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Abstract

Early stopping is a widely used technique to prevent poor generalization per-
formance when training an over-expressive model by means of gradient-based
optimization. To find a good point to halt the optimizer, a common practice is to
split the dataset into a training and a smaller validation set to obtain an ongoing
estimate of the generalization performance. We propose a novel early stopping
criterion based on fast-to-compute local statistics of the computed gradients and
entirely removes the need for a held-out validation set. Our experiments show that
this is a viable approach in the setting of least-squares and logistic regression, as
well as neural networks.

1 Introduction

The training of parametric machine learning models often involves the formal task of minimizing the
expectation of a loss (risk) over a population p(x) of data, of the form

L(w) = Ex∼p(x) [`(w, x)] , (1)

where the loss function `(w, x) quantifies the performance of parameter vector w ∈ RD on data point
x. In practice though, the data distribution p(x) is usually unknown, and Eq. 1 is approximated by
the empirical risk:

LD(w) =
1

M

∑
x∈D

`(w, x). (2)

Here D denotes a dataset of size M = |D| with instances drawn independently from p(x). Often
there is easy access to the gradient of ` and gradient-based optimizers can be used to minimize the
empirical risk. The gradient descent (GD) algorithm, for example, updates an estimate wt for the
minimizer of LD according to wt+1 = wt − αt∇LD(wt) with ∇LD(w) = 1/M

∑
x∈D∇`(w, x),

and some hand-tuned or adaptive step sizes αt. In practice, however, evaluating ∇LD can become
expensive for very large M thus making it impossible to make progress in a reasonable time.
Instead, stochastic optimization methods are used, which use coarser but much cheaper gradient
estimates by randomly choosing a mini-batch B ⊂ D of size |B| = m � M from the training
set and computing ∇LB(w) = 1/m

∑
x∈B∇`(w, x). The gradient descent update then becomes

wt+1 = wt−αt∇LB(wt) and the corresponding iterative algorithm is commonly known as stochastic
gradient descent (SGD) [17].
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1.1 Overfitting, Regularization and Early-Stopping

Since the risk L is virtually always unknown, a key question arising when minimizing the empirical
risk LD, is how the performance of a model trained on a finite dataset D generalizes to unseen
data. Performance can be measured by the loss itself or other quantities, e.g., the mean accuracy
in classification problems. Typically, to measure the generalization performance a finite test set is
entirely withheld from the training procedure and the performance of the final model is evaluated on
it. This test loss, however, is also only an estimator for L (in the same sense as the train loss) with a
finite stochastic error whose variance drops linearly with the test set size. If the used model is overly
expressive, minimizing the empirical risk (Eq. 2) exactly—or close to exactly—will usually result in
poor test performance, since the model overfits to the training data. There is a range of measures that
can be taken to mitigate this effect; textbooks like Bishop [3] give an overview over general concepts,
chapter 7 of Goodfellow et al. [6] gives a comprehensive summary targeted at deep learning. Some
widely used concepts are briefly discussed in the following paragraphs.

Model selection techniques choose a model among a hypothesis class which, under some measure,
has the closest level of complexity to the given dataset. They alter the form of the loss function `
in Eq. 2 over an outer optimization loop (first find a good `, then optimize LD), such that the final
optimization on LD is conducted on an adequately expressive model. This can—but does not need
to—constrain the number of variables of the model. In the case of deep neural networks the number
of variables can even significantly exceed the number of training examples [8, 19, 20, 7].

If the dataset is not sufficiently representative of the data distribution, an opposite (although not
incompatible) approach is to artificially enrich it to match a complex model. Data augmentation
artificially enlarges the training set by adding transformations/perturbations of the training data. This
can range from injecting noise [18, 23] to carefully tuned contrast and colorspace augmentation [8].

Finally, a widely-used provision against overfitting is to add regularization terms to the objective
function that penalize the parameter vector w, typically measured by the l1 or l2 norm [9]. These
terms constrain the magnitude of w. They tend to drive individual parameters toward zero or, in the
l1 case, enforce sparsity [3, 6]. In linear regression, these concepts are known as least-squares and
LASSO regularization [21], respectively.

Despite these countermeasures, high-capacity models will often overfit in the course of the optimiza-
tion process. While the loss on the training set decreases throughout the optimization procedure,
the test loss saturates at some point and starts to increase again. This undesirable effect is usually
countered by early stopping the optimization process, meaning, that for a given model, the optimizer
is halted if a user-designed early stopping criterion is met. This is complementary to the model and
data design techniques mentioned above and does not undo eventual poor design choices of `. It
merely ensures that we do not minimize the empirical risk LD of a given model beyond the point of
best generalization. In practice, however, it is often more accessible to ‘early-stop’ a high-capacity
model for algorithmic purposes or because of restrictions to a specific model class, and thus preferred
or even enforced by the model designer.

