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Abstract

We investigate sources of parallelism in the Grobner Basis
algorithm for their practical use on the desk-top. Our execu-

tion environment is a standard multi-processor workstation,

and our parallel programming environment is PARSAC-2

on top of a multi-t breaded operating system. We invest i-
gate the performance of two main variants of our master
parallel algorithm on a standard set of examples. The first
version exploits only work parallelism in a strategy compli-
ant way. The second version investigates search parallelism

in addkion, where large super-linear speedups can be ob-
tained. These speedups are due to improved S-polynomial

selection behavior and therefore camy over to single proces-
sor machines. Since we obtain our parallel variants by a

controlled variation of only a few parameters in the master
algorithm, we obtain new insights into the way in which dif-

ferent sources of parallelism interact in Grobner Basis com-
pletion.

1 Introduction

1.1 Overall Goals

The purpose of our work is to systematically studv sources

of pzu-allelism in the Grobner B&is comput~tion ~hich can

be profitably exploited in practice on desk-top parallel ma-

chines. We try hard to produce parallel software that out-

performs established sequential software and that research-
ers in the field could and would run on their workstations

on a daily basis. While we have not yet fully succeeded
in this respect, we have found a form for the Grobner Ba-

sis algorithm which is largely compatible with traditional
implementations, including modern selection heuristics and
deletion criteria, yet is parallelizable and produces signifi-

cant speedups on many examples, even when run on a tra-
ditional uniprocessor.

Thk work is part of our overall effort to create PARSAC-

2 [17], a pa-allel Computer Algebra library targeted for exe-

cution on networks of multi-processor workstations. A com-

prehensive introduction and motivation for this approach
has been given in [19].
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A major point of our work, which sets it apart from

most previous efforts, is our reliance on standards in both

hind- and software. We start from the Grobner Basis im-

plementation GROBNER [24], which uses the SACLIB [4]

library written in C. GROBNER is then parallelized using
the multi-threading support of PARSAC-2. This, in turn,

relies on standard POSIX threads, in our case provided by
the Solaris 2.x operating system executing on single and
multi-processor desk-top machines.

1.2 The Parallel Completion Challenge

The critical pair / completion procedure [5] exists in two re-

lated forms, Knuth-Bendix (KB) term completion and Grob-

ner Basis (GB) polynomial completion. The completion pro-
cedure can be formulated as a set of logically independent

inference rules. In theory, these can be applied concurrently,
but it is well known that such an installation would be hor-

rendously inefficient due to excess work. In practice, it is
notoriously hard to obtain significant speedups, because a

good sequential implementation including modern selection
heuristics and deletion criteria can avoid much of the work

on which a parallel implementation thrives.
The efficiency benefits of performing only the best next

computation (as selected by a completion strategy) must be
balanced against the speedup benefits of performing multi-

ple such computations in parallel. Selection heuristics and

deletion criteria favor the sequential algorithm, while the

parallel algorithm achieves speedups if many S-polynomials
must be simplified (work parallelism), or if it can improve
the selection strategy (search parallelism).

In the hamework of a desk-top environment, the par-

allel algorithm must perform on a par with a high-quality
sequential algorithm when executed on a uniprocessor work-
station. In addition, it must be able to utilize t-he power of
multiple processors if they are available in the same or in
other workstations.

1.3 Overview of Our Approach

In the Knuth-Bendix case, where selection heuristics and

deletion criteria are comparatively weak, good speedups can
be achieved by the equivalent of converting alt pairs to S-

polynomials and simplifying all of them in parallel [9, 10].
With a perfect (omniscient) selection strategy, it might be
best to go to the other extreme and select only a single pair
to simplify and to orient into a basis polynomial. In this

work, we experiment with the middle ground, allocating a
buifer of some width w of S-polynomials which we simplify
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in parallel and from which we finally select the new basis

element.
For parallelizing the Grobner Basis algorithm we started

from the sequential system GRO13NER [24]. Then we rear-

ranged the completion loop of GROBNER (cf. Section 4) in
order to obtain a sequentia~ master implementation suitable

for practical parallelization.
In the main conceptual part of our work, described in

