Exercise $1(1+2+2+3$ points)
Write the following abbreviated λ-terms with all missing parentheses and λ 's. Then write down all subterms, free variables and bound variables.
(a) $\lambda x .(z y)$
(b) $(\lambda x \cdot x y)(\lambda y \cdot y x)$
(c) $(\lambda y x . x y)((\lambda z . z) y)(\lambda x z . x)$
(d) $(\lambda x y z . x z)((\lambda z y \cdot y y) z)((z z)(z z))$

Exercise 2 (2 points)
We consider the terms in Exercise 1. Rename, if necessary, all bound variables in such a way that no free variable has a bound occurrence.

Exercise 3 (2 points)
Evaluate the following substitutions:
(a) $(\lambda y . x(\lambda w . v x w x))[(u v) / x]$
(b) $((x y)(\lambda v . x v))[(\lambda y . v y) / x]$

Exercise 4 ($6+2$ points)
(a) Prove that

$$
M[P / x][Q / x] \equiv_{\alpha} M[(P[Q / x]) / x]
$$

holds for all λ-terms M, P, Q.
(b) Why does $M[P / x][Q / x] \bumpeq M[(P[Q / x]) / x]$ not hold in general?

