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Abstract As products are growing more complex, so is their documentation. With an
increasing number of product options, the diversity in service and maintenance proce-
dures grows accordingly. This trend also holds for large-scale medical devices such as
magnetic resonance (MR) tomographs. Siemens Medical Solutions has thus decided
against one common on-line service handbook for all its MR tomographs. Instead,
they fragment the on-line documentation into small packages, out of which a suitable
subset is selected for each individual product instance. Selection of (so-called) help
packages is controlled by XML terms encoding Boolean choice conditions. To assure
that the set of available help packages is sufficient for all valid product instances, we
developed a tool called HelpChecker that provides a transformation of XML terms
to propositional logic formulas and then employs BDD-based methods to ascertain
completeness of the on-line documentation and to support authors in locating any
gaps. Experiments with SAT-Solvers were also made.
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1. Introduction

There is a persistent trend toward products that are individually adaptable to each
customer’s needs (mass customization [7]). This trend, while offering considerable
advantages for the customer, at the same time demands special efforts by the
manufacturer, who now must make arrangements to cope with myriad different
product instances. Questions arising in this context include: How can such a large set
of product variants be represented and maintained concisely and uniquely? How can
the parts be determined that are required to manufacture a given product instance?
Is a certain requested product variant manufacturable at all? And – the question we
specifically address in this paper – how can the accompanying documentation such as
service and user manuals be customized consistently with the product configuration?

Triggered – among other reasons – by an increased product complexity, Siemens
Medical Solutions recently introduced a semi-formal description for their magnetic
resonance (MR) tomographs based on XML. Thus, not only individual product
instances but also the set of all possible (valid, correct) product configurations can
now be described by an XML term that encodes the logical configuration constraints.
This formal product documentation allows for an automated checking of incoming
customer orders for compliance with the product specification. Besides checking an
individual customer order for correctness, further tests become possible, including
those for completeness and consistency of the on-line help system, which are the
topic of this paper. Similarly, cross-checks between the set of valid product instances
and the parts list (in order to find superfluous parts) or other product attributes are
within the reach of this method [28].

In order to apply automated reasoning to an industrial process, the following
steps are commonly necessary [31]. First, a formal model of the process must be
constructed. Second, correctness assertions must be derived in a formal language
that is compatible with the model. Third, it must be proved mechanically whether
the assertions hold in the model. Fourth, those cases where the assertion fail must be
explained to the user to make debugging possible. Throughout the formal process,
speed is usually an issue because, in practice, verification is often applied repeatedly
as a formal debugging step embedded in an industrial development cycle [30].

In this paper we develop a formal semantics for the XML representation of the
Siemens MR systems using propositional logic. This is accomplished by making the
implicit assumptions and constraints of the semi-formal XML representation explicit.
We then translate different consistency properties of the on-line help system (help
package overlaps, missing help packages) into propositional logic formulas, and thus
we are able to apply automatic theorem-proving methods in order to find defects in
the package assignment of the on-line help system. Situations in which such a defect
occurs are computed and simplified by using binary decision diagrams (BDDs). This
approach exceeds the possibilities of previously suggested XML checking techniques,
for example, those of the XLinkIt system [23].

2. Product Configuration with XML

2.1. Product Structure

Many different formalisms have been proposed in the literature to model the struc-
ture of complex products [14, 19, 21, 25, 34]. The method used by Siemens for the
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configuration of their MR systems was developed in collaboration with the first
author of this paper and resembles the approach presented by Soininen et al. [34].
Structural information is explicitly represented as an AND–OR tree. This tree serves
two purposes. First, it reflects the hierarchical assembly of the device; that is, it
shows the constituent components of larger (sub)assemblies (indicated by solid lines
in Figure 1). Second, it collects all available, functionally equivalent (or similar)
configuration options for a particular functionality (indicated by dashed lines). The
latter can also be regarded as an is–a relationship, whereas the former expresses a
has–a relationship. These two distinct purposes are also reflected by two different
kinds of nodes in the tree, as can be seen from the example in Figure 1.

Type nodes (OR-nodes) reflect a common type that all their direct child nodes
have in common. Typically exactly (or sometimes at least) one of the child nodes has
to be selected in a valid configuration (thus, OR-node). So, for example, the Receiver
node gathers all available nodes of type receiver (R-2 and R-4) and indicates that
exactly one of them has to be selected. Item nodes represent concrete configuration
items (e.g., parts or assemblies). The child nodes of an item node are the subassem-
blies that are required for the item to be complete. All of them have to be present in
a valid configuration (thus, AND node). So, for example, system Harmony requires
three subassemblies: one of type MPCU, one of type Receiver, and one of type Rx4.