Section 4, we then parallelized the master implementatio~
by forking several procedure calls (mostly for the normal-

ization of S-polynomials) as separate concurrent threads of
control. By setting a few switches in the parallel master im-

plementation, we obtained two major variants of a paralle~

GB algorithm.
The first one uses only work parallehsm and is thus strat-

egy compliant. It carries out an amount of work in each

completion cycle wtilch is exactly the same for the sequential
and the parallel form and leads to exactly the same comple-
tion sequence (polynomials introduced into the basis). This
form exhibits stable and predictable behavior, but shows

only moderate parallel speedups. The second one utilizes
searth parallehsm in addition, so that the time in which a

candidate polynomial is normalized afIects the strategy deci-

sion of which polynomial to select as the next base element.

Thk form exhibits less stable, if not chaotic, behavior, but
frequently leads to super-linear speedups, that is, the par-
allel code performs a superior selection strategy and runs

faster than the sequentia~ reference even if executed on a
single processor.

In the experimental part of our work, we compared the
performance impact of various settings of our switches in
the parallel master implementation, and thus arrived at the

exact settings for our two main parallel forms of the G13
algorithm. We document the performance of these two vari-

ants on a large number of standard examples in Section 5.
In particular, our data shed new light on the relative mer-

its of work parallelism vs. strategy parallelism, which have
been intermingled in most previous work. It is one of our

main results that strategy parallelism can be exploited with
relative ease by a parallel implementation even on unipro-

cessor systems, and that it may achieve dramatic speedups
(results vs. no results in useful time) even over a high quality

sequential implementation including modern pair selection
heuristics [12, 15] and deletion criteria [14].

2 Related Work

Suggestions for the parallelization of GB completionlgo back
to the mid-80’s. Buchberger [7] proposed to parallelize the

simplification of S-polynomials as well as their orientation
into basis polynomials. .He suggested the use of special par-

allel hazdware [6]. He immediately pointed out the difficul-
ties with synchronization, because simplification depends on
the basis, which may be asynchronously changed by orients
tion, and because the application of deletion criteria (con-
fluence criteria) [14] may asynchronously change the set of

S-polynomials while it is simplified.
Deletion criteria also tend to negate the benefits of ea-

gerly converting pairs into S-polynomials and simplifying
them. In addition, the Sugar strategy [15] and similar heuris-
tics [12] subsequently improved the selection of the best crit-
ical pair candklate for inclusion into the basis. Thus, they
tend to negate the benefit of a better completion strategy

lWe now assume familiarity with the GB algorithm; cf. Section 4.

that results if candidates can be selected from a large pool

of simplified S-polynomials instead of from critical pairs.

Much of the previous work on parallelizing the GB com-
putation used non-standard methods, such as experimental
programming languages, ad hoc implementations without
Sugar or criteria, or special parallel hardware with unknown
performance characteristics. It is therefore often difficult to
judge the practical significance of reported speedups.

Vidal [22] realized Buchberger’s design of parallel sim-
plification and orientation on a 16 processor shared memory

Encore. His new implementation was in C using Mach’s C

Threads.
Chakrabarti and Yelick [11] carried Vidal’s work over to a

128-processor CM-5 with distributed memory. Each proces-

sor ran a copy of the completion loop on a private segment
of the critical pair store. Thus S-polynomials are oriented

into basis polynomials in parallel, and new basis elements
are communicated asynchronously to all other processors.

Sawada, Terasakl, and Aiba [21] distribute the set of
S-polynomials between different reducer workers. Their sys-
tem, written in the language KL-1, runs on a parallel infer-

ence machine (PIM) with 256 processors.
Attardi and Traverso [1] proposed a strategy compliant

distributed memory parallel Grobner Basis algorithm, but

reported limited success in practice.
Faug&re [13] presents a novel hybrid method to compute

Grobner Bases over Q[xl, . . . . z~]. He concurrently computes
an image basis over a finite field, which is used to predict

zero reductions of S-polynomials in the main computation.
Its parallel version, derived from the state-of-the-art sequen-
tial GB system, is based on a static client-server distribu-
tion onto the available processors which does not scale with

problem size. Faug&e also analyzed the dependencies in
the deduction of S-polynomials for some examples. His re-

sults in&lcate that Grobner Basis completion is inherently
sequential, with a parallel content of only a few threads of

control.
This analysis seems to be confirmed in most of the ex-

periments reported in the literature. Significant speedups
seem possible if super-linear effects can be brought to bear,

but with a single exception not much gain has been reported
beyond one or two dozen processors. In addition, few par-

allel systems have demonstrated that they are really faster
than a high quality sequential system run. on a standard

workst at ion.