Arguably the gold-standard of early stopping is to monitor the loss on a validation set [14, 16, 15].
For this, a (usually small) portion of the training data is split off and its loss is used as an estimate of
the generalization loss L (again in the same sense as Eq. 2), leaving less effective training data to
define the training loss LD. An ongoing estimate of this generalization performance is then tracked
and the optimizer is halted when the generalization performance drops again. This procedure has
many advantages, especially for very large datasets where splitting off a part has minor or no effect
on the generalization performance of the learned model. Nevertheless, there are a few obvious
drawbacks. Evaluating the model on the validation set in regular intervals can be computationally
expensive. More importantly, the choice of the size of the validation set poses a trade-off: A small
validation set has a large stochastic error, which can lead to a misguided stopping decision. Enlarging
the validation set yields a more reliable estimate of generalization, but reduces the remaining amount
of training data, depriving the model of potentially valuable information. This trade-off is not easily
resolved, since it is influenced by properties of the data distribution (the variance Λ introduced in
Eq. 3 below) and subject to practical considerations, e.g., redundancy in the dataset.

Recently Maclaurin et al. [11] introduced an interpretation of (stochastic) gradient descent in the
framework of variational inference. As a side effect, this motivated an early-stopping criterion based
on the estimation of the marginal likelihood, which is done by tracking the change in entropy of the
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Figure 1: Sketch of early stopping criterion. Left: marginal distribution of function values defined
by left expression in Eq. 3. Mean L in thick solid orange, ±1 standard deviations in light orange;
pdf as shaded orange. The full dataset defines one realization of this distribution which is shown in
dashed blue (same as LD of Eq. 2). Middle: same as left plot but for corresponding gradients. The
pdf is defined by the right expression in Eq. 3 and the corresponding ∇LD is shown in dashed blue.
Right: orange and blue same as middle plot; red shaded ares define desired stopping regions (details
in text). The vertical red shaded area shows the region of ±1 standard deviation of possible minima
(where ∇LD is likely to be zero). If gradients are within this are, the optimization process is halted.
This can be translated into a simple stopping criterion (horizontal shaded area, text for details); if
gradients are within this area, the optimizer stops.

posterior distribution of w, induced by each optimization step. Since the method requires estimation
of the Hessian diagonals, it comes with considerable computational overhead.

The following section motivates and derives a cheap and scalable early stopping criterion which is
solely based on local statistics of the computed gradients. In particular, it does not require a held-out
validation set, thus enabling the optimizer to use all available training data.

2 Model

This section derives a novel criterion for early stopping in stochastic gradient descent. We first
introduce notation and model assumptions (§2.1), and motivate the idea of evidence-based stopping
(§2.2). Section 2.3 covers the more intuitive case of gradient descent; Section 2.4 extends to stochastic
settings.

2.1 Distribution of Gradient Estimators

Let S be some set of instances sampled independently from p(x). The following holds for any S , but
specifically for the training set D or a subsampled mini-batch B and any validation or test set. Using
the same notation as in Eq. 2, LS(w) and ∇LS(w) are unbiased estimators of L(w) and ∇L(w)
respectively. Since the elements in S are independent draws from p(x), by the Central Limit Theorem
LS(w) and∇LS(w) are approximately normal distributed according to

LS(w) ∼ N
(
L(w),

Λ(w)

|S|

)
and ∇LS(w) ∼ N

(
∇L(w),

Σ(w)

|S|

)
(3)

with population (co-)variances Λ(w) = varx∼p(x)[`(w, x)] ∈ R and Σ(w) = covx∼p(x) [∇`(w, x)]

∈ RD×D, respectively. The (co)-variances of LS(w) and ∇LS(w) both scale inversely proportional
to the dataset size |S|. In the population limit |S|_∞, Eq. 3 concentrates on L(w) and∇L(w). To
simplify notation, the indicator (w) will occasionally be dropped: e.g. LS(w) =: LS .

2.2 When to stop? An Evidence-Based Criterion

The perhaps obvious but crucial observation at the heart of the criterion proposed below is that
even the full, but finite, data-set is just a finite-variance sample from a population: By Eq. (3), the
estimators LD and∇LD are approximately Gaussian samples around their expectations L and∇L,
respectively. Figure 1 provides an illustrative, one-dimensional sketch. The left subplot shows the
marginal distribution of function values (Eq. 3, left). The true, but usually unknown, optimization
objective L (Eq. 1), is the mean of this distribution and is shown in solid orange. The objective LD
(Eq. 2), which is optimized in practice and is fixed by the training set D, defines one realization out
of this distribution and is shown in dashed blue.
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In general, the minimizers of L and LD need not be the same. Often, for a finite but large number
of parameters w ∈ RD, the loss LD can be optimized to be very small. When this is the case the
model tends to overfits to the training data and thus performs poorly on newly generated (test) data
T ∼ p(x) with T ∩D = ∅. A widely used technique to prevent overfitting is to stop the optimization
process early. The idea is, that variations of training examples which do not contain information for
generalization, are mostly learned at the very end of the optimization process where the weights w
are fine-tuned. In practice the true minimum of L is unknown, however the approximate errors of
the estimators LD and ∇LD are accessible at every position w. Local estimators for the diagonal
of Σ(w) have been successfully used before [12, 2] and can be computed efficiently even for very
high dimensional optimization problems. Here the variance estimator of the gradient distribution is
denoted as Σ̂(w) ≈ varx∼p(x) [∇`(w, x)] with Σ̂(w) = 1/(|S|−1)

∑
x∈S (∇`(w, x)−∇LS(w))

�2,
where �2 denotes the elementwise square and S is either the full dataset D or a mini-batch B.

