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Abstract —We present a method for fully automated selection
of treatment beam ensembles for external radiation therapy.

We reformulate the beam angle selection problem as a clus-
tering problem of locally ideal beam orientations distributed
on the unit sphere. For this purpose we construct an infinite
mixture of von Mises-Fisher distributions, which is suited in
general for density estimation from data on the D-dimensional
sphere. Using a nonparametric Dirichlet process prior, our
model infers probability distributions over both the number of
clusters and their parameter values. We describe an efficient
Markov chain Monte Carlo inference algorithm for posterior
inference from experimental data in this model.

The performance of the suggested beam angle selection
framework is illustrated for one intra-cranial, pancreas, and
prostate case each. The infinite von Mises-Fisher mixture model
(iMFMM) creates between 18 and 32 clusters, depending on the
patient anatomy. This suggests to use the iMFMM directly for
beam ensemble selection in robotic radiosurgery, or to generate
low-dimensional input for both subsequent optimization of
trajectories for arc therapy and beam ensemble selection for
conventional radiation therapy.

Keywords - Nonparametric Bayesian Inference; Directional
Statistics; Radiation Therapy; Treatment Planning; Beam An-
gle Optimization.

I. INTRODUCTION

Radiation therapy aims to maximize the tumor control
probability while minimizing the normal tissue complication
rate. For radiation therapy treatment planning, these two
conflicting clinical objectives are often translated into an
objective function F through the following definition:

F =
∑
i

pi
{
Di −Dpres

i

}2
=
∑
i

pi
{

Σj(wjDij)−Dpres
i

}2
.

(1)

pi, Di, and Dpres
i denote the penalty, the actual dose, and

the prescribed dose for voxel i of the discretized patient
anatomy. Di is given by a weighted linear superposition
of multiple beamlets j. The dose influence matrix Dij

specifies the dose contribution to voxel i from beamlet j.
Minimizing F with respect to the beamlet weights wj is a
convex problem. It can be solved efficiently with standard

optimization techniques. The Dij matrix, however, is a
function of the individual treatment beams βη constituting
the treatment beam ensemble B.

Dij = Dij(B) (2)

Hence, the overall optimization problem of finding ideal
machine parameters for radiation therapy has to be defined
as

argmin
B,w

{ ∑
i

pi{ Σj(wjDij(B))−Dpres
i }2

}
. (3)

The computation of the dose influence matrix Dij , i.e. the
simulation of the radiation transport on the patient anatomy,
for a beam configuration B is computationally intensive. It
complicates the optimization of beam angles, which itself
is a non convex combinatoric problem with exponential
complexity [3].

This is why, besides global optimization techniques
[12][13], heuristic beam angle optimization (BAO) strate-
gies receive constant scientific attention. Different scoring
functions based on both geometric [9] and dosimetric con-
siderations [6][10] have been suggested to facilitate the
selection of a treatment beam ensemble. We have previously
reported on a strategy to select a beam ensemble, given the
number of beams K, that can be adopted to work for any
scalar scoring function S [1]. It is based on the calculation
of a set of locally ideal irradiation angles B∗ which is
parametrized as a set of points on the unit sphere. The
spherical distribution of B∗ is characteristic for every site
and patient. We demonstrated that interpreting its centers of
gravity as beam orientations for radiation therapy yields a
significant improvement of the clinical dose distributions for
intensity modulated radiation therapy [1].

In this paper we introduce a more sophisticated clustering
algorithm to analyze the spherical data. It sidesteps the
delicate question of finding the right number of clusters
by replacing the point estimate of one particular number
with a probabilistic belief over the total number of clusters.
By adapting previous work on infinite Gaussian Mixture

2010 Ninth International Conference on Machine Learning and Applications

978-0-7695-4300-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ICMLA.2010.114

746



Models (iGMM) [11] in Cartesian spaces to the D-Sphere,
we develop the infinite von Mises-Fisher mixture model
(iMFMM). The iMFMM is suited for general density esti-
mation and clustering of D-dimensional spherical data. We
illustrate the potential application of the iMFMM for radia-
tion therapy treatment planning with three clinical cases.