From the example tree shown in Figure 1 we can therefore, for example, con-
clude that there are two different possibilities for choosing a System: Harmony and
Concerto. A Harmony system possesses three configurable (direct) subcomponents:
type MPCU, Receiver, and Rx4. The receiver, in turn, may be selected from the two
options: R-2 and R-4. Choosing the latter option puts an additional restriction on the
configurable component Rx4: this has to be selected in its form X2 if R-4 is selected.
Each type node possesses two additional attributes, MinOccurs and MaxOccurs, to
bound the number of admissible subitems of that type. If we assume that for each
type exactly one item has to be selected (i.e., MinOccurs = MaxOccurs = 1 for all
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type nodes), the configuration tree shown in Figure 1 permits the following valid
configuration (regarded as a set of items assigned to types):

Type = Main MPCU = 300MHz Rx4 = X2
System = Harmony Receiver = R-4

A particular system configuration is completely determined by a complete set of as-
signments, that is, a set where all cardinality constraints (MinOccurs and MaxOccurs)
are satisfied. As the item names are unique and each item can be selected at most
once, a configuration is already determined by its set of items. This alleviated trans-
lation to propositional logic considerably, as thus each item can be considered as a
propositional variable and a system configuration corresponds to an assignment to
these variables.

Within the Siemens system, the tree describing all product configurations is
represented as an XML term. The term corresponding to the tree of Figure 1 is
shown in Figure 2. The XML terms reflect the tree structure almost one-to-one.
There is a Type element for each type node, and an Item element for each item
node of the tree. In an Inventory (not shown in Figure 2) all possible node names are
stored via ID attributes. These can then be referenced in the configuration structure
via IDREF attributes. So, for example, the Receiver node name is indicated by

Figure 2 Excerpts of the XML representation corresponding to the product structure shown in
Figure 1.
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the IDREF attribute INT_Comp_ReceiverNumOf. Moreover, cardinality constraints
on the number of admissible subitems of a type node can be specified using the
two attributes MinOccurs and MaxOccurs. Conditions are expressed in the form
| < Type >< Op >< Value > |, where |Op| must be one of ‘eq’ or ‘ne’, indicating
equality or inequality, respectively. A condition T eq V requires that the item with
name V is selected for the type with name T in a valid configuration, whereas T ne V
requires that item V is not selected. All XML terms are checked for well-formedness
by using XML Schema [37].

We will use the simplified configuration example of this section throughout the
rest of the paper for illustration purposes. The experiments of Section 4, however,
were conducted on more complex, realistic data.

2.2. Structure of On-Line Help

The on-line help pages that are presented to the user of an MR system depend on
the configuration of the system. For example, help pages are offered only for those
components that are in fact present in the system configuration. Moreover, for certain
service procedures (e.g., tuneup, quality assurance), the accessible pages depend not
only on the system configuration at hand but also on the (workflow) steps that the
service personnel already has executed and on the level of knowledge of the user.
Workflows are specified as finite transition systems, where states are labeled with
properties denoting, for example, the current action the user has to perform or his
knowledge level. Consequently, the help system depends not only on the system
configuration but also on further parameters like the workflow state.

In order to avoid writing the complete on-line help from scratch for each possible
system configuration and all possible workflow states, the whole help system is
broken down into small help packages (see Figure 3). A help package contains
documents (texts, pictures, demonstration videos) on a specialized topic. The authors
of the help packages decide autonomously how they break down the whole help (i.e.,
the material for all manuals) into smaller packages. Hence, it is their own decision
whether to write a collection of smaller packages, one for each system configuration,
or to integrate similar packages into one.

In order to specify the assignment of help packages to system configurations and
workflow states, a list of dependencies is attached to each help package, in which the

Help package
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Figure 3 Illustration of help packages: for each system configuration a suitable help package has to
be selected (controlled by dependencies; workflows not shown).
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author lists the situations for which his package is suitable (see Figure 4, top part,
for an example): all of a dependency’s RefType/RefItem assignments must match in
order to activate the package and to include it in the set of on-line help pages for that
system. So, for example, the package of Figure 4 is selected for all situations in which
INT_System = INI_System_003 and INT_Workflow = INI_Workflow_TUNEUP.
Multiple matching situations (e.g., for either a special coil or a special receiver) may
be specified by associating further Dependency elements with a package.

The situations for which help packages must be available are specified by the
engineering department by using help contexts. A help context determines system
parameters and workflow steps for which a help package must be present. An exam-
ple of a help context (in XML representation) can be found in Figure 4 on the bottom.
The help package of this example fits any state of workflow tuneup (in which system
parameters are optimized by the maintenance personnel) and all configurations of
System_003. The example’s context specifies that for step TuncalOpen in the tuneup

Figure 4 Example of a help package (with dependencies) and a help context.
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procedure of System_003 a help package is required if the workflow mode is set to
general.

Currently, more than a thousand help contexts are defined for 11 MR systems,
each with millions of different configuration possibilities. So, in spite of in-depth
product knowledge, it is a difficult and time-consuming task for the authors of
help packages to find gaps (missing packages) or overlaps (ambiguities in package
assignment) in the help documents. To assist the authors, we therefore developed
an add-on tool, called HelpChecker, which is able to perform cross-checks between
the set of valid system configurations, the situations for which help may be requested
(determined by the contexts) and the situations for which help packages are available
(determined by the packages’ dependencies).

