
Formal methods for the validation of automotive product
configuration data

CARSTEN SINZ, ANDREAS KAISER,and WOLFGANG KÜCHLIN
WSI for Computer Science, Symbolic Computation Group, University of Tübingen and Steinbeis Technology Transfer Center OIT,
Tübingen, Germany

(Received March 15, 2002;Accepted October 13, 2002!

Abstract

In the automotive industry, the compilation and maintenance of correct product configuration data is a complex task.
Our work shows how formal methods can be applied to the validation of such business critical data. Our consistency
support tool BIS works on an existing database of Boolean constraints expressing valid configurations and their
transformation into manufacturable products. Using a specially modified satisfiability checker with an explanation
component, BIS can detect inconsistencies in the constraints set and thus help increase the quality of the product data.
BIS also supports manufacturing decisions by calculating the implications of product or production environment
changes on the set of required parts. In this paper, we give a comprehensive account of BIS: the formalization of the
business processes underlying its construction, the modifications of satisfiability-checking technology we found nec-
essary in this context, and the software technology used to package the product as a client–server information system.

Keywords: Automotive Product Configuration; Formal Methods; Management of Change; Validation; Verification

1. INTRODUCTION

Product configuration plays a key role in markets for highly
complex products such as in the automotive or computer
industry~McDermott, 1982; Günter & Kühn, 1999!. These
industries manage to deliver personalized products with the
price advantages of mass production by allowing custom-
ization within standardized high-volume product lines.

Especially in Europe, car buyers prefer built to order
products created by customizing each vehicle from a very
large set of configuration options. For example, the Mer-
cedes C-class of passenger cars allows more than 1,000
options, and an average of more than 30,000 cars will be
manufactured before an order is repeated identically. Heavy
commercial trucks are even more individualized, and every
truck configuration is built only a very few times on average.

Electronic product data management~PDM! systems are
therefore employed to maintain all knowledge about con-
figuration options within a product line. The need for con-
figuration~or use of configuration data! may occur at several

stages in the production chain, like sales, engineering, as-
sembly, or maintenance. The requirements on the PDM sys-
tem may differ greatly from one stage to the other~Wright
et al., 1993; Timmermans, 1999!. However, the majority of
commercially available configuration tools concentrate on
the sales aspect, as the survey of Sabin and Weigel indicates
~Sabin & Weigel, 1998!.

In this paper, we focus on the configuration requirements
from the engineering and manufacturing departments, which
are similar in the sense that the product has to be consid-
ered not merely in functional~sales! categories, but down
to the level of parts assembly. Especially in the automotive
industry, where, as in our case, an individual vehicle can
consist of up to 15,000 parts, this rules out the use of con-
ventional sales configurators. Haag~1998! introduced the
notions of high-level and low-level configuration, where
the low level is characterized by noninteractive, procedural
processing. In this sense we address low-level configura-
tion here.

DaimlerChrysler AG employs the mainframe-based PDM
systemDialog to manage all possible configurations of the
Mercedes lines of passenger cars and commercial vehicles.
Dialog maintains a database of sales options and parts

Reprint requests to: Carsten Sinz, WSI, Sand 13, 72076 Tübingen,
Germany. E-mail: sinz@informatik.uni-tuebingen.de

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2003!, 17, 75–97. Printed in the USA.
Copyright © 2003 Cambridge University Press 0890-0604003 $16.00
DOI: 10.10170S0890060403171065

75

together with a set of logical constraints expressing valid
configurations and their transformation into manufactur-
able products. Some of the constraints represent general
rules about valid combinations of sales options; other for-
mulae express the condition under which a part is included
in the order’s parts list. It was found that it is not humanly
possible to keep a database of thousands of logical con-
straints that is absolutely defect free, especially because it
is under constant change that is due to the phasing in and
out of models and parts. Thus, formal verification method-
ologies are highly desirable to weed out residual defects
that are hard to capture by traditional quality assurance
methods.

Therefore, our system BIS~Küchlin & Sinz, 2000! was
developed as an extension toDialog to help the product
documentation staff increase the quality of the product data.
We first created a formal model of the business processes
encoded inDialog and converted global consistency asser-
tions about the product database into formulae of an ex-
tended propositional logic. BIS itself employs satisfiability
~SAT!-checking techniques to draw logical conclusions from
sets of Boolean configuration constraints. By plugging into
the existing formal product documentation, BIS can vali-
date consistency assertions on the constraints database and
calculate the effects of configuration changes on the set of
required parts~Küchlin & Sinz, 2000; Sinz & Küchlin, 2001!.

BIS is especially geared toward the industrial context. It
is packaged as an object-oriented client–server information
system with an application-specific graphic user interface.
BIS works on an extended propositional logic that allows a
compact formulation ofn-out-of-k constraints, which are
common in our application area. Its prover component pro-
vides both efficiency on large inputs~Kaiser & Küchlin,
2001a! and an explanation of failed proof attempts, that are
invaluable for locating defects in the database~Kaiser &
Küchlin, 2001b!. BIS therefore preserves the formula struc-
ture of the database, avoiding conjunctive normal form
~CNF! conversion; for unsatisfiable sets it calculates a min-
imal set of those constraints and their constituents that are
the root cause of the failed proof~Kaiser, 2001; Kaiser &
Küchlin, 2001b!. We have also developed parallel SAT
checkers to test the speed limits of the system~Blochinger
et al., 2001!.

1.1. Configuration at the engineering stage

At the engineering stage, a PDM system is employed to
maintain a database that describes, independent of any ac-
tual orders, the total set of products that the manufacturer is
able and willing to build. Due to the size of this set, its
description must be made implicit by listing all constraints
governing admissible combinations of options~Freuder,
1998!. The origin of the constraints may vary from market-
ing to physical to legal considerations.

Traditionally, a sales person will discuss the individual
order with the customer. The engineering PDM system is

then used to complete the order by implied equipment op-
tions~consider a police car! and to check the validity of the
order by running it against the constraints set. Every flaw in
the constraints may lead to a valid order being rejected,
resulting in lost revenue, or an invalid~nonconstructible!
order being accepted, possibly resulting in the assembly
line being stopped.

BIS can help to discover such flaws by formally verify-
ing consistency conditions on the constraints, without test-
ing any real or imaginary orders. As an example, BIS can
check for each of the thousands of sales options whether
they can possibly be contained in at least one valid~manu-
facturable! order. BIS can also deal with partially specified
orders, checking, for example, which engine options are
still valid given a preselected body and interior or which
parts cannot possibly be part of any vehicles that go to a
certain country. This use of BIS concerns the validation of
a static set of constraints.

1.2. Configuration at the manufacturing stage

The manufacturing PDM system determines the bill of ma-
terials needed for assembly at a certain plant on a certain
date. Flaws in the manufacturing constraints may lead to
superfluous parts ordered or necessary parts lacking. Prod-
uct documentation at the manufacturing stage is character-
ized by frequent temporal change: Parts may be available
or unavailable at certain points in time or may be ex-
changed by successor models; subassemblies may shift from
in-house production to external procurement; and assembly
lines may be reconfigured. Additionally, changes on the
engineering level usually have a direct impact on the man-
ufacturing documentation. To name just a few, think of the
phasing in and out of supplementary equipment or whole
model lines or sharpened or relaxed constraints between
parts or subassemblies due to further product development.
Here, configuration requirements are similar to the engi-
neering stage, in that the product has to be considered not
merely in functional~sales! categories but down to the level
of parts assembly.

A specialized version of BIS~Sinz & Küchlin, 2001!
contains two methods, the6d-method and the 3-point ap-
proach, to compute the changes induced on the parts level
by high-level product changes. These methods generate prop-
ositional formulae that are then checked for satisfiability.
Thus, both model year change and production relocation
can be handled.

1.3. Prover technology

The BIS system is founded on state of the art SAT-checking
techniques. Our initial feasibility study determined that~at
the time! no other technique we tried could come close in
speed; in particular, no variation of binary decision dia-
grams that we tried could handle formulas of our sizes.
SATO ~Zhang, 1997! was the first system with which we

76 C. Sinz et al.

could prove an interesting set of assertions on realistic in-
puts. Subsequently, we developed our own SAT checkers in
response to the demands of our application: speed, expla-
nation, and improved documentation logic.

First, our prover avoids the initial conversion of the input
to CNF. Our formulas are so large that naive CNF conver-
sion by applying the distributivity law failed for lack of
memory and time. Advanced methods~Tseitin, 1970;
Somenzi, 1998! were successful, but they still took about as
long as the SAT checking proper. Speed is important in our
application, because thousands of theorems must be proved
while the documentation specialist waits.

Second, an explanation component was added to BIS. In
industrial applications, the real value of formal validation is
as a sophisticated debugging aid rather than as a tool for
total verification. Even if all validations succeed at the end
of a development cycle, there is no guarantee that the prod-
uct documentation is totally correct. However, every time a
validation attempt fails, it is desirable to understand the
cause and correct the documentation~or the product itself!.
In our case, the product documentation is set up by a group
of experienced application experts and is almost defect free.
A failed assertion usually points to an exotic~but possibly
costly! case that is rather difficult to trace for a human
expert. Therefore, it is absolutely necessary for BIS to
quickly and succinctly explain the causes of a failure to
prove an assertion. In our case a failed proof corresponds
to an unsatisfiable set, and BIS computes a minimal set of
constraints and their constituents that are the root cause of
unsatisfiability. The need for explanation is a further reason
to avoid CNF conversion, because this destroys the original
formula structure and may introduce extraneous variables,
which renders an explanation in terms of the CNF form
rather useless.

Third, one of the best means to avoid defects in the prod-
uct documentation is an adequate documentation logic that
allows natural and perspicuous formulations of the busi-
ness constraints. Boolean logic is a good choice because it
is easy to understand and admits decision procedures and
efficient provers. However, popular constraints such as “a
car must have exactly one motor out of a set of options”
translate into rather complex sets of constraints. Therefore,
we extended Boolean logic by a general selection operator
and built a prover for the extended logic. This approach
also trades documentation space for verification time.

The remainder of this paper is organized as follows. In
Section 2 we begin with an exposition of the documenta-
tion method used at DaimlerChrysler. In Section 3 we give
a rigorous formalization of the algorithms used for order
processing and configuration in the engineering and manu-
facturing stage, followed in Section 4 by a summary of
validation properties we identified as important, together
with their translations into formal consistency assertions.
In Section 5 we describe the management of change at the
manufacturing level and how it can be handled using for-
mal methods. In Section 6 we then turn to special demands

on the proof procedure like explanation and their integra-
tion into BIS, followed by a short exposé of the BIS soft-
ware architecture in Section 7. In Section 8 we summarize
our experiences with formal methods in industry, in Sec-
tion 9 we compare them with related work, and in Sec-
tion 10 we give a brief conclusion.

2. PRODUCT DOCUMENTATION FOR
DAIMLERCHRYSLER’S MERCEDES LINES

The PDM systemDialog is used in its two variants,
Dialog/E andDialog/P, in the engineering and produc-
tion departments, respectively, of DaimlerChrysler AG for
configuration of its Mercedes lines. Our description is in
terms of the abstract logical model that we had to derive for
our verification purposes~Küchlin & Sinz, 2000!.

