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SUMMARY

Modular software model checking of large real-world systems is known to require extensive manual
effort in environment modelling and preparing source code for model checking. Avinux is a tool chain
that facilitates the automatic analysis of Linux and especially of Linux device drivers. The tool chain is
implemented as a plugin for the Eclipse IDE, using the source code bounded model checker CBMC as
its backend. Avinux supports a verification process for Linux that is built upon specification annotations
with SLICx (an extension of the SLIC language), automatic data environment creation, source code
transformation and simplification, and the invocation of the verification backend. In this paper technical
details of the verification process are presented: Using Avinux on thousands of drivers from various Linux
versions led to the discovery of six new errors. In these experiments, Avinux also reduced the immense
overhead of manual code preprocessing that other projects incurred. Copyright © 2008 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Engler and Musuvathi explain in a detailed review [1], why model checking real-world software is
problematic, and that it fails to discover the large numbers of errors that light-weight static analysis
methods are able to report. However, in mission critical software (including operating systems),
model checking may provide valuable results that cannot be produced with light-weight verification
methods. The Static Driver Verifier (SDV) project [2] for Windows device drivers is an example
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of this approach. The Linux operating system kernel still poses a challenge to software model
checking approaches because of its size and complexity. Linux lacks a strict and uniform driver
framework similar to the Windows Driver Model covered by SDV. The tool chain Avinux targets the
problems described by Engler and Musuvathi, such that almost automatic, effective model checking
of Linux source code can be achieved. This paper describes technical details and the experiences
from applying Avinux to thousands of Linux source files from different kernel versions.
Avinux‡ [3] is an integrated software verification tool chain. It comes as an Eclipse§ plugin,

which significantly improves the automation in Linux code analysis and error checking. Post and
Küchlin [3] describe how Avinux can be used to verify various functional and non-functional
properties of the Linux code. In this paper, technical details on how the Avinux tool chain finds
errors in Linux device drivers are given. The verification backend of Avinux is the bounded software
model checker CBMC [4]. Experiments show that large manual source code preparation can be
avoided in contrast to other case studies [1,2,5,6]. Several experiments are performed on various
Linux kernel versions, each with over three thousand processed translation units.
Avinux has been used to rediscover several known errors in Linux. These errors have been reported

to require extensive manual code simplification and transformation [6] when checked with BLAST.
BLAST requires that this manual adaptation is performed once per driver. With Avinux, the manual
effort is reduced to the construction of an operating system model, which basically implements
an abstract use case that simulates the interactions between the operating system and modules
or device drivers. The manual work required to employ Avinux is limited on changes per kernel
version. The checking of each driver is then done automatically. Examples of re-discovered errors
can be obtained through the project home page. This paper also reports six new bugs discovered
by Avinux.
In this paper, the notions of completeness and soundness are also used to describe the relation

between specifications and errors of a certain kind: a specification is called complete, if it encom-
passes all errors of a certain class (e.g. memory access violations). It is called sound, if no false
positives can occur, i.e. it must capture the error cases, but not more.
Bounded model checking [7] (BMC) is a sound verification technique. If its bound is chosen

high enough—which is rarely the case for real-world examples—it is also complete. For the sake
of presentation, this work treats BMC as a sound and complete technique, though it is in fact
incomplete for almost all device drivers that were analysed. As a consequence, a specification rule
may be called complete, although it may not be checked for all possible program traces using BMC.
As this is a limitation of the verification backend—rather than the rule itself—this distinction is not
made explicit.
Modular analysis, as implemented in this work, faces the problem that the external environment

may restrict the set of input parameters for the module under test. When checking the module on its
own, these restrictions are typically not available. Thus, false positives—even when using a sound
verification backend—can hardly be avoided. On the other hand, the external environment may also
cause false negatives: callbacks and other unmodelled side effects, e.g. the parallel update of a shared
variable, can lead to program traces that are not included in a straightforward modular analysis.