Since the minimizers of L and LD are not generally identical, also their gradients will cross zero at
different locations w. The middle plot of Figure 1 illustrates this behavior. Similar to the left plot,
it shows a marginal distribution, but this time over gradients (right expression in Eq. 3). The true
gradient∇L is the mean of this distribution and is shown in solid orange. The one realization defined
by the dataset D is shown as dashed blue and corresponds to the dashed blue function values LD of
the left plot. Ideally the optimizer should stop in an area in w-space where possible minima are likely
to occur, if different datasets of same size were samples from p. In the sketch, this is encoded as the
red vertical shaded area in the right plot. It is the area around the minimizer of L where ∇L ± 1
standard deviation still encloses zero.

Since ∇L is unknown however, this criterion is hard to use in practice, and must be turned into a
statement about ∇LD. Denote the minimizer of L by w∗ = arg minw L(w) and the population
variance of gradients at w∗ as Σ∗ := Σ(w∗). A similar criterion that captures this desiderata
in essence is to stop when the collected gradients ∇LD are becoming consistently very small in
comparison to the error Σ∗/M (red horizontal shaded area). Close enough to the minima of LD and L,
the two criteria roughly coincide (intersection of red vertical and horizontal shaded areas). A measure
for this is the probability

p(∇LD|∇L = 0) = N
(
∇LD; 0,

Σ∗

M

)
, (4)

of observing ∇LD, were it generated by a true zero gradient ∇L = 0. This can be seen as the
evidence of the trivial model class p(∇L) = δ(∇L), with p(∇LD) =

∫
p (∇LD|∇L) p (∇L) d∇L

(in principal more general models can be formulated, which lead to a richer class of stopping criteria).
If gradients ∇LD are becoming too small or, ‘too probable’ (stepping into the horizontal shaded
area) the gradients are less likely to still carry information about∇L but rather represent noise due
to the finiteness of the dataset, then the optimizer should stop. Using these assumptions, the next
section derives a stopping criterion for the gradient decent algorithm which then can be extended to
stochastic gradient descent as well.

2.3 Early Stopping Criterion for Gradient Descent

When using gradient descent, the whole dataset is used to compute the gradient∇LD in each iteration.
Still this gradient estimator has an error in comparison to the true gradient ∇L, which is encoded in
the covariance matrix Σ. In practice Σ is unknown, the variance estimator Σ̂ described in Section 2.2
however is always accessible. In addition Eq. 4 requires the gradient variance Σ∗ at the true minimum
which is unknown in practice. Again it can be approximated by Σ(wt) which is the gradient variance
at the current position of the optimizer wt. This is a sensible choice if the optimizer is in convergence
and already close to a minimum. Thus, at every position w an approximation to p(∇LD) of Eq. 4 is

p(∇LD(w)) ≈
D∏

k=1

N

(
∇Lk
D(w); 0,

Σ̂k(w)

M

)
. (5)

Though being a simplification, this allows for fast and scalable computations since dimensions are
treated independent of each other. To derive an early stopping criterion based only on ∇LD we
borrow the idea of the previous section that the optimizer should halt when gradients become so
small that they are unlikely to still carry information about∇L, and combine this with well-known
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techniques from statistical hypothesis testing. Specifically: stop when

log p (∇LD)−E∇LD∼p [log p (∇LD)] > 0. (6)

Here E[·] is the expectation operator. According to Eq. 6, the optimizer stops when the logarithmic
evidence of the gradients is larger than its expected value, roughly meaning that more gradient
samples ∇LD lie inside of some expected range. In particular, combining Eq. 5 with Eq. 6 and
scaling with the dimension D of the objective, gives

2

D
[log p (∇LD)−E∇LD∼p [log p (∇LD)]] = 1− M

D

D∑
k=1

[
(∇Lk

D)2

Σ̂k

]
> 0. (7)

This criterion (hereafter called EB-criterion, for ‘evidence-based’) is very intuitive; if all gradient
elements lay at exactly one standard deviation distance to zero, then

∑
k

(∇Lk
D)2/Σ̂k =

∑
k

Σ̂k/M ·Σ̂k =
D/M; thus the left-hand side of Eq. 7 would become zero and the optimizer would stop.

We note on the side that Eq. 7 defines a mean criterion over all elements of the parameter vector
w. This implicitly assumes that all dimensions converge in roughly the same time scale such that
weighing the fractions fk := M ·(∇Lk

D)2/Σ̂k equally is justified. If optimization problems deal with
parameters that converge at different speeds, like for example different layers of neural networks (or
biases and weights inside one layer) it might be appropriate to compute one stopping criterion per
subset of parameters which are roughly having similar timescales. In Section 3.4 we will use this
slight variation of Eq. 7 for experiments on a multi layer perceptron.

2.4 Stochastic Gradients and Mini-batching

It is straightforward to extend the stopping criterion of Eq. 7 to stochastic gradient descent (SGD);
the estimator for ∇LD is replaced with an even more uncertain ∇LB by sub-sampling the training
dataset at each iteration. The local gradient generation is

∇LB = ∇LD + η = ∇L+ ν with η ∼ N (0,Σobs) , ν ∼ N (0,Σ/M + Σobs) . (8)

Combining this with Eq. 3 yields Σ/M + Σobs = Σ/m. Thus Σobs = M−m
mM Σ. Equivalently to Eq. 4,

5 and 7, this results in an early stopping criterion for stochastic gradient descent:

2

D
[log p (∇LB)−E∇LB∼p [log p (∇LB)]] = 1− m

D

D∑
k=1

[
(∇Lk

B)2

Σ̂k

]
> 0. (9)

Remark on implementation: Computing the stopping criterion is straight-forward, given that the
variance estimate Σ̂ is available. In this case, it amounts to an element-wise division of the squared
gradient by the variance, followed by an aggregation over all dimensions. Balles et al. [2, §4.2]
comment on this issue and present a solution for computing Σ̂ in contemporary software frameworks,
that computes the variance estimate implicitly, increasing e.g. the computational cost of a backward
pass of a neural network by a factor of about 1.25.

