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Abstract We compare the concepts and computation of optimized diagnoses in the con-
text of Boolean constraint based knowledge systems of automotive configuration, namely
the preferred minimal diagnosis and the minimum weighted diagnosis. In order to restore
the consistency of an over-constrained system w.r.t. a strict total order of the user require-
ments, the preferred minimal diagnosis tries to keep the most preferred user requirements
and can be computed, for example, by the FASTDIAG algorithm. In contrast, partial
weighted MinUNSAT solvers aim to find a set of unsatisfied clauses with the minimum
sum of weights, such that the diagnosis is of minimum weight. It turns out that both
concepts have similarities, i.e., both deliver an optimal minimal correction subset. We
show use cases from automotive configuration where optimized diagnoses are desired. We
point out theoretical commonalities and prove the reducibility of both concepts to each
other, i.e., both problems are FPNP-complete, which was an open question. In addition
to exact algorithms we present greedy algorithms. We evaluate the performance of exact
and greedy algorithms on problem instances based on real automotive configuration data
from three different German car manufacturers, and we compare the time and quality
tradeoff.
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1 Introduction

Constraint Programming (CP) has been successfully applied in many different areas, such
as planning, scheduling, and configuration. In this approach, configuration is treated as a
Constraint Satisfaction Problem (CSP) on the configuration rules or restrictions. Many car
companies (such as GM, VW, AUDI, Daimler and BMW), also known as automotive Orig-
inal Equipment Manufacturers (OEMs), denote their configuration rules in (dialects of)
the more restrictive Propositional Logic. In this case, the configuration constraints can be
compiled directly into a single formula, and a SAT-solver can then be used for various ver-
ification or configuration purposes. This approach was initiated by Sinz et al. (Küchlin and
Sinz 2000; Sinz et al. 2003) in the late 1990s for Mercedes-Benz cars and trucks. There, the
configuration knowledge base is known as the product overview, and hence the compilation
has been termed the product overview formula (POF); a more neutral term would be product
description. This approach has since been commercialized, and corresponding verification
software is now in daily productive use at three German premium OEMs.

In many practical use cases the configuration knowledge base can become temporarily
over-constrained, e.g., by overly restrictive rules or user requirements (Walter et al. 2013).
A typical situation would be a customer configuring a car, with her wishes conflicting with
the knowledge base. Another typical situation would be an engineer given the task that new
features should be made available for an existing model type. But the features were not
available (and hence not configurable) for the existing model type before. In both situations
we would like to have an automatic reasoning procedure for assistance in order to restore
consistency.

Whenever we face a situation where a knowledge base is over-constrained, there are two
possibilities to provide guidance to restore consistency. One approach is to guide the user
by computing minimal unsatisfiable cores (conflicts), which can be considered as a problem
explanation. However, more than one conflict is involved in general. Another approach is
to try to satisfy as many of the constraints as possible by finding a maximal satisfiable
subset (MSS), or by the opposite, finding a minimum correction subset (MCS) which can
be considered as a repair suggestion or a diagnosis. All the constraints of an MCS have to
be removed or altered in order to restore consistency, showing the customer which wishes
to change, or the engineer where to redesign the car.

An MCS can be optimized in different ways: (i) when considering a strict total order
on the user requirements we can optimize an MCS such that the most preferred user
requirements will be kept and the MCS consists of less preferred user requirements, called
the preferred minimal diagnosis. For example, the FASTDIAG algorithm (Felfernig et al.
2012; O’Callaghan et al. 2005) computes the preferred minimal diagnosis. Or (ii) when
considering weights assigned to the user requirements we can compute a MCS with the
minimum sum of weights, called the minimum weighted diagnosis which corresponds to
the partial weighted MinUNSAT problem (Li and Manyà 2009) (resp. the dual problem par-
tial weighted MaxSAT). The partial weighted MinUNSAT problem is a generalization of
the well-known satisfiability (SAT) problem (Franco and Martin 2009). Both optimization
approaches can be considered as an optimal diagnosis w.r.t. their definition of optimum. In
this work, we study both approaches, and make the following contributions:

1. (∗) We give a detailed list of use cases from automotive configuration using optimal
diagnoses for re-configuration scenarios and for improving example configurations.

2. We introduce definitions of both concepts, list established approaches (including an
enhanced version of FASTDIAG) and point out theoretical similarities.
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3. (∗) We show that, in the context of Propositional Logic, both problems, the computa-
tion of the preferred minimal diagnosis and the computation of the minimum weighted
diagnosis, are reducible to each other and that both are FPNP-complete.

4. We present a greedy approach from one concept to the other and vice versa.
5. (∗) We show experimental evaluations based on real automotive configuration data

from three different premium German car manufacturer for the (exact and greedy)
computation of an optimized diagnosis.

This work is a significantly extended version of (Walter et al. 2015). New or significantly
extended contributions are marked by an asterisk (∗) in the list above.

To the best of our knowledge, it has not been proven before that the computation of the
preferred minimal diagnosis (corresponding to the A-preferred MCS / L-preferred MSS in
the context of Propositional Logic) is FPNP-hard. Marques-Silva et al. (Marques-Silva et al.
2013, Remark 1) raised this question as an open issue.

The remainder of the paper is structured as follows: Section 2 introduces the formal
background and notations. Section 3 shows the definitions of the preferred minimal diagno-
sis and the minimum weighted diagnosis. Section 4 shows a detailed list of use cases from
the automotive configuration. In Section 5 we give an overview of solving techniques for
the computation of the optimal diagnosis and point out similarities. Section 6 is an analy-
sis of the computational complexity of the preferred minimal diagnosis and the minimum
weighted diagnosis. In Sections 7 and 8 we show how to reduce one problem to each other
and how to build up a greedy approach. Section 9 we present experimental evaluations. In
Section 10 we discuss related work and finally, in Section 11 we conclude this work and
discuss future research topics.

2 Preliminaries

Within the scope of this work we focus on Propositional Logic over the standard operators
¬, ∧,∨,→, ↔ with constants ⊥ and �, representing false and true, respectively. The set
of variables of a Boolean formula ϕ is denoted by vars(ϕ). A variable assignment β is a
mapping from vars(ϕ) to {0, 1}. The evaluation of formula ϕ by a variable assignment β

is denoted by β(ϕ) and follows the standard evaluation of Propositional Logic. If β(ϕ) = 1,
then β is a satisfying assignment or model of ϕ and ϕ is called satisfiable. Otherwise, if
β(ϕ) = 0, then β is an unsatisfying assignment. We denote these two situations by β |= ϕ

and β 	|= ϕ, respectively. The well-known NP-complete SAT problem (Cook 1971; Franco
and Martin 2009) asks for a given formula whether it is satisfiable.

A Boolean formula ϕ is in conjunctive normal form (CNF) if, and only if, it consists
of a conjunction of clauses ϕ = ∧m

i=1 ci , where a clause ci is a disjunction of literals. A
literal is a variable or its negation. A formula in CNF can be interpreted as a set of clauses
ϕ = {c1, . . . , cm} and further, a clause can be interpreted as a set of literals. Most of the
time we will use the notation of a set of clauses to simplify reading.

Two formulas are semantically equivalent if, and only if, their evaluation by any vari-
able assignment β is the same. Two formulas are equisatisfiable if, and only if, either both
formulas are satisfiable or both formulas are unsatisfiable.

The transformation of a Boolean formula into a semantically equivalent CNF takes an
exponential number of steps in the worst case. However, any Boolean formula can be trans-
formed into an equisatisfiable CNF in polynomial time by Tseitin (Tseitin 1970) or the
more compact Plaisted-Greenbaum (Plaisted and Greenbaum 1986) transformation using
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fewer clauses. We denote such a transformation by tseitin(ϕ). Both transformations
have the useful property that, if ϕ is satisfiable, the satisfying assignments are the same when
restricted to the variables of ϕ. We denote a variable assignment restricted to the variables
of vars(ϕ) by β|vars(ϕ).

Proposition 1 (Tseitin/Plaisted-Greenbaum Model Property) Let ϕ be a Boolean formula.

{β | β |= ϕ} = {β|vars(ϕ) | β |= tseitin(ϕ)}

Nowadays SAT solvers are mostly CNF solvers. With the Tseitin/Plaisted-Greenbaum
transformation we can efficiently transform any Boolean formula into a CNF in polynomial
time and provide a model, if ϕ is satisfiable, by simply discarding all auxiliary variables
introduced during the transformation.

3 Optimal diagnosis

We will now consider different ways of optimizing a diagnosis. We start by defining a mini-
mal diagnosis, afterwards consider preferences resulting in the preferred minimal diagnosis
and consider weights resulting in the minimum weighted diagnosis.

3.1 Minimal diagnosis

In applications, we typically consider a set of hard constraints ϕh (arbitrary Boolean formu-
las) which must be satisfied, such as technical or legal constraints of the product overview
ϕPOF (see Section 4). On the other hand, we consider a set ϕs of soft constraints (arbitrary
Boolean formulas) which may also be relaxed, such as constraints from marketing or from
user requirements.

Remark 1 Without loss of generality we can assume that the sets ϕh and ϕs are clause sets.
By applying the following two steps, we can transfer the constraint sets ϕh and ϕs into clause
sets in polynomial time:

1. For each Boolean formula ψ ∈ ϕs introduce a fresh variable b and add the implication
b → ψ to the hard part ϕh. Then replace ψ in ϕs by the unit clause {b} (cf. Argelich
and Manyà 2006; Heras et al. 2012a).

2. Replace each Boolean formula ψ ∈ ϕh by the clause set tseitin(ψ). The con-
straint ψ and the transformation tseitin(ψ) share the same models w.r.t. the
original variables, see Proposition 1. Thus, the search space between both remains the
same.

Because of Remark 1 we will from now on assume that both, ϕh and ϕs, are clause sets.
Further, we assume that ϕh is consistent, i.e., satisfiable. If ϕh ∪ ϕs is inconsistent, we face
an over-constrained situation and want to adjust or remove constraints from ϕs. A diagnosis
or correction subset is a set of clauses which, when removed, restores consistency:

Definition 1 (Diagnosis/Correction Subset) Let ϕh and ϕs be sets of clauses. A set � ⊆ ϕs
is a diagnosis or correction subset if, and only if, ϕh ∪ (ϕs \ �) is satisfiable.
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Obviously, the empty set ∅ is a correction subset if the union ϕh∪ϕs is already consistent.
Also, ϕs is always a diagnosis itself. The complement of a diagnosis is a satisfying subset,
i.e., a subset � ⊆ ϕs such that ϕh ∪ � is consistent.

