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(e-mail: {weber,kuechlin}@informatik.uni-tuebingen.de)
WWW: http://www-sr.informatik.uni-tuebingen.de

SUMMARY
In the field of computer algebra, joining separate computer algebra systems with individual
strengths into problem solving environments is an important recent research direction. In this
paper we describe how we wrapped a specialized computer algebra system, which uses shared-
all of the important algorithmic improvements to an algorithm had to be reimplemented in the
general purpose systems. Our implementation allows access to the Gröbner basis computations
via ‘intelligent’ graphical user interfaces and via scripting from existing general purpose algebra
systems.

1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

Joining separate numeric and algebraic systems and algorithmic software components with
individual strengths into problem solving environments is an important recent research
direction. Currently, the existing systems can be subdivided roughly into two categories:

(i) General purpose systems – algebra systems such as Axiom, Macsyma,Magma,
Maple, Mathematica, Mupad, Reduce or numeric systems such as Matlab, Octave,
Scilab – come with nice user interfaces and sophisticated graphical capabilities and
contain a broad range of computer algebra or numeric algorithms. However, because
of the size of the systems and the broad range they cover, they cannot always be up to
date algorithmically. Also the software architecture of such a general purpose system
– consisting of a kernel and an interpreted language in which many algorithms are
written – yields computational overheads that can be avoided by systems optimized
for a certain class of algebra problems. Also these systems are in general not suited
to make use of special hardware, such as shared-memory multiprocessors.

(ii) Specialized systems are usually developed by research groups that concentrate on
algorithm research in one special area of computer algebra or scientific comput-
ing. These systems usually contain the latest algorithms of these areas and their
implementations are very often tuned up considerably. Several of these systems are
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developed for high-performance computing architectures such as parallel machines.
However, these systems usually have a limited scope and crude user interfaces.

Connections between different algebra systems – or algebra systems and other scientific
code – are of major interest for different reasons.

First, instead of reimplementing a new algorithm in all of the general purpose systems,
a single optimized implementation could be used, if the specialized system in which the
algorithm is implemented, and which runs, for example, on a parallel machine, could be
reused as a software component.

Second, the different areas of computer algebra overlap and many of the fundamental
algorithms developed in one area can be used in other areas, too. As a result, in many
specialized systems many algorithms have to be reimplemented because they are needed
for further extensions. This reimplementation is then often done by a group specialized in
another area, who might not implement the best available algorithm but only a well known
one.

Third, solving problems that arise in ‘real world situations’ usually requires a combination
of methods, not only from computer algebra but also from other areas.

Below we will describe how we achieved such a combination of systems in the case
of a high-performance Gröbner basis solver which can use the power of shared-memory
multiprocessors. Thus this software will perform best on special hardware and should not
be ported to all platforms on which a potential user works.

The encapsulation of the parallel system and access to it is done with Java using various
techniques that are well supported by Java. We use the MathBus[1] exchange format for the
transmission of mathematical data that has been developed over the past few years. We can
easily adapt our software to another exchange format such as OpenMath[2] or use several
formats simultaneously. Having such an exchange format is one important prerequisite
for the combination of various systems. Exchange formats address the data aspect of
the communication between systems. The orthogonal issue of calling the functionality
of a remote system has to be treated by different means. For this purpose we found the
various techniques offered by Java very useful – provided the remote functionality is coarse
grained enough so that the performance penalties given by Java for the communication are
negligible.∗ So we assume that our solution is prototypical for many other systems, too.

The organization of the paper is as follows. In Section 2 we give some background in-
formation about Gröbner basis computations in general and the high-performance Gröbner
solver which we made accessible in particular. In Section 3 we describe the various access
methods we provided and their technical realization. In the concluding Section 4 we discuss
various aspects of the use of Java for our project that will apply to similar projects.