II. METHOD

A. Reformulation of beam angle optimization as a spherical
clustering problem

The presented methodolgy is flexible enough to work with
any score function projecting the beam angle optimization
problem onto the 3-sphere. Here, we apply the heuristic
scalar score Sβv of voxel v for irradiation from direction
β [1], which is defined as

Sβv =
dNT + 100 · dOAR

dTarget
. (4)

dTarget, dNT, and dOAR denote the doses delivered to the
target volume, to the normal tissue and to potential organs
at risk (OAR). When calculating Sβv for a set of candidate
directions, it is assumed that voxel v is irradiated only with
a narrow pencil beam from direction β - not the entire target
volume with a broad beam. By weighting dose contributions
to potential OARs hundredfold, Sβv implies a twofold nature
of the beam selection problem: In absence of OARs, the
ideal irradiation angle β∗ minimizes the ratio dNT/dTarget;

in presence of OARs, β∗ will try to avoid traversing OARs
and minimize dOAR/dTarget.

By identifying the ideal beam direction β∗v for all voxels
within the target, we obtain a set of locally ideal beam
directions B∗, which is parametrized as a set of points {xi}
on the 3-sphere. Figure 1 shows a Mollweide projection of
the three-dimensional data set B∗ to two dimensions for
an intra-cranial lesion. The central idea of spherical cluster
analysis for BAO is to identify the cluster centers of the
patient specific distributions B∗ and interpret those as beam
orientations for external radiation therapy.

B. The finite von Mises-Fisher mixture model

The von Mises-Fisher distribution is a spherical analo-
gon to an uncorrelated multivariate Gaussian distribution in
Cartesian space. On the D-sphere, it is defined as

F(x;µ, τ) = τD/2−1

(2π)D/2ID/2−1(τ)
exp(τµTx) (5)

with the scalar precision parameter τ and the mean
direction µ. Iν is the modified Bessel function of the first
kind and order ν. For D = 3, we obtain the special form

F(x;µ, τ) = τ
4π sinh(τ) exp(τµTx) (6)

In the following, we concentrate on the 3-dimensional
case, but all derivations can be easily extended to D di-

mensions.

Figure 1. Mollweide projection of a set of ideal beam angles B∗ for
an intra cranial lesion. The longitude corresponds to the angle around the
patient axis, the latitude to the angle towards the transversal plane. The data,
indicated by black dots, is overlaid by a density estimate of the iMFMM
averaged over 1000 Monte Carlo iterations.

To construct our model, we assume that the N samples
xi are each generated from a mixture of an unknown and
unbounded number K of independent von Mises-Fisher
distributions with unknown parameters µk, τk.

p({xi} ;µ1, ...,µK , τ1, ..., τK , π1, ..., πK) =
K∑
k=1

πk

N∏
i=1

F(xi;µk, τk) (7)

πk = p(ci = k) is the probability of sample i stemming
from cluster k (and ci indicates the assignment of sample i
to a cluster k).

In this section, we will assume K to be fixed and finite;
the limit K → ∞ is introduced in section II-C. The
derivations are closely modeled on work by Rasmussen [11]
and Neal [8] with regard to Gaussian Mixture Models. Our
contribution is the transformation of their work from Carte-
sian space to the sphere (i.e. from mixtures of Gaussians to
mixtures of von Mises-Fisher distributions).

Given a prior p(µ1...K , τ1...K , c1...N ) on the un-
known parameter values, the goal of an inference algo-
rithm on such a model is to track a posterior belief
p(µ1...K , τ1...K , c1...N |x1...N ) over the parameters of the
mixture model given the observed data. In our implemen-
tation, inference is performed using Gibbs sampling [4], a
widely used Markov chain Monte Carlo scheme. It consists
of iteratively sampling values of all parameters of the model
individually, conditioned on the current samples from all
other parameters. Gibbs sampling is guaranteed to produce
samples from the exact posterior in the limit of large
numbers of sampling steps.

To keep the computational cost of the sampling scheme
manageable, we use conjugate priors for the parameters of
the mixture components. A parametric distribution

p(z|a) = f(z;a) (8)

on the variable z with parameters a is called a conjugate
prior to a likelihood p(d|z) of z under the data d if the
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posterior can be formulated (using Bayes’ rule) in the exact
parametric form of the prior.

p(z|d,a) =
p(d|z)p(z|a)∫
p(d|z)p(z|a)dz

= f(z;a′) (9)

The von Mises-Fisher distribution forms an exponential
family [2]. All distributions forming exponential families
have conjugate priors for their parameters, and a general
construction for these priors exists.