‡Project home page: http://www-sr.informatik.uni-tuebingen.de/∼post/avinux.
§www.eclipse.org.
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Note that in the context of system code written in C, an over-approximation of the environment
is infeasible to compute due to callbacks, pointer arithmetic and the manifold interfaces between
different subsystems and modules.
Sound and complete rules are given in Section 3. Checking these rules with BMC leads to a

(possibly incomplete) set of error reports. This set still contains spurious reports due to the problems
described above stemming from the unknown environment. Some techniques are presented to treat
the environment problem pragmatically, such that a feasible ratio of false positives to real errors
can be achieved.
In Section 2, the general architecture of Avinux is described. A summary of the verification

process is given in Section 2.1. Results applying Avinux to Linux drivers are described in Section 4.1,
followed by a review of specifications that are checked for Linux drivers (Section 3). Section 4.2
reviews current limitations and planned extensions. Section 5 gives an overview about related
projects before the main aspects of Avinux are summarized in the last section.

2. COMPONENTS AND THE VERIFICATION PROCESS

The Avinux tool chain integrates five components that are orchestrated by a plugin for the Eclipse
IDE: CBMC, CIL, DEC, CLEANC and SLICx. The first two, CBMC and CIL, originate from
other research groups. SLICx is an extension and reimplementation of the Microsoft specification
language SLIC [8]. DEC and CLEANC are within the contribution of this paper.
CBMC [4] is a bounded model checker for C that extracts models directly from source code.

Function calls are inlined, and loops and recursion are unwound up to a user provided bound. Types
are reduced to a bit-level representation that models the execution on bit-level hardware according
to the ANSI C standard. CBMC has built-in support for memory safety checking and recognizes a
specification language in the form of assert and assume statements.
CIL [9] is a code transformation framework that translates several C dialects and non-standard

code constructs into ANSI-C programs. CIL has already been used for software model checking [5].
DEC is a data environment construction module. It treats the problem of modular analysis requiring
constraints on input variables [10], e.g. parameters. It scans a C translation unit for global identifiers
and parameters of entry functions that are of pointer type or contain a pointer-type member. Up to
a user provided bound the object graph is unrolled by creating appropriate objects for each pointer.
These pointers are then initialized such that at the start of every control flow every pointer points
to a valid object. Assuming that such an environment is indeed provided by the operating system,
the verification backend guarantees that no errors occur in the module under test. DEC provides
a trade-off that reduces the number of false positives¶ while missing potential bugs from violated
assumptions about external usage of the module. For DEC, generic tools for data environment
creation are adapted. CUTE [11] is one example for such a tool, though not all features of CUTE
are covered by DEC.
CLEANC is an additional code cleaning facility. Although CIL transforms most code dialects

into ANSI-C, several additional simplifications could be identified in order to prepare the code

¶ In this work the term false positive refers to problem reports that are caused by the modularity of the analysis.
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for CBMC. Examples include empty structs, compiler attributes and some forms of nested static
function pointer initializers. A list of the eliminated hazards is presented later.
SLICx is a novel specification language [3], which extends the SLIC [8] language for interface

specification used in the Microsoft SDV. SLIC allows to define a safety automaton. State transitions
can be defined in the form of transfer functions that may read program variables and may read and
update state variables. In contrast to SLIC, SLICx allows the definition of general transfer functions
including multiple assignments, function calls, arbitrary C expressions and statements, i.e. SLICx
allows the modification of program variables. This work encompasses an SLICx compiler that
transforms SLICx specifications into C code, which is then merged with the Linux sources to be
checked. The language SLICx and the detection of race conditions, deadlocks and API violations
using SLICx are described in [3].

2.1. The verification process

The following steps are necessary for analysing a Linux device driver with Avinux:

(i) Configuration of the Linux kernel so that the relevant modules are built.
(ii) Formulation of an interface rule as in SLICx.
(iii) Automatic annotation of all modules with the above rule (SLICx Compiler).
(iv) Transformation of the Linux kernel with CIL.
(v) Merging of all relevant source code files with CIL.
(vi) Automatic code simplification with CLEANC.
(vii) Manual creation of a main function simulating the operating system’s use of the driver.
(viii) Automatic creation of a data environment for main with DEC.
(ix) Running CBMC on main.

The performance bottleneck is located in step (vii) because the creation of main, e.g. an abstract
unit driver, has to be done for every driver. This problem has been solved for some Windows driver
architectures (WDM and KMDF [2]), but Linux drivers have less standardized architectures and
interfaces. For Linux, such an operating system’s model cannot be implemented in a generic way.
Figure 1 gives a graphical representation of the process that transforms a plain Linux driver into a
checkable unit.