Since we are interested in finding an optimized diagnosis we demand a diagnosis to be
minimal. The following definition introduces a local minimality property.

Definition 2 (MSS/MCS) Let ϕh and ϕs be sets of clauses. A set � ⊆ ϕs is a maximal
satisfiable subset (MSS) if, and only if, ϕh ∪ � is satisfiable and for every set �′ ⊆ ϕs with
� � �′ it holds that ϕh ∪ �′ is unsatisfiable.

A set � ⊆ ϕs is a minimal correction subset (MCS) if, and only if, ϕh ∪ (ϕs \ �) is
satisfiable and for every �′ ⊆ ϕs with �′ � � it holds that ϕh ∪ (ϕs \ �′) is unsatisfiable.

Clearly, the complement ϕs \ ψ of an MSS (resp. an MCS) ψ of ϕh and ϕs is an MCS
(resp. an MSS) of ϕh and ϕs (Liffiton and Sakallah 2008). In this work we consider the
computation of a diagnosis or its complement always with respect to a clause set ϕh of hard
clauses which have to be satisfied if not explicitly stated otherwise.

3.2 Preferred minimal diagnosis

In analogy to Marques-Silva and Previti (2014) we introduce the following definitions:

Definition 3 (L- and A-Preference) Let < be a strict total order over a set ϕ = {c1, . . . , cm}
of clauses with ci < ci+1 for 1 ≤ i < m, i.e., clause ci is preferred to clause ci+1.

We define the lexicographical order <lex as follows: For two sets ψ1, ψ2 ⊆ ϕ we say set
ψ1 is lexicographically preferred to ψ2, denoted as ψ1 <lex ψ2, if, and only if,

∃1≤k≤m : ck ∈ ψ1 \ ψ2 and

ψ1 ∩ {c1, . . . , ck−1} = ψ2 ∩ {c1, . . . , ck−1}.
Furthermore, we define the anti-lexicographical order <antilex as follows: For two sets
ψ1, ψ2 ⊆ ϕ we say set ψ1 is anti-lexicographically preferred to ψ2, denoted as ψ1 <antilex
ψ2, if, and only if,

∃1≤k≤m : ck ∈ ψ2 \ ψ1 and

ψ1 ∩ {ck+1, . . . , cm} = ψ2 ∩ {ck+1, . . . , cm}.

For a strict total order c1 < . . . < cm we denote the inverse order cm < . . . < c1 by
<−1. When we want to relax an over-constrained system, we want to find an MSS which
is the lexicographically most preferred one or, the other way round, we want to find an
MCS which is the anti-lexicographically most preferred one for the inverse order <−1. The
following definition captures this motivation:

Definition 4 (Preferred MCS/MSS) Let ϕh and ϕs = {c1, . . . , cm} be sets of clauses. Let <

be a strict total order over ϕs with ci < ci+1 for 1 ≤ i < m.
An MSS � is L-preferred (resp. A-preferred) if for all MSS �′ 	= � it holds that � <lex

�′ (resp. � <antilex �′). Analogously, an MCS � is L-preferred (resp. A-preferred) if for all
MCS �′ 	= � it holds that � <lex �′ (resp. � <antilex �′).



92 J Intell Inf Syst (2017) 49:87–118

The lexicographical order appears to be the more intuitive one. Whereas an L-preferred
set tries to include the most preferred clauses, an A-preferred set tries to exclude the most
non-preferred clauses. We focus on the computation of the L-preferred MSS w.r.t. < or,
analogously, the A-preferred MCS w.r.t. <−1 (cf. use cases in Section 4).

If ψ is an L-preferred (resp. A-preferred) MSS/MCS of ϕs w.r.t. to the order < , then ϕs \
ψ is an A-preferred (resp. L-preferred) MSS/MCS of ϕs w.r.t. to the inverse order <−1 (see
Marques-Silva and Previti 2014, Proposition 12). Therefore, algorithms for the computation
of an L-preferred MSS/MCS can also be used for the computation of the corresponding
A-preferred MCS/MSS.

The A-preferred MCS is also called the preferred minimal diagnosis (PMD), since it
represents a minimal diagnosis trying to contain the most preferred constraints of the reverse
order <−1, i.e., trying to avoid the most preferred constraints of the original order <.

For comparison, the definition of a preferred minimal diagnosis used in (Felfernig et al.
2012) is in the context of a constraint satisfaction problem (CSP). The set CKB (resp. CR)
represents the constraints of the knowledge base (resp. the user requirements). In the context
of Propositional Logic the set CKB (resp. CR) is represented by ϕh (resp. ϕs). Note that the
strict total order in (Felfernig et al. 2012) is defined the other way round, i.e., if ci < cj

then constraint cj is preferred to ci . Our definition follows (Junker 2004; Marques-Silva
and Previti 2014).

3.3 Minimum weighted diagnosis

A minimum weighted diagnosis is a diagnosis where the sum of weights of the unsatisfied
clauses (the clauses to remove) is optimized to be the minimum. In the context of Proposi-
tional Logic we are considering the partial weighted MinUNSAT problem (Li and Manyà
2009).

Definition 5 (MinUNSAT) Let ϕh and ϕs = {c1, . . . , cm} be sets of clauses over variables
vars(ϕh ∪ ϕs) = {x1, . . . , xn}. Let w1, . . . , wm be weights corresponding to the clauses
c1, . . . , cm with wi ∈ N≥1. The partial weighted minimum unsatisfiable problem, denoted
by MinUNSAT, is defined as the subset � ⊆ ϕs such that:

∑

ci∈�

wi = min

{
m∑

i=1

wi · (1 − β(ci))

∣
∣
∣
∣ β |= ϕh

}

In the context of this paper, we will focus on the partial weighted MinUNSAT prob-
lem. The dual problem, the partial weighted maximum satisfiability problem (MaxSAT), is
analogously defined by finding the maximum sum of weights of satisfied clauses. Partial
weighted MinUNSAT and partial weighted MaxSAT are closely connected:

Proposition 2 (MinUNSAT Complement Property) Let ϕh and ϕs = {c1, . . . , cm} be clause
sets. Let w1, . . . , wm be weights corresponding to the clauses c1, . . . , cm with wi ∈ N≥1.
Let � be the MinUNSAT result and � be the MaxSAT result, then holds:

ϕs = � ∪̇ �

Symbol ∪̇ represents the disjoint union of two sets.



J Intell Inf Syst (2017) 49:87–118 93

Proof For the complement ϕ \ � the following equations hold:

m∑

i=1

wi −
∑

ci∈�

wi

=
m∑

i=1

wi − min

{
m∑

i=1

wi · (1 − β(ci))

∣
∣
∣
∣ β |= ϕh

}

=
m∑

i=1

wi + max

{

−
m∑

i=1

wi · (1 − β(ci))

∣
∣
∣
∣ β |= ϕh

}

=
m∑

i=1

wi + max

{

−
m∑

i=1

wi +
m∑

i=1

β(ci)

∣
∣
∣
∣ β |= ϕh

}

= max

{
m∑

i=1

β(ci)

∣
∣
∣
∣ β |= ϕh

}

The last term is the property for the solution of MaxSAT.

With Proposition 2 a solution for one problem directly leads to a solution for the other one
and vice versa. Therefore, algorithms for solving the partial weighted MinUNSAT problem
can also be used for solving the partial weighted MaxSAT problem.

In the context of this paper, we will refer to partial weighted MinUNSAT as MinUNSAT
to simplify reading. Note that in the literature often the name MaxSAT is used to refer to
MinUNSAT. But we will use its original name to make the dinstinction clear.

4 Use cases from automotive configuration

Küchlin and Sinz (2000) developed the product overview formula (POF) in the context
of automotive configuration, which is a Boolean formula, denoted by ϕPOF, where each
model β represents a valid configuration (because it satisfies all constraints), and hence
a constructible car. A POF captures the high level configuration of a car, that is the con-
figurable features. In contrast, the low level configuration is concerned with the assembly
of each individual constructible car from the multitude of alternative materials. Those are
listed in the bill-of-materials (BOM), which contains all materials needed for the entire
type series, i.e., for the assembly of each constructible car. A BOM is a structured list
consisting of positions with alternative position variants (e.g., the Engine position with
Engine 1, Engine 2, etc., as variants). An attached selection condition of each position
variant is a Boolean formula ψi , such that ψi evaluates to true for a car represented by
a model β of ϕPOF if, and only if, the material of this position variant belongs in the-
car β.

We briefly recapitulate the three main verification tests (Küchlin and Sinz 2000; Sinz
et al. 2003) for the BOM:

Test-1: Redundant Part. For each position and for each position variant with selection
constraint ψ , check whether ϕPOF ∧ ψ is satisfiable. If not, the part is redundant.
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Test-2: Overlap Error (double hit). For each position, check if there are two position
variants with selection constraints ψi and ψj , i 	= j , such that ϕPOF ∧ ψi ∧ ψj is
satisfiable. If this is the case, the position has an overlap error, since there is a car
configuration which selects both variants.
Test-3: Incomplete Position (no-hit). For each position, check if ϕPOF ∧ ∧t

i=1 ¬ψi is
satisfiable, where ψ1, . . . , ψt are the selection constraints of all position variants of the
considered position. If this is the case, the position is incomplete, i.e., there exists at
least one car configuration for which no part is selected at this position.

Use cases from automotive configuration can be divided into two categories. On the
one hand, we want to re-configure constraints or options to restore consistency in an opti-
mal way when facing an over-constrained knowledge base. On the other hand, we want to
have optimal example configurations for situations where the knowledge base is consistent.
Both kinds of use cases can be covered by computing an optimal diagnosis, either by the
computation of the preferred minimal diagnosis or computation of the minimum weighted
diagnosis. For this we consider preferences (a strict total order) or priorities (e.g., weights
in kg, CO2 emission, price in Euro/Dollar, etc) on the constraints.

1. Re-Configuration of an over-constrainted knowledge base. An optimal diagnosis of
an over-constrainted knowledge base is desired in the following use cases.

(a) Re-Configuration / Repair suggestion. During an interactive configuration ses-
sion (cf. Walter and Küchlin 2014) a customer may be confronted with a situation
where a desired option is not selectable because it conflicts with the knowledge
base and previously selected options. By calculating an optimal diagnosis we can
provide the customer a repair suggestion where we try to keep the most important
constraints.