3 Parallel System Support

3.1 Parallel Hardware

The target hardware for PARSAC-2 is a shared memory
multi-processor workstation running a multi-threaded op cr-

ating system. For the present work we used a 4 processor
SPARCstation 10 with 64MB main memory and four 66 MHz
Ross Hypersparc processors, running Solaris 2.4.

3.2 PA RSAC-2

Our parallel Computer Algebra system is PARSAC-2 [17,
19], which contains the S-threads [18] parallel symbolic pro-
gramming environment and libraries of sequential and multi-
threaded parallel code.

S-threads is middle-ware between the hardware and op-
erating system (OS) below, and the application software
above. Most import antly, an S-thread extends an OS thread
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by a local heap segment, so that it can allocat e list-cells con-
currently. Practically all sequential procedures of the SAC-

2/SACLIB [4] library can now be executed concurrently, by
forking them on a separate S-thread.

S-threads is also designed to support virtual parallel pro-
grammmg: an algorithm is to be parallelized according to its
inherent logical parallel structure, and the resulting logical
threads of control m-e mapped at run-time, by the S-threads
system, to real concurrency provided by the hardware and
the operating system. Thus the same executable can run
on 1, 2, or more processors, and S-t breads can be ported to

diiferent operating systems, preserving application code.

For the current work, S-threads was ported to Solaris

2, and extended in functionality to support the concept
of thread groups (cf. Section 3.3.3 below). The memory

management subsystem of S-threads is currently in an in-

terim state (awaiting improved functionality in Sohris 2.5).
Therefore, all timings have been stripped of their garbage

collect ion cent ent.
The fork/join concept of shared memory parallel pro-

gramming can be carried over to the dktributed memory

network, provided all global access to data-structures can be
confined to parameters that can be packed with fork/join.

We have extended S-threads to a system called DTS which
transports fork/join calls across the net, and we have exper-

imented with the dktributed computation of multivariate
polynomial resultants [3]. Thus, while all experiments of
the present work used shared memory, future extension to

a network of several multi-processors is feasible within the
same system environment.

3.3 Higher Parallelization Concepts in PARSAC-2

3.3.1 Work Parallelism

Pure Work Parallelism (V-Parallelism) is the concept sup-
ported most directly by the fork/join paradigm of multi-

threading. A given amount of work is divided into multi-

ple t breads of control and forked onto a number of threads.

Each thread is finally collected (joined) again by the parent,

and its result is retrieved.

signal to the entire group, for example to terminate or to
suspend all threads.

In GB completion, we employ the thread group to sup-

port the concurrent reduction of S-polynomials. Here, the
processing of the result is relatively trivial (computing a
strategy value such as the total degree) and the thread group

would not be essential to support this task as pure work par-
allelism.

On shared memory machhes with fast context switch-
ing, the main use of a thread group is in supporting search
parallelism. In this case, all threads of the group execute as
concurrent OS threads. On a uniprocessor machine, execu-

tion of these threads will be interleaved to maintain logical

concurrency.

In our case, we wish to find an irreducible S-polynomial
as quickly as possible. The parent forks a number of reduc-
tion tasks and waits for the first (few) to produce a result;

the other tasks are suspended in order to be resumed later.

4 Algorithm Organization

4.1 The Standard Grobner Basis Algorithm

Buchberger’s Grobner Basis algorithm [2] consists of a main
completion loop with four steps:

0 select (according to some heuristic) one of the remaining
critical pairs and compute its S-polynomial.

@ reduce the S-polynomial with respect to the current basis

until it is irreducible; if it becomes zero, delete it and

go back to step 0.

@ insert the (non-zero) reductum into the basis.