Figure 1. The creation of a checkable unit requires multiple transformations. The creation of the SLICx rule and
the construction of a test harness, i.e. main function for the module under test, must be performed manually.

All other steps are performed automatically.
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The analysis that leads to the discovery of a new bug is now described in detail. Additionally an
overview of the other experiments is given.

3. SPECIFICATION OF COMMON ERROR TYPES

In this section typical errors in Linux are listed. These errors can be identified using Avinux and
especially the new specification language SLICx. Note that the built-in checking capabilities of
CBMC alone do not cover these error classes.

(i) Proving the absence of memory leaks (ML).
(ii) Sequential simulation of pre-emption.
(iii) Absence of deadlocks.
(iv) Race condition detection.

Some SLICx rule implementations for these error types are available for download from the project
web site.

3.1. Memory

3.1.1. Memory safety with CBMC

Memory safety—i.e. the avoidance of invalid accesses to memory areas—is already implemented
in CBMC. However, CBMC only supports generic memory-related specifications that must be true
for all programs written in C:

• Dereferences of NULL pointers.
• Dereferences of pointers to deallocated objects.
• Dereferences of pointers to objects that were not initialized within the scope of analysis.
• Accesses beyond an object’s bounds within memory—e.g. after the last element of an array.
• Calls to function pointers with an offset.

3.1.2. Memory leaks (ML)

Dynamic objects are allocated by means of kmalloc() and some minor variations of it. Finally,
they must be deallocated by kfree() otherwise ML may occur, which pose a hazard for server
operating systems like Linux. The following description is treated as a definition of the absence of
this hazard: After kmalloc eventually kfree must be called.
This definition can be adapted for Linux modules. Most modules in Linux implement a life

cycle that begins when the module is loaded for the first time and ends when the module is finally
unloaded, for example, when the device is unplugged and the driver is no longer needed.
The specification concerning ML for modules may, hence, be transformed: previously allocated

memory must be freed by kfree() when the last function in a module’s lifecycle (cf. Figure 2)
returns. Basically the liveliness property from the definition is simulated by a safety property
specification: After main the object’s state must be freed.
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Figure 2. An abstract lifecycle of a Linux device driver module. The module init and module exit macros
mark the functions that are called first and last. Preprocessor macros are used to transform them into uniformly

named functions that may be called from a main function.

Table I. Information about checking for double-free and double locking (AL)
errors. The second example includes pre-emption simulation (PS).

Characteristic ide-probe.c sbni.c

LOC (measured by the sloccount tool) 915 1302
LOC of SLICx rule (in C) 115 48
Annotated callsites 7 26
LOC after CIL and cleanc 19883 20928
LOC of data env. -(disabled) 48
Number of assignments (CBMC) 13874 8482
Removed assignments (CBMC) 10020 -(disabled)
SAT variables 480763 584389
SAT clauses 87066 877207
Trace length [Assignments] 398 102
Analysis time (s) 638.62 124.69
Memory consumption (MB) 559.6 686.3

A minor addition to this rule is that no memory area may be allocated twice. Table I presents
details finding such a violation in a device driver.

3.2. Pre-emption simulation (PS)

Concerning the parallel execution of different threads of control, many successful techniques have
been developed. In this section, an approach is presented that models pre-emption instead of a
complete parallel thread interleaving.
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The following example illustrates a common interleaving for device drivers on a multi-processor
system: a dispatch function is servicing a request while an interrupt occurs and pre-empts the
running function. The interrupt handler may in turn be interrupted by other interrupt handlers. Both,
the dispatch functions and the interrupt handlers may be interrupted by exception handlers that
handle page faults or divisions by zero. Exception handlers, however, may not be pre-empted. The
execution of an interrupt handler may be prevented by disabling interrupts, i.e. precise application
programming interface (API) modelling is necessary to prohibit false traces.
Two aspects are illustrated by the example:

• Pre-emption or context switches are controlled by calls to API functions.
• A complete coverage of context switches is not necessary under all circumstances.