1) Conjugate prior for µk given τk:
For the mean parameter µk, the conjugate prior is itself a
von Mises-Fisher distribution

g(µk; τk,x0) = F(µk;m0, t0) (10)

with two parameters m0 and t0. In our experiments, we
set t0 = 0.1 which leads to a distribution so broadly covering
the sphere that the precise value of m0 becomes irrelevant
(for the lack of a better option, it was set to the mean of the
entire dataset). The update rule for the posterior given data
is

p(µk| {xi∈k} , τk) = F(µk;m0, t0) ·
∏
i∈k

F(xi;µk, τk)

= F(µk; ξ/|ξ|, |ξ|).
(11)

with ξ = t0m0 + τk
∑
i∈k xi. The notation i ∈ k

confines an operation to samples that are associated with
cluster j.

2) Conjugate prior for τk given µk:
Up to normalization, the conjugate prior on the precision
parameter τk is

f(τk; a, b) ∝
{

τk
4π sinh(τk)

}a
exp (τkb) (12)

with scalar parameters a > b > 0. We set a = 5.0 and b =
4.7 yielding a realistic initial distribution of the precision
parameters τk for our data. The update rule for the posterior
given data and µk is

p(τk; {xi∈k} ,µk) ∝ f(τk; a, b)
∏
i∈k

F(xi;µk, τk)

∝ f(τk; a+NK , b+
∑
i∈k

µTk xi)
(13)

where Nk is the number of members of cluster k. We
are not aware of an efficient method to analytically obtain
samples from this distribution, but any one-dimensional
Markov chain Monte Carlo method can be used to produce
samples from this marginal. In our implementation, we use
the slice sampling algorithm [7], which is a particularly
efficient Markov chain Monte Carlo method for one-
dimensional distributions.

α

ci µk τk

xi

m0 t0 a b

N

K →∞

Figure 2. Directed graphical model (Bayesian network) of the iMFMM
representating both the generative process used to model the data, and the
factorization properties of the joint distribution of all variables in the model.
Any node in the graph is conditionally independent of the rest of the graph
given values of its parents, its children and parents of its children. The
deterministic quantities, such as the data xi and the hyperparameters a,
b, m0 and t0 are depicted by filled circles, while probabilistic (latent)
parameters are shown as hollow circles. The inverse Gamma prior on α is
shown as a small black circle. Rectangles with label N and K are so-called
“plates” representing N and K copies of their contents.

3) Prior on the mixing proportions πk:
The joint probability p(c1, c2, ...cN ) of the class mem-
berships of the samples xi is a multinomial distribution
parameterized by the unknown mixture parameters πk:

p(c|πk) =
K∏
k=1

πNk

k (14)

The multinomial distribution is also a member of the
exponential family, and the conjugate prior for its parameter
vector π is the Dirichlet distribution with a K-dimensional
parameter vector α. If we set all elements αk = α/K with
a scalar constant α, the Dirichlet distribution puts uniform
probability mass on all possible values of πk and has the
form

D(π;α) =
Γ(α)

Γ(α/K)K

K∏
k=1

π
α/K−1
k . (15)

It is a crucial characteristic of the Dirichlet distribution
that it is possible to integrate out the values of πk under
the posterior [11], leading to a joint distribution for the ci
which is only a function of α, K, and the cluster sizes Nk.
It does not depend on the individual values of ci:

p(c1, ..., cN ;α) =
Γ(α)

Γ(N + α)

K∏
k=1

Γ(Nk + α/K)

Γ(α/K)
(16)

During Gibbs sampling, we condition on all but one
particular sample. In this case the Gamma functions cancel
and we arrive at the simple discrete conditional probability:

p(ci = k|c\i, α) =

{
n\i,k

Nk−1+α , n\i,k > 0
α/K

Nk−1+α , else
(17)
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where c\i indicates all indices except i and n\i,j is the
number of observations, excluding xi, that are associated
with cluster k.