@ form the new pairs (caused by the new basis element)
and apply the deletion criteria on all pairs.

Our experiments have confirmed the results in [8] that
the reduction step @ is the most time consuming part. There-

fore we now rearrange the completion loop slightly to arrive

at a sequential reference algorithm which performs work on

several S-polynomials that can later be parallelized.

3.3.2 Search Parallelism 4.2 The Sequential Reference Algorithm

Pure Search Parallelism (3-Parallelism) reflects a pzwallel
search for some item. A number of search threads are forked,

and the first child to find the item synchronizes with the
parent to deliver the result. The parent subsequently termi-

nates the other children, not being interested in their results.
Thk kind of parallelism arises frequently in automated

theorem proving. In the Grobner Basis algorithm, we use a
form of it to search for the first of a number of S-polynomials
which is fully reduced by the current basis.

The synchronization needed by search parallelism is now
supported in S-threads by the concept of thread groups.

3.3.3 Thread Groups

A thread group is a collection of threads (usually working
towards a common objective), similar to a process group in
the traditional UNIX world. PARSAC-2 thread groups are
designed to support both work and search parallelism in a
uniform way.

After a thread group has been opened (thr.group g;),

threads can be forked (thr.group-fork (g, f unc, arg) ) into
the group at any time. The parent can wait for the next
thread of the group (thr.j oinany(g) ), or it can send a

In this version of the algorithm, we increase the bufler for

S-polynomials from width 1 to a flexible size w. In the new
completion loop, illustrated in Figure 1, we now select 0
several critical pairs and convert O them to S-polynomials.

Then, we simplify 0 all of the polynomials in the buffer until
they are irreducible with respect to the current basis. One

of these is finally selected @, according to a new selection
heuristic, for insertion @ into the basis. Then, we form the
new pairs as usual @ and apply deletion criteria both on the

pairs and on the buffer of reduced S-polynomials.
This algorithm admits a new, two-level selection heuris-

tic. The level one heuristic @ operates only on critical pairs,
similar to the traditional algorithm. It can only be based

on relatively rough estimates, such as Sugar, for the quality
of the offspring that the pair will produce. The level two

heuristic Q, however, can compute a quality measure based
on the actual normalized S-polynomials which are stored in
the buffer, and which are candidates for inclusion in the
basis. Note that this part also depends on the size of the

buffer.

We now obtain our parallel algorithms by specifying how
exactly the operations on the S-polynomial buffer are exe-
cuted.
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Figure 1: Sequential Reference Completion Structure

4.3 The Master Parallel Algorithm

The master parallel algorithm (cf. Table 1) uses a pazameter-
ized int er~al stmct ure of the S-polynomial buffer, illustrated

in Figure 2. By giving exact settings for the parameters, we

shall obtain our concrete parallel incarnations.
A straight-forward work parallelization will perform all

reductions @ in the buffer in parallel. A narrow search paral-
lehzation will wait only for the first result, suspend the other
reductions, insert the result into the basis Q, and finish the
iteration as usual. At the beginning of the next iteration,
the buffer is topped up by selecting further pairs @ and con-

verting them to S-polynomials 0, and the reductions are
started (respectively restarted 0).

,

4‘?J@@ellqp lo

0 0

Basis :
@ Partially Reduced @

S-Polynomials

@

Figure 2: Parallel Grobner Basis Completion

Our experiments show that it is even profitable to per-

form a wtde search parallelization, waiting for several results
before we suspend all other reductions. We then select @ one
of the irreducible and insert it into the basis @, and finish
the iteration as usual. At the beginning of the next itera-
tion, the buffer is topped up by selecting further pairs@ and
converting them to S-polynomials 0, and all reductions are
resumed @, respectively started. (This includes re-starting

reductions on previously irreducible polynomials as the basis
has increased.)

For the parallel algorithm to be competitive with the se-
quential one, it is necessary to avoid excess work. Thus, the

optimal application of the deletion criteria [14] is of prime
imp ort ante. For this reason, we accept the synchronization
point after every reduction cycle to apply the criteria even
on partially reduced polynomials, and so to cut unnecessary
reduction steps.