2.1. Documentation at the engineering stage

In the terminology of Sabin and Weigel~1998!, Dialog is a
rule-based reasoning system for batch configuration. It con-
sists of function-oriented and parts-oriented levels. The for-
mer is driven bycodesandrules. Rules on this level serve
two functions: they describe constraints between codes and
are used for completing partially specified orders. Codes
may either beequipment codes~sales options! or control
codes~internal steering codes, e.g., for production!. The
functional level constitutes a description of the set of man-
ufacturable products from an engineering point of view,
which we will also call theproduct overviewin the follow-
ing. The parts-oriented level is characterized by a modular-
ized hierarchical parts list, where alternatives are selected
based on rules. These rules contain the function-oriented
sales and control codes and therefore provide the mapping
from the high-level functional to the low-level aggrega-
tional views. The structure of the product is reflected in the
module hierarchy. More information on the documentation
method and a synopsis of the requirements from different
departments can be found elsewhere~Küchlin & Sinz, 2000;
Kaiser & Küchlin, 2001b!.

A customer’s order withinDialog/E consists of a model
line selection together with a set of equipment codes that
describe additional features. Each code~equipment code or
control code! is represented as a Boolean variable in the
documentation. It is set totrue ~1! exactly when the piece
of equipment is chosen by the customer. Thus, an order is a
fixed assignment to the propositional variables of the prod-
uct documentation. Alternatively, we identify an order with
the set of codes that are assigned to true. For homogeneity,
parts may also be viewed as Boolean variables, although
this correspondence is utilized neither in theDialog sys-
tem nor in our formalization. Orders are processed in three
major steps, as depicted in Figure 1: order completion, con-
structibility check, and parts list generation. All of these
steps are controlled by rules. Rules can be of three different
types, reflecting the three order processing steps. All rules

Formal methods for validation of product configuration data 77

R are of the formR 5 ^Fx, x&, whereFx is a propositional
logic formula andx is the data entity to which the formula
is assigned, which can be either a code or a part. A rule’s
formula is built from the usual Boolean connectives∧, ∨,
and ¬, and from the codes serving as propositional vari-
ables. No restrictions are placed upon the structure of the
rules’ formulae, so there is no particular restriction to Horn
formulae. The whole order processing is controlled by eval-
uating the rule’s formulae under the~complete! variable
assignment induced by the customer’s order and executing
suitable actions based on whether the formula evaluates to
true ~1! or false~0!.

Let us denote byS.x andC.x the respective unique sup-
plementing and constructibility rules that are associated with
each codex. For a supplementing ruleS.x or a construct-
ibility rule C.x, we use the notationS~x! or C~x!, respec-
tively, to refer to the rule’s propositional formula. Similarly,
for parts selection, we use the notationP.p to indicate the
unique part selection rule of partp1 andP~ p! to denote the
formula of ruleP.p. Table 1 shows examples.

We now describe the actions of each rule type in more
detail.

Supplementing rules:The order completion or supple-
menting process adds implied codes to an order. The
supplementing formulaS~x! of rule S.x specifies the
condition under which codex is added to orderO.
WhenS~x! evaluates to true under the variable assign-
ment induced byO, that is, whenO is a~logical! model
of S~x!, then codex is added to that order. The order
completion process is repeated until no further changes
result. We denote byO

S.x
&& O' the action of adding

codex to orderO resulting inO' when formulaS~x!
evaluates to true underO.

Constructibility check rules:Constructibility of a custom-
er’s order is checked according to the following scheme:
For each codex there is a constructibility ruleC.x. Its
formulaC~x! interrelatesx with other codes by encod-
ing, e.g., requirements or exclusion conditions for using
codex. A code is calledconstructibleor valid within a
given orderO if C~x! evaluates to true underO. All

codes of a possibly supplemented order must be valid
in a constructible order, and nonconstructible orders
are rejected.

Parts selection rules:The parts list is hierarchically struc-
tured using modules, positions, and variants. Parts
are grouped into modules depending on functional
and geometrical aspects, positions contain mutually
exclusive alternative parts, called variants, for each
installation point. A partp is selected based on its
part selection ruleP.p: part p is included into the bill
of materials forO if and only if the rule’s formula
P~ p! evaluates totrue under the checked and possi-
bly supplemented orderO. Consider, as an example,
an orderO consisting of the codes M628 and 494,
that is, O 5 $M628,494% . Assume that this order is
left unchanged by the order completion process and
that it is constructible. Then the part selection rules
are evaluated underO’s associated variable assign-
ment, which is the functionO~M628! 5 O~494! 5 1
andO~x! 5 0 for all otherx. Evaluating, for example,
81263A’s part selection rule shown in Table 1, we
find that it evaluates to true, becauseO~M628! 5 1
and O~260! 5 0. Therefore part 81263A is included
into the bill of materials for orderO.

The exposition laid down in the last section presents a
simplified view of the functioning of theDialog system.
The real system knows, for example, different kinds of con-
structibility and supplementing rules. It is also possible to
have several rules of a kind for each code or no rules at all.
Moreover, part selection rules use a different formula en-
coding. A formalization of this less abstract view ofDia-
log can be found elsewhere~Sinz, 1997!.

We will now turn to documentation at the manufacturing
stage and explain the extensions relative to the engineering
documentation just presented.

2.2. Documentation at the manufacturing stage

Engineering product documentation reflects an idealized
snapshot of the engineering capabilities at a fixed point in
time. It represents the most up to date picture of what en-
gineers are able to accomplish. This differs from product
documentation at the manufacturing level, where other is-

1More precisely, we refer to the positions of parts rather than to the
parts themselves~Küchlin & Sinz, 2000!

Fig. 1. Processing a customer’s order.

78 C. Sinz et al.

sues have to be taken into account, for example, is a part
available at a certain point in time? At which production
line can the product be assembled? Which version of the
product is to be manufactured?

Mainly, the difference between engineering and manu-
facturing documentation is the inclusion of time dependen-
cies and production circumstances into the latter. Within
Dialog/P this is accomplished by adding a validity time
interval and timing control codes to each rule of the
Dialog/E system. InDialog/P, a rule R is therefore
equipped with a validity time interval2

I ~R! 5 @ta~R!, tv~R!!,

whereta~R! # tv~R!, indicating the earliest and latest time
at and between which ruleR is valid; R can be either a
supplementing ruleS.x, a constructibility ruleC.x, or a part
selection ruleP.p. An invalid rule is interpreted as switch-
ing off its action of supplementation, constructibility con-
trol, or part selection. To enable more complex temporal
processes such as the phasing in and out of parts, each rule
additionally owns starting and stopping control codes CCa

and CCv, respectively, which allows an override of the time
interval limits. Intuitively, the meaning is as follows: CCa

anticipates the start of the time interval, that is, ruleR is
valid even before the start of the specified time interval,
provided that the starting control code CCa~R! is present in
the order. Analogously, CCv anticipates the end of the in-
terval in the sense that ruleR is invalid even before the end
of the time interval, as soon as the stopping control code
CCv~R! occurs in the order. The exact formalized meaning
will be given below.

3. FORMALIZATION OF THE
DOCUMENTATION SYSTEM

Although the rules ofDialog are propositional logic for-
mulae and therefore have a clear semantics, this does not
necessarily imply a likewise clear semantics of the docu-
mentation system. This is due to the algorithms built into
Dialog to interpret and execute rules. For example, the
order in which rules are checked and codes are added dur-
ing the order completion process can be deeply embedded

in Dialog’s algorithms and depend on facts not visible to
the documentation system user. As a consequence, we ei-
ther have to include all the algorithmic details in our con-
sideration or abstract from them in our examinations. We
have decided on the latter.

Ignoring the algorithmic details of order processing, we
concentrate on the result of the overall order processing
schema, that is, we try to find a manageable representation
of the set of all constructible orders~which is the product
overview! in one propositional formula. This semantics of
the product overview in turn builds on the semantics of
individual rules, which is now introduced. DaimlerChrysler
does not use this semantics at any point withinDialog to
check individual orders, but it is of great help in analysing
the system, and to express consistency assertions about the
rule base as a whole. A justification of our propositional
verification semantics and proofs connectingDialog/E’s
rules with it can be found elsewhere~Küchlin & Sinz, 2000!.
In a first step, we only consider the semantics of the
Dialog/E system.

In our context, the verification semantics of a rule is a
propositional formula, denoted byv{b . Thus, for example,
vC.xb denotes the semantics of constructibility ruleC.x. For
supplementing and constructibility rules, the verification
semantics can also be viewed as a postcondition that holds
after successful execution of the rule byDialog. For part
selection rules, the semantics denotes the condition under
which the part is included in a given order.

In Figure 2, formal definitions of the rule semantics are
shown, together with some derived formulae describing fur-
ther important properties: Formula PO describes the prod-
uct overview, that is, the set of all constructible, fully
supplemented orders. This set is characterized by the prop-
erty that for each codex out of the setC of all available
codes two properties hold: first, as a result of the supple-
menting rules’ semantics, for each order satisfying the sup-
plementing formulaS~x!, the codex itself has to be contained
in that order. This reflects the fact that an order that satisfies
S~x! but does not containx is not fully supplemented. How-
ever,x may be part of a fully supplemented order even if
S~x! is not satisfied. Second, as a result of the construct-
ibility rules’ semantics, if codex is part of the order, then its
constructibility conditionC~x! must hold. Thus, a construct-
ible and fully supplemented orderO is a logical model of
PO ~i.e., O 65 PO! and partp is included in the bill of ma-
terials for an orderO if O 65 vP.pb .2By @a,b# and~a,b! we denote closed and open intervals, respectively.

Table 1. Rule examples

Rule Type Formula

S.231 Supplementing 494∧ ~M113 ∨ M628! ∧ ~2XXL ∨ 494∨ 403L ∨ 406L! ∧ ¬337
C.231 Constructibility ~M113 ∨ M628 ∨ ~~M112 ∨ M613! ∧ ~R ∨ 249! ∧ ~2XXL ∨ 494∨ 403L ∨ 406L! ∧ ¬337!
P.81263A Part selection ~M613 ∨ M628! ∧ ¬260

Formal methods for validation of product configuration data 79

As an example, consider the following set of rules for the
product overview:

S.x 5 ^¬z ∨ ¬y, x& C.x 5 ^¬y, x&

S.y 5 ^z, y& C.y 5 ^z, y&

S.z 5 ^⊥, z& C.z5 ^x ∨ ¬y, z&. ~1!

Then, for example, codex is added to an orderO if y or z is
missing, andx is constructible only ify is not part of the
order, whilez is constructible if eitherx is also contained in
O or y is missing. The verification semantics ofS.x is vS.xb 5
¬z ∨ ¬y] x and that ofC.x is vC.xb 5 x] ¬y. Therefore,
we have as the formula for the product overview~PO!

PO5 ~¬z ∨ ¬y] x! ∧ ~x] ¬y! ∧
~z] y! ∧ ~ y] z! ∧

~⊥] z! ∧ ~z] x ∨ ¬y!,

which simplifies to PO5 x ∧ ¬y ∧ ¬z. Thus, the only
constructible order that can possibly appear at the part se-
lection stage isO 5 $x% .

This semantics is suitable forDialog/E, but because it
does not consider validity time intervals, it has to be ex-
tended by precise semantics for temporal aspects in order to
be appropriate forDialog/P. The extended semantics is
shown in Figure 3.