(b) Engineering guidance for non-constructible options. For a given set of options
which are in conflict with the knowledge-base, an engineer is given the task to
adjust the constraints of the knowledge-base such that the options will be con-
structible for the next product cycle. To guide the engineer we can compute the
optimal diagnosis which tries to keep the most important constraints and shows a
set of less important constraints that have to be removed or adjusted.

(c) Engineering guidance for redundant parts. If a part of the BOM has become
accidentally redundant, see Test-1, we can compute the optimal diagnosis to
retrieve a set of less important constraints which have to be removed or adjusted.

(d) Enumeration of the best k diagnoses. In order to provide alternative solutions we
can compute the best k optimal diagnoses in descending order. The number k can
be small compared to the number of all existing diagnoses, e.g., we can compute
the k = 10 best diagnoses during a configuration process for a customer to provide
a set of alternative consistent re-configurations.

(e) Enumeration of all diagnoses. By the enumeration of all diagnoses we can extract
all minimal cardinality conflicts (called minimal unsatisfiable subset in the con-
text of Propositional Logic) in order to provide a precise explanation why the
knowledge-base is over-constrained (Liffiton and Sakallah 2008).

2. Optimal example configurations. An example configuration can be more intuitive
when it respects the importance of features. We can provide such an example config-
uration by the computation of an optimal diagnosis. The complement of the optimal
diagnosis represents the optimal example configuration. There are many use cases,
where an optimized example configuration is desired.
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(a) Optimal example configuration for a BOM position with overlap errors. After
checking each position of a BOM for overlap errors (cf. Test-2), we want to pro-
vide the engineer with an example of a constructible car (variable assignment) for
which the overlap error occurs. We can compute the optimal diagnosis and the com-
plement of the result is the optimal example configuration of a car with an overlap
error.

(b) Optimal example configuration covering important overlap errors of a BOM
position. It can happen that a position of the BOM contains multiple overlap errors.
Let OE ⊆ {{i, j} | i, j = 1, . . . , k andi 	= j} be the set of all overlap errors of
a position. To provide an important overlap error to the engineer, we can consider
the importance of the parts by assigning preferences or priorities to the selection
conditions. From a strict total order (resp. priorities) of the selection conditions
we can deduce a strict total lexicographical order on sets of selection conditions,
such that we have preferences (resp. priorities) on the overlap errors in OE. Then
we compute the optimal diagnosis. The complement of the result is the optimal
example configuration covering the most important overlap errors.

(c) Optimal example configuration for an incomplete BOM position. For an
incomplete BOM position (cf. Test-3), we can consider the importance of features
to provide the engineer the optimal example configuration of a constructible car
which is not covered by the incomplete position.

(d) Optimal example configuration during the configuration process. During the
configuration process of a car, a customer provides a partial selection of options.
Such a partial selection, if consistent with the knowledge base, can be extended to a
constructible car. To provide the customer with important examples of cars, we can
consider the importance of the features. The complement of the optimal diagnosis
represents the optimal example configuration of a constructible car.

The computation of such an example also makes the configuration process deter-
ministic in the sense that the most important constructible car is computed, while
any satisfying assignment would fit for an example of a constructible car.

(e) Enumeration of the best k diagnoses. In order to provide alternative optimal
example configuration, as described in the previous use cases, we can compute the
best k diagnoses in descending order. The number k can be small compared to the
number of all existing diagnoses, e.g., we can compute the k = 10 best diagnoses
during a configuration process for a customer to provide a set of alternative opti-
mal example configurations. For example, a re-configuration tool could provide a
“next” functionality to step through the optimal example configurations.

5 Computation of the optimal diagnosis

In this section we present different methods and improvements for the computation of the
optimal diagnosis. We begin with approaches for the computation of the preferred minimal
diagnosis and afterwards show approaches for the computation of the minimum weighted
diagnosis. Afterwards, we point out similarities of both diagnosis optimizations.

5.1 Computation of the preferred minimal diagnosis

A straight forward approach is a linear search (see the constructive definition of the preferred
explanation in Junker (2004)): We iterate in descending order through all constraints and
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check whether they conflict with the hard constraints and the previously added constraints
or not. If there is a conflict, the constraint is part of the A-preferred MCS. Otherwise, the
constraint is part of the L-preferred MSS and will be added. The complexity of linear search
in terms of the number of consistency checks isO(m), where m is the number of clauses in ϕs.

Algorithm 1 shows the linear search procedure. Variable Solver holds the
solver for checking the formula for satisfiability or unsatisfiability by calling
Solver.Consistent or Solver.Inconsistent, respectively. In the context of
Propositional Logic the solver is a SAT solver. When considering another logic, the reason-
ing procedure used has to be an appropriate solver, e.g., when considering CSP instances
the solver is a CSP solver.

Remark 2 1. (Exploiting inc-/decremental SAT interface) Modern SAT solvers often pro-
vide an inc-/decremental interface for adding clauses and removing them afterwards.
This can be useful, e.g., when we have a huge formula, like ϕPOF, representing the
configuration model and small test instances to check against the configuration model.

We can improve the linear search by using the incremental interface and adding the
consistent clauses incrementally. Thus, we do not have to add all constraints again in
each iteration (see Speed-Up 1 in Algorithm 1).

2. (Exploiting backbones) The negation of identified diagnosis clauses are backbone lit-
erals of ϕh ∪ �, where � is the resulting L-preferred MSS. Therefore, we can narrow
the search space for the SAT solver by adding the negation of literals of an identified
diagnosis clause as unit constraints (cf. Marques-Silva et al. 2013). The SAT solver will
perform unit propagation on these literals instead of costly decisions (see Speed-Up 2
in Algorithm 1).

Felfernig et al. (2012) developed a divide-and-conquer procedure, called FASTDIAG,
for computing the preferred minimal diagnosis of Constraint Satisfaction Problems (CSP)
which has been successfully exploited in the QUICKXPLAIN algorithm (Junker 2004)
for computing preferred explanations (a preferred minimal unsatisfiable subset). FastDiag
can be used for the computation of the preferred minimal diagnosis in the context of
Propositional Logic, too. The idea behind FASTDIAG is to split the set of soft clauses
ϕs = {c1, . . . , cm} into two equally sized subsets ψ1 = {c1, . . . , c� m

2 �} and ψ2 =
{c� m

2 �+1, . . . , cm}. Then check whether ϕh ∪ ψ1 is consistent. If ϕh ∪ ψ1 is consistent, then
no element of the more preferred clauses of ψ1 belongs to the result (and does not have to
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be checked separately) and we know that at least one element of ψ2 belongs to the result
(one consistency check is omitted). If ϕh ∪ψ1 is not consistent, then we recursively proceed
by splitting ψ1 into two equally sized subsets. Algorithm 2 shows the procedure adjusted to
our notation.

Before FASTDIAG (Felfernig et al. 2012) O’Callaghan et al. (2005) developed COR-
RECTIVEEXP which is very similar to FastDiag but with a subtle difference: Basically,
FASTDIAG (Felfernig et al. 2012) first generates a preferred minimal diagnosis �1 for the
set of constraints ψ1 (line 17). Next, a preferred minimal diagnosis �2 for the set ψ2 is gen-
erated taking the constraints in ψ1 \ �1 into account (line 18). Eventually, both minimal
diagnoses are combined to the final minimal diagnosis (line 19). Broadly speaking the algo-
rithm CORRECTIVEEXP (O’Callaghan et al. 2005) would search in the whole set ψ \ �1
for generating a preferred minimal diagnosis �2, which leads to unnecessary consistency
checks. Note, the performance of the system depends critically on the number of consis-
tency checks which are calls to an NP-oracle (if arbitrary constraints are allowed). To see
the difference, a simple example can be generated by a set of soft constraints where the only
minimal conflict consists of the first two most preferred constraints.

The same speed ups as seen for the linear search can be applied to FASTDIAG as well
(see Remark 2). We can improve the FASTDIAG procedure by adding all constraints ϕh
first and executing the consistency checks by using the inc-/decremental interface. Another
improvement can be made for the help procedure FD: We add all clauses of the set ψ =
{c1, . . . , cq}. If they are consistent, we leave them in the solver. Therefore, once clauses are
identified to be in the L-preferred MSS they will be retained for the rest of the algorithm
execution. Otherwise, we remove them (see Speed-Up 1 in Algorithm 2).

The worst case complexity of FASTDIAG in terms of the number of consistency checks
is O(2d · log2(

m
d
) + 2d), where d is the minimal diagnosis set size and m is the number of

clauses in ϕs. For small sized diagnoses compared to the number of overall soft clauses, the
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number of consistency checks is less than the number of consistency checks of the linear
search. In automotive configuration we typically face a small number of diagnosis clauses.

5.2 Computation of the minimum weighted diagnosis

Different approaches have been developed to solve the minimum weighted diagnosis prob-
lem (corresponding to the MinUNSAT problem) and we want to point out some important
approaches in this section. Branch-and-Bound for general optimization problems has been
adopted for MinUNSAT, e.g., Heras et al. (2012b); Kügel (2012). In recent years, many
MinUNSAT solvers make use of SAT solvers as a black box. A basic linear approach is to
add a blocking variable to each soft clause, iteratively checking the instance for satisfiability
and restricting the blocking variables further each time to narrow the search space. Since the
input length is the binary representation of the sum of weights log2

(∑m
i=1 wi

)
, we have an

exponential number of SAT calls in the worst case. Additionally, we can use the delivered
model of the SAT solver to avoid iterations, and thus to avoid SAT calls. Furthermore, the
model can be reduced to a prime implicant such that the don’t care literals can be assigned
arbitrarily to reach the optimum faster. The Java library SAT4J (Le Berre and Parrain 2010)
uses this approach.

A binary search approach is also possible. The range of the binary search would be from
0 to the sum of weights

∑m
i=1 wi . The number of SAT calls in the worst case is the input

length, which is the binary representation of the sum of weights log2
(∑m

i=1 wi

)
. Thus, we

have a linear number of SAT calls by binary search. Even though complexity in terms of
the number of SAT calls is exponentially better compared to linear search, the practical
disadvantage of binary search lies in the SAT calls with an unsatisfiable result. Because
industrial instances from automotive configuration often contain a huge number of models,
the search for models is usually fast. In contrast, the verification of unsatisfiability takes
much longer. With binary search, half the number of SAT calls result in an unsatisfiable
result, whereas all but the last SAT call will find a model with linear search.