The following parameters specify the internal buffer struc-
ture.

‘aral[eLGroebner-B asis-Completion

nput, Output: Set of Polynomials G

wild initial pairs P from G:
3pply criteria;

while(there are pairs in P

or there are partially reduced polynomials in PR)

6

restart 0 the reduction @ of the partially reduced

polynomials in PR;

}

while(not MAX.CONCmED reductions run and P#O) ‘ork
{build S-polynomials from pairs P O

and start their reduction Q;]

while(not yet NO.OF-IRRED non-zero reductions have\

terminated and there are reductions running)

{
/* optional: MAINTAIN-.LOAD(); */

collect the next resu It of the reduction processes;
if(the result is non-zero)

append the result to PR;

)

s join

if(F’R # 0)
{select an (irreducible) element p from PR Q;}

stop all reductions;

append non-zero intermediate results to PR: )

if(PR# 0) /* we found p # O */

{
insert p into the base G Q;

add the new pairs to P 0;

apply the criteria on P and PR,

J

t

nterreduce G to obtain a reduced Grobner basis;

Table 1: The Parallel Completion Algorithm

o MAX_ CON C_RED: the (maximum) number of reductions

running concurrently (= buffer’ width w).

. NO-O F_IRRED: the (maximum) number of reduct ions that

we wait for and from which we select the best for the

insertion.

e MI N_CONC.RED: we start adtltional reductions if, due to

zero reductions, the number of concurrent reductions

drops below MIN_CONCLRED.

If there are many zero-recluctions, we would wait for

NO_OF.IRRED results while there may only be a few re-

ductions running with the system starving for parallelism,

Therefore, we start new reductions as soon as the number

of concurrent reductions has dropped below the low water

mark MIN_CONc_RED. This is accomplished by function

MAIPJTAIN-IJOAD()

if(fewer than MIN. CONCLRED reductions run)

w~ile(not MAX_CONC&ED reductions run and P#O)
build S-polynomials from pairs P O

and start their reduction Q:
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With these parameters, we obtain pure work parallelism
if NO.OF.IRRED = MAX-C• NC-RED and MIN.CONC-RED

= O (MA] NTAIN-LOAD() is not executed). We obtain search
parallelism (with width NO.OF_IRRED) if NO-OF.IRRED <

IMAX-CONCRED.
Note that the selection strategy (completion strategy) for

the selection of the new basis polynomial is parameterized by
the heuristics 0 and @ together with NO-OF-IRRED, which

are all static prop ert ies. However the act ual selection be-
haviour depends also on the exact times at which the irre-
ducible are produced, because these determine which ones

are considered by the level two heuristic at point @. These
times Me dynamic properties, depending for example on the

threads scheduling of the OS wtilch is affected by exter-
nal load and asynchronous system events. Parallel select ion
behavior cannot be precisely emulated by time-slicing the

threads, because the slices would have to be as thin as a sin-
gle machine cycle. In thk respect, there is no real substitute
for real parallelism.

5 Empirical Results

The problem is now how to set the pwameters in the mas-

ter parallel algorithm. First, we get the major options of

work and search parallelism, respect ively, under the condi-
tions mentioned above. Within each option, we still have to

determine actual settings under conflicting objectives.
On the one hand, it is desirable to keep the number w

of S-polynomials large. We thus generate parallel work and

improve the level two select ion heuristic. Also, due to sys-
tem reasons (mainly page faults), the processors me most

efficiently utilized if we overload them two or three times.
On the other hand, it is also desirable to keep the number

w of S-polynomials small. The time and space needed for
the Grobner basis computation mainly depends on the total

number of reductions. If we start too many reductions, a lot
of unnecessary work is done since reductions

● may later be recognized as superfluous by the deletion
criteria or

● may be cut short by new elements of the base.

Furthermore, maintaining a lot of partially reduced polyno-
mials takes a lot of space.

Thus the aim of our parameter settings is to make good
use of our processors without performing too much useless
work.

Whenever we obtain a spread of timings for a particular
parameter setting, we clkplay the distribution of the times

according to the color coding in Figure 3. Those 20% of

the values that are located around the median are colored
black. The bulk of the values (60%) are displayed in dark

gray, wKlle the light gray covers the few runaways.