The general time-dependent semanticsvF, t bR of formula
F belonging to ruleR generates a formulaF ' representing
the interpretation of formulaF at time t, considering the
control codes and timing intervals of ruleR. Before starting
time ta of rule R, the timed formulaF ' is only valid if
starting control code CCa is set and stopping control code
CCv is not set. Betweenta andtv the rule is valid as long as

the stopping control code is not set, and aftertv the rule is
never valid. Note that, although an invalid rule’s formula is
always equivalent to⊥, the interpretation of the whole rule
can differ. Thus, an invalid formula in supplementing rule
S.x generates the rule semantics⊥] x, which is equivalent
to Á, and thus switches off the supplementation of codex.
On the other hand, an invalid formula in a constructibility
ruleC.x generates the rule semanticsx] ⊥ or, equivalently,
¬x, which excludes codex from any order, thus switching
off constructibility of codex. Product overview, order va-
lidity, and part selection are straightforward extensions of
their untimed counterparts.

There are two final remarks. First, the range of the start-
ing and stopping timesta and tv can be extended by the
pseudo-values1` and2` in order to model unbounded
time intervals. Second, if the control codes are not set, they
are initialized to their default value⊥. Thus, in the case of
unspecified control codes, we get a simplified timed rule
semantics:

vF, t bR 5 H F if ta~R! # t , tv~R!,
⊥ otherwise.

4. MAINTENANCE AND VALIDATION ISSUES

Due to the complexity of automotive product documenta-
tion, some flawed rules in the database are almost unavoid-

Fig. 2. The verification semantics of rules.

Fig. 3. The verification semantics of timed rules.

80 C. Sinz et al.

able and sometimes very hard to find. Moreover, the rule
base changes constantly, even between model year changes,
and rules sometimes introduce dependencies between codes
that at a first sight seem not to be related at all. As the rule
base not only reflects the knowledge of engineers, but also
worldwide legal and marketing restrictions, the complexity
seems to be inherent in automotive product configuration,
and is therefore hard to circumvent.

We subdivide the validation issues into two categories:
static consistency criteriaand dynamic consistency crite-
ria. Whereas the former consider only a fixed snapshot of
the product, and analyze properties of its documentation at
this point in time, the latter also take the evolution of the
product and the production process over a whole period of
time into account, and investigate differences between two
or more situations.

Of course, documentation has its own development and
history by itself. We denote this evolution consisting of
updates to the rules in the documentation system bydoc-
umentation evolutionand distinguish two reasons for
documentation evolution, disregarding purely administra-
tive updates not caused by external events: Either caused
by modifications of the product itself or by changes to
the production environment. We call the associated devel-
opmentsproduct evolutionand production evolution,
respectively.

Typically, these two aspects of evolution are also sepa-
rated in the documentation. Product evolution is mainly
considered in documentation at the engineering stage,
whereas production evolution is part of documentation at
the manufacturing stage. This differentiation also carries
over to the separation into static and dynamic consistency
criteria.

4.1. Static consistency criteria

Independent of the real product’s properties there are con-
ditions that a consistent documentation is supposed to pos-
sess. For example, all parts should occur in at least one
constructible product instance and any equipment code
should be compatible with at least one order. We call these
a priori conditions, because no explicit knowledge of the
product and the constraints governing its constructibility is
needed in order to set up these criteria. We identified the
following database consistency criteria to be of relevance:

Inadmissible codes:Are there any codes that cannot pos-
sibly appear in any constructible order?

Consistency of order completion:Are there any construct-
ible orders that are invalidated by the supplementing
process? Does the outcome of the supplementing pro-
cess depend on the~probably accidental! ordering in
which codes are added?

Superfluous parts:Are there any parts that cannot occur
in any constructible order?

Ambiguities in the parts list:Are there any orders for
which mutually exclusive parts are simultaneously
selected?

Consistency of order completion is based on the assump-
tion that a customer’s order that initially fulfills all con-
structibility rules is not invalidated, that is, changed to an
order that is not constructible any more. Moreover, as the
evaluation order of supplementing rules is not explicitly
settled, the order of actual rule application may influence
the final result. Consider as an example the supplementing
rulesS.x with S~x! 5 ¬z∨ ¬y andS.y with S~ y! 5 z, and an
initial customer’s orderO consisting only of the codez, that
is, O 5 $z% . First applyingS.x and thenS.y results in the
extended orderO' 5 $x, y, z% , whereas first applyingS.y
and thenS.x results inO'' 5 $ y, z% .

Besides these conditions indicating possible documenta-
tion faults, there are other tests that are of a more informa-
tive and synoptic nature:

Necessary codes:Codes that must invariably appear in
each constructible order.

Groups of mutually exclusive codes:Sets of codes from
which at most one can be present in each constructible
order.

Valid additional equipment options:Codes by which a
set of orders can possibly be extended without loosing
constructibility.

Our BIS system does not check these criteria on the basis
of existing ~or virtual! orders, but by calculating logical
conclusions from the product documentation itself.

By incorporating additional knowledge on which car mod-
els can be manufactured and which cannot, further checks
may be performed. Besides requiring additional knowl-
edge, these tests often do not possess the structural regular-
ity of the above criteria and thus cannot be handled as
systematically as the other tests.

4.2. Dynamic validation criteria

Typical questions regarding the evolution of the product
include:

Induced change on the parts level:What are the effects
on the parts level when a change in the product over-
view takes place?

Summary of product changes:Which orders become con-
structible over a period of time, and which become
invalid?

Time intervals with no constructible orders:Is there any
point of time where, according to the documentation,
no products, or no products with a certain property,
can be built?

Formal methods for validation of product configuration data 81

The first of these questions is of the utmost importance
for the production department as we will explain in detail
later on.

4.3. Formalization of consistency criteria

Using the formalization of Section 3, checking consistency
of the documentation system can be grounded on a firm
basis. In the following, we will give encodings of all our
static and dynamic consistency criteria as propositional SAT
problems. Most of the criteria are formulated as proposi-
tional validity problems, but as the unsatisfiability of a for-
mula F is equivalent to the validity of¬F, being able to
check the satisfiability of a formula is completely sufficient.

4.3.1. Encoding of static consistency criteria

Considering the informal static consistency criteria of
Section 4.1, we can now give the following precise valida-
tion conditions:

Inadmissible codes:Codex is inadmissible iff PO] ¬x
is valid.

Superfluous parts:Partp can be removed from a position
in the system documentation provided that PO]¬P~ p!.

Ambiguities in the parts list:Partsp1 andp2, which are
assumed to be mutually exclusive, are never selected
simultaneously provided that PO] ¬~P~ p1! ∧ P~ p2!!
holds.

Necessary codes:Codex is necessarily contained in any
constructible order if PO] x holds.

Groups of mutually exclusive codes:The group of codes
G 5 $x1, . . . ,xn% is mutually exclusive provided that

PO] ∧
1#i, j#n

iÞj

¬~xi ∧ xj !.

Valid additional equipment options:A valid order fulfill-
ing the additional restrictionF can be extended by
equipment optionx iff PO ∧ F ∧ x is satisfiable.

Whereas all these criteria can be formulated without re-
ferring to multiple computation states~regarding the order
processing algorithm!, this is not the case any more when
we consider the question of consistency of the order com-
pletion process. Here, the situation is more complicated, as
references to at least two computation states must be made:
in case of orders invalidated by the order completion pro-
cess, we need to compare states describing the order before
and after adding the supplemented code; in case of ordering
of rule applications we have to compare two states arising
from applying different supplementing steps.

Reference to two different states, that is, two different
variable assignments, is not~directly! possible in proposi-
tional logic. Fortunately, however, the variable assign-
ments corresponding to two different states simultaneously
under consideration are almost identical, and differ only on
very few variables. This enables us to use formula restric-

tions F 6x5b, which are defined for a formulaF, a proposi-
tional variablex, and a Boolean valueb [$0,1% as the
~unique! homomorphic extension of the function

x6y5b 5 H Á if x 5 y, b 5 1,
⊥ if x 5 y, b 5 0,
x if x Þ y,

to the set of all propositional formulae. Informally, the for-
mula restrictionF 6x5b can be understood as partially eval-
uatingF for the assignmentx 5 b.

Formally defining the supplementing action relation
S.x

&& of Section 2.1 we get S.x
&& is the smallest rela-

tion with O S.x
&& O' provided that these three conditions

hold: O' 5 Oø̂$x%, x Ó O, andO 65 S~x!. Thus, the sup-
plementing action relation can be understood as a short-
hand for simultaneous satisfaction of all three conditions.
Here, we identify the order as a set of codesO with the
order as a characteristic function on the set of all known
codesC.

We can now state a lemma allowing assertions involving
several computation states.

Lemma 4.1. Let O S.x
&& O'. Then O' 65 F iff O 65 F 6x51.

(See Küchlin & Sinz, 2000). n

Proof: First, note thatO'5 Oø̂$x% . We prove the lemma
by induction on the structure ofF. The lemma is obvious
for F 5 Á andF 5 ⊥. Assume thatF is atomic, that is,F 5
y for some propositional variabley. We distinguish two
cases. First, ifx Þ y, theny6x51 5 y and, asO'~ y! 5 O~ y!,
the claim holds. Second, ifx 5 y, then, byF 6x51 5 x6x51 5
Á, O 65 F 6x51 holds, andO' 65 F, becausex [O'. Now,
assumeF 5 ¬G. Because~¬G!6x515 ¬~G6x51!, the induc-
tion hypothesis already proves the lemma. The casesF 5 G
∨ H andF 5 G ∧ H are handled accordingly using the fact
that the restriction is a homomorphism. n

Note that the consequence of this lemma also holds for
statesO with O 6² S~x!, but then the supplementing rule
would not be applicable. We are now placed in a position to
formally express the remaining static consistency proper-
ties about the supplementing process.

Consistency of the order completion process:Let CO:5

∧x[C vC.xb be the verification semantics of all con-
structibility rules, that is, CO describes the construct-
ible, but not necessarily fully supplemented, orders.
Then no orders are invalidated by the supplementing
process exactly when

CO ∧ S~x!] CO6x51

holds for allx [C. The order of supplementing rule
application for rulesS~x! andS~ y! is irrelevant pro-
vided the following holds:

CO ∧ S~x! ∧ S~ y!] S~x!6y51 ∧ S~ y!6x51.

82 C. Sinz et al.

The last property is a sufficient, but not necessary, condi-
tion for order invariance, as it even requires permutability
of the two supplementing rules forx andy. The general case
demands for a propositional logic specification of the~lo-
cal! Church–Rosser property for relation

S.x
&&, and there-

fore requires encoding arbitrarily long supplementing chains
that may lead to a reunification of the initially different
orders. A more in-depth discussion of the limitations of our
approach can be found in Küchlin and Sinz~2000!.

4.3.2. Dynamic consistency criteria

Formalizing the requirements of Section 4.2 we arrive at
the following criteria:

Induced change on the parts level:The implications of
changes on the product overview consist of additional
and superfluous parts. We will handle this and various
specializations in detail below.

Summary of product changes:Assuming fixed timest0
and t1 with t0 before t1, the models of formulae
PO~t1! ∧ ¬PO~t0! and PO~t0! ∧ ¬PO~t1! describe
the newly constructible and no longer constructible
orders, respectively.

Time intervals with no constructible orders:Assuming
an additional restrictionF on orders, the timesTF dur-
ing which no orders fulfilling propertyF are construct-
ible is determined by

TF 5 $t 6 ~PO~t ! ∧ F! is not satisfiable%.