The implementation of sequential simulation is facilitated by SLICx. As annotation rules may
change the program state, it is possible to add additional calls to interrupt handlers or other pre-
empting functions before and after any relevant function calls. A more detailed description and
examples are given by Post and Küchlin in [3]. Note that this transformation provides the infras-
tructure for any rule, but especially for checking race conditions and deadlocks in a parallel context,
as indicated below.
An example for an analysis run is presented in Table I.

3.3. Sound locking (AL)

The commonly cited locking rule ‘Alternating Locking’ (AL) refers to the requirement that for
each lock instance, lock and unlock operations must be performed in an alternating manner.
If a lock object is requested twice without unlocking a deadlock occurs. This specification is
sound, but clearly incomplete with respect to deadlocks. This rule can be implemented in a
similar way as in the original SLIC language [8]. The common base rule is extended so far
that it covers all different locking and unlocking operations occurring in the Linux API. Table I
contains performance and problem size data for checking this rule on a concrete driver in a parallel
context.

3.4. Complete locking (LO)

The sound rule AL is complemented by a second rule that is complete with respect to deadlocks‖.
The four Coffman Conditions [12] describe necessary requirements that must be true in order to
produce a deadlock.
Three of the Coffman Conditions are true due to the Linux locking implementation. Therefore,

the only option to avoid deadlocks is to enforce that the fourth condition is not true: deadlocks can
only occur if there is a circular wait for locks. To prevent this, it is required that locks are requested
in a strict locking order. An SLICx rule can monitor this requirement and is, therefore, complete
with respect to deadlocks (in the locking API).

‖Completeness refers to the spinlock part of the API.
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Figure 3. (l) Excerpt from the specification implementation of the locking restriction (LO). The which * lock
pointers track the pair of locks that is currently monitored. order set tracks if one lock order has been
determined on the current trace. (r) This example shows a common locking situation between an interrupt
handler and a driver service function. Both functions operate on a pair of locks, but the interrupt handler uses
a different locking order. Using partial simulation of the pre-emption, this deadlock is discovered by Avinux.

Note that this rule requires the tracking of states of a possibly infinite number of heap memory
objects. This can be implemented by non-deterministic selection. This mechanism is called the
Universal Quantification Trick and was first applied in software model checking in [13]. The rule
is named ‘Lock Order’ (LO) and is implemented via a non-deterministically chosen pair of lock
objects.
For each watched lock, a status flag is introduced that monitors the locked/unlocked state of this

lock. Moreover, a flag is introduced that stores the order of acquisitions for the chosen pair of locks.
If it never happens that any pair of locks is acquired in more than one order, it may be inferred that
a circular wait is not induced by the locks.
If the LO was specified in the API, each thread could be checked separately. As this is not the

case for Linux drivers, the problem cannot be decomposed. The Avinux implementation checks
this rule only for PS (cf. Figure 3). Therefore, its treatment of locking is still incomplete, but the
LO-rule itself provides a complete locking specification.

3.5. Race conditions (UA)

A race condition may occur if two threads of control access a shared memory location and at least
one of them writes a new value into it. Instead of finding race conditions directly, a conservative
rule is proposed that is complete but unsound with respect to races. A notable advantage is that this
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Figure 4. (l) A code example for race condition detection. The code in unnumbered lines on the left side is
inserted by the SLICx rule on the right side (r).

rule implements race checking by the standard means provided by CBMC and SLICx, while each
tool does not offer a solution by itself. The rule is called ‘Unprotected Access’ (UA).
The solution covers the following common setting: A dynamically allocated struct shall be

protected from accesses without prior acquisition of a lock that protects it. This requirement is
reversed: an unlock operation prohibits all further accesses to this struct and its members up to the
next lock operation. Memory accesses cannot be directly annotated with either SLIC or SLICx.
CBMC also offers no way to insert additional checks for each memory access. Therefore, built-in
memory checks from CBMC are exploited.
Consider the code excerpt in Figure 4. The struct driver is protected by the spinlock lock.

Possible driver code is presented on the left. Line 4 contains an UA that may lead to data races
if the code is re-entrant. The application of the rule (right) inserts the unnumbered lines into the
driver’s code where

• which lock refers to the lock that is monitored.
• $1 refers to the first parameter of the lock/unlock functions. In the example it is replaced on
the left side by &lock as it is the only lock instance that occurs.

• CPROVER ASSUME(0); is a CBMC statement to terminate the execution.