3. Logical Encoding of Product Structure and Help System

To check completeness and consistency of the on-line help system, we need a
translation into a logical formalism. We have chosen propositional logic for this
purpose because of its simplicity and the presence of fast and elaborate decision
procedures (SAT, BDD). Encoding in a description logic [1] would also have been
possible, but because of lack of experience in using description logics for large-scale
projects, we decided against this approach.

We now present precisely what constitutes a consistent help system. Informally
speaking, for each situation in which help may be requested for an existing system
(and therefore a valid system configuration), there should be a matching help
package. That is, help should be complete. Furthermore, in order to avoid possible
ambiguities or even contradictions, there should be exactly one unique help package.
That is, help should be consistent.

Therefore, we first have to find out which situations and product configurations
can actually occur. We therefore develop a formalization of the product structure by
building a configuration validity formula (ValidConf) describing the set of all valid
configurations. The validity formula can be derived automatically from the XML data
of the product structure and consists of consistency criteria for each of the product
structure’s tree nodes.

For a type node the following three validity conditions have to be met:

T1. The number of subitems of the node must match the number restrictions given
by the MinOccurs and MaxOccurs attributes.

T2. All selected subitems must fulfill the validity conditions for item nodes.
T3. No subitems may be selected that were not explicitly listed as admissible for

this type.

In our example, condition T3 would thus ensure that choosing a Receiver for a
Concerto system resulted in an invalid configuration.

For an item node the following three validity conditions have to hold:

I1. All subtype nodes must fulfill the validity conditions for type nodes.
I2. The item’s constraint, if present, has to be satisfied.
I3. Unreferenced types and their items must not be used below this item in the

configuration. (Types are considered unreferenced if they do not appear as a
subnode of the item.)
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In our example, I3 would ensure that below the Satellite node no further types may
be used.

We now give (still informal) definitions for completeness and consistency of the
on-line help system that we will use later.

DEFINITION 3.1. The on-line help system is complete if, for each context, a match-
ing help package exists. Only valid system configurations have to be considered.

Remember that contexts specify situations (system configuration plus workflow
state) for which help may be requested by the user. Thus the system has to make sure
that for each such situation a help package is available.

To define consistency, we first need the notion of overlapping help packages:

DEFINITION 3.2. There is an overlap between two help packages (‘ambiguity’) if
there exist a context and a valid system configuration for which both help packages’
dependencies match (i.e., evaluate to true).

DEFINITION 3.3. An on-line help system is consistent if there are no overlaps
between help packages.

In the next section we will give propositional criteria for these two properties.
To build the link between XML terms and propositional logic, we will have to
select subelements and attributes from XML terms. For this purpose we will use
XPath [38] expressions (in abbreviated syntax) as shown in Table I. The result of an
XPath selection is always a set of XML nodes (in the case of a path selection) or an
attribute (in the case of an attribute selection). We assume that attributes are always
defined (which is ascertained by XML Schemas). So, for example, the expression
/Config/Structure/Type selects all XML nodes that are reached when following each
path Config→Structure→Type from the root node of the XML document. In Table I,
a stands for an arbitrary XML attribute and p for an arbitrary path, that is, a list of
XML elements separated by slashes (/).

3.1. Formalization of the Product Structure

We now derive a propositional logic formula describing all valid system configura-
tions, which means that the models of this formula are exactly the valid system con-
figurations. The variables occurring in this formula stem from the XML specification’s
unique identifiers (ID and IDREF attributes) for types (XML element InvType) and
items (InvItem). Each identifier is a character string in the XML representation and
is bijectively mapped to a propositional variable in our encoding. The interpretation

Table I Path examples as used in the propositional logic translation.

Expression Denotation Example(s)

/p Absolute path /Config/Structure
p/.. Parent element Type/Item/.. (= Type)
p@a Attribute selection Item@MaxOccurs, SubType@IDREF
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of propositional variables is as follows: A variable is true for a given configuration if
and only if the respective type or item is present in the configuration, that is, if and
only if it is selected for the present product instance. Thus, item-variables uniquely
describe the system configuration (as mentioned in Section 2.1), and a type-variable
is true if and only if at least one of its items occurs in the configuration. We now
gradually derive this configuration validity formula.

Validity of a configuration:

ValidConf = TypeDefs ∧ TypeAliases
∧ConfigStructure ∧ ForbidGlobalUnrefTypes

TypeDefs =
∧

t∈/Inventory/
InvTypes/InvType

(( ∨
i∈t/InvItem

i@ID
)

⇒ t@ID
)

TypeAliases =
∧

t∈/Inventory/
InvTypes/InvTypeAlias

(
t@ID ⇔ t@Base

)

ConfigStructure =
∨

t∈/Config/
Structure/Type

ValConfT(t)

ForbidGlobalUnrefTypes =
∧

t∈globalUnrefTypes
¬t@IDREF

Formula ValidConf describes the set of all valid system configurations. A con-
figuration is valid if and only if it respects the type definitions (TypeDefs), type
aliases are set up correctly (TypeAliases), no defined but unreferenced types are
used (ForbidGlobalUnrefTypes), and it matches at least one configuration structure
of the XML document (ConfigStructure). The last condition is assured by the big
disjunction over ValConfT(t), which means that for each valid configuration the top
node t of at least one configuration structure must satisfy ValConfT(t).1 As the MR
system structure is defined recursively over tree nodes (cf. Figure 1), the validity
formulas (ValConfT and ValConfI) are also recursive. The distinction between type
and item nodes in the XML model is also carried over to a distinction between validity
formulas for type and item nodes.