Computation of this set of times is accomplished by first
extracting all relevant starting and stopping times

TR 5 $ta~R!, tv~R! 6 R [ø
x[C

$S.x,C.x%%

from the documentation, ordering this set such thatTR 5
$t0, . . . ,tk% for somek and ti , ti11, and then performing
the check whether PO~t ! ∧ F is satisfiable for each sample
point t 5 1

2
_~ti 1 ti11! and 0# i , k. The result for such at

then holds for the whole interval@ti , ti11!.

5. MANAGEMENT OF CHANGE

Many years can pass between the first prototype of a new
product and the last time an instance of it is manufactured.
It is not surprising that during this period of time the prod-
uct itself, as well as the production environment, may un-
dergo considerable change. All this has to be reflected in
the product documentation. Among the many possible
changes a product and its production process can undergo,
we pick out three exemplary situations that make up a huge
part of the changes in the automotive industry. These are
parts exchange, equipment code start-up and expiry, and
assembly line reconfiguration. These scenarios cover changes
of both the product and production environments and in-

clude modifications of both the product overview and the
parts list.

5.1. Typical scenarios of change

5.1.1. Parts exchange

The reasons that make the exchange of parts necessary can
be manifold, for example, technical progress, change be-
tween in-house production and external procurement, or
change of the supplier. The ways in which the exchange is
performedmayalsovary.Theremightbeacutoff dateatwhich
partp1 is replaced immediately by partp2 as depicted in Fig-
ure 4~a!. Or the exchange has to take place over a period of
time during which both variants with either partp1 or partp2

have to be manufactured, and for each product instance it is
exactly determined by control codes which of the two parts
has to be used, as shown in Figure 4~b!. A third possibility is
that the new partp2 has to be used as soon as partp1 runs out
of stock. This is similar to the first case, but now the cutoff
date is not fixed, but variable. As none of our dynamic con-
sistency criteria directly deals with part exchange, we do not
consider this special case any further.

Fixed-time as well as overlapping parts exchange can be
modeled easily with the control code and time interval ad-
ditions ofDialog/P.

In the fixed-time case we get the following conditions
for the selection rulesP1 5 P.p1 andP2 5 P.p2 of partsp1

andp2 to model a parts exchange at timet1:

tv~P1! 5 t1 ta~P2! 5 t1.

The other time valuesta~P1! andtv~P2! may be set to sen-
sible values arbitrarily, and the control codes are left
unspecified.

To model an overlapping parts exchange we need sup-
port from the control codes. Leaving the start time of the
overlap interval open, and assuming the end of the overlap
at timet2, we get:

Fig. 4. Part exchange:~a! fixed time and~b! overlapping.

Formal methods for validation of product configuration data 83

tv~P1! 5 t2 ta~P2! 5 t2

CCv~P1! 5 xc CCa~P2! 5 xc,

wherexc is the control code of the overlap, that is, all orders
containingxc use partp2 and orders not containingxc use
partp1. Again, the remaining time values may be set to any
suitable value, and the control codes not mentioned are left
unspecified. If the interval start time is to be fixed, this has
to be controlled using the constructibility rule of control
codexc. Adding ta~C.xc! 5 t1 we get the behavior depicted
in Figure 4~b!.

5.1.2. Equipment code start-up and expiry

New equipment codes may show up as part of the con-
tinuous development of products. Other equipment codes
may run out because they are not requested by customers
anymore or they have been integrated into standard pack-
ages. Most of these changes are triggered by the engineer-
ing or even the sales department. This is in contrast to the
case of timing control codes, which are set by the produc-
tion department, mainly to handle model year change. Model
year change is an important issue and requires a lot of
redocumentation, as usually quite substantial parts of the
product change from one year to another. Most of the
overlapping parts exchanges mentioned above stem from
this modification.

What makes code startup and expiry a nontrivial docu-
mentation task is that the high-level changes of the product
overview influence the low-level parts structure via the parts
selection rulesP.p. In case of starting and stopping control
codes the direct influence is clearly visible, but this may not
be the case for other codes, or if a timing control code is
used inside a rule.

Such induced, dependent changes are often very hard to
detect, as can be seen from the following example: Assume
a partp with an unrestricted validity time intervalI ~P.p! 5
~2`,1`! and no timing control codes, and a selection rule’s
formulaP~ p! 5 x ∧ y. Furthermore, let the constructibility
formula of codex beC~x! 5 zand assume an intended code
expiry for codez at time t1, which is tv~C.z! 5 t1. Then
after t1, p cannot be part of a valid order, because the expi-
ration ofz induces the invalidity of codex, which forces the
selection rule ofp to false.

What makes these induced expiry parts hard to detect for
the documentation personnel is that the codes planned for
expiry need not occur in the part selection rule as in the
example above. Besides, for complex products, different
persons may be involved in the documentation of change.
Automatic support by a PDM system to find such induced
expiry parts is therefore highly desirable. We now present
our approach to solve this problem.

5.1.3. Assembly line reconfiguration

Our last scenario of change is largely caused by modifi-
cations of the production environment. For instance, assem-
bly lines are reconfigured from time to time to adapt them

to the actual production load. Less frequently, but entailing
considerable changes of the documentation, entire or par-
tial model lines are shifted from one assembly line to an-
other or even between plants.

The challenges for the documentation personnel are sim-
ilar to the case of equipment code change, but they often go
even beyond that. The main problem is to determine the
influence of the change on the parts level with the same
problems as mentioned above.

Moreover, at least in our case, some changes are not
documented, or not documented early enough, or even can-
not be documented at all within the PDM system. This poses
the problem of handling undocumented change. For the pur-
pose of verification, we thus need an external formalism to
specify certain documentation changes that cannot be han-
dled by the PDM system itself.

5.2. Two methods to detect induced change

For the computation of the induced change we developed
two approaches. The first one, called the6d-method, is
suitable for handling short time intervals at a fixed point in
the future, during which considerable already documented
changes are intended to take place. The second one, called
the 3-point method, can also handle undocumented modifi-
cations of the product overview and cope with larger time
intervals.

5.2.1. The6d-Method

With the 6d-method we can determine which parts be-
come superfluous and which are additionally needed after a
critical change that is already known to occur at a fixed
time tc in the future and where the change is already docu-
mented. The procedure works in three steps.

Step 1:Determine the setP1 of needed parts just beforetc:

P1 5 $ p [P 6 ~PO~tc 2 d! ∧ vP.p, tc 2 db !

is satisfiable%.

Step 2:Determine the setP2 of needed parts just aftertc:

P2 5 $ p [P 6 ~PO~tc 1 d! ∧ vP.p, tc 1 db !

is satisfiable%.

Step 3: Compute the set differencesS 5 P1\P2 and
A 5 P2\P1.

The resulting setsSandA give the sets of parts that are
superfluous and are additionally needed, respectively, after
the change. The parameterd has to be chosen such that only
the critical change falls into the time interval~tc2 d, tc1 d!.
Note that this is, at least theoretically, a limiting factor of the
6d-method, as it may be impossible to separate the critical
change from other changes. In practice, this effect occurs
rarely, as the primary interest is in the situation after accu-
mulating all changes at the critical timetc.

84 C. Sinz et al.

5.2.2. The 3-point method

Substantial changes, as required, for example, for model
year change or production relocation, cannot be performed
in the short time interval presupposed by the6d-verification
method. Moreover, some changes cannot easily be mod-
elled within the documentation systemDialog, but fit quite
naturally in the logical formulation used in BIS. We there-
fore developed another methodology to determine induced
change on the parts level. This method also allows simula-
tion and comparison of different future scenarios.

In contrast to the6d-method, the 3-point method is ca-
pable of handling documented as well as~yet! undocu-
mented change. This is accomplished by providing an
external~with respect to the PDM system! formalism for
specifying change. The modifications that can be expressed
within this formalism include

• equipment or control codes becoming valid or invalid
and

• arbitrary code combinations becoming invalid.

In our formalism, changes are specified as modifications
of the product overview’s semantics. We denote the changed
semantics by POCV, A

* ~t !, whereCV is the set of codes for
which the constructibility and supplementing rules are ig-
nored andA is an additional side condition formula. The
changed semantics is defined by

POCV,A
* ~t ! :5 A ∧ ∧

x[C \CV

~ vS.x, t b ∧ vC.x, t b !.

Validation of an invalid codex, which is a code with
constructibility formulaC~x! 5 ⊥, can be achieved by in-
cluding codex into the set of newly valid codesCV, thereby
inactivating the unsatisfiable constructibility formula for
codex. If it should be necessary, a new constructibility or
supplementing rule can be specified as a conjunctive part
of formula A. Invalidation of codes, as well as additional
side conditions, are specified by conjunctively adding for-
mulae toA; for example,¬x indicates that codex becomes
invalid.

For the 3-point method, two points in time,t0 and t1,
have to be fixed, between which the undocumented changes
should occur. Moreover, the modified product overview se-
mantics POCV, A

* ~t ! with a fixed setCV and a side-condition
formula A is employed to reflect undocumented changes.
The 3-point method is composed of four steps:

Step 1:Determine the setPt0 of needed parts at timet0,
i.e. before the change:

Pt0 5 $ p [P 6 ~PO~t0! ∧ vP.p, t0b ! is satisfiable%.

Step 2:Determine the setPt1 of needed parts at timet1
without undocumented changes:

Pt1 5 $ p [P 6 ~PO~t1! ∧ vP.p, t1b ! is satisfiable%.

Step 3:Determine the setPt1
* of needed parts at timet1

including undocumented changes:

Pt1
* 5 $ p [P 6 ~POCV,A

* ~t1! ∧ vP.p, t1b ! is satisfiable%.

Step 4:Compute the set differences

A10 5 Pt1\Pt0 S10 5 Pt0\Pt1

A*0 5 Pt1
* \Pt0 S*0 5 Pt0\Pt1

*

A*1 5 Pt1
* \Pt1 S*1 5 Pt1\Pt1

* .

Here, for example,A10 indicates the additional parts
needed at timet1, ignoring undocumented changes, relative
to the parts needed at timet0. The relationship between the
three sets of parts and the difference sets are graphically
illustrated in Figure 5.

To determine the impact of an intended product overview
change on the part usage, we have to take a look at the
difference sets. The setsA*00S*0 indicate the overall change
betweent0 and t1 if the intended~undocumented! change
really is performed, including all changes induced by al-
ready documented events. The difference setsA*10S*1 re-
flect the changes induced at timet1 by the undocumented
modifications alone. Moreover, and similar to the6d-
method, the setsA100S10 only show the impact of already
documented changes during the time interval~t0, t1!.

5.2.3. Discussion of both methods

Comparing the two methods, the6d-approach offers the
advantage of simplicity. To find out the impact of a change
on the parts’ world only the point in time of this change has
to be specified. On the other hand, the intended modifica-
tion already has to be documented, and the time of the
change has to be fixed. Whereas this is usually the case for
planned, regularly occurring events like code start-up and
expiry due to model year change, this may not be the case
for other product modifications, for example, by further
product development. Here the 3-point method can play out
its strength of handling even undocumented modification

Fig. 5. The 3-point approach.

Formal methods for validation of product configuration data 85

events, however, at the cost of increased complexity in usage.
This shows up in the need to specify the modified product
overview semantics POCV, A

* ~t !. In most cases, though, the
undocumented changes follow certain patterns, so that spe-
cial cases of the modified semantics may be pre-encoded
and offered as specialized tests.