In order to make CBMC report the access in line 4, free is non-deterministically called on
driver. CBMC’s memory checking ensures that all memory accesses occurring after free will
be reported (line 4). Additionally, false positives shall be removed that arise when the previously
deallocated struct is locked—i.e. protected—again in line 5. This restoration of the object’s state
is achieved by a termination of the current execution if driver had been deallocated before.
An additional complication is that reallocations of driver could occur between lines 3 and 4.
This problem can be solved by annotating allocation functions. The relationship between locks
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and protected structs can be heuristically inferred from Linux conventions as locks are commonly
embedded in the structs they protect.

4. PRODUCING RESULTS

4.1. Checking thousands of device drivers

In order to demonstrate the work Avinux automates an execution example is given. This process
has exposed a new bug in drivers/ide/ide-probe.c. The source file is part of the IDE
subsystem, i.e. ide-probe.c contains functions for the detection and identification of IDE
devices. The tested Linux version is the vanilla kernel 2.6.19. The bug persists at least from kernel
version 2.6.0, but has not been detected by testing and code reviews.
Linux is configured with the allyesconfig make target, which includes most modules and

subsystems that may be used on the Pentium 4 (64 bit) host. Note that CBMC is compiled as a
32-bit application running on the same host. The size of Linux simple data types is set to values
typical for a 64-bit system, i.e. CBMC interprets integers as 64-bit vectors. As a next step all source
files in the drivers folder are annotated with the following specification.

4.1.1. SLICx rule

Several SLICx rules have been formulated and checked. To demonstrate the process and the language
one of them is illustrated in greater detail.
Figure 5 shows the SLICx rule that is checked for all source files separately. The rule expresses

that it is not allowed to call kfree on a pointer without prior reallocation through kmalloc. Two
calls to kfree without intermediate allocation are called double-free error.
The SLICx compiler converts the rule into global state parameters and C-style transfer functions

with a SLIC prefix (Figure 5, right). In each driver, Avinux replaces all occurrences of kmalloc
and kfree by calls to wrapper functions that trigger the SLICx transfer functions. If a trace exists
that violates the specification, CBMCwill report that the assert(0) in SLIC ERROR statement
is reachable.

4.1.2. Transforming the driver

Avinux internally invokes the make build process using the code transformation wrapper cilly
(CIL). The kernel transformation takes approximately 3 h and the result is a collection of a few
thousand cil.c files. These files have the following characteristics:

• The file contains the code from the original driver or subsystem and from all included kernel
headers. External function definitions and all information that would normally be linked to the
driver is not included.

• After the CIL transformation all statements and expressions are side-effect free, e.g. expressions
like *p++ are split up using temporary variables.

• Each occurrence of the functions kmalloc and kfree is replaced by wrapper functions that
contain the translated SLICx transfer functions.
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Figure 5. The SLICx rule for double-free errors is shown on the right. has target is set to 1 if an address
is chosen to be monitored. which chunk refers to the currently monitored address. allocated captures
the current status concerning allocation respectively deallocation. The SLICx compiler translates the rule into
C-style transfer functions (left) that are woven into every driver. Note that empty functions and the kfree

transfer functions are omitted on the left side.

After processing the source files additional transformations must be made in order to make the
source files acceptable as input for CBMC. CLEANC takes the following actions:

• Replace each enum by int constants.
• Remove attribute ((...)) tags.
• Remove all variations of asm and volatile. Inline assembler blocks are removed without
replacement (may lead to both, false positives and false negatives).

• Remove inline and register declarations.
• Replace empty structs: struct struct type name {}; is replaced by struct
struct type name {int tmp;};.

• Replace alignof (expr) by appropriate values.
• Remove (char*) casts in front of constant strings.
• Extend declaration of empty arrays: int x[0]; becomes int x[1];.
• Truncate unsigned long long constants: 0x0ULL --> 0x0UL.
• Replace incomplete types:

◦ Change extern void x; into extern int x;.
◦ Convert extern int x[]; into extern int * x;.
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Some of these issues are fixed in newer versions of CBMC, e.g. version 2.5. CLEANC is imple-
mented as a Perl script except for the removal of enums. This feature is implemented using the
Eclipse CDT code parsing framework to avoid complex regular expressions.