The type definitions specified in subformula TypeDefs ensure that a type variable
is set as soon as at least one of its items is selected. (The Inventory contains a list of all
possible types together with a list of possible items for each of them.) This approach
simplifies the definition of unreferenced types.

Type aliases are used to define alternative names (stored under attribute ID) for
existing types (stored under attribute Base) within the XML product structure. The
correct mapping of alias types to their base types is assured by formula TypeAliases.

Turning back to our example, and assuming an inventory specifying three
items INI_System_024, INI_System_005 and INI_System_007 (for systems Harmony,

1 Variables i and t are assumed to range over XML nodes here. Attributes like t@ID are identified
with propositional variables.
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Avanto, and Concerto, respectively) of type INT_System, we obtain the following
TypeDefs formula for this particular type:

(INI_System_024 ∨ INI_System_005 ∨ INI_System_007)

⇒ INT_System ,

by which the type-variable INT_System is set as soon as any items of this type
are set. The formula ForbidGlobalUnrefTypes excludes all types occurring in the
inventory but not in the configuration tree structure. So if we had two types INT_Coil
and INT_Country in the inventory, which do not show up in the configuration tree
structure, we obtain the formula

¬INT_Coil ∧ ¬INT_Country

for ForbidGlobalUnrefTypes, which forbids the use of these types (and by formula
TypeDefs also their items) in any configuration.

Validity of a type node: 2

ValConfT(t) = CardinalityOK(t) ∧ SubItemsValid(t)
∧ForbidUnrefItems(t)

CardinalityOK(t) =


S1

1({i@IDREF | i ∈ t/Item})

if t@CheckMode = ExactlyOne
St@MaxOccurs

t@MinOccurs ({i@IDREF | i ∈ t/Item})

otherwise

SubItemsValid(t) =
∧

i∈t/Item

(
i@IDREF ⇒ ValConfI(i)

)
ForbidUnrefItems(t) =

∧
i∈unrefItems(t)

¬i@IDREF

A type node t is valid if and only if the three conditions (corresponding to
T1-T3) of ValConfT(t ) hold. First, the number of selected items must match the
MinOccurs and MaxOccurs attributes (CardinalityOK(t)) of the type node. There
is one exception – when the type node’s CheckMode attribute is set to ExactlyOne –
in which case an explicit number restriction of exactly one is assumed. The reason for
this exceptional handling is explained in Section 5. To express number restrictions, we
use the selection operator S introduced by Kaiser [13, 28]. Sa

b (M ) is true if and only if
between a and b formulas in M are true. Second, the validity of all selected subitems
of type t, that is, those items i, for which i@IDREF is true, must be guaranteed
(SubItemsValid(t)). Third, items that are not explicitly specified as subitems of type
node t are not allowed (ForbidUnrefItems(t)).

Expanding these definitions for the Receiver type node of our example (which
can be found under tR = /Config/Structure/ . . . /INT_SubType[@IDREF = ’INT_
Comp_ReceiverNumOf ′

]) and using R2 and R4 as abbreviations for the IDREFs

2 Definitions for auxiliary expressions used in these formulas but not defined here can be found in
the Appendix.
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of the subitems of tR, that is, INI_Comp_ReceiverNumOf2 and INI_Comp_Receiver
NumOf4, we obtain the following:

CardinalityOK(tR) = S1
1({R2, R4})

= S1({R2, R4}) ∧ ¬S0({R2, R4})

= (R2 ∨ R4) ∧ ¬(R2 ∧ R4)

SubItemsValid(tR) = (R2 ⇒ ValConfI(i1)) ∧ (R4 ⇒ ValConfI(i2))

ForbidUnrefItems(tR) = >

Here, i1 and i2 are the paths to the two subitems of the Receiver type node. The
first formula ascertains that the cardinality constraint is satisfied, the second formula
ascertains that the subitems are valid if they are selected, and the third formula
forbids items of type Receiver that occur in the inventory but are not subitems of
node tR. As there are no such subitems, the conjunction is over the empty set and
thus equivalent to true.

Validity of an item node:

ValConfI(i) = SubTypesValid(i) ∧ ConditionValid(i)
∧ForbidUnrefTypes(i)

SubTypesValid(i) =
∧

t∈i/SubType
ValConfT(t)

ConditionValid(i) =


> if i/ Conditions = ∅,∨

c∈i/Conditions∧
d∈c/Condition

DecodeOp(d) otherwise

ForbidUnrefTypes(i) =
∧

t∈unrefTypes(i)
¬t@IDREF

The validity of item nodes is defined in an analogous way. Again, three conditions
(according to I1-I3) have to be fulfilled for an item node i to be valid. First, all
subtype nodes of item i have to be valid. Second, the item node’s Condition XML-
elements, have to be satisfied (ConditionValid(i)) if present, where each Condition
is a disjunction of conjunctions (DNF) of atomic equality (=) or disequality (6=)
expressions, as delivered by DecodeOp. Third, unreferenced types, that is, types that
are not used beyond item node i, may not be used (ForbidUnrefTypes(i)).