2. BACKGROUND

2.1. Gröbner Bases

The computation of Gröbner bases[4–6] is of central importance in computer algebra.
They have many applications ranging from pure mathematics to the solution of systems of
non-linear polynomial equations arising, for example, in the inverse kinematic problem in

∗For low or medium grained applications the use of a CORBA object broker is advantageous. We refer to [3]
for a case study which shows that CORBA object brokers can be used to efficiently call remote functionality of a
surprisingly low granularity.
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PARALLEL COMPUTER ALGEBRA SOFTWARE 1181

robotics. Full sections of conferences like ISSAC[7–9], or even entire conferences[10] are
devoted to the topic of Gröbner basis computations. Thus we can only give a rough sketch
of the topic and refer to the literature for further details.

Given a set P of (in general non-linear) polynomials, a Gröbner basis is a unique
normal form GB(P) for P with the same roots. The shape of GB(P) depends on an
ordering on the monomials, the so-called term ordering. Different orderings are useful for
different purposes; for example, total degree orderings usually lead to fast Gröbner basis
computations, and lexicographic orderings lead to systems from which the actual solutions
can be extracted relatively easily.

Given any P and term order >, Buchberger’s famous algorithm will compute GB>(P)
in finite (but possibly astronomic) time. Given any GB>(P) and another term order �,
the Gröbner walk algorithm[11,12] will compute GB�(P) = Walk�(GB>(P)) in fi-
nite time. Practical experience shows that it is often much more efficient to compute
Walklex(GBtot(P)) than GBlex(P). Experience has also shown that Buchberger’s algorithm
is extremely difficult to parallelize.

The speed of a Gröbner basis computation heavily depends on several other parameters,
whose choice has been the topic of intense research. The result of the computation will
be independent of the choice of these internal parameters. However, they usually have a
dramatic influence on the necessary computation time. There is no best choice for any of
these internal parameters, but there are examples for which each of the possible settings
performs better than the others. However, some heuristics have been developed that will
yield good results for many examples. We included one of these heuristics into our system,
cf. Section 3.1.

Each of the general purpose computer algebra systems has an implementation of Gröbner
basis algorithms, but because of the algorithmic developments these implementations per-
form worse in general than the recent high-performance implementations. To our knowledge
the so-called Fractal Gröbner Walk[13] – an improved Gröbner walk procedure – has not
been integrated into one of the general purpose systems up to now. On the one hand, since
the computation time for Gröbner bases given by application problems very often ranges
from several minutes or hours to intractably large, fast Gröbner basis algorithms are im-
portant. On the other hand – since the computation of a Gröbner basis is very often only
one step in a series of computations – the integration of a fast Gröbner basis engine into a
larger environment is also important.

Thus the general situation sketched in the introduction applies particularly well to
Gröbner basis computations.

2.2. High-performance Gröbner basis computation

The high-performance Gröbner solver that we made available via the WWW is an improve-
ment on the system described in [14]. It is based on the parallel computer algebra nucleus
PARCAN[15]. This nucleus gives a very efficient implementation of arbitrary precision
integers on the basis of GNU/MP and of lists, including an automatic garbage collection.
Using the parallel features of PARCAN the Gröbner solver shows remarkable speed-ups on
shared-memory multiprocessors. Even super-linear speed-ups due to strategy effects have
been observed[14]. It currently runs on multi-processor SUN SPARC stations.

On the algorithmic side, improvements of the Gröbner walk technique have been
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developed[12,16] and implemented. So far the most efficient of these is the Fractal
Walk[13], which is the version we use in the system described in this paper.

3. ACCESSING THE HIGH-PERFORMANCE GRÖBNER BASIS SOFTWARE
VIA THE WWW

We provide three different access methods to our high-performance symbolic software.
Methods that allow scripting access to the high-performance solvers out of a general

purpose algebra system are one of them. This method of access is described in Section 3.1.
A graphical user interface in the form of a Java applet will be more convenient for casual

users. Using copy and paste operations data can be transferred from an application into the
data input Window of the applet. The format of various algebra systems can be used for
input and output to the applet. Support for other formats can be added dynamically by a
user, if converters to the new target system and our internally used format are provided.
The graphical user interface in this sophisticated version uses several features of JDK 1.1.
We describe it in more detail in Section 3.1.