100%

20’%

.’. :
.~’” ‘ ~~

60?4

Figure 3: The Color Legend for the Figures

The results we present in the following are from standard

examples that are publicly accessible [20].

5.1 Experiments with Work Parallelism

In a first approach, we performed a strategy compliant paz-
allelization to compare our setup with the sequential refer-

ence algorithm (cf. Section 4.2). For that, we start up to

MAX.CONC_RED = 8 reductions and wait for the termina-

tion of all of them (NO_OF_IRRED = MAX-C• NC-RED). In

addition, we dispense with the reloading (MA] NTAIN~OAD)

of reductions (MIN-CONG-RED = O). In this way, the course

of the algorithm is independent of the number of processors

and can also be performed sequentially, provided that the

same number of reductions is started. In fact, with thk

setup, the parameters 0 and @ completely determine the
sequence of polynomials inserted into the basis.

The figures of this section dkplay the times obtained

with one to four processors as well as the time needed to
compute the same example with the sequential reference

completion algorithm ( “Seq” ).
In the following figure, we show a representative selec-

tion of the examples we computed. The timings are scaled
relative to the sequential times.

-- .--*-. ---
1.2

1

0.8

0.6

0,4

‘“:~
Seq 1 Proc 2 Proc 3 Proc 4 Proc

The profit of thk work parallel approach depends on the

distribution of the reduction times of the S-polynomials. If

most of the reductions need about the same time, the pro-

cessors are equally busy and speedup is almost linear. In

contrast, if the reduction times vuy over a large spectrum,
one single lengthy reduction may cause all other processors

to remain idle and there is no speedup.
Whenever we compute graded reverse lexicographic or

total degree lexicographic Grobner Bases, we set both se-
lection orderings 0 and @ according to the chosen term or-

dering. That is, we select the pair whose tcm of the lead-
ing terms is the smallest, and from the list of reduced S-

polynomials the smallest with respect to the term ordering.

Here are some typical examples of this strategy-compli-
ant parallelism. Displayed are the times in seconds for one
to four processors. The theoretically optimal speedup is

sketched in as a dashed line.

?5 ~.......*

50 ‘.. ......
25} ..... ... ..... ......*

o~
.Seq~234

Katsura 5, graded reverse lex

zo~ . .. .....?.....
..

10] “-.=. ● ●
.......... .... ..

O(
Seq 1234

!&
Seq~234

Cohn ti, graded reverse lex

;&
Seq 1234

Hoffman 3, graded reverse lex Cassou, graded reverse Iex
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The first two examples show almost optimal speedups;

the thkd and forth examples have still a nominal speedup
between one and two processors.

For an improvement of the efficieny of the paralleliza-

tion, we need to take a closer look at the reduction times.
In each iteration, the crucial point is how much longer the

last terminating reduction takes in relation to the others.
‘Therefore, we measured in each iteration of the algorithm

the time for each reduction. For the following figures, we
considered those iterations of our examples2 with longest
reduction time greater than one second. (If there m-e fewer
than eight reductions, we fill the list with zeros.)

12345678

The Distributions of the Reduction Times in an Iteration

from the Shortest (1) to the Longest Reduction (8)

The left figure shows the dktribution of the reduction
times—in logarithmic scale. In the right figure, the duration

of the longest reduction is scaled to one. The dark region
covers the significant results.

We notice the enormous spread in reduction times within
an iteration, covering orders of magnitude. Thus the figures

indicate that—in spite of the overall speedups obtained—a
lot of the time in an iteration is used for the reduction that

terminates last. In particular, if there me no zero reductions
and no deletions in the buffer by the criteria, precisely one

new S-p olynomial is needed to refill the buffer. Then, as
the re-reduction of the former results is usually performed
fast, the time needed for the next iteration mainly depends
on the reduction of the single newly inserted S-polynomial,

and this tends to be a sequential bottleneck as only one job
has to be performed (or finished).