Nowadays MinUNSAT solvers make usage of SAT solvers providing an unsatisfiable
core for the unsatisfiable case, which was first presented by Fu and Malik in (2006) for
unweighted partial MinUNSAT. This approach was later extended to deal with weights in
Ansótegui et al. (2009) and is known as WPM1 algorithm. The idea for the unweighted
version is to iteratively check whether the instance is satisfiable or not. If it is satisfiable,
we are finished. If it is not satisfiable, we exploit the unsatisfiable core provided by the SAT
solver and relax all soft clauses by adding a fresh blocking variable. The set of satisfiable
blocking variables is then restricted to 1 by a cardinality constraint (Eén and Sörensson
2006; Sinz 2005). The focus of the clauses which have to be relaxed is thereby narrowed
to speed up the search process of the SAT solver. To handle weights, we have to split each
soft clause ci with weight wi of the unsatisfiable core into two clauses: (i) a clause ci ∨ bi

extended by fresh blocking variable bi with the minimum weight wmin of all weights of the
soft clauses in the unsatisfiable core, and (ii) a clause ci assigned to the weight wi − wmin.
Algorithm 2 shows the WPM1 procedure adjusted to return a diagnosis and exploiting an
inc-/decremental SAT interface. The unsatisfiable core ϕc need not necessarily be an MUS.
Thus, the worst case complexity of WPM1 in terms of the number of consistency checks is
O(d), where d is the minimal sum of weights of unsatisfied clauses, i.e., only costs of 1 are
added in each iteration (Heras et al. 2011). This would mean an exponential number of SAT
calls compared to the input length. The exact relation between the number of iterations and
the quality of the provided unsatisfiable core is an open issue (Heras et al. 2011). In practice,
however, the provided unsatisfiable core tends to be minimal or with only few redundant clauses.
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Another approach, not based on calling an underlying SAT solver, was evaluated by
Ansótegui and Gabàs (2013) by translating a MinUNSAT instance into an ILP (Schrijver
1998) instance. Ansótegui and Gabàs evaluated the commercial Mixed Integer Program-
ming (MIP) solver CPLEX from IBM and showed that the performance is competitive on
crafted instances.

Further MinUNSAT approaches have been developed, see Morgado et al. (2013) for a
good overview.

5.3 Similarities

We want to identify and discuss similarities of the preferred minimal diagnosis and the min-
imum weighted diagnosis. As described in the previous subsections the problem of finding
the preferred minimal diagnosis corresponds to the computation of the A-preferred MCS in
Propositional Logic. The hard parts ϕh of both problems are equal in terms of expressive
power, since both can contain arbitrary constraints which can be reduced to clauses (see
Remark 1). The interesting part is the set ϕs with its strict total ordering < and assigned
weights, respectively. Both can be defined as a special case of an MCS problem. The
preferred minimal diagnosis problem can be interpreted as an optimal MCS:

min
<−1

antilex

{� | � is an MCS w.r.t. ϕh and ϕs}

The minimum weighted diagnosis (corresponding the partial weighted MinUNSAT) is also
an MCS with the minimum sum of weights:

min≤∑
ci∈� wi

{

�

∣
∣
∣
∣ � is an MCS w.r.t. ϕh and ϕs

}

The result of the A-preferred MCS problem is an optimal MCS in terms of preferences,
whereas the result of the partial weighted MinUNSAT problem is an optimal MCS in
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Table 1 Complement comparison

Diagnosis � Complement ϕs \ � Reference

(Partial) MCS (Partial) MSS see (Liffiton and Sakallah 2008)

(Partial) A-preferred (Partial) L-preferred MSS w.r.t. <−1 See (Marques-Silva and Previti 2014,

MCS w.r.t. < Prop. 12)

(Partial) (Weighted) (Partial) (Weighted) MaxSAT See Prop. 2

MinUNSAT

terms of weights. The same similarities hold for the corresponding complement problems
MaxSAT and L-preferred MSS.

For any given MCS, the complement is an MSS. This complement property holds for the
A-preferred MCS problem and the MinUNSAT problem, too. Table 1 shows an overview.
With “partial” in parantheses we indicate that the complementary property also holds even
if no set of hard clauses ϕh is considered. For MinUNSAT the complement property holds
for all combinations, with or without hard clauses and with or without weights.

Table 2 shows a comparison concerning the uniqueness of the result. All results also
hold for the corresponding dual problem, i.e., the computation of the complement as seen in
Table 1. We distinguish four categories: (i) Clause set: The question is whether the clauses
of the result is always the same; (ii) Cardinality of the diagnosis �: The question is whether
the number of clauses of the result are always the same; (iii) The sum of weights

∑
ci∈� wi

of the diagnosis �: The question is whether the sum of weights of the result is always the
same, and (iv) The model of the complement ϕs \ �: The question is whether the model
satisfying ϕh ∪ (ϕs \ �) is unique.

For entry Yes1: If we consider the preferences of the A-preferred MCS problem as
weights so that we have a correct reduction (see Section 7), then the sum of weights is
unique.

6 Computational complexity of the optimized diagnosis

An established measurement of the complexity of function problems, where the output can
be of an arbitrary structure and is not restricted to false and true, is the complexity in terms
of the number of calls to an NP-oracle (Gottlob and Fermüller 1993; Krentel 1988). In
this section, we will study the lower and upper bounds in terms of the number of calls
to an NP-oracle the computation of a diagnosis (minimal correction subset), the preferred
minimal diagnosis (A-preferred MCS) and minimum weighted diagnosis (partial weighted
MinUNSAT).

Table 2 Result uniqueness comparison

Diagnosis � Result Uniqueness

Clause Set Cardinality |�| Weights
∑

ci∈� wi Model

(Partial) MCS No No No No

(Partial) A-preferred MCS Yes Yes Yes1 No

(Partial) (Weighted) MinUNSAT No No Yes No



J Intell Inf Syst (2017) 49:87–118 101

We use the standard notation for the complexity class FPNP (resp. FPNP[log n]), the
class of function problems solvable in deterministic polynomial time using a polynomial
(resp. logarithmic) number of calls to an NP oracle (Papadimitriou 1994). Furthermore,
the complexity class FPNP|| is the class of function problems solvable in deterministic poly-
nomial time using a polynomial number of non-adaptive queries to an NP oracle (see
Selman 1994 for a definition). The relation between these three complexity classes is
(Selman 1994, Section 1.2):

FPNP[log n] ⊆ FPNP|| ⊆ FPNP

It is not known if FPNP[log n] = FPNP|| or FPNP|| = FPNP holds, but it is believed that neither
of the two equations is the case (Selman 1994, Section 1.2).

Table 3 shows the main result of this section, i.e., a comparison of computational
complexity with the result that both problems, the computation of the preferred minimal
diagnosis and a minimum weighted diagnosis, are FPNP-complete and therefore equally
hard to solve. We will explain Table 3 in detail in the rest of this section, beginning with
the computation of an MCS. Since the complement of an MSS is an MCS, it is sufficient
to prove the complexity for one of the two problems. The computation of an MCS is in
FPNP, since an MCS can be computed by a linear search (see Marques-Silva et al. 2013,
Algorithm 1). The computation of an MCS is FPNP|| -hard as shown in (Chen and Toda

1995, Theorem 4.8(3)). Since FPNP[log n] ⊆ FPNP|| (see Jenner and Torán 1995, Theorem

2.2), the computation of an MCS is also FPNP[log n]-hard. However, we will prove that a
logarithmic number of NP-oracle calls is not sufficient for the computation of an MSS and
therefore, the problem is no member of FPNP[log n] unless P = NP.

A maximal model of a Boolean formula is a satisfying assignment such that the set of
variables assigned to true cannot be extended to another satisfying assignment. That is, the
set of true assigned variables forms a local maximum.

Since the computation of a satisfying assignment for a Boolean formula cannot be solved
by a logarithmic number of calls to an NP-oracle unless P = NP (Gottlob and Fermüller
1993, Theorem 5.4.), the computation of a maximal model cannot be solved by a logarithmic
number of calls to an NP-oracle unless P = NP, either.

The problem of finding a maximal model for a Boolean formula can be polynomially
reduced to the problem of finding an MSS w.r.t. clause sets ϕh and ϕs. Therefore, the com-
putation of an MSS can not be solved by a logarithmic number of calls to an NP-oracle

Table 3 Complexity comparison in terms of NP-oracle calls

Problem Lower Bound / Hardness Upper Bound

MCS / MSS FPNP|| -hard, (see Chen and Toda ∈ FPNP (e.g., linear search),

1995, Thm. 4.8) but 	∈ FPNP[log n], (see Marques-Silva et al.

see Thm. 1 unless P = NP 2013, Alg. 1)

Partial Weighted FPNP-hard (Papadimitriou 1994, ∈ FPNP (Papadimitriou 1994,

MinUNSAT / Partial Thm. 17.4) Thm. 17.4) (e.g., binary search,

Weighted MaxSAT see (Morgado et al. 2013))

A-preferred MCS / FPNP-hard, see Corollary 1 ∈ FPNP

L-preferred MSS (e.g., linear search, see Alg. 1)
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either unless P = NP. Thus, the problem is not in the class FPNP[log n] unless P = NP. The
following theorem captures this statement.

Theorem 1 Let ϕh and ϕs be clause sets. The computation of an MSS w.r.t. ϕh and ϕs cannot
be solved with a logarithmic number of calls to an NP-oracle unless P = NP.

Proof We reduce the problem of finding a maximal model of a Boolean formula ψ to the
problem of computing an MSS w.r.t. clause sets ϕh and ϕs. We define:

ϕh := tseitin(ψ)

ϕs := {{xi} | xi ∈ vars(ψ)}
The resulting MSS induces a model by assigning to true all variables contained within the
MSS. All other variables are assigned to false. The resulting model is a maximal model,
since otherwise the MSS properties are violated.

The partial weighted MinUNSAT (resp. partial weighted MaxSAT) problem is FPNP-
complete (Papadimitriou 1994, Theorem 17.4). Partial weighted MinUNSAT can be solved,
for example, by a binary search where the lower bound is 0 and the upper bound is the
sum of all weights

∑m
i=1 wi . Since the input length of the problem is log2

(∑m
i=1 wi

)
, the

number of calls to an NP-oracle is linear. Pseudo-Boolean Constraints, encoded as Boolean
formulas, can be used to narrow the search space (Li and Manyà 2009).