To allow access to the system from older browsers we still export a simpler graphical
user interface that uses JDK 1.0.2.

The graphical user interfaces can be reached from the following URL:
http://www-sr.informatik.uni-tuebingen.de/projects/webcomponents/.
If you are interested in the software for scripting access, please write an e-mail to the first
author.

3.1. A sophisticated graphical Java interface

For a description of the functionality of this user interface, we refer to the URL given
above. From this Web page, the Java applet building the graphical user interface itself and
some commenting Web pages can be reached. Below we focus on some important points
in its internal organization.

3.1.1. Dealing with different representations of mathematical data

Different computer algebra systems often use different syntactic representations of the
mathematical objects they are dealing with. Since input of data into our graphical user
interface will be typically achieved by copy and paste operations of textual representations
of mathematical expressions out of a general purpose computer algebra system, we support
several formats for input and output of mathematical data.

Internally we use a single exchange format and provide parsers and converters from and
to other formats. The exchange format we use is the MathBus[1], which was especially
developed as a bridge between different systems, especially computer algebra systems.
However, we can easily adapt our software to another exchange format such as OpenMath
[2] or can use several formats simultaneously.

Up to now we have implemented converters from and to the computer algebra systems
Maple and Mathematica and the format used by the parallel Gröbner solver. Converting
data from the MathBus into another format is quite easy, since the MathBus format is a
quite general expression tree format. Converting data from Mathematica into the MathBus

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1179–1188 (1998)
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Figure 1. Schematic overview of software components: graphical user interface

format could be done with a parser generator.∗ We used the Java Bison system[17] for this
purpose. Incorporating converters for other algebra systems – such as Mupad, Macsyma, or
Reduce – can be done by simply adapting the grammar of the parser for the algebra system
and writing the straightforward conversion from the MathBus format into the format of the
new system. So an extension to many other formats is straight forward.

The converter classes all inherit from a common class, and the choice of the actually
used converter class is done via the dynamic class selection and load mechanism of Java.
The user can choose a converter via selection from a list or by providing its name. Thus
an unlimited number of new converters can be included in the graphical user interface
dynamically, if the appropriate naming conventions are obeyed.

3.1.2. Choice of a good computation strategy

The result of a Gröbner basis computation is independent of the value of several internal
parameters, but their appropriate choice usually has a dramatic influence on the computation
time. Many users who need the result of a Gröbner basis computation but are not researchers
in the field of Gröbner bases will find it valuable if the system provides a good heuristic
choice for these internal parameters. Thus we have included the computation of such a
heuristic into our applet. Having the full power of an object-oriented language such as Java
available at the WWW-interface, this is a relatively easy task. However, using a simpler
interface such as an HTML-form, this useful functionality would be hard to provide.

3.1.3. Internal organization of the different computations

A schematic view of the internal organization is given in Figure 1. The graphical user
interface, the functions that select a computation strategy and the converters from the
different data formats are all written in Java and will be performed on the client computer.

The following programs will be executed on our parallel server computer: the parallel

∗The same holds for the format used by Maple or the parallel Gröbner solver.
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Gröbner solver; a high-performance implementation of the Fractal Gröbner Walk; and a
small C program based on the SACLIB computer algebra library[18] which expands poly-
nomials. This function serves as an improvement to the user friendliness of the interface,
because the user might give polynomials in non-expanded form, but the Gröbner solver
expects its input polynomials in expanded form. These programs are wrapped into Java
classes. The connection between the applet residing on the client and the classes on the
server side is achieved via RMI. For performance reasons the first two of these programs
should always run on a high-performance computer. The last of these functions could be
included into the applet. However, using an existing C-library the required functionality
could be implemented with little effort in C, whereas porting the needed functionality from
the SACLIB to Java would have required a much greater effort. Thus this functionality is
also assigned to the server machine. Wrapping it as a Java class and making it available to
the applet via RMI gave almost the same functionality as a direct Java implementation and
allowed the reuse of proven C-code.