Note that the 3-point method properly includes the6d-
method. By settingt001 5 tc 6 d in the 3-point method,
we get a specialization equivalent to the6d-approach, as
POØ,Á
* ~t ! 5 PO~t !. In this case we havePt1

* 5 Pt1, and
only the difference setsA10 and S10 are of interest. An-
other weakness of the6d-method already mentioned in
Section 5.2.1 is that the separation of two events may be
impossible. The 3-point method allows us to handle such a
case by remodeling the relevant events externally.

5.2.4. Mapping of typical cases

We now show how to map two important scenarios of
change to our verification formalisms. Our first case han-
dles equipment code start-up and expiry caused by model
year change, for which we use the6d-method. Model year
change usually is accompanied by lots of changes, mainly
on the parts level, but also to a smaller fraction on the
product overview level. During an overlapping interval, both
models from the old and the new model year have to be
manufactured. Assume codesmo andmn are responsible for
controlling model year change, that is, orders for cars of the
old model year are tagged with codemo, for the new model
year with codemn. Assume further that the model year
change is fixed to take place during the time interval~t0, t1!.
The interesting question is which parts are not needed any
more aftert1. In the documentation, the expiry of the old
model year is reflected by codemo becoming invalid, as
well as codemn becoming mandatory att1. Moreover, some
parts may happen to havet1 as a starting or stopping time.
In summary, the rules changing at timet1 are:

tv~C.mo! 5 t1,

ta~S.mn! 5 t1 with S~mn! 5 Á,

as well as selection rules of partsp with eitherta~P.p! 5 t1
or tv~P.p! 5 t1. We thus set up the6d-method withtc 5 t1
and get resulting difference sets ofA andS, indicating ad-
ditionally needed and superfluous parts after the endt1 of
the model year change overlap interval. Obvious starting or
expiring parts~i.e., parts withta~P.p! 5 t1 or tv~P.p! 5 t1!
may additionally be filtered out to get a more concise result.

Let us now turn to production relocation, where we con-
sider moving parts of the production from one assembly
line ~or plant! to another. Of this two-sided problem of
moving in and off, we concentrate on the move-off part.
Such a kind of change cannot~easily! be handled within the
Dialog/E system, as not only individual codes, but arbi-
trary code combinations, representing the fraction of the
production that is to be relocated, become invalid after the

change. One important problem related to production move-
off is to determine the induced parts shift.

To handle this case, we use the 3-point method to find
out precisely the induced parts shift. We set upt1 as the
approximated time of the relocation event, andt0 as the
current time. The modified product overview semantics is
set to POØ,¬F

* ~t !, whereF is a formula describing the frac-
tion of the production to be moved off.

As an example, let us consider the situation where the
production of cars containing the motor variants M1, M2,
and M5, in cunjunction with automatic gears~A! is planned
to be moved off but not for the destination countries C1,
C3, and C4. The formula

F 5 ~M1 ∨ M2 ∨ M5! ∧ A ∧ ¬~C1 ∨ C3 ∨ C4!

describes this production shift.
The results delivered by the 3-point method are mani-

fold. Perhaps the most important parts shift sets areA*10
S*1. They indicate the additional and superfluous parts after
the relocation att1 relative to the situation at the same time
without the relocation. If the overall change on the parts
level between the current situation~at t0! and the projected
situation after the relocation att1, also including already
documented product changes, is of interest, then the differ-
ence setsA*00S*0 provide the appropriate information.

6. A SAT CHECKER FOR PRODUCT
CONFIGURATION

From our experiments with different methods for solving
decision problems arising from the encoding of consistency
criteria ~Küchlin & Sinz, 2000!, we observed some short-
comings of current provers in handling problems stemming
from the validation of configuration data. We therefore de-
veloped our own prover~Kaiser, 2001!, which is special-
ized for handling product configuration data.

6.1. Language extension

Groups of mutually exclusive codes are a characteristic prop-
erty of automotive product data. Such groups enforce that
constructible orders contain at most one, or exactly one,
code of each group. In case of theDialog system, groups
of mutually exclusive codes occur, for example, for differ-
ent engine types, interior materials, or radios; besides, each
valid order contains exactly one code that determines the
country for which the car is to be made.

Although such groups appear frequently, they are not
given special attention in theDialog documentation lan-
guage. This may be due to the fact that such groups cannot
efficiently be encoded in standard propositional logic. To
express the mutual exclusion ofn codes, a formula of size
at leastO~n2! is needed. In order to overcome this restric-
tion, we extend propositional logic by a specialselection
operator SM

n .

86 C. Sinz et al.

Definition 6.1. For eachn $ 0 andM # $0, . . . ,n%, SM
n

is ann-ary operator, andSM
n ~F1, . . . ,Fn! is true iff exactlyk

of the formulaeF1, . . . ,Fn are true for somek [M. n

Thus, for example,S$0,1%
n ~F1, . . . ,Fn! denotes the fact that

at most one of the formulaeF1, . . . ,Fn is true.
Among the advantages of adding the selection operator

to the language are the compact formula size for symmet-
rically related subformulae~such as mutually exclusive
groups! and the conservation of structural properties that
are lost by other encodings, including the opportunity to
make use of the preserved structural information in auto-
matic SAT checking.

6.2. The problem of CNF conversion

Even if no restrictions are placed upon propositional for-
mulae for the specification of constraints, this is often not
the case for the prover language. In the domain of auto-
matic theorem proving, formulae are frequently required in
CNF in order to simplify and speed up the prover. However,
this requires an additional conversion step of generating
clauses~disjunctions of literals! from the input constraints.
This can either be done naively, by distributing conjunc-
tions over disjunctions and removing subsumed clauses, or
by the satisfiability-conserving transformation due to Tseitin
~1970! that introduces new variables as abbreviations for
complex subformulae.

However, the naive conversion method may result in an
exponential blow-up of the formula, and Tseitin’s method
suffers from the fact that the SAT checker has to deal with
a larger set of variables. Moreover, CNF conversion de-
stroys the original formula structure, which is detrimental
to any explanation component.

In contrast to small academic inputs, where CNF con-
version poses no problem, our industrial inputs are so large
that naive conversion is impossible, and we need an ex-
planation of failed proofs in terms of the original con-
straints. Moreover, we found that CNF transformation took
as long as SAT checking by itself so that we wanted to
eliminate this additional intermediate step for the inter-
active use within the BIS system, where turnaround times
are to be kept small.

6.3. A SAT algorithm for formulae in selection
normal form (SNF)

We developed a prover for arbitrary propositional formulae
including our selection operatorsSM

n . The prover imple-
ments an extension of the well-known Davis–Putnam algo-
rithm ~Davis & Putnam, 1960! for formulae in CNF.

Input formulae to our prover have to be in SNF, which is
defined as follows. SNF denotes the set of all propositional
formulaeF including selection operatorsSM

n fulfilling three
additional properties:

1. F is in negation normal form~NNF!, that is, nega-
tions appear only directly in front of propositional
variables;

2. false and true~⊥ andÁ! do no appear as proper sub-
formulae ofF; and

3. disjunctions, ∨~F1, . . . ,Fn!, and conjunctions,

∧~F1, . . . ,Fn!; are of variable arity, flattened~i.e., no
direct subformula of a disjunction or conjunction is
again a disjunction or conjunction, respectively!, and
trivial cases~n # 1! are simplified to their obvious

equivalents, which are∨~F1! 5 ∧~F1! 5 F1, ∨~ ! 5

⊥, and∧~ ! 5 Á.

Conversion to NNF is possible due to an extension of De-
Morgan’s law. As shown in Kaiser~2001!, the equivalence
¬SM

n ~F1, . . . ,Fn! ? S$0, . . . ,n% \M
n ~F1, . . . ,Fn! holds for selec-

tion operators.
Pseudocode for our SAT algorithm is shown in Figure 6.

Technical details about the implementation as well as ex-

Fig. 6. A Davis–Putnam style algorithm for SNF formulae.

Formal methods for validation of product configuration data 87

perimental results and a comparison with the SATO SAT
checker~Zhang, 1997! can be found in Kaiser~2001!, where
our algorithm performed comparably or better than SATO
on automotive product configuration data. An executable
file running under Windows NT02000 is available from
http:00www-sr.uni-tuebingen.de0pdm0icnf.exe.

6.4. Iterated SAT tests

Most of the consistency tests from Section 4.3 decompose
into large series of related SAT tests, which are typically of
the form PO] Fi for all Fi from a large setF 5 $F0, . . . ,Fk% .
Usually, allFi are small formulae compared to the PO. This
characteristic allows for heuristics to considerably speed up
consistency testing, which is illustrated in this section for
the detection of inadmissible, necessary, and optional codes
~called theINO problemin the following!. For a satisfiable
formulaF, a propositional variablex is called inadmissible
if F 6x51 is unsatisfiable; it is callednecessaryif F 6x50 is
unsatisfiable; if neither of these two conditions hold,x is
calledoptional. This definition captures the corresponding
static consistency criteria of Section 4.1.

We now briefly present three algorithms for INO compu-
tation. We assume that the underlying satisfiability check-
ing algorithm SAT also generates a setA of models in case
the input formula is satisfiable and returns the empty set
otherwise. We further assume that SAT returns only a small
nonempty subset of all models in case of a satisfiable input
formula. Details on the algorithms, proofs, and an empiri-
cal evaluation can be found in Kaiser and Küchlin~2001a!.

6.4.1. Algorithm Basic

This algorithm~see Fig. 7! determines the sets of INO
variables by testing for each variablexoccurring inF whether
the formulaeF 6x51 andF 6x50 are satisfiable. The number
of satisfiability tests isi 1 2~o1 n! for a formula that hasi
inadmissible,n necessary, ando optional variables. Inves-
tigating at first whether a variable is necessary would result
in n 1 2~i 1 o! calls to SAT.

6.4.2. Algorithm Filter

Algorithm Basic can be improved in two ways. If some
variable is not inadmissible and not necessary, SAT returns
a set of modelsA. For each variablex occurring positively

Fig. 7. The INO algorithms Basic, Filter, and the variable selection algorithm SAT-Heuristics-Directed.

88 C. Sinz et al.

in some model this allows the immediate conclusion thatx
cannot be inadmissible. Conversely, each variable occur-
ring negatively in any model cannot be necessary. In the
following I ' denotes the set of variables that are not in-
admissible andN ' denotes the set of variables that are not
necessary. We thus attainO 5 I ' ù N '. If the number of
optional variables is dominant, as in our application area,
this filtering criterion can reduce the number of required
SAT tests dramatically. Moreover, by setting inadmissible
and necessary variables as soon as possible to the only value
they can take, we can gradually reduce formula size and
hence accelerate the underlying SAT algorithm. Algorithm
Filter in Figure 7 is an extension of Algorithm Basic and
implements these ideas.

6.4.3. Algorithm Directed Filter

The effect of filtering depends on the setA of models
returned by the SAT algorithm. The filtering works best if
the models contain variables positively that have not yet
been detected as admissible, and contain variables nega-
tively that have not yet been classified as not necessary. In
order to maximize in algorithm Filter the number of vari-
ables for which this condition holds, we use a correspond-
ing variable selection strategy in the underlying Davis–
Putnam style SAT checker, as implemented by the algorithm
SAT-Heuristics-Directed shown in Figure 7. The second
value B returned by the algorithm indicates whether the
variable should be set first to true~1! or false~0! during
model search. Thus, we obtain the algorithm Directed-Filter.