Considering item R-4 (named INI_Comp_ReceiverNumOf4 in the XML file) of
our example and denoting the path to this node by iR4, we obtain the following
formulas:

SubTypesValid(iR4) = >

ConditionValid(iR4) = INI_Comp_RXNumOf2
ForbidUnrefTypes(iR4) = >

The first formula checks subtypes for validity, which is trivial, since node iR4 possesses
no subtypes. The second formula ascertains that the node’s condition is valid, which
simply enforces INI_Comp_RXNumOf2 to be set to true. The third formula forbids
unreferenced types, which is also trivially true.
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3.2. Formalization of Help Package Assignment

To formalize the help package assignment, we first define three basic properties.
Within these definitions, c and p are XML help context and help package elements,
respectively.

Assignment of help packages:

HelpReq(c) =
∧

t∈c/RefType
HelpTypeCond(t)

HelpProv(p) =
∨

d∈p/Dependencies

∧
t∈d/Dependency

HelpTypeCond(t)

HelpTypeCond(t) =

{
¬HelpTypeSubCond(t) if t@Negate = true
HelpTypeSubCond(t) otherwise

HelpTypeSubCond(t) =

{∨
i∈t/RefItem i@IDREF if t/RefItem 6= ∅,∨
i∈allItems(t) ¬i@IDREF otherwise

HelpReq(c) defines for which situations (i.e., combinations of configurations and
workflows) context c requires a help package, whereas HelpProv(p) determines the
situations for which help package p provides help. Situations are implicitly specified
(in the XML representation) as formulas in a generalized conjunctive normal form
(CNF) in the case of help contexts and as disjunctions of generalized CNFs in the
case of help package dependencies. The latter leaves even more freedom to write
down constraints. In a generalized CNF, each clause may also be negated (indicated
by the Negate attribute). If a RefType has no subitems in a context or dependency
specification, this is interpreted as a situation in which none of the items of this type
are present.

Considering our example, we obtain the following formulas (denoting the help
package and context paths by p1 and c1, respectively):

HelpReq(c1) = s003 ∧ wTUNEUP ∧ wmGeneral ∧ wsSfpTuncalOpen

HelpProv(p1) = wTUNEUP ∧ s003

Here we have used abbreviations for the Boolean variables, for example, s003 for
INI_System_003.

3.3. Consistency Criteria

With these definitions, we are now in a position to give propositional logic formulas
corresponding to completeness and consistency of the help system.

Completeness of the help system is equivalent to validity of formula COMP de-
fined as ∧

c ∈ /Help/Contexts

(
HelpReq(c) ∧ ValidConf ⇒

∨
p ∈ /Help/Packages

HelpProv(p)

)
.

Thus, for completeness to hold, there must be a matching help package for each
situation that belongs to a help context and describes a valid configuration. Situations
for which the formula does not hold are error conditions that can be reported by the
HelpChecker.
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Let us now turn to consistency with respect to package overlaps: There is an
overlap between help packages p1 and p2 if and only if formula Overlap(p1, p2)
defined as∨

c ∈ /Help/Contexts

(
HelpReq(c) ∧ ValidConf ∧ HelpProv(p1) ∧ HelpProv(p2)

)
is satisfiable. Thus, there is an overlap between packages p1 and p2 if there is a
situation that at the same time describes a valid configuration, belongs to a help
context, and selects both packages p1 and p2 simultaneously. If no such situation
exists, that is, if formula CONS defined as∧

p1,p2 ∈ /Help/Packages
p1 6=p2

¬Overlap(p1, p2)

is valid, then the help system is consistent. Again, all cases in which this condition is
violated are error situations that can be reported by the HelpChecker.

4. Technical Realization and Experimental Results

Our implementation, called HelpChecker, is a C++ program that builds on Apache’s
Xerces XML parser to read the Siemens product configuration and help system de-
scription (package dependencies and contexts). From this data, it generates formulas
COMP and CONS. These formulas are then negated and transformed into BDDs
[3].3 More exactly, one BDD is generated for formula COMP and one BDD for
each pair of packages for formula CONS (i.e., we generate the Overlap formulas
explicitly; however, we avoid trivial cases in this step). By using the negation, the
models of the BDD correspond one-to-one to error situations. This BDD, call it E, is
simplified by existential abstraction over irrelevant variables using standard BDD
techniques (i.e., by replacing E by ∃xE or, equivalently, by E|x=0 ∨ E|x=1 for an
irrelevant propositional variable x). Irrelevant variables are those variables that do
not occur in any help context or help package dependency, but only in the ValidConf
part of the test formula (these are internally used variables on details of the MR
tomographs that are of no relevance to the help package authors). Then, the whole
set of error situations (i.e., all models of the simplified BDD) is dumped into a result
file in XML format. Generating all error situations at once is important because the
authors of help packages are not supposed to make incremental runs removing one
error situation after the other, but prefer to have – at a glance – a complete indication
of where residual errors remain.