3 Experiments

For proof of concept experiments, we evaluate the EB-criterion on a number of standard classification
and regression problems. For illustration and analysis, Sections 3.1 and 3.2 show a least-squares toy
problem and large synthetic quadratic problems; Sections 3.3 and 3.4 deal with the more realistic
setting of logistic regression on the well-known Wisconsin Breast Cancer Dataset (WDBC) [24]
and a multi layer perceptron on the handwritten digits dataset MNIST [10]. Section 3.5 contains
experiments for logistic regression, as well as for a shallow neural network on the SECTOR dataset
[4]; the SECTOR dataset complements MNIST and WDBC, in the sense, that it has a much less
favorable feature-to-datapoint ratio (∼ 9); increasing the gains on the generalization performance,
when all available training data can be used.
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Figure 2: Results for logistic regression on the Wisconsin Breast Cancer dataset. Results for the
two variants are color-coded; red for validation set-based early stopping, blue for the evidence-based
criterion of Eq. 7. The middle plot shows test loss versus the number of optimization steps for both
methods. The top row shows validation loss; since the validation loss decreases over the whole
optimization process it does not induce a stopping point. The bottom row shows the evolution of the
stopping criterion, inducing a stopping decision indicated by the blue vertical bar.
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Figure 3: Least-squares toy problem. Top left logarithmic losses vs. number of optimization steps
(colors in legend); shaded areas indicate two standard deviations±2

√
Λ/|S| of the noise loss estimates

computed during the optimization (Eq. 3). Bottom left: evolution of the EB-criterion (Eq. 7); green
vertical bar indicates the induced stopping point. For the steps marked with color-coded vertical bars,
the model fit is illustrated on the right column; orange iteration: sub-optimal fit (ŷ(w) in solid dark
blue) to the training data (gray crosses); green iteration: fit, when the EB-criterion of Eq. 7 indicates
stopping; red iteration: the model ŷ has already overfitted to the training data.

3.1 Linear Least-Squares as Toy Problem

We begin with a toy regression problem on artificial data generated from a one-dimensional linear
function y with additive uniform Gaussian noise. This simple setup allows us to illustrate the
model fit at various stages of the optimziation process and provides us with the true generalization
performance, since we can generate large amounts of test data. We use a largely over-parametrized
50-dimensional linear regression model ŷ(w, x) = wᵀφ(x) which contain the ground truth features
(bias and linear) and additional periodic features with varying frequency. The features φ(x) =
[1, x, sin(a1x), cos(a1x), . . . sin(ap(x)), cos(apx)]ᵀ with p = 24 obviously define a massively over-
parametrized model for the true function and is thus prone to overfitting. We fit the model by
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minimizing the squared error, i.e. the loss function is `(w, (x, y)) = 1
2 (y − ŷ(w, x))2. We use 20

samples for training and about 10 for validation, and then train the model using gradient descent. The
results are shown in Figure 3; both, validation loss, and the EB-criterion find an acceptable point to
stop the optimization procedure, thus preventing overfitting.

3.2 Synthetic Large-Scale Quadratic Problem

We construct synthetic quadratic optimization problems of the form L(w) = 1
2 (w−w∗)ᵀB(w−w∗),

where B ∈ RD×D is a positive definite matrix and w∗ ∈ RD is the global minimizer of L(w); the
gradient is∇L = B(w−w∗). In this controlled environment we can test the EB-criterion on different
configurations of eigen-spectra, for example uniform, exponential, or structured (a few large, many
small eigenvalues); the matrix B is constructed by defining a diagonal matrix Γ ∈ RD×D which
contains the eigenvalues on its diagonal, and a random rotation R ∈ RD×D which is drawn from
the Haar-measure on the D-dimensional uni-sphere [5]; then B := RΓRᵀ. We artificially define the
‘empirical’ loss LD(w) by moving the true minimizer w∗ by a Gaussian random variable ζD, such that
LD(w) = 1

2 (w−w∗+ ζD)ᵀB(w−w∗+ ζD) with ζD ∼ N (0,Λ). Thus∇LD = ∇L+BζD is
distributed according to ζD ∼ N (0, BΛBᵀ), and we define Σ̂/|D| := diag(BΛBᵀ). For experiments
we chose D = 103 as input dimension and zero (w∗ = 0) as the true minimizer of L. Figure 4 shows
results for three different types of eigen-spectra. The EB-criterion performs well across the different
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Figure 4: Synthetic quadratic problem for three different structures of eigen-spectra: uniform,
exponential, structured. middle row: logarithmic (exact) test loss in red and train loss in gray;
bottom row: evolution of the EB-criterion, inducing a stopping decision indicated by the blue vertical
bar.

type of partially ill-conditioned problems and induced meaningful stopping decisions; this worked
well for different noise levels Λ (Figure 4 shows Λ = 10 · I; note that the covariance matrix BΛBᵀ

of the gradient is dense).