In order to check the effectiveness of our INO algo-
rithms, we conducted experiments with a set of Mercedes
model classes~Kaiser & Küchlin, 2001a!. The results dem-
onstrate the effectiveness of Filter and Directed-Filter com-
pared to Basic. Comparing Basic to Filter, improvements
between 47 and 91%, in terms of time, and 34 and 91%, in
terms of SAT calls, could be measured. In addition, using
the modified variable selection heuristics SAT-Heuristics-
Directed further accelerated INO search by up to 90% and
reduced the number of SAT calls by up to 89%. For only
one formula that contained relatively few optional vari-
ables Directed-Filter performed worse.

6.5. Explanation

In many cases failures of consistency assertions indicate
errors in the product documentation, and usually such de-
fects are corrected by adapting the documentation. Here the
problem arises that the mere size of the rule base makes
finding the cause of an inconsistency a daunting task. There-
fore, tool support can be of great help, and we integrated an
automatic explanation facility into the BIS system. Expla-
nation of failed assertions is done in three steps in BIS
~Kaiser & Küchlin, 2001b!:

1. Localization:The system generates a minimal set of
rules that becomes contradictory in combination with

the controversial assertion, thereby localizing one cause
of the inconsistency. Note that this set need not be
unique.

2. Presentation:The conflicting minimal rule set is pre-
pared for presentation to the user, trying to maximize
comprehension.

3. Reasoning:A detailed step by step derivation is gen-
erated that explains this cause of the inconsistency.

6.5.1. Localization

Using the formalization PO of the product overview as
presented in Section 3, we can reduce the localization prob-
lem for most controversial assertionsa to the computation
of a minimal unsatisfiable subformula~MUS! of PO ∧ a.
Traditionally, a MUS is defined for a set of clauses. Slightly
generalized, for a conjunctionC5 F1 ∧ {{{ ∧ Fn of a set of
formulaeS5 $F1, . . . ,Fn% with C being unsatisfiable, a MUS

of C is a subsetS' of S such thatC ' 5 ∧F[S' F is still

unsatisfiable, butC '' 5 ∧F[S'' F is satisfiable for allS'' ,
S'. See~Davydov et al., 1998; Kleine Büning & Xishun,
1998; Kullmann, 2000! for further elaborations and special
purpose algorithms for MUS computation.

So, for a contradictory formula, a MUS is a smallest
subset that is still contradictory. In our configuration set-
ting, the cause of an inconsistency can thus be reduced to a
~small! fraction of the rule base. Localization by MUS com-
putation is possible for all assertions of the form PO∧ a
when formulated as a SAT problem, which indeed holds for
all static and dynamic consistency properties with the ex-
ception of consistency of the supplementing process. How-
ever, using CO instead of PO allows a similar reduction in
these cases, too.

It turned out to be practical to extend the notion of a
MUS to arbitrary formulae in negation resp. selection nor-
mal form. Thus, MUS computation can be performed on a
formula representation that is much closer to the original
Dialog rules.

Definition 6.2. For an unsatisfiable propositional for-
mula f in negation normal form we callg a minimal unsat-
isfiable subformula~MUS! of f, if and only if the following
conditions hold:

1. g is obtained fromf by deleting arbitrary direct sub-
formulae of conjunctions, that is, by replacing subfor-
mulae of the formh1 ∧ {{{ ∧ hn by hi1 ∧ {{{ ∧ hik for
$i1, . . . ,ik% # $1, . . . ,n% .

2. The formulag is unsatisfiable.

3. Removing an arbitrary direct subformula from a con-
junction ofg makes the resulting formula satisfiable.

n

For an extension of this definition to formulae in SNF,
we consider selection operators as atomic formulae, thereby
forbidding subformula deletions under selection operators.

Formal methods for validation of product configuration data 89

Consider the formula following as an example:

F 5 a ∧ ¬b ∧ ~~b ∧ d! ∨ ¬a ∨ c! ∧ d ∧ ~b ∨ ¬c!. ~2!

Deletingd from the main conjunction and replacingb ∧ d
by b in the nested conjunction results in

G 5 a ∧ ¬b ∧ ~b ∨ ¬a ∨ c! ∧ ~b ∨ ¬c!,

which is still unsatisfiable. Removing any further direct
subformulae of any conjunction inG makes it satisfiable,
however. In this example, the only MUS ofF is G. In many
cases a formula’s MUS is considerably smaller than the
formula itself.

For an unsatisfiableF in selection normal form, the strat-
egy to find a MUS is straightforward. Initially, we takeF as
an approximation of our MUSFM , and for each conjunc-
tion C in formula F we remove direct subformulae from
FM , as long as the resulting formula is still unsatisfiable.
This leads to an algorithm with a number of SAT-calls lin-

ear in the number of direct subformulae of conjunctions.
More details on the algorithm can be found in~Kaiser &
Küchlin, 2001b!. An example of a MUS calculated by BIS
is shown in Figure 8. In the upper part of the figure, each
item shows a complete rule with highlighted literals corre-
sponding to the MUS. In our formalization PO all rules are
conjunctively connected, so that each item is a direct sub-
formula of PO’s main conjunction. The lower part shows a
compressed view where nested subformulae that are not
part of the MUS are not displayed. We will discuss the
presentation of a MUS in BIS in more detail below.

We conducted experiments with this algorithm and could
demonstrate the practical effectiveness and applicability of
our MUS computation approach. For the localization of
inconsistencies, the problem of finding a MUS, which in
theory belongs to the second level of the Boolean hierarchy
~Papadimitriou & Wolfe, 1988!, turned out to be tractable
in our application. With only simple heuristics, it never
took the system more than one minute on a Sun Ultra E450

Fig. 8. A MUS in BIS.

90 C. Sinz et al.

to find a MUS for formulae with several thousands of con-
junctive subformulae~ 6SF 6!, approximately 1,000 rules
~6RF 6!, and more than 1,000 variables~cf. Table 2!. In many
cases, the run time was even below 1 s.

To investigate the effectiveness of MUS computation for
explaining inconsistencies we collected a set of 50 formu-
lae originating from alerts due to inadmissible and neces-
sary codes~Kaiser & Küchlin, 2001a! and measured some
characteristics of MUS computation. Table 2 displays a short
excerpt of the test results. In all cases, the number of con-
junctive subformulae~6SFM

6! as well as the number of rules
~6RFM

6! could be reduced by 99%. Thus, with only a couple
of constraints and smaller subformulae within these con-
straints left, MUS computation enables our system to nar-
row the cause of an inconsistency to a manageable subset of
the product database.

6.5.2. Presentation of results

In addition to the size of a conflicting rule set, the form in
which the result is presented to the user is important for the
usefulness of the explanation feature. Clearly, the MUS be-
comes tedious to read even for small formulae, and the
relation to the original formula is not obvious. On the other
hand, printing the whole formula of the consistency condi-
tion ~possibly highlighting the contained MUS! yields a
large complex formula, even if only relevant constraints are
displayed.

Our answer is to list all relevant rules of the original
formula, and to replace within these rules any maximal ir-
relevant subformula by a wild card like{{{, as shown in
Figure 8. In the 71-kB formalization of a C-class limousine
~consisting of 694 constructibility and 127 supplementing
rules! the system finds a total of three constraints to be-
come contradictory in combination with the~inadmissible!
code030 . While the complete constraints displayed in the
upper part of Figure 8 are still hard to analyze, it is feasible
to understand the inadmissibility of code030 from the max-
imally reduced yet structure preserving representation in
the lower part of the example. Here the relation to the orig-
inal constraints is obvious. However, it may still not be
immediately obvious why the MUS is unsatisfiable. Hence
we need more of an explanation.

6.5.3. Reasoning

Approaches to explain the unsatisfiability of a proposi-
tional formula are as numerous as SAT algorithms. For ex-
ample, any execution trace of a complete SATalgorithm, such
as a resolution refutation tree~Robinson, 1965! or the search
tree of the Davis–Putnam algorithm~Davis & Putnam, 1960!,
yields an exhaustive explanation. The specific form of the
resulting explanation depends considerably on heuristics, like
variable selection for SAT~Hooker & Vinay, 1995!, which
fill some indeterminism within the general algorithm. These
heuristics critically influence the efficiency of the search, and
consequently the size of an explanation, which is the main
determinant of its quality. Besides size, intuition and intelli-
gibility are important factors for the quality of an explana-
tion. Even though there is no objective measure of these two
factors, we cannot leave them out because they are directly
related to the explanation size. For example, the listing of a
set of constraints together with the notice that they are un-
satisfiable may be sufficient for someone who knows the for-
malization and is trained in logical reasoning, whereas for
the documentation personnel at least a step by step refutation
in terms of codes is desirable.

In BIS, we use a linear execution trace of the backtrack-
ing SAT algorithm proposed by Davis, Logemann, and Love-
land ~1962!. Explanations therefore indeed are refutation
proofs: We start with the converse of the assumption and
show that this leads to a contradiction. The applied reason-
ing process contains immediate consequences and case dis-
tinctions. Immediate consequences are due to constraints
containing only a single propositional variable, and there-
fore rule out all orders either including or excluding this
code. Such constraints are considered first~unit propaga-
tion!. If there are no such constraints, we choose a code for
case distinction and explain in two steps why we did not
find a valid order with or without this code.

Figure 9 illustrates how the system justifies its con-
clusion that code680 is inadmissible in a C-class limou-
sine. It lists five vehicle variants~955 1R, 955 12R,
29551M112, 295512M1121R, 295512M11212R!
which all lead to inconsistencies in conjunction with code
680 . For example, an order with codes680 andM112 and
without 955 ~case 1.2.1, Fig. 9!, makes codesM55, 954 ,
M113, andR inadmissible and codes498 andL necessary.
This leads to a contradiction becauseL becomes inadmis-
sible~due to the first part of the conjunction of the seventh
rule! and necessary at the same time. Listing with each
reduction step the formula causing the implication would
make the justification more intelligible but considerably
longer. It should also be noted that we do not use any kind
of SAT learning techniques~Bayardo & Schrag, 1997; Silva
& Sakallah, 1999! to shorten explanations, because there is
no obvious way to integrate this kind of argument into a
causal explanation without confusing the user.

To measure the practicability of this explanation tech-
nique in our application domain, we tested this functional-

Table 2. The typical size of a MUS in BIS

F 6SF 6 6SFM
6 6RF 6 6RFM

6

ALERT-05 11429 3 1139 2
ALERT-22 4311 31 1017 12
ALERT-25 4226 18 1011 3
ALERT-36 10480 27 1142 8
ALERT-37 10480 7 1142 4
ALERT-45 10408 10 1142 4

Formal methods for validation of product configuration data 91

ity on the minimal unsatisfiable formulae~FM ! computed
during the experiments of Section 6.5.1. We collected the
total number of variables~6VFM

6! occurring inFM , as well
as the total number of leaves in the search tree of an unsuc-
cessful complete model search~6SAT~FM !6!. Table 3 lists
the results for some of those formulae.