4.1.3. Analysing the driver collection

It is infeasible to manually create control logic environments for thousands of device drivers. The
minimal information that must be provided for CBMC is the enumeration of possible entry points
(functions) for each module, but even this abstraction poses an obstacle for automatic analysis.
Simply enumerating all defined functions per file is incorrect as it is not known whether functions
are actually called from outside the module. Fortunately, Linux limits the visibility of symbols such
that only symbols that are explicitly passed to a macro EXPORT SYMBOL may be referenced from
outside the module. Minimal control logic environments are, therefore, obtained by creating one
environment per function symbols passed to EXPORT SYMBOL. Each control logic environment
only contains one call to the function.
The heuristic can be refined as described in Section 4.1.6.
CBMC checks whether for each of the obtained drivers and for each exported function symbol,

the error state is reachable. The whole process took approximately 36 h for 1514 translation units.
Ninety-five counter-examples could be obtained of which only one could be proven to be a bug.
The CBMC loop unwind depth was set to one, e.g. every loop skipped or executed exactly once.
In order to avoid problems arising from incomplete environments and potentially uninitialized

interface objects, CBMC is configured to check assert claims only. Memory safety violations
and other built-in checks were disabled. The analysis was performed using a patched version of
CBMC 2.4 as newer versions of CBMC are not distributed as source code.

4.1.4. Error example

Upon detection of a potential IDE device, the kernel invokes the function do probe in
ide-probe.c. It is possible that in do probe a previously allocated memory chunk
drive->id is deallocated. This is done via calls to try to identify, actual try to
identify, do identify and finally kfree. The deallocated memory is used without safety
check in line 579:

strstr(drive->id->model, "E X A B Y T E N E S T")

Instead of reporting this use-after-free error, CBMC reported a double-free error. CBMC’s memory
checks were disabled; therefore, the use-after-free could not be detected directly. However, checking
for double-free errors exposed a trace where the deallocated memory was passed to kfree. In
concrete executions, the double-free bug cannot occur due to the previous use-after-free error.

4.1.5. More empirical results

BLASTing Linux code [6] is a technical case study that summarizes the transformations necessary
to use the model checker BLAST on real Linux device drivers. Their error samples provide an
informal micro-benchmark in order to test how many errors Avinux exposes.
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Rediscovery of the given error examples could be achieved without the described manual code
transformations (cf. [6]). The construction of the environment model was the only manual task for
each driver. Other work such as the creation of specifications and header files had to be done once
per kernel version. The time needed to analyse the drivers was clearly dominated by the compilation
of the Linux kernel using CIL (several hours). The CBMC runtime for a single driver was in the
range of minutes∗∗.
In this way, six out of eight memory safety errors were reproduced. So far, only three out of eight

race condition and deadlock examples could be reproduced as for these cases a detailed operating
system model needs to be provided.
While testing Avinux on functions with variable parameters, a second bug in the file

drivers/char/tpm/tpm.c was identified:

line 1130: devname = (char *)__SLIC_kmalloc(7U, 208U);
line 1131: scnprintf(devname, 7UL, "%s%d", "tpm", chip->dev_num);

Taking into account that memory allocation via kmalloc may fail—the return value may be
NULL—the code excerpt violates the preconditions of scnprintf. In scnprintf the buffer
devname is read without sanity checks. The source stems from kernel version 2.6.19.
In addition to the above examples the following new bugs were found (kernel version 2.6.20.4):

• Usage of a lock without initialization (drivers/char/rtc.c).
• A deadlock may occur due to a race between an interrupt handler and the module initialization
in /drivers/net/wan/sbni.c.

• A possible dereference of a null pointer may occur in fs/xfs/xfs da btree.c.
• Invalid use of the kmem cache free interface in file drivers/infiniband/mad.c.
• A doubly free error in drivers/ide/ide-probe.c was detected.

More details for these errors can be obtained through the project web site. Performance data and
problem size numbers for two of these errors are summarized in Table I.

4.1.6. Coverage

For a complete analysis, one needs to cover all possible traces that lead to a possible violating call
to kmem cache free. In order to get a full path coverage for all possible scenarios, in which
the function under test may be invoked, a transitive closure on the static call tree is computed. The
closure starts at the function under test and the used operator is called-by. Thereby it may be safely
assumed that all possible entry points into the module are modelled.
If a function foo is included in more than one driver by means of preprocessing directives, a

verification task is created for the first occurrence of this function definition.