We noticed, however, that another assumption is crucial for the EB-criterion, which might also explain
the slightly early stopping decision for the logistic regressor on WBCD (Figure 2 in subsequent
section) and full batch GD on MNIST (Figure 7, column 1). Eq. (6) implicitly assumes that (on its
path to the minimum of the empirical loss LD) the optimizer passes by a better minimizer with higher
generalization performance; this allows to use variances only (in the form of Σ̂) in the stopping
criterion; there is no information about bias (direction of shift w∗−w∗D) because this is fundamentally
hard to know.
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The assumption is usually well justified, primarily because otherwise early stopping would not be a
viable concept in the first place; and second because over-fitting is usually associated with ‘too large’
weights (weights are initialized small; and regularizers that pull weights to zero are often a good idea);
on the way from small weights (under-fitting) to too large weights (over-fitting), optimizers usually
pass a better point with weights of intermediate size. If the assumption is fundamentally violated the
EB-criterion will stop too early. We can artificially construct this setup by initializing the optimizer
with weights that lead to an optimization path that does not lead to any over-fitting; this is depicted in
Figure 5. The setup is identical to the one in Figure 4 (B,w∗ as well as ζD and w∗D are identical); the
only difference is the initialization of the weights w0 for the optimization process. Since—with this
initialization—the lowest point of L that can be reached by minimizing LD is w∗D, any early stopping
decision will lead to under-fitting. In Figure 5 the (exact) test loss flattens out and does not increase
again for all three configurations; the assumptions of the EB-criterion are violated and it induces a
sub-optimal stopping decision. Figure 6 illustrates these two scenarios in a 2D-sketch.
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Figure 5: Synthetic quadratic problem for three different structures of eigen-spectra; subplots and
colors as in Figure 4. Weights are initialized such, that the model can not overfit, as can be seen
from the exact test loss (red) that flattens out, but does not increase again; the assumptions of the
EB-criterion are violated and it induces a sub-optimal stopping decision.

3.3 Logistic Regression on WDBC

Next, we apply the EB-criterion to logistic regression on the Wisconsin Breast Cancer dataset. The
task is to classify cell nuclei (described by features such as radius, area, symmetry, et cetera) as either
malignant or benign. We conduct a second-order polynomial expansion of the original 30 features
(i.e., features of the form xixj) resulting in 496 effective features. Of the 569 instances in the dataset,
we withhold 369, a relatively large share, for testing purposes in order to get a reliable estimate of
the generalization performance. The remaining 200 instances are available for training the classifier.
We perform two trainining runs: one with early stopping based on a validation set of 60 instances
(reducing the training set to 140 instances) and one using the full training set and early stopping with
the EB-criterion derived in Section 2.3.

If parameters converge at different speeds during the optimization, as indicated in Section 2.3, it
is sensible to compute the criterion separately for different subgroups of parameters. Generally,
if we split the parameters into N disjoint subgroups Si ⊂ {1, . . . D}, and denote Di = |Si|, the

criterion reads 1
N

∑N
i=1

(
1− M

Di

∑
k∈Si

[
(∇Lk

D)2

Σ̂k

])
> 0. Since bias and weight gradients usually
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Figure 6: Illustration of implicit early-stopping assumptions: Contours of the true loss L(w) in
red; contours of the optimizer’s objective LD(w) in gray; their minimizers w∗ and w∗D are marked
as crosses. The EB-criterion induces a stopping decision, which is roughly described by the blue
shaded area. Blue solid line: path of an optimizer that passes by weights of better generalization
performance than w∗D; it is stopped by the EB-criterion when it enters the blue shaded area, resulting
in better generalization performance. Red solid line: path of an optimizer than can not overfit, since
weights were initialized such that w∗D yields best generalization performance. The assumptions of
the EB-criterion are violated, and it thus induces a sub-optimal stopping decision that might lead to
under-fitting.

have different magnitudes they converge at different speeds when trained with the same learning rate.
For logistic regression, we thus treat the weight vector and the bias parameter of the logistic regressor
as separate subgroups. Since the criterion above is noisy we also smooth it with an exponential
running average. The results are depicted in the left-most column of Figure 7. The effect of the
additional training data is clearly visible, resulting in lower test losses throughout the optimization
process. In this scarce data setting the validation loss, computed on a small set of only 60 instances,
is clearly misleading (left-most column, top plot). It decreases throughout the optimization process
and, thus, fails to find a suitable stopping point. The bottom left plot of Fig. 7 shows the evolution of
the EB-criterion. The induced stopping point is not optimal (in that it does not coincide with the point
of minimal test loss) but falls into an acceptable region. Thanks to the additional training data, the
test loss at the stopping point is lower than any test loss attainable when withholding a validation set.

3.4 Multi-Layer Perceptron on MNIST

For a non-convex optimization problem, we train a multi-layer perceptron (MLP) on the well-studied
problem of hand-written digit classification on the MNIST dataset (28× 28 gray-scale images). We
use a MLP with five hidden layers with 2500, 2000, 1500, 1000 and 500 units, respectively, ReLU
activation, and a standard cross-entropy loss for the 10 outputs with soft-max activation (∼ 12 million
trainable parameters). We treat each weight matrix and each bias vector of the network as a separate
subgroup as described in Section 3.3.The MNIST dataset contains 60k training images, which we
split into 40k-10k-10k for train, test and validation sets. Again, the criterion is smoothed by an
exponential running average.