No MUS contained more than 13 different variables which
limits the size of a justification to a worst-case value of

213 5 8192 distinguishable cases. The actual number of
cases displayed in the third column of Table 3 clearly shows
that the automatically generated justifications are even tract-
able for humans. Due to unit propagation, never more than
five cases needed to be analyzed, and indeed, for most for-
mulae the contradiction is immediate without any case
distinction.

7. BIS SOFTWARE ARCHITECTURE

The BIS system has been constructed employing object-
oriented client-server technology. It consists of a general
prover module programmed in C11 with our dedicated
SAT-checker as its core component; a C11 server which
maintains product data in raw and pre-processed form and
handles requests by building the appropriate formulae for
the prover; and a graphical user interface programmed in
Java, through which tests can be started and results can be
displayed. The three components communicate via CORBA
interfaces~CORBA, 1995!, thereby achieving great flexi-
bility, allowing the placement of each component on a dif-

Fig. 9. An example of an explanation in BIS.

Table 3. The typical size of an explanation
in BIS

FM 6VFM
6 6SAT~FM !6

ALERT-05 2 1
ALERT-22 13 1
ALERT-25 7 1
ALERT-36 6 2
ALERT-37 4 1
ALERT-43 10 5

92 C. Sinz et al.

ferent, suitable computer or the use of multiple instances
of a component~e.g., prover! if the workload demands this.
Figure 10 shows a schematic view of the BIS system
architecture.

Within the server, theUserLayer is responsible for
authentication and handles user requests by starting the
appropriate consistency tests. Therefore it employs the
TestLayer which in turn is responsible for managing
~i.e. scheduling, starting! all consistency checks. The data
layer is used as a mediator between theTestLayer and
the EPDM system, and supports the caching of precom-
puted data.

8. INDUSTRIAL EXPERIENCE

BIS was created upon an industrial order. Since the first
feasibility study~Sinz, 1997!, we have received pertinent
feedback from documentation experts usingDialog and
BIS which has influenced all aspects of the system. Here
we summarize some key features of BIS which were nec-
essary for its acceptance in our industrial context. Some of
these are special cases of general remarks about Formal
Methods in industry.

Graphical user interface:BIS offers an application ori-
ented graphical user interface so that all interaction is
done in terms familiar to the operating personnel. Users
do not like to type logic on command lines. Therefore

all key tests are available upon mouse-clicks, and all
results are presented graphically.

Customized special tests:BIS implements a set of cus-
tomized special tests, formulated in terms of the appli-
cation. We also offer a general-purpose interface to the
prover which allows queries about the existence of
valid orders with any property that can be described
by a propositional formula. This permits theoretically
powerful and academically attractive nonstandard con-
sistency checks on the product documentation, but the
acceptance of this tool was rather poor.

Push-button technology:The logical prover component
runs a decision procedure and needs no assistance in
finding a proof. Entire test sets reflecting thousands of
proofs run at the click of a mouse.

Efficiency:Efficiency is important. Significant delays in
the workflow cannot be tolerated because they slow
productivity. We developed our own SAT checker for
added efficiency. We also developed several parallel
SAT checkers but did not yet apply them in industry.

Software technology:End users do not like to maintain
business critical code written in nonstandard lan-
guages. BIS is constructed using standard object-
oriented software technology for industrial client–
server systems: Java clients, C11 server, and a
CORBA-based component model. We used CORBA
to speed our development, but now a CORBA li-

Fig. 10. The BIS system architecture.

Formal methods for validation of product configuration data 93

cense is required, which makes it difficult for depart-
ments to evaluate BIS without an up-front financial
commitment.

Integration: BIS obtains data fromDialog by reading
intermediate files. This is an impediment to daily use
because users would prefer to stay entirely withinDi-
alog and have the BIS tests available as options on
their Dialog screens.

It is also interesting to relate our industrial experience
with BIS to the debate about the industrial use of formal
methods in computer science in general~cf. Craigen et al.,
1995!. Formal methods have been associated first with the
specification, verification, and validation of software~Ger-
hart, 1990!, but today they are also applied to system de-
sign and hardware design together with software engineering
~Saiedian, 1996; Wing & Woodcock, 2000!. According to
Wing ~1990!, “Formal methods are used to reveal ambigu-
ity, incompleteness, and inconsistency in a system,” which
is exactly how we used them.

On the face of it, BIS deals with~input! data validation
rather than program or specification validation. There is no
formal specification ofDialog, and we did not apply clas-
sical program verification techniques to its code base. How-
ever, we have already seen that our logical rules can be
viewed as postconditions associated with action rules that
Dialog executes when it interprets the associated formu-
lae. Hence,Dialog can be regarded as a special kind of
rule engine and our action rules can be regarded as an ex-
pert system with situation–action rules based on Boolean
logic. This insight allows us to relate our experience with
BIS to reported experience with the validation of expert
systems~Waldinger & Stickel, 1992!, which is a special
kind of software.

Thus, there is a view of BIS as a program verification
system. Under this view, BIS proves assertions about the
expert system executed byDialog: for example, a code is
necessary if and only ifDialog’s order processing algo-
rithm will terminate withtrue only if the code is present in
the input; likewise, a code is inadmissible if and only if
Dialog will terminate with false whenever the code is
present in the input. Because of the close association of
action rules and postconditions, there is also a view of BIS
as a system for specification validation. Under this view,
the postconditions are part of the input0output specifica-
tion for the associated expert system. BIS proves assertions
about the postconditions that necessarily hold afterDialog
has executed the associated action rules. If an assertion
fails or an otherwise surprising consequence of the specifi-
cation is inferred by BIS, the user may want to change the
specification. Fortunately, a change of the postcondition
implicitly changes the associated action rule, so that the
user immediately gets a new expert system satisfying the
new postcondition.

Note that all our proofs concern the logical model of
Dialog; the real COBOL system may differ from the model

in details. The logical model of a system is called asystem
theoryby Waldinger and Stickel~1992!. Thus, as observed
by Hall ~1990!, it is a myth that formal methods can guar-
antee that software is perfect. Formal verification of a sys-
temSis only possible where a complete set of specifications
CS can be shown to be valid in the system theory, which
must be a comprehensive formal modelMS of the system.
This also implies that we must have formal semantics of the
programming language in whichS is built, and that the
logic of our system theory is compatible with our specifi-
cation language and the verification method.

However, complete formal specifications and formal se-
mantics just do not exist in practice. Without formal seman-
tics, we can only verify the system theory and not the system
itself. In rule-based systems, at least the semantics part is
manageable, due to their proximity to logic formalisms.
Without a complete set of specifications, all we can do is
capture a few of the requirements formally, as a setVS of
validation theorems, which, if they hold, will greatly in-
crease our confidence inS.

It has been observed by our industrial partners thatDia-
log itself contains a model of the world of design drawings
~which is again a model of parts and assemblies!, and that
thereforeDialog’s model of the real world may be as de-
fective as the BIS model ofDialog. Thus, ultimately we
need an automated verifiably correct translation from the
design drawings to our formal models, which does not exist
today.~The correspondence between design drawings and
actual parts is verified elsewhere in manufacturing.!

The hardest part in the feasibility study of BIS was in-
deed to build the system theory ofDialog, which models
its inner workings as a set of action rules associated with
the sets of supplementation, constructibility, and parts se-
lection formulae. Do not be misled by our sanitized, sim-
plified, and abstract description in Section 2: we did not
find a scholarly document describingDialog or even the
semantics of its language of formulae. The actions thatDi-
alog takes are encoded in COBOL and were explained to
us in long hours by word of mouth, in the terms of the
application specialists~none of them computer scientists!.
We were extremely lucky because much of the semantics of
Dialog lies in the propositional formulae, much of the rest
can be modeled by simple action rules associated with these
formulae, postconditions can be readily associated with the
rules, and highly efficient SAT-checking methods are now
available that can efficiently handle the proof obligations.

Thus, we are left with a situation where the system theory
is not rigorously derived from the system. Hence, a formal
verification of a product documentation executed byDia-
log is impossible. In practice, however, even the complete
verification of a complex system is less important than the
discovery of program bugs or errors. This is because the
successful verification will only happen once, at the end of
system development, whereas errors must be found during
the entire development process. In our case, the develop-
ment of product documentation is really finished only when

94 C. Sinz et al.

a model line is discontinued. Moreover, for debugging pur-
poses even a rather loose relation of the system theory to
the system is no problem, as long as bug alerts can be
substantiated by running the real system on the critical in-
put. Therefore, in practice the real issue is debugging rather
than verification in the pure sense and BIS is still very
useful as a highly sophisticated formal debugging aid.

Indeed, BIS found real bugs, both inDialog’s model of
the real world and in the real world itself~e.g., in one case
of an inadmissible code, it was found that the configuration
was indeed physically impossible, because of an oversight
in the design!. It can be argued that the bugs were some-
what esoteric, but this is to be expected from residual bugs
that have survived existing quality assurance methods. Some
of them would still have been costly in practice.

Because debugging is the real issue rather than verifica-
tion, failed validations can be extremely useful, provided
that they reveal costly errors in the system that established
processes fail to expose. Two conditions are critical here:
first, failed proofs need to be explained, and second, the
explanation~which is necessarily in terms of the system
theory! must be tied to a real flaw in the documentation
system.

First, a failed proof is useful only if its root cause can be
explained in a succinct and intelligible way. It has been
observed in this context that explanation is a sadly ne-
glected area of automated deduction~Craigen et al., 1995!.

Due to incomplete system theories, there may be failed
proofs that do not correspond to real~application! errors
~false positives!. Nobody has the time and patience to sift
through reams of false positives. Several times we had to
go back and add extra axioms to our system theory to
exclude false positives. False negatives~a failure to cap-
ture problems! can seriously undermine the credibility of
formal methods, so only well-debugged verification sys-
tems should be deployed; there is no time for experimen-
tation and only a finite amount of good will on the part of
the application specialists. No logically unsound results
were ever reported for BIS. However, false positives are
still a problem because the tests it performs are not even
all necessary for the correctness ofDialog: some failed
tests reflect situations that are handled elsewhere inDia-
log ~outside the domain of our system theory! or even
downstream in the process chain. After all, what really
matters to the user is the correctness of the overall busi-
ness process.

Whereas BIS has received positive evaluations by sev-
eral documentation departments, it has not been imme-
diately integrated in the business process. Established
successful business processes are extremely valuable and
very expensive to change because of many interdependent
issues. New methods, such as formal methods, must be seam-
lessly integrated into the process and function with the
established workforce; in this area, BIS still has some de-
ficiencies. However, we have recently seen signs of new
commitments to BIS in the context of larger reorganizations.

9. RELATED WORK

A lot of different schemes for product configuration have
been suggested in the literature~Sabin & Weigel, 1998;
Günter & Kühn, 1999!, starting with McDermott’s work on
R1 ~McDermott, 1982! and Digital’s XCON ~Barker &
O’Connor, 1989!, two systems for computer system config-
uration. The scheme that is most closely related toDia-
log’s documentation method is the constraint rule formalism
of Soininen et al.~2001!, which attaches stable model se-
mantics to a rule-based configuration framework. Our ex-
ample from Section 3 written in Soininen’s formulation with
so-called~weighted! constraint rules reads as follows:

x R not z falseR x, y

x R not y falseR z,noty

zR y falseR y, z,notx.

