount, on the Kickstarter platform (§4.2).

4.1 Progress Bars for Pre-Recorded Downloads

Figure 3 shows results from downloads of two single files in separate settings:
A relatively large (605MB) file over a reliable pipe, and a small (5MB) file
over an unreliable connection. See the figure caption for a description of the
plots. A comparison between the predicted completion times (light green quantile
shades) and ground truth (gray line) shows how the predictor converges to a
good prediction, but also assigns meaningful uncertainty around its prediction.
Note the strongly asymmetric form of the prediction, with median and most
likely prediction typically close to the true value. The ramp-up phase early in the
download is actually a feature of the download itself, and not of the estimation
procedure (note that the rates r, plotted as black lines, are initially low).

4.2 Kickstarter

Kickstarter3 is an online platform on which companies and individuals can ask
for financial support for their projects. Every project chooses a deadline and a
financial target, community members pledge money during this time window.

3 http://www.kickstarter.com

http://www.kickstarter.com

10 Martin Kiefel, Christian Schuler, Philipp Hennig

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

normalized time

c
d
f

Fig. 4. Trajectories of ten randomly selected kickstarter projects scaled relative to the
posterior cumulative distribution function (cdf) of the algorithm. If the model were
perfect, these curves should be uniformly distributed across the [0,1] simplex.

If the set amount of money is reached within the time period, the project is
considered successfully funded, and the pledged amount is transferred from to
the project owners.

To get a sense of the algorithm’s probabilistic calibration, we predicted the
completion (or failure) time of kickstarter projects with a volume higher or equal
to 20.000 USD from a dataset4 in [4]. 300 projects were set aside as a training set
to select the hyperparameters (a0, b0) of the prior (7). Independent of the success
of the project we fixed the time window to either the point in time when the
project got funded, or the original deadline occurred. The funding rate can then
be approximated well from finite differences on the 1000 collected funding states.

Figure 4 shows, for 10 randomly selected projects, the position of the true
finishing time within the algorithm’s cumulative density function over the course
of the pledge. The trajectories cover the entire range of the distribution, and
often move through it over the course of the window, indicating good coverage of
the distribution. At the same time, they are also not truly uniformly distributed,
reflecting minor model flaws, the price paid for the low computational cost.

5 Conclusion

We derived a nonparametric algorithm for the probabilistic prediction of the
completion time of a stochastically increasing process. Using a Gauss-Markov
process prior with a parametric mean function, and analytically integrating over
several hyperparameters, we arrived at a filtering algorithm of constant, very
low cost, which nevertheless provides a nonparametric probabilistic prediction
for the completion time. As pointed out in the introduction, such algorithms
have numerous potential applications. One of them is to provide enhanced visual
feedback on the progress of a file download in a web browser, a probabilistic error
bar. An implementation of this method can be found on the project page5.

4 Dataset available at http://sidekick.epfl.ch/data.
5 http://people.tuebingen.mpg.de/mkiefel/projects/mlprogressbar/

http://sidekick.epfl.ch/data
http://people.tuebingen.mpg.de/mkiefel/projects/mlprogressbar/

Bibliography

[1] Ajne, B., Daleniua, T.: N̊agra tillämpningar av statistika ideer p̊a numerisk
integration. Nordisk Math. Tidskrift 8, 145–152 (1960)

[2] Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
[3] Diaconis, P.: Bayesian numerical analysis. Statistical decision theory and

related topics IV(1), 163–175 (1988)
[4] Etter, V., Grossglauser, M., Thiran, P.: Launch hard or go home!: Predicting

the success of kickstarter campaigns. In: Proceedings of the First ACM
Conference on Online Social Networks. pp. 177–182. COSN ’13, ACM, New
York, NY, USA (2013)

[5] Garnett, R., Osborne, M., Hennig, P.: Active learning of linear embeddings
for Gaussian processes. In: Uncertainty in Artificial Intelligence (2014)

[6] Minka, T.: Deriving quadrature rules from Gaussian processes. Tech. rep.,
Statistics Department, Carnegie Mellon University (2000)

[7] Osborne, M., Duvenaud, D., Garnett, R., Rasmussen, C., Roberts, S.,
Ghahramani, Z.: Active learning of model evidence using bayesian quadra-
ture. In: Advances in NIPS. pp. 46–54 (2012)

[8] Peres, S., Kortum, P., Stallmann, K.: Auditory progress bars: Preference,
performance and aesthetics. In: Proceedings of the 13th International Con-
ference on Auditory Display, Montreal, Canada, June 26. vol. 29, p. 2007
(2007)

[9] Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT
(2006)

[10] Rogers, L., Williams, D.: Diffusions, Markov Processes and Martingales, vol.
1: Foundations. Cambridge, 2 edn. (2000)

[11] Särkkä, S.: Bayesian filtering and smoothing, vol. 3. Cambridge University
Press (2013)

[12] Snelson, E., Rasmussen, C., Ghahramani, Z.: Warped Gaussian processes.
In: Advances in Neural Information Processing Systems (2004)

[13] Uhlenbeck, G., Ornstein, L.: On the theory of the Brownian motion. Physical
Review 36(5), 823 (1930)

	Probabilistic Progress Bars