The results for full-batch gradient descent are shown on Column 1 of Figure 7, and SGD runs
with minibatch size 128 and three different learning rates Column 2-4 of the same Figure. The
relatively large validation set (10k images) yields accurate estimates of the generalization performance.
Consequently, the stopping points more or less coincide with the points of minimal test loss. The
reduced training set size leads to only slightly higher test losses. Since the strength of the EB-criterion
is to utilize the additional training data and the fact, that also validation losses are only inexact guesses
of the generalization error, both of these points thus favor the early stopping criterion based on the
validation loss. Still, for all three SGD-runs (columns 2-4 in Figure 7) the EB-criterion performs as
good as or better than the validation set induced method. An additional observation is that the quality
of the stopping points induced by the EB-criterion varies between the different training configurations.
It is thus arguably not as stable in comparison to setups where the validation loss is very reliable. For
gradient descent (full training set in each iteration, Column 1 of Figure 7) , the EB-criterion performs
reasonably well, however (an very similarly to the gradient descent runs on the logistic regression on
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Figure 7: Multi-layer perceptron on MNIST: Column 1: full batch gradient descent with learning
rate 0.01; columns 2-4 SGD with a mini-batch size of 128 and learning rates 0.003, 0.005 and
0.01, respectively. Results are color-coded: red for validation set-based early stopping, blue for the
EB-criterion. Middle row: logarithmic test loss versus the number of optimization steps for both
methods; top row logarithmic validation loss; minimal point induces a stopping decision (red vertical
bar); bottom row: evolution of the EB-criterion, stopping decision as blue vertical bar; details in text.

WDBC in Figure 2) chooses to stop a bit too early, and thus does result in a slightly worse test set
performance. The difference is not very much (test loss red: 10−1.04, blue 10−0.92) but it also clearly
does not outperform the nearly exactly positioned stopping point induced by this well calibrated
validation loss.

3.5 Logistic Regression and Shallow-Net on SECTOR

Finally, we trained a logistic regressor and a shallow fully-connected neural network on the SECTOR
dataset[4]. It contains 6412 training and 3207 test datapoints with 55 197 features each, thus having a
less favorable feature-to-datapoint ratio than for example MNIST (784 features vs. 60 000 datapoints).
The features are extracted from web-pages of companies and the classes describe 105 different
industry sectors. The shallow network has one hidden layer with 200 hidden units; the logistic
regressor, thus contains ∼ 5.8 million, and the shallow net ∼ 11.1 million trainable parameters.
Experiments are set up in the same style as the ones in Section 3.3 and 3.4. We use 20% of the
training data for the validation set; this yields 1282 validation examples and a reduced number of
5130 training examples. Figure 8 shows results; columns 1-2 for the logistic regressor and columns
3-4 for the shallow net. Since the size of the dataset is quite small, the gap between test losses
is quite large (middle row, full training set (blue), reduced train set, due to validation split (red)).
Both architectures do not overfit properly, the test loss rather flattens out, although we trained both
architectures for very long (2.5 · 105 steps) and initialized weights close to zero. The EB-criterion
is again a bit too cautious, and induces stopping when the test loss starts to flatten out; but since it
allows utilization of all training data, it beats the validation set on both architectures.

3.6 Greedy Element-wise Stopping

For the EB-criterion, we compute fk = m(∇Lk
B)2/Σ̂k for each gradient element k. This quantity

can be understood as a ‘signal-to-noise ratio’ and the EB-criterion takes the mean over the individual
fk. As a side experiment, we employ the same idea in an element-wise fashion: we stop the training
for an individual parameter wk ∈ R (not to be confused with the full parameter vector wt ∈ RD
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Figure 9: Greedy element-wise stopping for a multi-layer perceptron on MNIST. Columns: SGD with
batch size 128 and learning rates 0.003, 0.005 and 0.01, respectively. Top row logarithmic training
(gray) and test loss (blue). Bottom row fraction of weights where learning has been shut off by the
greedy element-wise stopping; each weight matrix (red), each bias vector (blue), full net (green).

at iteration t) as soon as fk falls below the threshold. Importantly, this is not a sparsification of
the parameter vector, since wk is not set to zero when being switched off but merely fixed at its
current value. We smooth successive fk over multiple steps using an exponential moving average;
these averages are initialized at high values, resulting in a warm-up phase where all weights are
‘active’. Figure 9 presents results; intriguingly, immediately after the warm-up phase the training of a
considerable fraction of all weights (10 percent or more, depending on the training configuration)
is being stopped. This fraction increases further as training progresses. Especially towards the end
where overfitting sets in, a clear signal can be seen; the fraction of weights where learning has been
stopped suddenly increases at a higher rate. Despite this reduction in effective model complexity, the
network reaches test losses comparable to our training runs without greedy element-wise stopping
(test losses in Figure 7). The fraction of switched-off parameters towards the end of the optimization
process reaches up to 80 percent in a single layer and around 50 percent for the whole net.
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4 Conclusion