It is easily verified that$x% is the only stable model of these
rules, which is in accordance with the results obtained with
our verification semantics. We do not have a proof for the
general equivalence of both formalisms, but we hope that
the concordance has become apparent. Compared to Soinin-
en’s work, our propositional verification semantics aims in
a different direction: in their work, configuration of indi-
vidual orders is the objective rather than the verification of
the rule base as a whole. For example, our semantics allows
an in-depth examination of the completion relation. More-
over, consistency checks can be computed using standard
SAT checkers.

Over the last years, SAT checking has gained renewed
attention by the advent of both new theoretical results and
improved implementation~Zhang, 1997; Silva & Sakallah,
1999; Moskewicz et al., 2001!. A comparison of these im-
plementations with the prover that is part of BIS can be
found in Kaiser~2001!. Whereas all other SAT checkers
require the input to be in CNF, our prover accepts proposi-
tional logic formulae without restrictions and offers a spe-
cial selection operator.

10. CONCLUSIONS

We believe that the main findings of the BIS project are the
following.

Configuration:Formal methods can treat real-world is-
sues in the configuration of complex products at the
engineering and manufacturing stages. It is easy to see
how our methods could be applied to sales and after
sales~spare parts supply!, but we have not treated these
business cases here.

Prover technology:Our main contributions have been to
extend propositional logic by a special selection oper-
ator, to develop an efficient SAT checker without CNF
conversion, to provide a sophisticated explanation com-

Formal methods for validation of product configuration data 95

ponent, and to produce dedicated and parallel versions
for increased speed.

Formal methods:Specification and validation methods
based on lowly propositional logic have important in-
dustrial applications and can be supported by efficient
tools. The validation of large industrial software sys-
tems is feasible with reasonable effort if the software
is an expert system based on rules in propositional
logic or can be faithfully modeled as such. The key
issue is that there must be a tight but easily established
link between the software and a formal system theory
with a logic admitting efficient decision procedures.

Business issues:Key factors for the success of BIS were
that the underlying industrial process was already
founded on a clear and simple logic so that we could
build a system theory, SAT checking is now mature
enough so that provers can handle large real-world prob-
lems efficiently, and it is possible to make the numerous
theoretical and practical modifications that are always
necessary in important industrial applications.

ACKNOWLEDGMENTS

BIS would not have been possible without Dirk Bendrich from
Debis Systemhaus Industry GmbH3 ~now with DaimlerChrysler
AG!, who had the vision to initiate the project before we had
results. Alexander Krewitz and Gerd Müller of Debis Systemhaus
Industry GmbH have been extremely patient and supportive in-
dustrial project leaders. Alfons Geser helped with fruitful discus-
sions and suggestions during the early phase of the project. Carsten
Sinz was partially funded by the German National Science Foun-
dation DFG under Grant Ku 96604-1 within the special purpose
program “Deduktion.” Our ES450 Enterprise Server is a gift from
SUN Microsystems under their Academic Equipment Grant
Program.

REFERENCES

Barker, V., & O’Connor, D.~1989!. Expert systems for configuration at
Digital: XCON and beyond.Communications of the ACM 32(3),
298–318.

Bayardo, R.J., & Schrag, R.C.~1997!. Using CSP look-back techniques to
solve real-world SAT instances.AAAI’97: Proc. Fourteenth National
Conf. Artificial Intelligence.

Blochinger, W., Sinz, C., & Küchlin, W.~2001!. Parallel consistency check-
ing of automotive product data.Proc. Int. Conf. Parallel Computing
(ParCo 2001), Naples, Italy.

CORBA. ~1995!. The Common Object Request Broker: Architecture and
Specification. Needham, MA: Object Management Group.

Craigen, D., Gerhart, S., & Ralston, T.~1995!. Formal methods reality
check: Industrial usage.IEEE Transaction on Software Engineering
21(2), 90–98.

Davis, M., Logemann, G., & Loveland, D.~1962!. A machine program for
theorem-proving.Communications of the ACM 5, 394–397.

Davis, M., & Putnam, H.~1960!. A computing procedure for quantifica-
tion theory.Journal of the ACM 7, 201–215.

Davydov, D., Davydova, I., & Kleine Büning, H.~1998!. An effi-

cient algorithm for the minimal unsatisfiability problem for a sub-
class of CNF.Annals of Mathematics and Artificial Intelligence 23,
229–245.

Freuder, E.~1998!. The role of configuration knowledge in the business
process.IEEE Intelligent Systems 13(4), 29–31.

Gerhart, S.~1990!. Applications of formal methods: Developing virtuoso
software.IEEE Software 7(5), 7–10.

Günter, A., & Kühn, C.~1999!. Knowledge-based configuration: Survey
and future directions.LNAI 1570, 47–66.

Haag, A.~1998!. Sales configuration in business processes.IEEE Intelli-
gent Systems 13(4), 78–85.

Hall, A. ~1990!. Seven myths of formal methods.IEEE Software 7(5),
11–19.

Hooker, J., & Vinay, V.~1995!. Branching rules for satisfiability.Journal
of Automated Reasoning 15(3), 359–383.

Kaiser,A.~2001!. A SAT-based Propositional Prover for Consistency Check-
ing of Automotive Product Data. Technical Report WSI-2001-16. Tübin-
gen, Germany: Wilhelm-Schickard-Institut für Informatik, Eberhard-
Karls-Universität Tübingen.

Kaiser, A., & Küchlin, W.~2001a!. Detecting inadmissible and necessary
variables in large propositional formulae.Proc. Intl. Joint Conf. Auto-
mated Reasoning: IJCAR 2001—Short Papers, pp. 96–102. Technical
Report DII, 11001. University of Siena.

Kaiser, A., & Küchlin, W.~2001b!. Explaining inconsistencies in combi-
natorial automotive product data.Proc. 2nd Int. Conf. Intelligent Tech-
nologies (InTech 2001), pp. 198–204. Assumption University, Bangkok,
Thailand.

Kleine Büning, H., & Xishun, Z.~1998!. On the structure of some classes
of minimal unsatisfiable formulas.Proc. 5th Int. Symp. Artificial In-
telligence and Mathematics, Fort Lauderdale, FL.

Küchlin, W., & Sinz, C.~2000!. Proving consistency assertions for auto-
motive product data management.Journal of Automated Reasoning
24(1–2), 145–163.

Kullmann, O.~2000!. An application of matroid theory to the SAT prob-
lem. Proc. 15th IEEE Conf. Computational Complexity—CCC 2000,
pp. 116–124, Florence, Italy.

McDermott, J.~1982!. R1: A rule-based configurer of computer systems.
Artificial Intelligence 19(1), 39–88.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., & Malik, S.~2001!.
Chaff: Engineering an efficient SAT solver.Proc. 38th Design Auto-
mation Conf. (DAC 2001), pp. 530–535. New York: ACM.

Papadimitriou, C.H., & Wolfe, D.~1988!. The complexity of facets re-
solved.Journal of Computer and System Sciences 37, 2–13.

Robinson, J.A.~1965!. A machine-oriented logic based on the resolution
principle.Journal of the ACM 12, 23–41.

Sabin, D., & Weigel, R.~1998!. Product configuration frameworks—A
survey.IEEE Intelligent Systems 13(4), 42–49.

Saiedian, H.~1996!. An invitation to formal methods.IEEE Computer
29(4), 16–17.

Silva, J.P.M., & Sakallah, K.A.~1999!. GRASP—A new search algorithm
for satisfiability. IEEE Transactions on Computers 48(5), 506–521.

Sinz, C.~1997!. Baubarkeitsprüfung von Kraftfahrzeugen durch automa-
tisches Beweisen. Diplomarbeit, Universität Tübingen.

Sinz, C., & Küchlin, W.~2001!. Dealing with temporal change in product
documentation for manufacturing.Configuration Workshop Proc., 17th
Int. Joint Conf. Artificial Intelligence (IJCAI-2001), pp. 71–77, Seat-
tle, WA.

Soininen, T., Niemelä, I., Tiihonen, J., & Sulonen, R.~2001!. Representing
configuration knowledge with weight constraint rules.Answer Set Pro-
gramming: Towards Efficient and Scalable Knowledge Representation
and Reasoning, 2001 AAAI Spring Symposium, pp. 195–201. Menlo
Park, CA: AAAI Press.

Somenzi, F.~1998!. CUDD: CU Decision Diagram Package, Release 2.3.0.
University of Colorado, Boulder. Available online at http:00vlsi.
colorado.edu0;fabio.

Timmermans, P.~1999!. The business challenge of configuration. InCon-
figuration ~Faltings, B., Freuder, E., Friedrich, G., & Felfernig, A.,
Eds.!, pp. 119–122. Workshop Technical Report WS-99-05. Menlo
Park, CA: AAAI Press.

Tseitin, G.S.~1970!. On the complexity of derivation in propositional
calculus. InStudies in Constructive Mathematics and Mathematical
Logic~Silenko, A.O., Ed.!, pp. 115–125. Leningrad: V.A. Steklov Math-
ematical Institute.

Waldinger, R.J., & Stickel, M.E.~1992!. Proving properties of rule based
systems.International Journal of Software Engineering and Knowl-
edge Engineering 2(1), 121–144.3Debis Systemhaus Industry GmbH is now T-Systems ITS GmbH.

96 C. Sinz et al.

Wing, J.~1990!. A specifier’s introduction to formal methods.IEEE Com-
puter 23(9), 8–24.

Wing, J., & Woodcock, J.~2000!. Special issues for FM’99: The First
World Congress on Formal Methods in the Development of Comput-
ing Systems.IEEE Transactions in Software Engineering 26(8),
673–674.

Wright, J.R., Weixelbaum, E., Vesonder, G.T., Brown, K.E., Palmer, S.R.,
Berman, J.I., & Moore, H.H.~1993!. A knowledge-based configurator
that supports sales, engineering, and manufacturing at AT&T Network
Systems.AI Magazine 14(3), 69–80.

Zhang, H.~1997!. SATO: An efficient propositional prover.Proc. 14th Int.
Conf. on Automated Deduction (CADE-97), pp. 272–275. Lecture Notes
in Computer Science, No. 1249. New York: Springer–Verlag.

Carsten Sinzreceived an MS in computer science from the
University of Tübingen in 1998. Since then he has been a
Scientific Assistant at the same university. His research in-
terests cover automatic theorem proving, expert systems,
SAT checking, parallel computation, and application of these
techniques to product configuration.

Andreas Kaiser graduated in mathematics from the Uni-
versity of Tübingen in 1999. For the following 3 years he

performed research on modeling, managing, and diagnos-
ing product configuration data in the automotive industry.
Currently he is finishing his PhD thesis on propositional
formula processing for the management of combinatorial
product configuration data.

Wolfgang Küchlin received an MS in computer science
from the University of Karlsruhe in 1983 and a PhD from
the Swiss Federal Institute of Technology~ETH! in Zurich
in 1986. He was Visiting Assistant Professor at the Univer-
sity of Delaware and Assistant Professor in the Department
of Computer and Information Science at Ohio State Univer-
sity. Since 1992 he has been an Associate Professor of sym-
bolic computation at the University of Tübingen. His research
interests include symbolic computation~both computer al-
gebra and theorem proving!, parallel and distributed pro-
cessing, and object-oriented programming. Dr. Küchlin
coauthored a Java-based introductory textbook on com-
puter science~in German!. He is a member of GI, the IEEE
Computer Society, and ACM and currently serves as vice
chair of ACM SIGSAM.

Formal methods for validation of product configuration data 97