The computation of the A-preferred MCS can be performed with a linear number of
calls to an NP-oracle, such as by linear search as in Algorithm (Marques-Silva et al. 2013,
Algorithm 1), and therefore the problem is an element of the class FPNP.

It was an open question stated in (Marques-Silva and Previti 2014, Remark 1) whether
the computation of an A-preferred MCS is FPNP-hard. We will prove that the computation
of an A-preferred MCS is FPNP-hard by proving that the computation of the complement
set, the L-preferred MSS, is FPNP-hard.

Theorem 2 Let ϕh and ϕs be clause sets. The computation of the L-preferred MSS w.r.t. ϕh
and ϕs is FPNP-hard.

Proof We consider the Maximum Satisfying Assignment (MSA) problem: For a Boolean
formula ψ with variables vars(ψ) = {x1, . . . , xn} find a satisfying assignment with the
lexicographical maximum of the word x1 · · · xn ∈ {0, 1}n or 0 if ψ is not satisfiable. The
MSA problem is FPNP-complete as proved in Krentel (1988). We can polynomially reduce
the MSA problem to the L-preferred MSS problem. We define:

ϕh := Tseitin(ψ)

ϕs := {{x1}, . . . , {xn}}
< := x1 < · · · < xn

Since the Tseitin-Transformation has the same models on the set of the original variables
{x1, . . . , xn} as formula ψ (see Proposition 1), our reduction is sound. The solution of the
L-preferred MSS problem induces a solution for the MSA problem.

Furthermore, we show that the computation of the L-preferred MSS w.r.t. to a hard clause
set ϕh and a soft clause set ϕs can be polynomially reduced to the computation of the L-
preferred MSS w.r.t. a soft clause set only. That means, the computation of the L-preferred
MSS w.r.t. a soft clause set only is also FPNP-hard.
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Proposition 3 Let ϕh and ϕs clause sets. The computation of the L-preferred MSS w.r.t. ϕh
and ϕs is polynomially reducible to the computation of the L-preferred MSS w.r.t. to a soft
clause set only.

Proof Let ϕh = {b1, . . . , bk} and ϕs = {c1, . . . , cm} be clause sets with the strict total
order c1 < · · · < cm. We include the clauses of ϕh by extending the strict total order:
b1 < · · · < bk < c1 < · · · < cm. With the extended strict total order we ensure that the
clauses of ϕh are the most preferred clauses and therefore have to be satisfied (if satisfiable
at all). If ϕh is not satisfiable, the original problem will return “no solution” and the new
problem will return the L-preferred MSS where at least one of the clauses b1, . . . , bk is
not satisfied. If ϕh is satisfiable, we can extract the result of for the original problem by
removing the clauses b1, . . . , bk from the calculated L-preferred MSS.

Note that Proposition 3 shows that an additional set of hard clauses does not affect
the complexity of the L-preferred MSS problem. We summarize our results about the
computation of the L-preferred MSS and the A-preferred MCS in the following corollary.

Corollary 1 Let ϕh and ϕs be clause sets.

1. The computation of the A-preferred MCS (resp. L-preferred MSS) w.r.t. to a hard clause
set ϕh and a clause set ϕs is FPNP-complete.

2. The computation of the A-preferred MCS (resp. L-preferred MSS) w.r.t. a clause set ϕs
only is FPNP-complete.

Proof 1. FPNP-Hardness follows from Theorem 2. Since the complement of the L-
preferred MSS w.r.t. the order < is the A-preferred MCS w.r.t. the inverse order <−1

(see Marques-Silva and Previti 2014, Proposition 12), the same complexity holds.
Membership in FPNP follows by linear search, see Section 5.1.

2. FPNP-Hardness follows from Theorem 2, Proposition 3 and statement 1. of this
corollary. Membership of fpnp follows by linear search, see Section 5.1.

Corollary 1 negatively answers the open question, stated in (Marques-Silva and Previti
2014, Remark 1), whether computing L-preferred MSSes and A-preferred MCSes could be
in FPNP[log n].

Unless P = NP, problem which are FPNP-complete are strictly harder than problems in
FPNP[log n] (Krentel 1988). Intuitively, the computation of the A-preferred MCS is solved
by checking each clause separately in the worst case. The computation of any MCS is
expected to be an easier task, since no order has to be respected. But the exact lower bound
is unknown to the best of our knowledge.

In summary, the computation of the preferred minimal diagnosis and the minimum
weighted diagnosis are both FPNP-complete and therefore equally hard to solve.

7 Reductions

We have shown in the previous section that both, the preferred minimal diagnosis problem
and the minimum weighted diagnosis problem, are FPNP-complete. Therefore, both prob-
lems are polynomially reducible to each other. In this section we show how these reductions
can be done and point out practical issues.
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7.1 Preferred minimal diagnosis reduced to minimum weighted diagnosis

Let ϕh and ϕs = {c1, . . . , cm} be the clause sets with a strict total order s.th. c1 < . . . < cm.
Again, we assume ϕh to be a set of clauses (cf. Remark 1). We can reduce the pre-
ferred minimal diagnosis (A-preferred MCS) problem to the minimum weighted diagnosis
(MinUNSAT) problem by building the following clause sets ϕ′

h and ϕ′
s:

ϕ′
h := ϕh

ϕ′
s := ϕs

with weight wi defined recursively:

wm := 1

wi :=
⎛

⎝
m∑

j=i+1

wj

⎞

⎠ + 1 for 1 ≤ i < m

With these weights assigned we achieve two important properties: (i) the descending order
of the constraints, and, more importantly, (ii) the lexicographical order, because constraint

ci with weight
(∑m

j=i+1 wj

)
+1 = wi+1 + . . .+wm +1 has a greater weight than the sum

of weights of all following and less preferred constraints ci+1, . . . , cm.
Each step requires polynomial time. However, the downside of the above reduction is

the growth of the weights. It can be shown by induction that
(∑m

j=i+1 wj

)
+ 1 = 2m−i .

The most preferred clause has weight 2m−1. Data types int and long with a typically
length not longer than 64 Bit get easily exceeded because each clause requires one bit. Thus,
arbitrary-precision arithmetic would be necessary which performs slower.

Useful for comparison, Argelich et al. (2009) propose an encoding of hierarchically
dependent optimization problems to MaxSAT. Our encoding can be interpreted as a special
case of the encoding in Argelich et al. (2009), where each optimization problem consists of
one constraint only.

7.2 Minimum weighted diagnosis reduced to preferred minimal diagnosis

First, we show how we can reduce the minimum weighted diagnosis (MinUNSAT) problem
easily to the preferred minimal diagnosis (A-preferred MCS) problem if the weights comply
with the following property:

Proposition 4 Let ϕh and ϕs = {c1, . . . , cm} be clause sets and w1, . . . , wm ∈ N≥1 be
weights. If there exists a permutation π of the indices {1, . . . , m} such that:

wπ(i) >

m∑

j=i+1

wπ(j)

then the strict total order <π with cπ(1) < · · · < cπ(m) with clause sets ϕh and ϕs is a
reduction to the preferred minimal diagnosis problem.

Proof The reduction is correct since (i) it preserves the order of the soft clauses w.r.t.
their weights, and (ii) the weights are in a relation such that for each clause cπ(i) the
minimum weighted diagnosis solution will try to satisfy cπ(i) before satisfying all clauses
cπ(i+1), . . . , cπ(m) and so will a solution of the preferred minimal diagnosis due to the strict
total clause ordering.
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We can check whether such a permutation can be found by: (i) Sorting soft clauses
c1, . . . , cm in ascending order w.r.t. their weights for complexity O(m log m), and (ii) iter-
ating through the sorted list and checking each clause ci whether the inequality holds for
complexity O(m). The property of Proposition 4 is sufficient but not necessary. There are
other classes of minimum weighted diagnosis instances without this property which are
reducible in polynomial time, too.

Example 1 ϕs = {x1, . . . , xm} with weights w1 = m, . . . , wm = 1, i.e., a descending
weight for each clause. We assume atMost(x1, . . . , xm) ⊆ ϕh, i.e., at most one soft clause is
allowed to be true. The minimum weighted diagnosis solution will try to satisfy the clause
with the highest weight. The preferred minimal diagnosis problem with the strict total order-
ing x1 < · · · < xm will be a diagnosis which contains clauses except for the most preferred
one in the ordering which can be satisfied under ϕh. Since at most one of the clauses can be
true, the result is the same.

An exact encoding of the minimum weighted diagnosis problem as an preferred minimal
diagnosis instance can be done by building an adder network with ϕ′

h and ϕ′
s as follows:

1. Add all hard clauses ϕh to ϕ′
h, i.e., ϕ′

h := ϕh.
2. Encode each soft clause ci ∈ ϕs by an unit clause with a fresh variable si (similar to

Remark 1) and add the implication si → ci to the hard clauses:

ϕ′
h := ϕ′

h ∪ {(¬si ∨ ci) | ci ∈ ϕs}
3. Build the binary representation of the sum of weights:

m∑

i=1

wi · si = al · 2l + · · · + a0 · 20

Encode this sum as an adder network with input variables s1, . . . , sm and output vari-
ables al, . . . , a0. The output variables are the new soft unit clauses and the strict total
order is given by the order of coefficients of the binary representation from the most sig-
nificant bit al to the least significant bit a0. The encoding Add(s1, . . . , sm; a0, . . . , al)

of the adder network is added to the hard clauses.

ϕ′
h := ϕ′

h ∪ tseitin(Add(s1, . . . , sm; a0, . . . , al))

ϕ′
s := {{aj } | j ∈ {0, . . . , l}

< := al < · · · < a0

The encoding of the adder network can be done with a polynomial number of clauses
and auxiliary variables compared to the input length, see for example (Warners 1998).