We presented the EB-criterion, a novel approach to the problem of determining a good point for
early-stopping in gradient-based optimization. In contrast to existing methods it does not rely on
a held-out validation set and enables the optimizer to utilize all available training data. We exploit
fast-to-compute statistics of the observed gradient to assess when it represents noise originating from
the finiteness of the training set, instead of an informative gradient direction. The presented method
so far is applicable in gradient descent as well as stochastic gradient descent settings and adds little
overhead in computation, time, and memory consumption. In our experiments, we presented results
for linear least-squares fitting, logistic regression and a multi-layer perceptron, proving the general
concept to be viable. Furthermore, preliminary findings on element-wise early stopping open up the
possibility to monitor and control model fitting with a higher level of detail.
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—Supplements—

5 Comparison to RMSPROP

This Section explores the differences and similarities of SGD+EB-criterion and RMSPROP. This is
rather meant as a means for gaining a better intuition, and not for comparing them as competitors;
both methods were derived for different purposes and could be combined in principle.

5.1 Non-Greedy Elementwise EB-Criterion

The non-greedy elementwise EB-criterion can be formulated as

ct = βct−1 + (1− β)
(
1− f EB-crit

t

)
wt+1 = wt − α · I [ct ≤ 0]�∇LB(wt)

(10)

for some conservative smoothing constant β ∈ (0, 1), usually β ≈ 0.999, or 0.99, learning rate α, and
the fraction f EB-crit

t := |B|[∇LB(wt)
�2 � Σ̂(wt)] as defined in Section 3.6. The symbol ‘�’ denotes

elementwise division and I[·] is the indicator function. In contrast to the greedy implementation
of Section 3.6, where switched-off learning rates stayed switches off, Eq. 10 allows learning to be
switched on again.

5.2 Learning Rate Damping in RMSPROP

RMSPROP [22]is a well known optimization algorithm that scales learning rates elementwise by an
exponential running average of gradient magnitudes; specifically:

vt = γvt−1 + (1− γ)∇LB(wt)
�2

wt+1 = wt − α∇LB(wt)�
√
vt,

(11)

again for some smoothing constant γ ∈ (0, 1), usually γ ≈ 0.95, and learning rate α. Let zmax
t be

the largest element of the factor zt := 1�√vt, then the second line of Eq. 11 can be rewritten as

wt+1 = wt − αzmax
t

(
zt
zmax
t

)
�∇LB(wt). (12)

The fraction fRMSPROP
t := (zt/zmax

t ) ∈ (0, 1] describes the scaling of learning rates relative to the
largest one: if the ith element of fRMSPROP

t is very small, the learning of the corresponding parameter
is damped heavily relative to a full step of size αzmax

t . This can be interpreted as ‘switching-off’ the
learning of these parameters, similarly to the elementwise EB-criterion.
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5.3 Connections and Differences

The following table gives a rough overview over the possible set of learning rates for each method.

method step size domain maximal step size minimal step size

SGD {α} α α

SGD+EB-crit {0, α} α 0 (only when converged)

RMSPROP (0, αzmax
t ] αzmax

t > 0

The table shows, that SGD+EB-criterion is a very minor variation of SGD, in the sense that it can also
set the learning rate to zero, but only for converged parameters to prevent overfitting. It does not
improve the convergence properties of SGD while it is still training, since the sizes of the ‘active’
learning rates remain unchanged. Specifically, it does not explicitly encode curvature, or other
geometric properties of the loss.

In contrast to this, RMSPROP also adapts the absolute value of the largest possible step at every
iteration by a varying factor zmax

t , and scales the other steps relative to it. It is based on the steepest
descent direction in w-space, measured by a weighted norm, where the weight matrix is the inverse
Fisher information matrix Ft at ever position wt.2 If the learned conditional distribution approximates
the true conditional data-distribution well, Ft also approximates the expected Hessian of the loss [13].
RMSPROP thus encodes geometric information, which allows for faster convergence compared to
SGD.

Another interpretation of RMSPROP, which in spirit is much closer to the EB-criterion, has recently
been formulated by Balles and Hennig [1]. It is possible to associate the RMSPROP-update of Eq. 11
with local gradient and variance estimators, according to

−α∇LB(wt)�
√
vt ≈ −α

sign[∇L(wt)]√
1 + diag[Σ(wt)]� |B|∇L(wt)�2

(13)

since
∇LB(wt) ≈ Ex∼p(x) [∇LB(wt)] = ∇L(wt), and

vt ≈ Ex∼p(x)

[
∇LB(wt)

�2
]

= ∇L(wt)
�2 +

diag[Σ(wt)]

|B|
.

(14)

The fraction on the right hand side of Eq. 13 contains the term 1/snrt := diag[Σ(wt)]�|B|∇L(wt)
�2,

which closely resembles the inverse of f EB-crit
t . Thus gradients with a small signal-to-noise ratio

snrt get shortened; noise free gradients induce steps of equal(!) size −α · sign[∇L(wt)] in every
direction (note, that they are independent of the magnitude of ∇LB); RMSPROP thus can be seen as
elementwise stochastic gradient-sign estimators, which are mildly damped if noisy.