Also conditioning on the value of sample xi yields the
Gibbs sampling probability for ci of:

p(ci = k; c\i, α) p(xi|µk, τk, c\i) =
n\i,k

Nk − 1 + α
F(xi;µk, τk) (18)

The likelihood for α itself can be derived from equation
16. Together with a prior of inverse Gamma shape [11], the
posterior update for α is

p(α;n,N) =
αn−3/2 exp(− 1

2α )Γ(α)

Γ(N + α)
(19)

As there is no efficient analytical sampling scheme for
this distribution, we apply the slice sampling algorithm to
obtain updates for α [7].

C. The infinite limit

So far, we have assumed a constant number of clusters.
But, sidestepping a few technicalities [5][8][11], it is intu-
itively easy to take the limit of equation 18 for K → ∞.
All clusters containing more than one sample, i.e. n\i,k > 0,
retain a finite probability n\i,j/(Nk − 1 +α) · p(xi;µk, τk)
of being chosen. And because the overall probability of
choosing any cluster has to be 1 and all clusters have
parameters with the same prior distribution p(µ, τ), all
infinitely many remaining clusters together have the finite
probability

α

Nk − 1 + α

∫
p(xi|µ, τ) · p(µ, τ) dµ dτ (20)

of being chosen. The integral in this equation can be
approximated by Monte Carlo integration, i.e. generating l
samples from the prior for µ and τ , summing their likelihood
terms p(xi;µ, τ), and dividing by l. We found that often
even l = 1 is sufficient for convergence of the Gibbs sampler.

The resulting probability measure over probability mea-
sures, widely known as the “Dirichlet process”, controls the
number of mixture components. The limit-construction used
here is known as the “Chinese Restaurant Process” [5].

III. RESULTS

For inference on our spherical beam angle data set,
we initialize the iMFMM with K0 mixture components.
K0 is sampled uniformly from the interval [10, 20]. The
corresponding starting parameters for µk and τk are drawn
from the prior and posterior updates on all model parameters
are performed during a large number of Gibbs sampling
iterations. The initialization of K0 reflects our expectation
regarding the number of classes underlying the beam angle
data set. It reduces the number of iterations needed for
burn-in and leaves the long term behavior of the iMFMM

0 1000 2000 3000 4000 5000
16

18

20

22

24

26

28

30

32

34

36

Monte Carlo iteration

#
 r

e
p
re

s
e
n
te

d
 c

la
s
s
e
s

Figure 3. Number of represented classes for the initial 5000 iterations for
an intra-cranial (red), pancreas (green), and prostate case (blue).

unaltered. Here, “burn-in” denotes the drift from the initial
Markov chain state to regions of high probability mass.

Figure 3 shows the number of represented classes during
the first 5000 iterations for three patient data sets. The
number of classes is rapidly adjusted by the iMFMM within
the first 100 iterations and subsequently undergoes slight
fluctuations for the intra-cranial and prostate data set. We
decided to discard the first 2000 iterations for burn-in. The
state of the iMFMM in a single iteration after burn-in (i.e.
one iMFMM sample) is shown in figure 4 for every data set
investigated. The full posterior distribution is formed by the
set of all samples from the Gibbs scheme. Figure 1 shows
an estimate for the mean of this distribution, obtained by
averaging over a 1000 samples.

The autocorrelation of the number of represented classes
after 2000 iterations is shown in figure 5. We do not observe
a significant correlation for any of the three data sets under
investigation. The effective autocorrelation length, computed
as the sum of the autocorrelation between an iteration lag
of −1000 and 1000 [11], does not exceed 10 iterations for
the three data sets investigated.

For a concrete statement regarding the number of rep-
resented classes (which in our case will correspond to the
number of treatment beams) we now draw 100 independent
iMFMM samples. More precisely, we evaluate 100 samples
after burn-in which are each separated by one autocorrelation
length. Figure 6 shows the spectra for K for the three data
sets under investigation. As the data does not stem from
a mixture of von Mises-Fisher distributions but from our
formulation of the beam angle optimization problem, there
is not a distinct number of components that explain our data.
The iMFMM yields a distribution over the probability of
the number of represented components. It found the highest
probability for the intra-cranial data set to be generated by a
mixture of K∗intra = 18 von Mises-Fisher distributions. The
analysis for the pancreas and prostate data sets yields highest
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(a) Prostate lesion