4.1.7. Testing DEC

Although the creation of an environment may underapproximate the real systems behaviour, it is
commonly a very effective mean to rank error reports. Error reports that occur when the module is

∗∗However, this does not include the manual creation of the main function. This task took days as internal workings of
subsystems are poorly documented.
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Table II. Summary of the performed experiments.

Description Kernel Result

Rediscovery of memory safety-related
errors [6]

2.6.11-14 Six out of eight errors discovered with minor
manual changes

Rediscovery of race and deadlocks [6] 2.6.13-15 Three out of eight errors discovered
Double-free error analysis of all files 2.6.19 One error found in ide-probe.c
Test effectiveness of DEC when
analysing kmem cache free calls
in all files

2.6.20.4 False positive rate reduced by more than 50%

Table III. Comparative list of approximate runtimes of all verification stages (Kernel under test: Linux 2.6.20.4,
allyesconfig configuration; Host: Pentium 4 with 3GHz, 1GB RAM).

Stage Runtime Comment

Configuration 1min Enabling all features
Create SLICx rule 1min—weeks Concurrency and subsystem modelling

may be necessary
Automatic annotation 1 h Annotation of drivers
Automatic annotation +2h Annotation of all sources (network, file

systems, etc.)
Kernel build using CIL 1–5 h Highly configuration and architecture

dependent
Merging of manually selected
translation units.

1min per merge Merging actions must be specified
manually

CLEANC 30min
Environment modelling 1min—weeks per model Dependent on subsystem complexity and

documentation
DEC 2 h
Verification by CBMC 6 h—weeks Checking one SLICx rule in all

source files, e.g. 36 h for checking the
kmem cache free rule

For a given SLICx rule and a given operating system model, the process bottleneck is the verification by CBMC.

called without an environment, but not when every input variable is initialized, are false positives
with high probability. A reasonable treatment of these cases is to set up a new specification encom-
passing the requirement that the input is initialized. This inferred property could then be checked
for all callsites on the module entry point.
In order to test the effectiveness of the environment creation, a second specification was analysed:

is kmem cache free called with its second parameter being NULL? Note that the aim of this
second experiment is to evaluate whether DEC may reduce the number of false positives.
DEC was tested on a set of 589 functions that call kmem cache free directly or through

intermediate functions. Without DEC, CBMC reports possible violations for 194 test samples. Using
DEC, this number is reduced to 81 error reports. The inspection of 81 bug reports is still a matter
of days. One of the most promising planned improvements is the automatic abstraction of unknown
interface functions that may return potentially invalid interface objects.
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DEC was configured with an unwinding depth of two. The unwinding of the object graph was
limited to entry function parameters—globally uninitialized pointers were not initialized.
Table III shows approximate runtimes for all verification stages. Table II gives a summary of the

performed experiments.

4.2. Limitations

In this case study, Avinux suffers the following limitations:

• Automatic source code linking of strongly interdependent translation units.
• Usability problems for the downloadable Eclipse plugin.
• Some GCC flags in newer kernels break CIL and must be removed manually—for example,
-fno-stack-protection.

• Uncovered syntactic problems—for example, parameter declarations like proc handler
proc handler, where the first occurrence refers to a type, while the latter is a parameter
name.

• Limited coverage of concurrent executions.

Avinux is currently extended such that it automatically fixes all of the above concerns. Never-
theless, each new kernel version may produce new problems that may require manual inspection
and fixes.