One way to overcome thk and to introduce more con-
currency in the reductions is to increase the buffer width

w. (We could even build in every step as many new S-
polynomials as there ae processors. Then, however, the

buffer of the reduced polynomials keeps growing.) Then, it
is more likely that several polynomials of the buffer either
reduce to zero or are eliminated by the criteria. Thus, we
reload more polynomials and the work is better balanced.

Disadvantages of thk approach are discussed above.

5.2 Experiments with Search Parallelism

As we already pointed out, in search parallelism we do not

wait for the termination of all reductions but wait for only
NO.OF.IRRED many.

We learned from our experiments that it is advantageous

to set the parameters (at run-time) according to the number

of processors. We obtain the best results if we do not start

more pmallel reductions than three times the number of pro-
cessors. This limits the number of context switches and the
need of memory. To prevent starvation, we start new re-

ductions as soon as half of the reductions have terminated,
which still guarantees oversaturation. The listed values of

No.0~.IRRED produce an ample choice of reduced polyno-
mials without the disadvantage of causing much superfluous

work.

2A11 we computed with work parallelism

These are our actual settings for the parallelization PW
ramet ers.

Number of Processors I 1 I 2 I 3 I 4 II n

MAX_CONC_RED 3 6 9 12 3n

MIN.-C• NC_RED 2 3 5 6 [3n/21

No.0~-IRFtED 1 2 2 3 1 + \n/2]

Compared with the sequential algorithm, thk setup leads
to a selection behavior that depends on the run and cannot
be fully simulated sequentially. In spite of having the same

selection ordering, the course of the parallel algorithm can
be completely diHerent to that of the sequential algorithm.

However, as thk setup is usually very powerful, we also ob-

tain super-linear speedups for a lot of examples.
Furthermore, as the selection strategy is so crucial (espe-

cially in the sequential case), we often can observe a kind of

chaotic behavior as the sequence of the insertion can difTer.
Therefore, we performed 10 runs for each case; the dktri-
bution of the results can be read off by the color coding
according to Figure 3. If there is one runaway in a direc-

tion, this is indicated in light gray. Furthermore, if one or
two values are out of scope (or missing), this is indicated by

. If thk applies to more values, we use ~ and M.

We have investigated Grobner basis completions of many

examples and present here some representative results. Dis-
played are the runtimes in seconds for one to four processors.

For comparison purposes, we display the time for the stan-
dard sequential run (cf. Section 4.1) using GROBNER [24]

with the same selection ordering on the pairs @ = O. The
theoretically optimal speedups computed fkom the standard

sequential computation is sketched in as a dashed line.

5.2.1 Moderate Speedups

A part of our examples behave as one might predict: we

observe the parallelism overhead with one processor (com-
pared with the sequential algorithm) and gain some speedup

with more processors.

I

—
300

200 —------ . .
. . —

. .
. .

100 . ..-— —
. . . . .

-------- .-

Seq 1 Proc 2 Proc 3 Proc 4 Proc

Katsura 5, total degree lexicographic

Here, the change of the strategy has no decisive influence
on the computation. In particular, the timings fall within

rather narrow bounds. Some of the concurrent reductions

are not pertinent (i.e., they are obsolete due to the criteria
or would later be performed a lot faster). Moreover, as some

sub opt imal results are being inserted, we subsequently cre-
ate new pairs that were not created in the sequential case.
Therefore, the timings for one processor are laxger than in
the sequential case (note that with one processor we start
three concurrent reductions and wait for the iirst result).
Still, the computation of these examples can be speeded up

by a factor 1.9 using four processors.
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5.2.2 Superlinear Speedups 5.2.3 Chaotic Behavior

For a lot of examples we observe super-linem speedups, that
is, we gain—compared to the sequential algorithm—a factor

much kirger than the number of processors used.

Remark: there are several selection strategies possible
to compute lexicographic Grobner Bases. For @ we either

use the smallest lcm or the sugar selection strategy. For @
we use lexicographic ordering orchoose the polynomial with
the smallest true total degree3.

—. ......
120 ~., 30 ,,

.:, :.. . . ....
90 $.

$. 20
,...