RMI allowed a very nice integration of this wrapped high-performance code into the Java
code written for the client. Besides the interaction of the user with the GUI, the general data
flow is that the input data are parsed into MathBus format according to the user specified
parser. The input polynomials are normalized by the component that expands polynomials,
and the result is used as input to the Gröbner solver, together with the user input of the term
ordering induced by the ordering on variables specified by the user. Moreover, this function
also gets the ‘internal parameters’ as input, which were either chosen by our heuristics or
specified by the user. The return value of this function is the desired result unless a Gröbner
Basis with respect to the lexicographic ordering has to be computed using the Fractal
Gröbner Walk. In this case, the return value is the input to the Gröbner walk component,
together with the parameters for start ordering and target ordering, which are known to the
program.

This data flow requires several calls to the remote objects together with some minor
computations in the client. The implementation of the code for these computations and the
required calls to the remote objects could be written almost as if only local calls to Java
objects had to be performed. In particular, the treatment of exceptional states – parse errors in
the converters written in Java, out of memory exceptions for the remote components or other
special states such as a failure in a Gröbner basis computation – could be done uniformly by
the Java exception mechanism, independent of their status as local or remote calls. For this
purpose the Java wrapper for the C-programs examine and transform diagnostic output of
the C-programs into Java exceptions, which are then transported transparently to the client
by RMI. The output of the C-programs which constitute the result of the computation is
wrapped into the return value of the Java wrapper function.

Thus this program infrastructure is well suited to be enhanced by additional software
components – for example, ones that solve a system of non-linear equations via a Gröbner
basis computation. The program complexity for connecting such remote components is not
higher than using local Java method calls in the implementation of a new Java method.

3.2. Scripting access to the high-performance software

Although access via one of the graphical user interfaces described above is much more
convenient for a casual use of the parallel software, frequent users might want to have
scripting access to our parallel system out of their own algebra systems.

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1179–1188 (1998)
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Figure 2. Schematic overview of software components: scripting access to general purpose system

We thus provide Java classes that allow the various general purpose systems to encapsu-
late the remote access to the parallel Gröbner solver in a function of the particular system.
To overcome the security restrictions on applets these classes have to be installed on the
client computer. Most of the client side classes of the sophisticated graphical user interface
(cf. Section 3.1) are reused for this purpose, and via RMI they access the identical server
side software as the sophisticated graphical user interface does. A schematic view of these
software components is given in Figure 2.

If a host algebra system allows direct access to Java, these classes can be incorporated
directly. However, the current general purpose algebra systems do not have this feature.
Usually they allow system calls and communication via pipes. Thus for the client side
proxies we have implemented wrapper Java programs that read their input from standard
input, write the result to standard output, and write the values of any exceptions to standard
error. In addition to the parameters of the algebraic functions these programs also take
the name of an algebra system as an additional parameter and perform the appropriate
conversions for the input and output data.

Using these client side Java programs we will provide functions for the computer algebra
systems Maple and Mathematica, which behave to the user in the same way as do the built-
in Maple (resp. Mathematica) functions for Gröbner basis computations, but which use the
scripting access to our parallel Gröbner solver and the Fractal Gröbner Walk component
to perform the computations instead of using a local sequential computation. Since Maple
and Mathematica allow system calls and communication via pipes, the client side Java
programs can be accessed from the Maple (resp. Mathematica) functions in this way. The
client side Java programs access the server functionality via RMI in the same way as it is
accessed from the graphical user interface. The heuristics to choose the internal parameters
will be computed in the Maple (resp. Mathematica) functions we provide.

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 1179–1188 (1998)



1186 A. WEBER ET AL.

3.3. Use of Java Beans

So far we have not provided our Java components as Java Beans but as simple applets
and stand-alone Java programs and Java class libraries. Using Java Beans for a graphical
user interface would have the advantage that frequent users could store their own default
settings instead of using the ones provided by us. However, there are few default settings
independent of the computation of a heuristics for the choice of the internal parameters.
Changes in these heuristics cannot be easily accomplished by the user by the currently
available Java Beans mechanisms. Thus up to now the use of Java Beans seems to have
few advantages over a simpler Java applet for our particular application.