We have now explored algebraic, as well as behavioral connections between SGD+EB-criterion
and RMSPROP; the following paragraph summarizes the above points and lists some noteworthy
distinctions:

Geometry encoding: RMSPROP encodes geometric information about the objective and can be
loosely associated with second order methods that perform an approximate diagonal preconditioning
at every iteration. Alternatively it can be interpreted as stochastic sign estimator, scaling each step
with the inverse gradient magnitude, and damping due to noise. In contrast to this, the EB-criterion is
just a mild add-on to SGD; it does not alter learning rates due to curvature or other geometric effects.

Mild damping vs. stopping: The EB-criterion defines a strict threshold, justified by a statistical test,
when learning should be terminated. RMSPROP defines a vaguer version, in the sense, that the
optimizer should move somewhat ‘less’ into directions of uncertain gradients. Even if the signal-to-
noise ratio snrt falls well below the threshold of the stopping decision induces by the EB-criterion
(roughly snrt < 1), RMSPROP just reduces the step proportional to the inverse if the square root
∼ (1 + 1/snrt)

−1/2 (e.g. for snrt = 0.5 (EB-crit stops), the RMSPROP-step gets reduced by a factor of
only 1/

√
3 ≈ 0.6).

2If the loss ` can be interpreted as negative log likelihood, this is an approximation to the steepest descent
direction in the distribution space, where an approximation to the KL-divergence defines a measure.
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Smoothing and bias: The derivation of Eq. 13 omits the geometric smoothing contribution of γ
which is present in the RMSPROP-update in Eq. 11. In contrast to this, the EB-criterion relies on
local (non-smoothed) computations of Σ̂(wt); this is essential to a stopping decision, since large
gradient-samples are usually associated with large variances as well. Smoothing the latter would
thus bias learning towards following large gradients; in case of RMSPROP it does bias towards larger
steps for high variance samples.

The views presented above, give insight on the internal workings of RMSPROP as well as the EB-
criterion. It is apparent, that, even though RMSPROP shortens high variance directions, they do not
get damped enough to prevent overfitting the objective to the data.

5.4 Empirical Comparison

For an empirical comparison, we run RMSPROP, SGD with elementwise EB-criterion (as in Eq. 10),
and an instance of vanilla SGD on a multi-layer-perception on MNIST, similar to the setup in Section
3.4. For the SGD instance that uses the EB-criterion, the fraction of switched-off parameters is defined
as

P EB-crit
t :=

1

D

D∑
i=1

I [ci,t ≤ 0] . (15)

The percentage of ‘switched-off’ parameters for RMSPROP can be roughly described as the fraction
P RMSPROP
t of parameters, whose fRMSPROP

t (defined in Section 5.2) lie below a threshold T ∈ (0, 1)

P RMSPROP
t :=

1

D

D∑
i=1

I
[
fRMSPROP
i,t < T

]
. (16)

The same smoothing factor γ = β = 0.99 was used for both methods, for a meaningful compar-
ison. Figure 10 depicts results; the first row shows training losses (light colors) and test losses
(corresponding dark colors) of all three methods. Rows 3-7 show the evolution of P RMSPROP

t for
five choices of T = [10−1, 10−2, 10−3, 10−4, 10−5]; the second row shows P EB-crit

t . As mentioned
above, in contrast to the ‘greedy’ implementation of Section 3.6 (switched-off learning rates, stayed
switched-off), and for a more natural comparison to RMSPROP, we allowed learning rates to be
switched on again as well. The results for P RMSPROP

t and P EB-crit
t are color coded as in Figure 9 of the

main paper: green for the full net, and additionally red for weight matrices and orange for biases per
layer.

The test losses of vanilla SGD and SGD+EB-criterion are almost identical, while the training loss of
SGD+EB-criterion is a bit more conservative than the one of vanilla SGD; this is expected, since the
EB-criterion ideally should not impair generalization performance, but might lead to larger training
losses at convergence, due to the overfitting prevention. Already at the beginning of the training
SGD+EB-criterion switches off about 10-20% of all learning rates; after that, the fraction increases to
about 50% (green line, second row); since the EB-criterion only detects convergence, the curve is
quite monotonic, exhibiting not significant jumps.

RMSPROP converges a bit faster, as it is expected. Also the plots for P RMSPROP
t are richer in structure.

Especially one layer seems to have significantly smaller learning rates for both, biases and weights,
than the other layers. Overall the difference between the largest learning rate and all others tends
to roughly increase over the optimization process (especially for T = 10−1, green line, last row).
There are also significant jumps in all the curves, in contrast to the rather monotonic increasing line
of SGD+EB-criterion. This indicates nontrivial scaling of the absolute, as well as relative sizes of
learning rates throughout the optimization process; also, no learning rate is smaller than 10−5 times
the largest one at each iteration (third row, green line at exactly zero).

In the future a combination of both—learning rate scaling and overfitting prevention—i.e. combining
the EB-criterion with advanced search direction like RMSPROP, is desirable.
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Figure 10: Comparison of RMSPROP and SGD+EB-criterion on a multi-layer perceptron on MNIST;
batch size is 120. Top row: logarithmic training loss (light colors) and test loss (corresponding dark
colors) for vanilla SGD (gray), SGD+EB-criterion (red) and RMSPROP(blue). Row 2: fraction of
weights P EB-crit

t where learning has been shut off by the elementwise stopping; each weight matrix
(red), each bias vector (blue), full net (green). Row 3-7: same as row 2, but for P RMSPROP

t for different
choices of T (see legend).
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