60 ‘“. . .
“.. -. .. ..- . 10 B

,,,,

30 ~F#%—~___

Seq 1234 1 2 3 4

Wood, lexicographic (right: closer look)

Thk example shows super-linear speedups caused by the

new selection strategy. The right figure is a close up of the
left, without the time for the sequential algorithm. The

speedup between 1 and 4 processors is between 2 and 5, de-
pendent on the run. In addition, we observe slightly chaotic

behavior with one processor.

1200 ,,
,,:,, 30 ;:::

900 .“.

600 * 20 “: ‘.,....
,’. .,,

300 10 $@ & —

I I
Seq 1234 2 3 4

Morgenstern, lexicographic

2400

1800
l!!,,,

,,
600 ~:,

.,,.
1200 : 400

600 .,., 200 m
$%%. aw$w

Seq~234 2 3 4

Cohn W, total degree lexicographic

These two examples did not terminate with the sequen-

tial algorithm, either because of memory overflow or because

of an exceeded time bound. However, they terminated with

the parallel algorithm on one processor. We can read off an

additional speedup of up to one hundred between one and

four processors.

5000 .;:,...,,,
:.:.,. ,’,’

4000 160 * .:,‘: ......,,,,:,,,,

3000
140

2000

N

1000
120

~1
3 Proc 4 Proc 3 Proc 4 Prec

Hunecke, lexicographic Cyclic 6, graded rev. Iexicogr.

Both examples terminated only with three and four pro-
cessors. (Left example with four processors: 120-125 sec-
onds.)

3Sum of the total degrees of the terms, relined by the lexicographic
ordering.

The main disadvantage of the sem-ch parallelism is its non-
deterministic behavior. Thk can lead to runs which some-

times terminate after a few seconds and otherwise must be

killed due to memory overflow after hours, with exactly the

same input and configuration. However, this also opens the
chance to receive results that could not be computed other-
wise.
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—.. . . . . ...~:
,. ~.

1200 ,.

m

‘.

900
‘.

‘.
“.

600 ----
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Seq 1 Proc 2 Proc 3 Proc 4 Proc

Cohn W, graded reverse lexicographic

For this example, we obtained runtimes between 400 and

1800 seconds with one processor. The majority of the runs

me much faster than in the sequential case. With four pro-
cessors, the bulk of the runtimes lie in the 100–150 second

range.
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!
$&- .. .. .

*

Left: Cassou graded reverse lexicographic

Right: Auxiliary in Cyclic 7 (Arnborg-Lazard), lexicographic

In both examples, none of the 10 runs terminated with

one processor. We observe a chaotic behavior, decreas-
ing with the number of processors, and large super-linear

speedups. That means, the strategy is much improved with
increasing number of processors (i.e., with the correspond-

ing setup). With four processors we obtain timings of 26–76
seconds for the left example and of 40–200 seconds for the

right example.
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Seq 1 Proc 2 Proc 3 Proc 4 Proc

Canny 2, lexicographic

This example is representative for many others. The

improved selection strategy enables us to compute, in a few

minutes, Grobner Bases that we could not obtain before.

Furthermore, the runtimes are much more stable with four
processors.

6 Conclusion

We have demonstrated that large super-linear speedups ~e
possible with a parallel Grobner Basis installation on stan-
dard, low-cost workstations with a few processors.



Our parallel Grobner Basis algorithm retains the well-
und.erstood basic structure of the traditional implementa-

tion and is compatible with all important selection strategies
and deletion criteria. Its practical behavior, ranging from

pure work parallelism to search parallelism of adjustable
width, can be influenced by setting just a few parameters.

It also admits a refined selection strategy with new oppor-
tunities for better control.

On the system side, implementation of the algorithm de-
sign is supported by a single programming construct (the
thread group) with proven utility. A parallel environment

need not require a radical break with existing codhg tech-
niques. Just afewnew system concepts (threads with thread
groups and fork / join) make it possible in practice to re-

alize new algorithmic concepts even for code that is to be
executed on uniprocessors.

We see as one of the main problems for the immediate
future togainmore experience withthe new flexibility. The
search parallel algorithm should be further tuned to produce
results in a more stable and more easily reproducible way.

As a result of our experimentation, we are confident that our

master implementation is a solid first step towards making
parallelism the method of choice for large Grobner Basis

computations.
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