Moreover, we think that for frequent users the access method of choice is to use the
scripting interface out of their general purpose algebra systems. Up to now the use of Java
Beans gives few advantages for the scripting interface: some of our functions need an
additional parameter which could be avoided using Java Beans, but this is a minor issue in
the few lines of code that have to be written once for any target algebra system.

As soon as the general purpose computer algebra systems provide direct access to Java
and Java Beans, the use of Java Beans will be reconsidered. Nevertheless, it takes only a
relatively minor effort to transform our components to Java Beans.

4. CONCLUSION

The idea of software components is certainly not a new one; for example, the success of
UNIX can be attributed in part to the concept of many small software tools that can be
combined to more powerful ones by pipes or shell scripts.

However, Java based software components have all the advantages of UNIX components
but also give several important enhancements over the UNIX concept. The arguments to
a UNIX software component are usually given in the string of command line arguments.
Thus no static argument type checking can be done, but all typing errors in the arguments
of a UNIX component can only be detected at runtime. Wrapping software components,
such as ours, in Java programs gives the full type checking support of a Java compiler to
detect type errors at compile time.

Another very important advantage of Java as a wrapper language is the possibility to use
the Java exception mechanism to reliably communicate exceptional states of our software
components, such as parse errors, out of memory exceptions, or resource limitations that
we have imposed on remote users.

Moreover, Java as a scripting language is much more powerful than the scripting lan-
guages for UNIX shells or similar ones that had to be used otherwise. The support of the
object-oriented paradigm, which has proven to be so fruitful for many larger applications,
is missing in most of the traditional scripting languages.

The use of a single programming language for implementing or wrapping additional
software components such as the parser classes and as a scripting language to connect
different components has several additional advantages:

• It is not necessary that the implementer is proficient in several languages in order to
produce high-quality code.
• A much better interaction between the different components is possible, if they are

written or included within the same programming language.
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• Since the user interface is also written in Java, a much better integration between the
software and the user interface is possible. For instance, the intelligent selection of
a good computation strategy out of user requirements would have been much harder
to realize if the user interface and the scripting language that connects the software
components had been different.

The most important aspect for our purpose was the availability of RMI. Although we
also implemented access to the Gröbner system and to the Gröbner walk in our JDK 1.0.2
interface in a more traditional client server system – using socket communication and cgi-
scripts – the integration of several remote components into one new system was greatly
facilitated by RMI. Connecting several remote components – the Gröbner solver, the pro-
gram computing a Fractal Gröbner Walk, or the small component that expands polynomials
– together with some additional functionality written in Java – such as the converter classes
– can be done in a clear software structure using RMI.

With RMI the wrapped high-performance C-code could be used within Java as if it
had been written in Java. Thus there is no need to port the high-performance code to
other architectures. Since high-performance code is often optimized towards a specialized
architecture, porting this code to other architectures is often not only difficult but would
often yield a suboptimal solution. In this respect we suppose that our solution is not
only prototypical for high-performance computer algebra code, but also for any high-
performance code.

Moreover, this tight integration of code into Java gave the flexibility not only to access
the high-performance code on a remote shared-memory multiprocessor, but also to reuse
some legacy code as a component, which is not bound to a specialized hardware.

Since the parallel Gröbner code should run with the highest possible performance but
any invocation of it is of quite coarse granularity, wrapping the existing code and accessing
it via RMI currently has a much better performance characteristic than translating all of the
Gröbner code into Java.
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2. S. Dalmas, M. Gaëtano and S. Watt, ‘An OpenMath 1.0 implementation’, in W. Küchlin (Ed.),
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of Gröbner Bases, Feb. 1998, London Mathematical Society Lecture Notes Series, vol. 251,
Cambridge University Press.

11. S. Collart, M. Kalkbrener and D. Mall, ‘Converting bases with the Gröbner walk’, J. Symb.
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