8 Greedy approaches

We show a greedy approach of the preferred minimal diagnosis problem (resp. minimum
weighted diagnosis problem) on the basis of the minimum weighted diagnosis problem
(resp. preferred minimal diagnosis problem). Even though both problem can be reduced
to each other without loss in theory, see Section 7, we may get better running times for
the greedy approaches. Additionally, as we have described in Section 7, there are practical
issues with an exact reduction. The following greedy approaches can be easily implemented.
Afterwards, in Section 9, we evaluate the time and quality tradeoff of the greedy approaches.
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8.1 Greedy approach for the preferred minimal diagnosis

Let ϕh and ϕs = {c1, . . . , cm} be the clause sets with a strict total order s.t. c1 < . . . < cm.
We assume ϕh to be a set of clauses without loss of generality, see Remark 1. We can develop
a greedy approach for the preferred minimal diagnosis problem by solving the minimum
weighted diagnosis problem with the following clause sets ϕ′

h and ϕ′
s:

ϕ′
h := ϕh

ϕ′
s := ϕs

wi := m − (i − 1)

With this weight assignment, the most preferred clause is assigned to weight m, the next
one to weight m−1 and so on. The lexicographical order will be imitated somewhat but not
sufficiently to be exact. The greater the distances of the weights of consecutive constraints
ci and ci+1 the better the solution quality becomes. Above we set the distance to 1. In
Section 7.1 we have seen how to determine distances to reach an exact reduction.

Example 2 Consider ϕh = ∅ and ϕs = {x ∨ y, ¬x,¬y, x, z} with the strict total order
x ∨ y < ¬x < ¬y < x < z. The preferred minimal diagnosis is � = {¬y, x}, but the
solution of the greedy approach for the minimum weighted diagnosis problem with a weight
distance of 1 leads to diagnosis {¬x}, because ¬x with weight 4 is less than clauses x and
¬y with weights 2 + 3 = 5.

8.2 Greedy approach for the minimum weighted diagnosis

Solvers for the preferred minimal diagnosis problem can be used for a greedy approach for
the minimum weighted diagnosis problem. Let ϕh and ϕs = {c1, . . . , cm} be clause sets and
w1, . . . , wm ∈ N≥1 be weights. Let π be a permutation of the indices 1, . . . , m such that
the weights are sorted, i.e., if i < j then wπ(i) < wπ(j). We define:

ϕ′
h := ϕh

ϕ′
s := ϕs

< := cπ(1), . . . , cπ(m)

The preferred minimal diagnosis will prefer to satisfy a clause with a high weight value
over satisfying multiple clauses with low weight values. Whereas the minimum weighted
diagnosis solution will minimize the sum of the weights of unsatisfied clauses in total. The
transformation can be done in polynomial time: We sort the clauses w.r.t. their weights,
which can be done in O(m log m) where m is the number of soft clauses.

Example 3 Consider ϕh = ∅ and ϕs = {x,¬x ∨ y,¬y, ¬x} with weights w1 = 6, w2 =
5, w3 = 4 and w4 = 3. The greedy approach for the minimum weighted diagnosis instance
with a strict total order relies on the weights of the soft clauses: x < ¬x ∨ y < ¬y < ¬x.
The preferred minimal diagnosis is � = {¬y,¬x} with a cost of 7 in terms of the original
weights. But the minimum weighted diagnosis solution is diagnosis {x} with a cost of 6.

9 Experimental evaluation

We evaluate both problems, the preferred minimal diagnosis problem and the minimum
weighted diagnosis problem, with real industrial datasets from the automotive domain. Next
we describe the test environment, the used instances and the considered use cases in detail.
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9.1 Setup and test instances

For our benchmarks we use test instances based on real automotive configuration data from
three different major German car manufacturers. The configuration model of constructable
cars is given as a product overview formula ϕPOF in Propositional Logic (Küchlin and
Sinz 2000; Sinz et al. 2003) (see Introduction to Section 4). A ϕPOF is satisfiable and each
satisfying assignment represents a valid configurable car. If the ϕPOF is over-constrained
(unsatisfiable), then no cars are constructable. We denote a ϕPOF by Mx-y, where each x is
a different car manufacturer and each y is a different type series or model type.

Table 4 shows statistics about the used ϕPOF instance for our evaluations. Column “ϕPOF”
shows the number of constraints (arbitrary Boolean formulas) and the number of variables
of each ϕPOF. Column “tseitin(ϕPOF)” shows the number of clauses and the number of
variables the CNF transformed formula. We used an improved Plaisted-Greenbaum transfor-
mation which tries to avoid introducing auxiliary variables if possible. The instances M1-1
and M-2 have the same number of in both columns because the formula ϕPOF is already in
CNF and no further transformation is needed.

For our evaluation we consider three use cases from the automotive domain:

1. Re-Configuration of User Requirements: The hard constraints consist of the product
overview formula ϕPOF. We randomly choose 50 % of the features vars(ϕPOF) which
represent the user requirements (soft constraints). Since not all user requirements are
consistent w.r.t. the ϕPOF in general, such a random selection easily gets inconsistent.
The goal is to optimize the user requirements (cf. Section 4, Use Case 1(a) and Walter
and Küchlin (2014)).

2. Re-Configuration of Constraints: The constraints of the ϕPOF are considered as soft
constraints. We randomly choose 50 % of the features vars(ϕPOF) which represent
the user requirements (hard constraints). Similarly to the previous use case, such a
random user selection easily leads to inconsistency. But in contrast to the previous use
case, we want to optimize the ϕPOF constraints instead of the user requirements. By
this use case we try to realistically imitate, for example, an engineering situation where
new hard requirements are given and the corresponding engineer wants to be guided
by an optimized repair suggestion to adjust the rules such that a non-constructible car
becomes constructible (cf. Section 4, Use Case 1(b)).

3. Computation of the Optimal Example Configuration The hard constraints consist
of the product overview formula ϕPOF. We randomly create 10,000 clauses of length 2
(soft constraints). By this use case we try to imitate overlap errors of a BOM position

Table 4 Statistics about the used POFs

ϕPOF tseitin(ϕPOF)

Instance Constraints Variables Clauses Variables

M1-1 11 593 996 11 593 996

M1-2 4 274 612 4 274 612

M2-1 495 483 5 557 488

M3-1 2 750 2 352 81 267 5 054

M3-2 864 607 30 885 4 447

M3-3 2 485 2 245 83 979 6 187
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and want to find an optimal example configuration covering the most important overlap
errors (cf. Section 4, Use Case 2(b)). Also, we wanted to create more difficult instances
by increasing the number of soft constraints.

For each of the three use cases we evaluated four scenarios:

1. Preferred Minimal Diagnosis: The order of the soft constraints is chosen by random.
2. Minimum Weighted Diagnosis: The weights are chosen between 1 and 10 by random.
3. Greedy Approach of the Preferred Minimal Diagnosis: Greedy approach for the

preferred minimal diagnosis as described in Section 8.1.
4. Greedy Approach of the Minimum Weighted Diagnosis: Greedy approach for the

minimum weighted diagnosis as described in Section 8.2.

For each scenario we created 5 instances and calculated the average time in order to get
a reasonably distribution. We set a timeout of 600 seconds for each instance.

We used different solver settings for the computation of the preferred minimal diagnosis:

– Linear Search: Linear search (LS), Algorithm 1, with backbone improvement (LSB)
plus the usage of the in-/decremental SAT-Solving interface (LSBOpt), see Remark 2.

– FASTDIAG: Basic FASTDIAG (FD), Algorithm 2, with backbone improvement (FDB)
plus the usage of the in-/decremental SAT-Solving interface (FDBOpt), see Remark 2.

For a reasonable comparison between the computation of the preferred minimal diag-
nosis and the minimum weighted diagnosis we implemented the linear search and the
FASTDIAG algorithms. We implemented the linear search and the FastDiag algorithms on
top of the public available SAT solver MINISAT 2.2 (Eén and Sörensson 2004)1 in order
to make the test setup similar to the minimum weighted diagnosis solvers which are based
on MINISAT 2.2. or PICOSAT (Biere 2008),2 except for the CPLEX-based approach. The
inc-/decremental interface is implemented by adding an additional fresh blocking variable
to the clauses which is used to block the clause after a decremental operation.

On the MinUNSAT side we used the following external solvers for our evaluation:

– OPENWBO: The open source framework OPENWBO of Martins et al. (2014) includes
a whole set of different MinUNSAT solvers, all based on top of the MINISAT-like
solver (Eén and Sörensson 2006). We used the version 1.3.0 release (January 2, 2015)3

and MINISAT 2.2 (Eén and Sörensson 2004) as underlying SAT solver for a reasonable
comparison of our implementations for the preferred minimal diagnosis computation.

– Eva500a: Eva500a4 (Narodytska and Bacchus 2014) is a MinUNSAT solver based on
iteratively calling an underlying SAT solver and exploiting the unsatisfiable core if the
formula is unsatisfiable. But instead of restricting the blocking variables as done in
the WPM1 algorithm (Ansótegui et al. 2009) a compact version of MinUNSAT reso-
lution is used. This approach was the best overall solver in the industrial category of
the MaxSAT competition in 20145 and is based on Glucose (Audemard et al. 2013), a
variant of MINISAT (Eén and Sörensson 2004).

1MiniSAT homepage: www.minisat.se
2PicoSAT homepage: http://fmv.jku.at/picosat
3OPENWBO is available at: http://sat.inesc-id.pt/open-wbo
4Eva500a is available at: http://www.maxsat.udl.cat/14/solvers/
5MaxSAT Competition 2014: http://www.maxsat.udl.cat/14/results/index.html

www.minisat.se
http://fmv.jku.at/picosat
http://sat.inesc-id.pt/open-wbo
http://www.maxsat.udl.cat/14/solvers/
http://www.maxsat.udl.cat/14/results/index.html
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Table 5 Results for the preferred minimal diagnosis for use case “Re-Configuration of User Requirements”
(in seconds)

M1-1 M1-2 M2-1 M3-1 M3-2 M3-3

|�|
|ϕs| × 100 16 1 63 90 70 72

LS 0.23 0.02 0.11 9.38 1.06 7.56

LSOpt 0.05 0.02 0.01 0.19 0.06 0.30

LSBOpt 0.05 0.02 0.01 0.15 0.06 0.27

FD 0.87 0.04 0.27 18.51 2.22 16.62

FDOpt 0.03 0.01 0.01 0.13 0.05 0.25

FDBOpt 0.03 0.01 0.01 0.10 0.05 0.24

LS #S 420 302 89 116 90 311

LS #U 79 5 153 1,061 214 812

FD #S 162 27 70 109 79 264

FD #U 238 19 339 2,165 461 1,739

– msuncore:.6 An unsatisfiable core-guided approach with iterative SAT calls using
a reduced number of blocking variables. The solver suite includes different solver
versions and is based on PICOSAT (Biere 2008). We tested releases 1.0, 1.1 and 1.2.