As an optimization in order to further speed error detection, we partition both
the set of help packages and the set of help contexts based on the (typically unique)
workflow items these are associated with. This is especially useful for the test on
package overlaps, where the quadratic number of pairs of help packages can be
reduced considerably.

3 Whenever we talk of BDDs we mean reduced ordered BDDs. We use a BDD package developed
by the first author of this paper. One of the main design goals of the package was to reduce memory
consumption (compared to other BDD implementations). We have not yet made a comparison with
other BDD packages such as CUDD [35].
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We conducted a series of experiments and timing measurements with the
HelpChecker on different test data sets provided by the Siemens MR department.
These data sets contained between three and 11 model lines of basic MR systems,
between 77 and 3871 help contexts and between zero and 928 help packages (see
Table II). The 11 systems in test case E-T6-4 have been only partially specified,
whereas the systems of the other test cases already contain the complete system
description. (The names of the test cases are abbreviations of internally used
filenames, partly containing submitter names, system versions and encoded dates.)
Context specifications are complete only for the test cases E-U-805, E-U-140-1,
and E-F-405. For all but the last test case (E-H-306), real help packages are not
yet available. We therefore used dummy help packages that were provided by the
Siemens documentation department. The size of the larger data sets (e.g., E-F-405)
is, however, already comparable to the sizes finally to be expected.

Test runs of the HelpChecker were performed on a Windows XP PC with one
Pentium 4 CPU running at 3.6 GHz and 1 GB of main memory. All run times in
Table II are given in seconds and include time for parsing the XML file, conversion
to propositional logic, building the BDDs, computing the error cases by existential
abstraction, and writing the results to an XML file. The penultimate column of
the table gives the number of errors found by the HelpChecker in the form x / y,
where x is the number of missing packages and y the number of help package
overlaps. The error cases were (partially) checked by the Siemens documentation
department, and all reported errors were confirmed. The sizes of the XML files
containing system descriptions and help contexts were up to 2.14 MB (with E-U-140-1
being the largest). Memory consumption of the HelpChecker was up to 80.4 MB of
main memory for the E-F-405 test case. The final sizes of BDDs generated during all
tests (i.e., the simplified BDDs describing sets of error situations) were never larger
than 3,000 nodes. Intermediate BDDs, however, were much bigger. The BDDs for
the ValidConf part alone consisted of 3,479 nodes and 365 propositional variables for
test case E-T6-4 and 892 nodes and 235 variables for test case E-F-405.

The run time of a complete test run depend, of course, on the number of help
contexts, the number of help packages, and the size of the configuration structure.
Checking package overlaps, however, is independent of the number of help packages.
The sizes of the BDDs mainly depend on the number of help contexts and the
size of the configuration structure, and as these were already completely specified
during our test runs, we do not expect any scalability problems on the final data sets.
Moreover, we have implemented a partitioning technique that splits the large sets of

Table II Statistics on test runs performed by the HelpChecker.

Test case #Systems #Contexts #Packages #Errors Run-time

E-T6-4 11 (partial) 964 12 905/9 1.94
E-U-805 4 3, 871 0 3871/0 10.95
E-F-505 4 1, 031 1 1,030/0 8.70
E-U-140-1 4 3, 871 3 3,869/1 11.13
E-F-405 4 3, 871 928 2,916/20 42.34
E-VF10A 3 77 48 34/1 0.94
E-H-306 4 1, 862 544 261/299 29.63
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help packages and contexts into smaller portions that can be checked independently
(the partitioning is based on workflow items).

To facilitate testing of the HelpChecker, we have developed a simple Java client
(see Figure 5). This client allows loading of XML files containing system descrip-
tions (configurations) as well as help package dependencies and contexts (so-called
HelpExchange files). Both system structure and help packages can be displayed. The
user can also initiate consistency checks and view the results (see Figure 6). This Java
client is used only for testing purposes, however, and is not part of the final product.

In an early stage of the project we also made experiments with a SAT solver [30].
During these experiments, 35 SAT instances were generated for test case E-T6-4
(we used a fast approximative pretest for package overlaps that filters out trivial
cases). Conversion to CNF, which is necessary for most SAT solvers, was done
using the well-known technique due to Tseitin [36]. The generated SAT instances
contained 1,425 different propositional variables and between 11,008 and 11,018
clauses (we employed a slightly different problem encoding then; see [30]). To
check satisfiability, we used a sequential version of our parallel SAT solver PaSAT
[27], which implements a variant of the DPLL algorithm [5, 6] with conflict clause
generation and clause learning [17], as it is found in most state-of-the-art SAT solvers
(e.g., zChaff [22] or MiniSAT [8]). Our solver indicated that ten of the instances

Figure 5 Experimental Java client serving as a graphical user interface to the HelpChecker. Part of
the product structure of the loaded test instance (E-T6-4) is displayed on the left.
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Figure 6 Reports generated by HelpChecker. On the left, two instances of an overlap error are
displayed, showing involved help packages and configurations for which the overlap occurs. On the
right, situations for which help packages are missing are reported.