(b) Pancreas lesion

(c) Intra-cranial lesion

Figure 4. One iMFMM sample for the spherical data sets of locally ideal
beam angles of a prostate (a), pancreas (b), and intra-cranial lesion (c). The
longitude corresponds to the angle around the patient axis, the latitude to
the angle towards the transversal plane. The centroids of the mixtures µk
are indicated by black circles, the color coding corresponds to the current
assignment of the data to the mixtures ci. We did not attempt to visualize the
precisions τk . Note the relatively large number of clusters required in 4(b),
as the von Mises-Fisher distribution cannot model directional correlation.
Considering 4(a) and 4(b) it might be straight forward to identify a smooth
path on the sphere passing by the cluster centroids and respecting potential
physical limitaions of the irradiation device for improved arc therpay.

probabilities for mixtures of K∗pancreas = 32 and K∗prostate =
29 von Mises-Fisher distributions, respectively. The number
of samples used by the model might be a possible measure
of the structural complexity of the treatment problem. A
thorough investigation of the clinical significance of such a
measure based on the iMFMM is left for future research.

Given the number of represented components K∗, it is
straight forward to infer exact orientations for the treatment
beams: Using a finite von Mises Fisher mixture model with
K∗ components, we maximize the posterior probability of
the parameters µk, τk, and ci. For the purpose of localizing
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Figure 5. Autocorrelation of the number of represented classes after
2000 iterations for an intra-cranial (red), pancreas (green), and prostate
case (blue).
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Figure 6. Histograms of the number of represented classes for an intra-
cranial (red), pancreas (green), and prostate case (blue) displaying the
frequency of the number of represented classes.

the treatment beams, only the centroid positions µk will be
of interest.

IV. DISCUSSION AND CONCLUSION

In extension of previous work on density estimation
with Dirichlet process mixture models in Cartesian spaces
[11][8], this paper introduces the infinite von Mises-Fisher
mixture model as a general framework for density estimation
on the D-sphere. We constructed conjugate priors for its
parameters µ and τ , and derived a Gibbs sampling scheme
for posterior inference from data.

We apply the iMFMM to infer a treatment beam ensemble
for external radiation therapy based on a set of locally ideal
beam angles distributed on the unit sphere. For the data
sets studied, the iMFMM returns mixtures of 18-32 beam
orientations. This represents a considerable dimensionality
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reduction from the original data sets containing ∼ 104

locally ideal beam directions. For robotic radiosurgery treat-
ments, where ∼ 50 − 100 beam orientations are accessed,
the iMFMM might be used without modification for beam
selection. The iMFMM beliefs could also be used to improve
trajectories for arc therapy, where the treatment beam is
rotated around the patient during irradiation. In conventional
linear accelerator treatments, which typically include 5−11
beam orientations, the clusters found by the iMFMM can be
used as a starting point for a global optimization algorithm.
In either case, the strong dimensionality reduction achieved
through the use of the nonparametric density estimation
lowers the computational complexity. Alternatively, heuristic
merging of clusters could be used in the search of optimal
beam directions in order to arrive at a number of beams
that is acceptable for conventional irradiation with a linear
accelerator. Extending the infinite mixture model to integrate
directional correlation on the sphere, which implies the
non trivial transition from von Mises-Fisher distributions to
Kent distributions, is another potential means to enhance the
dimensionality reduction (consider figure 4(b)).

The focus of this paper is on the derivation of the
iMFMM. A detailed assessment of the clinical impact of
the suggested framework for beam angle selection is left
for future research. However, previous work [1] has al-
ready provided strong evidence for the clinical value of
the approximation to formulate the search for beneficial
beam directions as a clustering problem of locally ideal
beam angles on the 3-sphere. As the incorporation of the
iMFMM into this framework implies only the replacement of
the spherical K-means algorithm with a more sophisticated
method, a negative impact regarding clinical performance is
not expected.

It is clear that our model does not provide an optimal an-
swer to the global optimization problem defined in equation
3, as it is not explicitly constructed to minimize this function.
Instead, our model provides a probabilistically motivated
projection of the locally ideal beam directions (as measured
with a scalar scoring function) to a lower-dimensional space.
In contrast to clustering methods based on point estimates,
such as K-means clustering or factor analysis, the iMFMM,
being a fully probabilistic method, does not suffer from the
problem of overfitting, and can automatically determine the
range of clusters to use.
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