– CPLEX: Translation of a MinUNSAT instance to an ILP instance and using the
commercial MIP solver CPLEX7 from IBM (cf. Ansótegui and Gabàs (2013)).

We also tested other MinUNSAT solvers but first pre-evaluations have shown that the
solver list above were the most competitive one for our benchmark data.

Our experiments were run on the following settings: Intel(R) Core(TM) i3-2100 CPU
with 3.1GHz and 2 GB main memory running 64-bit Linux Ubuntu 12.04.5.

9.2 Evaluation: preferred minimal diagnosis

Tables 5, 6 and 7 show the results for the computation of the preferred minimal diagnosis
for each use case, respectively. The first row shows the percentage of the preferred minimal
diagnosis compared to the number of soft clauses. The rows “LS”, “LSOpt” and “LSBOpt”
show the average running times in seconds for the linear search solver settings. The rows
“FD”, “FDBOpt” and “FDOpt” show the average running times in seconds for the FAST-
DIAG solver settings. The fastest running times are highlighted for each instance. The rows
“LS #S” and “LS #U” (resp. “FD #S” and “FD #U”) show the number of satisfiable and
unsatisfiable SAT calls for the linear search solvers (resp. FASTDIAG solvers).

All three tables show that the size of the preferred minimal diagnosis is quite small
for the first car manufacturer and quite high for the second and third car manufacturer.
The only exception is POF M3-1 in Table 7 where the percentage is also small with 8 %.
Consequentially, the number of unsatisfiable SAT calls is very high for the second and third
car manufacturer for both, the linear search and the FASTDIAG algorithm.

6msuncore is available at: http://logos.ucd.ie/web/doku.php?id=msuncore
7CPLEX is available at: http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

http://logos.ucd.ie/web/doku.php?id=msuncore
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Table 6 Results for the preferred minimal diagnosis for use case “Re-Configuration of Constraints” (in
seconds)

M1-1 M1-2 M2-1 M3-1 M3-2 M3-3

|�|
|ϕs| × 100 1 1 22 39 29 33

LS 7.04 1.20 0.15 11.72 1.50 9.21

LSOpt 6.31 1.07 0.03 0.80 0.21 0.84

LSBOpt 6.42 1.07 0.03 0.80 0.21 0.83

FD 4.05 0.10 0.49 34.47 4.51 28.68

FDOpt 0.69 0.02 0.02 0.53 0.13 0.50

FDBOpt 0.66 0.02 0.02 0.52 0.14 0.49

LS #S 11,500 4,458 383 1,667 608 1,668

LS #U 128 8 113 1,084 257 818

FD #S 733 72 181 1,096 340 987

FD #U 596 52 310 2,601 656 2,055

The use case “Re-Configuration of User Requirements” turns out to be the easiest one
and can be solved nearly equally fast by all solver settings within one second. Two excep-
tions arise for car manufacturer three and POFs M3-1 and M3-3, where the usage the
inc-/decremental SAT solver interface has huge impact on the performance with running
times up to 100 times faster. The usage of backbones leads to nearly the same running
times.

The results use cases “Re-Configuration of Constraints” and “Computation of the Opti-
mal Example Configuration” also show that the usage of the inc-/decremental SAT solver
leads to running times up to 100 faster. Even though the linear search and the FASTDIAG

approach are equally fast on some instance it turns out that in total the FASTDIAG algorithm
with backbones and the usage of the inc-/decremental SAT solver interface is dominating
all other solvers on all instances for all three use cases.

Table 7 Results for the preferred minimal diagnosis for use case “Computation of the Optimal Example
Configuration” (in seconds)

M1-1 M1-2 M2-1 M3-1 M3-2 M3-3

|�|
|ϕs| × 100 2 1 45 8 54 47

LS 5.87 5.29 8.80 100.30 33.65 76.19

LSOpt 5.75 5.00 3.62 3.83 5.48 7.68

LSBOpt 5.66 4.99 3.04 1.91 3.92 5.46

FD 6.87 0.19 22.26 190.69 79.09 172.77

FDOpt 1.02 0.04 4.38 3.28 6.21 8.14

FDBOpt 0.92 0.04 2.48 1.29 3.07 4.44

LS #S 9,799 9,995 5,454 1,886 4,504 5,244

LS #U 202 6 4,547 8,115 5,497 4,757

FD #S 973 55 3,829 1,724 3,470 3,720

FD #U 841 35 10,672 16,940 12,399 11,041
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Table 8 Results for MinUNSAT for use case “Re-Configuration of User Requirements” (in seconds)

M1-1 M1-2 M2-1 M3-1 M3-2 M3-3

optimum∑m
i=1 wi

× 100 11 2 57 86 67 62

OpenWBO (default) 0.20 0.01 2.20 t/o t/o t/o

OpenWBO (LS-SU) 16.63 0.02 t/o t/o t/o t/o

OpenWBO (WMSU3-iterative) 13.66 0.01 t/o t/o t/o t/o

msuncore1.0 4.92 0.01 t/o t/o t/o t/o

msuncore1.1 0.80 0.01 t/o t/o t/o t/o

msuncore1.2 t/o 0.01 t/o t/o t/o t/o

Eva500a 0.53 0.08 0.64 16.16 4.58 14.58

CPLEX 0.72 0.02 0.06 5.29 7.05 4.30

9.3 Evaluation: Minimum weighted diagnosis

Tables 8, 9 and 10 show the results for the computation of the minimum weighted diagnosis
for each use case, respectively. The first row shows the percentage of the sum of weights of
the minimum weighted diagnosis (optimum) compared to the total sum oft weights of the
soft clauses (

∑m
i=1 wi).

For use case “Re-Configuration of User Requirements”, Table 8, solvers Eva500a and
CPLEX are the only solvers who were able to solve all instances within the timeout. CPLEX
performs better than Eva500a, except for POF M3-2. The instances M1-1 and M1-2 of the
first car manufacturer could be solved by all solvers, except msuncore1.2 for POF M1-1.

For use case “Re-Configuration of Constraints”, Table 9, all solvers were able to solve
all instances within the given timeout, except OpenWBO (LS-SU) for POF M1-1. CPLEX
has the best overall running times, except for instance M1-2, where the running time is only
slightly slower by 0.1 seconds.

Only CPLEX solved all instances within the timeout for use case “Computation of the
Optimal Example Configuration”, Table 10. POF M1-2 could be solved by almost all other
solvers faster than CPLEX.

Table 9 Results for MinUNSAT for use case “Re-Configuration of Constraints” (in seconds)

M1-1 M1-2 M2-1 M3-1 M3-2 M3-3

optimum∑m
i=1 wi

× 100 1 1 22 39 29 33

OpenWBO (default) 0.30 0.02 0.14 13.33 1.46 10.09

OpenWBO (LS-SU) t/o 0.41 0.41 30.95 1.40 4.34

OpenWBO (WMSU3-iterative) 25.36 0.01 0.46 106.77 2.67 41.28

msuncore1.0 0.97 0.01 0.22 26.77 87.29 21.68

msuncore1.1 1.01 0.01 0.20 26.66 3.92 21.72

msuncore1.2 1.01 0.01 0.22 26.81 3.72 21.83

Eva500a 0.80 0.09 0.12 0.41 0.42 0.34

CPLEX 0.06 0.02 0.03 0.19 0.24 0.14
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Table 10 Results for MinUNSAT for use case “Computation of the Optimal Example Configuration” (in
seconds)

M1-1 M1-2 M2-1 M3-1 M3-2 M3-3

optimum∑m
i=1 wi

× 100 1 1 40 77 52 42

OpenWBO (default) t/o 0.04 t/o t/o t/o t/o

OpenWBO (LS-SU) t/o 1.75 t/o t/o t/o t/o

OpenWBO (WMSU3-iterative) t/o 0.01 t/o t/o t/o t/o

msuncore1.0 t/o 0.04 t/o t/o t/o t/o

msuncore1.1 t/o 0.04 t/o t/o t/o t/o

msuncore1.2 t/o 0.04 t/o t/o t/o t/o

Eva500a 3.26 0.16 t/o t/o t/o t/o

CPLEX 3.23 0.27 1.13 9.32 38.45 9.45

For all three use cases only CPLEX solved all instances within the timeout, which
makes this solver very robust. Also, the running times are most often among the fastest
ones. This comes as a bit of a surprise since we expected that CDCL-based MinUNSAT
solvers would perform better on Boolean instances. One explanation may be that automo-
tive configuration instances are small compared to other instances, e.g., instances from the
MaxSAT evaluations.8 Thus, the full potential of CDCL-based MinuNSAT solvers may not
be exhausted.

9.4 Evaluation: greedy approach of the preferred minimal diagnosis

Tables 11, 12 and 13 show the results for the greedy approach for the minimum weighted
diagnosis for each use case, respectively. We measure the greedy approach quality by min-
imality and accuracy. The first row “minimiality(�)” shows the minimality which is
the size of constraints contained in the diagnosis compared to the size of the preferred min-
imal diagnosis. The greedy based diagnosis does not have to be a superset of the preferred
minimal diagnosis. Thus, a minimality < 1 can occur.

minimality(�) := |�min|
|�|

The second row “accuracy(�)” shows the accuracy in terms of how much of the con-
straints are shared between the greedy based diagnosis and the preferred minimal diagnosis.
The higher the accuracy the more constraints from the preferred minimal diagnosis are
contained within the greedy based diagnosis.

accuracy(�) := |� ∩ �min|
|�min|

For all results in this category, Tables 11, 12 and 13, we calculated the minimality(�)

and accuracy(�) only for CPLEX. Similar to Section 9.3, only CPLEX solved all
instances for each use case within the timeout limit. The minimality and accuracy result
depends on the greedy based model of the MinUNSAT solver.

8MaxSAT Evaluations: http://www.maxsat.udl.cat

http://www.maxsat.udl.cat
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Table 11 Results for greedy based preferred minimal diagnosis for use case “Re-Configuration of User
Requirements” (in seconds)

M1-1 M1-2 M2-1 M3-1 M3-2 M3-3

minimality(�) 1.42 0.95 1.04 1.04 1.02 1.14

accuracy(�) 0.56 0.56 0.93 0.95 0.93 0.87

OpenWBO (default) t/o 0.01 t/o t/o t/o t/o

OpenWBO (LS-SU) t/o 0.35 t/o t/o t/o t/o

OpenWBO (WMSU3-iterative) t/o 0.52 t/o t/o t/o t/o

msuncore1.0 t/o 0.02 t/o t/o t/o t/o

msuncore1.1 t/o 0.02 t/o t/o t/o t/o

msuncore1.2 t/o 0.02 t/o t/o t/o t/o

Eva500a t/o 0.10 27.68 t/o t/o t/o

CPLEX 0.75 0.02 0.06 5.29 6.72 4.05

For use case “Re-Configuration of User Requirements”, Table 11, all solvers exceeded
the timeout except for CPLEX. The size of the greedy based preferred minimal diagnosis
computed by CPLEX is most often smaller than the size of the preferred minimal diagnosis,
resulting in a minimality(�) value greater than 1. The accuracy is quite good for the
second and third car manufacturers.