were satisfiable (correlating with error cases) and 25 were unsatisfiable. One of the
satisfiable instances corresponded to a missing help package; the other nine were due
to package overlaps. Unsatisfiability could always be determined by unit propagation
alone; the maximal search time for a satisfiable instance amounted to 15.9 ms
(on a 1.2 GHz Athlon running under Windows XP then). These surprisingly good
results when applying SAT solvers to the configuration domain coincide with earlier
observations made by the authors in the field of automotive product configuration
[14]. We assume that the good results of SAT solvers on instances stemming from
product configuration are due to the fact that inconsistencies (unsatisfiable instances)
typically involve only a small fraction of the clauses of the whole instance. Therefore,
small proofs exist for these formulas. Current SAT solvers, which are typically tuned
for model-checking problems arising in hardware verification, seem to be especially
well suited for such instances.

Although results with SAT techniques were very convincing, we do not employ
them in the current version of the HelpChecker. Whereas performance is not an issue
(in fact it is even better than with BDDs), SAT solvers possess the drawback that they
do not allow for a concise presentation of all models (resp. error cases) of a formula.
Of course, it is possible without too much effort to modify a SAT solver in such a way
that it successively generates all models. This would still be insufficient, however, as
subsequent operations on the set of all models, for example, to eliminate irrelevant
variables, are still hard to realize.

5. Practical Aspects

HelpChecker is embedded in a larger, interactive authoring system for the writers of
help packages at Siemens Medical Solutions. The authoring system was developed by
Tanner AG, Germany, a company specializing in industrial documentation systems.
A screenshot of this authoring system is shown in Figure 7. The authoring system
uses an XML data base as its core component and allows calling the HelpChecker by
pressing a ‘Check Consistency’ button.
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Figure 7 Siemens authoring tool: help packages can be added to the system, modified, deleted, and
so forth. The main view shows a tree-structured representation of the help contexts. Missing packages
are reported with a tagged error message (‘– MISSING!’) and a visual emphasis (red/magenta color).
Package overlaps are also reported with a visual marker (magenta).

When this button is pressed, an XML file is generated that specifies the tests
the HelpChecker has to perform (e.g., check both package overlaps and missing
packages, but only for system Allegra). This – together with a link to the XML data
containing the configuration structure and help data – is sent to the HelpChecker,
which then builds BDDs and computes results. These are then sent back to the
authoring system, where they are displayed in a tree-shaped structure showing the
until-then-existing help packages. Errors are displayed with a color code highlighting
erroneous packages. No further, more detailed data is given to the user to track the
cause of the error, as this has not yet been considered necessary.

The authoring system has been in production use since October 2005 (still in a
pilot-phase though), and both the conversion of old help pages from predecessor
systems and the writing of new help pages is under way. First MR tomographs
containing on-line manuals checked by the HelpChecker are supposed to ship in the
second half of 2006.

The authoring system allows checking not only of the complete on-line help but
also of fractions of it. For example, checks can be restricted to only one model line
(in Figure 7 tests are restricted to the model line Allegra) or to only that part of the
help document that the author is currently working on (by selecting nodes in the Help
Structure; see Figure 7).

During development of the HelpChecker we observed that – as usual in leading-
edge software development – the system specifications and thus their formalization
are not fixed but change frequently over time. Thus, the encoding also had to be
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fine-tuned frequently. Specifically, the Check Mode attribute (see the definition of
CardinalityOK(t) on page 11) was not present initially but was introduced later to
handle a special, but frequently occurring situation with magnetic coils (multiple
items of the same type are allowed in the configuration, but only those cases have to
be checked where exactly one of them is present). Moreover, the Negate attribute
for help contexts and dependencies (to negate clauses) and the interpretation of
contexts (see the definition of HelpTypeCond(t) on page 14) was changed during
the project. However, we conjecture that having precise mathematical underpinnings
of the software (as given by the translation to propositional logic) facilitates the
adoption of new requirements.

6. Related Work

A lot of different schemes for product configuration have been suggested in the
literature [9, 16, 20, 21, 24], starting with McDermott’s work on R1 [18] and Digital’s
XCON [2], both of which deal with the configuration of computer systems. Among
the different formalisms that have been proposed are constraint satisfaction [16, 24],
rule-based (expert) systems [18], SAT solving [14], feature logic [32], description
logics [19, 20], and various graphical formalisms (see, e.g., [9]). Also, techniques from
the area of logic programming (such as negation as failure or stable model semantics
[10]) have been used for configuration [33].

Most of this work, however, is focused on configuration formalisms and on
checking individual customer’s orders for correctness. Less work has been done
on consistency checking of configuration data as a whole [14] or on cross-checking
product data with other related data such as handbooks. For work on consistency
checking of Boolean configuration constraints in the automotive industry, see [14]
and [28].