5. RELATED WORK

Several other groups have applied formal methods to Linux-related software.
MOPS [14] is a software model checker that has been applied to checking the security properties

of various Unix applications. Though MOPS detected some security flaws, the authors report
problems concerning error reporting and integration into the software build process. The authors
indicate that at the final project stage the analysis of software packages took weeks.
Engler and Musuvathi [1] provide various case studies applying model checking and light-weight

techniques to the Linux code. Their detailed descriptions lead them to the following conclusion:
modular model checking often requires too much manual effort concerning environment and spec-
ification modelling. They abandoned classical modular model checking and developed a custom
model checker (CMC) that was run on complete Linux kernels. However, most of the time CMC
did not terminate [15].
BLASTing Linux code [6] is a detailed case study that demonstrates problems applying the model

checker BLAST on Linux drivers. The authors indicate that BLAST cannot even rediscover the
known bugs in Linux drivers.
The SDV project [2] is most successful in checking Windows device drivers automatically. The

authors describe that the success of the whole project crucially depends on a very detailed model
of the operating system using the driver under test. SDV revealed many bugs, but is currently not
available for custom specifications. Moreover, it does not provide a Linux operating model and
GNU C extension support. It is unknown if the modular model checking for Linux can be automated
such that it is valuable from a practitioner’s point of view.
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KISS and TCBMC are two examples for the treatment of parallel program executions. In addition
to how Avinux simulates interrupt handler code, KISS [16] annotates each statement with code that
simulates a possible termination of the interrupting code. In general, KISS simulates strictly more
traces than pure PS, but in the example these additional traces may only occur in multi-processor
settings. TCBMC [17] is an extension of CBMC that simulates a bounded number of possible
context switches. This modelling of parallel executions contains many more traces than modelled
by PS, but it is unclear how TCBMC would scale in a setting of thousands of lines of code. In the
limited domain of pre-emption by interrupt handlers, the presented approach is computationally
feasible, as indicated before.
Witkowski et al. [18] provide a predicate abstraction-based tool—DDVerify—for the automatic

analysis of concurrent Linux device drivers. DDVerify is strictly more expressive as it provides
full model checking capabilities combined with unrestricted shared memory parallelism. The tool
also covers the creation of environment models for a small set of drivers by providing templates
for common driver architectures. These templates are more elaborate than the generic models of
Avinux, but they provide less coverage than manually created ones. The authors report the discovery
of two new bugs arising in a sequential execution of a driver. It is unclear, to how many drivers
DDVerify has been applied. The available version of DDVerify contains 18 examples encompassing
a total of 33k lines of code. Avinux provides fewer coverage than DDVerifiy but it has successfully
been applied to several versions of Linux with several million lines of code.

6. SUMMARY

Prior experiments with several software model checkers were disappointing. Not even one software
model checker for C was able to accept single device drivers as input [6]. Manually transforming
drivers made them processable but still even known bugs could not be rediscovered. In contrast to
many other projects, large quantities of Linux modules with millions of source code lines should be
checked. The need for an integrated solution led to the development of Avinux. Presented results
show that thereby, thousands of device drivers could be checked where others’ works limit their
scope to a few examples [6,19].
The motivation for the development of Avinux was the large manual overhead necessary for every

single driver to prepare them for bounded model checking (BMC). In the author’s personal view,
this overhead per driver has been significantly reduced. Once generic specifications and operating
systems models are provided, BMC results can be obtained in a few minutes for a single driver.
However, the unsoundness of the modular analysis used in this work induces a large overhead when
inspecting error reports from the model checker.
Verification examples can be found on the project web site. A preliminary version of Avinux is

available for download.
The focus of Avinux lies in the automatic preparation and discovery of verification tasks. Other

state-of-the-art verification approaches for C—e.g. Cascade [20], TCBMC [17], F-Soft [21] or the
novel extension of the model checker MAGIC by Chaki et al. [22]—could be easily integrated.
The use of Avinux is currently limited by a lack of automatic inference mechanisms for complete

operating system models. DEC currently implements an effective strategy for data environment
creation that reduced the number of false positives in the experiments. A lack of preconditions on
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entry points in modules leads to many false positives that make case studies a time-consuming task.
Avinux facilitates across-the-board case studies in the Linux domain.
Future work will concentrate on the automatic creation of complete environment models for

Linux. Ball et al. provide such test drivers manually for Windows drivers [2]. Inspired by the success
of the tool SDV it seems reasonable that Avinux has great potential in improving the quality of
Linux device drivers. Six novel bugs have already been discovered. One of them has already been
patched in the mainline Linux kernel.
Avinux has produced large sets of error reports that might contain many more real errors. Each

report must be analysed manually to check whether it is real or spurious. The authors have performed
this task for hundreds of counter-example traces, but thousands of inspections are still due. A
possible solution to this problem would be help from the Linux community.
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