For use case “Re-Configuration of Constraints”, Table 12, almost every solver could
solve each instance. CPLEX has the best running times. The minimality and accuracy is
quite good and almost equal to 1 in the most cases.

Only CPLEX could solve all instances for use case “Computation of the Optimal Exam-
ple Configuration”, Table 13. The minimality and accuracy is quite good for the third car
manufacturer and a bit worse for hte first and second car manufacturer.

9.5 Evaluation: greedy approach of the minimum weighted diagnosis

Tables 14, 15 and 16 show the results for the computation of the greedy based minimum
weighted diagnosis for each use case, respectively. The first row shows the quality by

Table 12 Results for greedy based preferred minimal diagnosis for use case “Re-Configuration of
Constraints” (in seconds)

M1-1 M1-2 M2-1 M3-1 M3-2 M3-3

minimality(�) 1.09 0.92 1.02 1.00 1.01 1.00

accuracy(�) 0.83 0.91 0.96 1.00 0.97 1.00

OpenWBO (default) 7.76 0.90 0.15 13.47 t/o 10.19

OpenWBO (LS-SU) t/o t/o 17.40 t/o t/o t/o

OpenWBO (WMSU3-iterative) t/o 31.96 t/o t/o t/o t/o

msuncore1.0 1.11 0.01 0.22 26.88 t/o 21.83

msuncore1.1 1.09 0.01 0.21 26.95 t/o 21.43

msuncore1.2 1.09 0.01 0.21 27.05 t/o 21.93

Eva500a t/o 0.59 0.18 0.84 0.96 0.75

CPLEX 0.07 0.02 0.04 0.17 0.28 0.14
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Table 13 Results for greedy based preferred minimal diagnosis for use case “Computation of the Optimal
Example Configuration” (in seconds)

M1-1 M1-2 M2-1 M3-1 M3-2 M3-3

minimality(�) 1.84 1.24 1.11 1.05 1.05 1.13

accuracy(�) 0.33 0.48 0.75 0.91 0.80 0.84

OpenWBO (default) t/o 5.19 t/o t/o t/o t/o

OpenWBO (LS-SU) t/o t/o t/o t/o t/o t/o

OpenWBO (WMSU3-iterative) t/o t/o t/o t/o t/o t/o

msuncore1.0 t/o 0.04 t/o t/o t/o t/o

msuncore1.1 t/o 0.04 t/o t/o t/o t/o

msuncore1.2 t/o 0.04 t/o t/o t/o t/o

Eva500a t/o 15.21 t/o t/o t/o t/o

CPLEX 3.14 0.27 1.05 9.54 44.41 9.67

percentage p which calculated as follows:

p = (
∑m

i=1 wi) − greedyOpt

(
∑m

i=1 wi) − exactOpt
× 100

Where greedyOpt is the sum of weights of the result of the preferred minimal diagnosis
solver and exactOpt is the optimum of the minimum weighted diagnosis solver.

In terms of runnings times the results of the greedy based minimum weighted diagnosis
are quite the same as the results of the preferred minimal diagnosis computation in Sec-
tion 9.2. FASTDIAG improved by backbones and the inc-/decremental SAT solver interface
dominates the evaluation on all instances and all use cases, except for a few instances where
the running time is just slightly worse. Without the usage of the inc-/decremental SAT solver
interface the running times are up to 100 times slower for both, linear search and FASTDIAG.

The greedy approach qualities are quite good of the first and second car manufacturer
with percentages beginning from 89 % up to 99 % (except for one instance with 83 %).
Whereas the greedy approach qualities of the third car manufacturer is worse with percent-
ages beginning from 78 % up to 99 %. For the use case “Re-Configuration of Constraints”
the greedy approach quality is very good with 99 % for each POF.

Table 14 Results for greedy based MinUNSAT for use case “Re-Configuration of User Requirements” (in
seconds)

M1-1 M1-2 M2-1 M3-1 M3-2 M3-3

p (%) 89 97 94 88 95 82

LS 0.29 0.02 0.11 9.00 1.03 7.33

LSOpt 0.05 0.02 0.01 0.19 0.06 0.30

LSBOpt 0.04 0.02 0.01 0.14 0.06 0.27

FD 1.03 0.07 0.26 17.79 2.13 15.98

FDOpt 0.03 0.01 0.01 0.12 0.06 0.25

FDBOpt 0.03 0.01 0.01 0.10 0.06 0.24
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Table 15 Results for greedy based MinUNSAT for use case “Re-Configuration of Constraints” (in seconds)

M1-1 M1-2 M2-1 M3-1 M3-2 M3-3

p (%) 99 99 99 99 99 99

LS 7.10 1.04 0.14 11.80 1.48 9.27

LSOpt 6.27 0.95 0.03 0.81 0.22 0.83

LSBOpt 6.20 0.96 0.03 0.80 0.22 0.83

FD 3.84 0.08 0.45 34.78 4.48 29.03

FDOpt 0.62 0.02 0.02 0.54 0.13 0.51

FDBOpt 0.62 0.02 0.02 0.53 0.13 0.50

10 Related work

Benavides et al. (2010) give a good survey about automated analysis of configuration
models based on feature models. The authors show how the encoding of feature mod-
els to Propositional Logic and CSP can be used for automated verification, optimization
with subject to an objective function, explanations of conflicts and corrective explanations
(diagnoses).

Marques-Silva et al. (2013) improve the computation of an MCS by newly introduced
techniques, i.e., usage of backbone literals, disjoint unsatisfiable cores and satisfied clauses.
Not all techniques can be applied to the computation of an A-preferred MCS, i.e., only
the usage of backbone literals can be adopted. Hence the proposed enhanced version of
FASTDIAG (Felfernig et al. 2012; O’Callaghan et al. 2005) of Marques-Silva et al. (2013)
cannot be adopted for A-preferred MCS computation. The newly proposed MCS algorithm,
called CLAUSED, exploits the fact that a falsified clause does not contain complementary
literals, but it cannot be adopted either.

FASTDIAG (Felfernig et al. 2012; O’Callaghan et al. 2005) is based on the idea of
divide-and-conquer which has been successfully exploited in the QUICKXPLAIN algorithm
(Junker 2004). Whereas QUICKXPLAIN computes the preferred explanation (a minimal
unsatisfiable subset (MUS) in the context of Propositional Logic), the FASTDIAG algorithm
computes the preferred diagnosis (an MCS in the context of Propositional Logic), which
can be interpreted as the inverse of QUICKXPLAIN.

Table 16 Results for greedy based MinUNSAT for use case “Computation of the Optimal Example
Configuration” (in seconds)

M1-1 M1-2 M2-1 M3-1 M3-2 M3-3

p (%) 99 99 94 80 94 78

LS 6.03 5.37 8.89 100.29 33.19 85.76

LSOpt 5.82 5.05 3.75 4.01 5.75 6.99

LSBOpt 5.65 5.12 3.15 2.24 4.07 4.83

FD 8.29 0.16 22.33 186.27 79.01 179.96

FDOpt 1.10 0.03 4.43 3.11 6.39 7.61

FDBOpt 0.98 0.04 2.56 1.24 3.16 3.95
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The computational complexity in terms of the number of calls to an NP-oracle for com-
puting preferred MCSes and MSSes sets is studied by Marques-Silva and Previti in (2014),
where they also consider the computation of preferred conflicts and give an overview of
algorithms and techniques which can or cannot be adopted to involve preferences.

Mencı́a and Marques-Silva (2014) introduce improvements on computing an MCS in the
context of CSP, i.e., they adopt the CLAUSED algorithm from Marques-Silva et al. (2013).
The adopted variant is also not applicable for the computation of the A-preferred MCS.

11 Conclusion and future work

In this work, we compared the problem of finding the minimal preferred diagnosis (A-
preferred MCS in the context of Propositional Logic) with the problem of finding the
minimum weighted diagnosis (partial weighted MinUNSAT in the context of Propositional
Logic). We presented detailed practical use cases from automotive configuration.

We proved the FPNP-hardness of the A-preferred MCS problem, which was an open
question before. By this result we pointed out that both problems are FPNP-complete and
therefore are equally hard to solve in terms of the number of NP-oracle calls.

We evaluated the performance of both problems with benchmarks based on real automo-
tive configuration data. The experimental evaluations have shown that the computation of
the preferred minimal diagnosis is more robust, since all solvers could solve every instance.
Linear search and FASTDIAG could substantially be improved by using the inc-/decremental
SAT solver interface. In contrast, all solvers for the computation of the minimum weighted
diagnosis could not solve every instance. The only exception was the CPLEX-based
approach which remained robust by solving all instances of every use case reasonable fast.
To fully understand this observation a detailed analysis of both solver concepts is required.

There are several more research directions for future work. To the best of our knowl-
edge the exact lower bound for the computation of a minimal diagnosis (minimal correction
subset) in the context of Propositional Logic is still an open issue.

FASTDIAG and partial weighted MinUNSAT solver in their original form compute only
a single preferred minimal diagnosis (resp. minimum weighted diagnosis). Algorithms for
both problems can be extended to compute the set of all diagnoses. It would be interesting
to compare the enumeration of all diagnoses for both approaches and evaluate them on real
instances from industrial applications like the automotive domain.

Another interesting evaluation could be the reduction of the partial weighted MinUNSAT
problem to the A-preferred MCS problem by using an adder-network encoding as described
in Section 7.2. With such an encoding, we could use every A-preferred MCS solver, like
FASTDIAG, to solve partial weighted MinUNSAT problem instances.
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Walter, R., & Küchlin, W. (2014). ReMax – a MaxSAT aided product configurator, In Felfernig, A., Forza,
C., & Haag, A. (Eds.) Proc. of the 16th Int. Config. Workshop, pp. 59–66. Novi Sad, Serbia.
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