For SAT solving and constraint satisfaction, high-performance solvers are avail-
able today and are used in many industrial projects. SAT solving is the currently
dominating technique used in hardware design verification (there are special tracks
on SAT in design automation conferences), and commercial products for sales
configuration based on constraint satisfaction (e.g., the ILOG Configurator) are
available. For other logical formalisms such as description logic, solvers have also
been implemented (like RACER [11] or FaCT [12]), but their practicability for large-
scale industrial projects remains to be shown. The proven success of propositional
reasoning techniques was one of our motivations for choosing propositional logic in
the commercial project presented in this article.

Concerning consistency checking of XML documents, different approaches can
be found in the literature. In order to check consistency of XML documents on the
syntactic level, the W3C standards Document Type Definitions (DTDs) and XML
Schema [37] have been developed and are in widespread use today. Alternatives to
XML Schema are also available, for example, the Schematron rule language [15]
or the XLinkIt system by Nentwich et al. [23]. Also related is work on consistency
checking of CIM models by Sinz et al. [29] and on Java-based XML document
evaluation by Bühler and Küchlin [4].

All these approaches differ considerably in the extent of expressible formulas and
practically checkable conditions. The correctness of the semantic content, however,
can be checked only to a certain extent by using these techniques. From a logical point
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of view, none of these techniques exceeds an evaluation of first-order formulas in a
fixed structure, which is not sufficient for our application, which requires construction
of different (propositional) models and thus real combinatorial search. In this respect,
our method opens up new application areas for the discipline of XML checking.

7. Conclusion

In this paper we presented an encoding of the configuration and on-line help system
of Siemens MR devices in propositional logic. Consistency properties of the on-line
help system are expressed as Boolean logic formulas and checked by using BDD
techniques. Error conditions are output after symbolic simplification. By using a
Boolean encoding we can also make use of advanced SAT-solvers as they are used,
for example, in hardware verification to efficiently check formulas with hundreds of
thousands of variables.

Although we demonstrated the feasibility of our method only for the MR systems
of Siemens Medical Solutions, we suppose that the presented techniques are useful
for other complex products as well. More generally, we expect that a wide range
of cross-checks between XML documents can be computed efficiently by using
automated theorem-proving techniques based on SAT-solvers and BDDs.

Appendix

In this appendix we give definitions and explanations for the formulas and ex-
pressions skipped over in Section 3. We start with auxiliary definitions for sets of
XML nodes.

Auxiliary set definitions:

globalUnrefTypes = /Inventory/InvTypes/InvType \⋃
t∈/Config/

Structure/Type

refTypesT(t)

unrefItems(t) = allItems(t) \ t/Item

allItems(t) =
⋃

t′@ID=baseTypeID(t)
/Inventory/InvTypes/t′/InvItem

baseTypeID(t) =


t′@Base if ∃t′ ∈ /Inventory/InvTypes/InvTypeAlias

with t@IDREF = t′@ID
t@IDREF otherwise

The set globalUnrefTypes contains all type nodes that are defined but do not occur in
any configuration structure. The set unrefItems(t) contains all items having the same
type as node t but are not (direct) child nodes of t. These items are considered invalid
for node t, as they are not explicitly given. They are computed as the set difference
between the set of all items of this type (allItems(t)) and the explicitly specified child
nodes (t/Item). The set allItems(t) contains all items of type t that are declared in
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the inventory; type aliases are reduced to their base types (specified under attribute
Base).

unrefTypes(i) = (refTypesT(i/..) \ {i/..}) \ refTypesI(i)

refTypesT(t) = {t} ∪
⋃

i∈t/Item
refTypesI(i)

refTypesI(i) =
⋃

t∈i/Ref Type
refTypesT(t)

The set unrefTypes(i) contains type nodes that are not allowed as child nodes of
item node i. Such nodes do not occur below (i.e., as direct or indirect child node of)
node i but are used on other branches of the configuration tree. It is sufficient to
include only those nodes that are not already excluded in a parent item node i′, as
these are already contained in unrefTypes(i′). The auxiliary functions refTypesT(t)
(resp. refTypesI(i)) compute the set of all type nodes that occur below type node
t (including t) (resp. below item node i) (referenced nodes). With these functions,
unrefTypes(i) is computed as the set of all referenced types of the parent node
(refTypesT(i/..)) that are not referenced by i itself (refTypes(i)).

Auxiliary formula definitions:

DecodeOp(d) =

{
d@Value if d@Op = “eq”,

¬d@Value if d@Op = “ne”

Sb
a (M ) =

{
Sb (M ) if a = 0,
Sb (M ) ∧ ¬Sa−1(M ) otherwise

Sb (M ) =
∧

K⊆M
|K|=b+1

∨
f∈K

¬ f

DecodeOp(d) is used within conditions of item nodes to enforce (‘eq’) (resp. exclude
(‘ne’)) certain values on other item nodes. The resulting formula forces the corre-
sponding propositional variables to be either constantly true or constantly false.

The selection operator Sb
a is used to formulate cardinality constraints. For two

natural numbers a and b with a ≤ b , formula Sb
a (M ) is true if and only if between

a and b formulas out of the set M are true. Operator Sb (M ) is true if and only if at
most b formulas out of set M are true. The selection operators may produce formulas
having an exponential size in the numbers a and b . This can be avoided by using a
more sophisticated encoding (see, e.g., [26]).
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