

J. Symbolic Computation (1996) 21, 475–505

Strategy Compliant Multi-Threaded Term
Completion

REINHARD BÜNDGEN†‡ MANFRED GÖBEL† AND WOLFGANG KÜCHLIN†

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen
Sand 13, 72076 Tübingen, Germany

(Received 2 June 1995)

We report on the design, implementation, and performance, of the parallel term-rewriting
system PaReDuX. We discuss the parallelization of three term completion procedures:
Knuth–Bendix completion, completion modulo AC, and unfailing completion. Our par-
allelization is strategy-compliant, i.e., the parallel code performs exactly the same work
as the sequential code, but the work load is shared by many processors. PaReDuX is
designed for shared memory parallel architectures, such as multi-processor workstations,
where it shows good performance on a variety of examples.

c© 1996 Academic Press Limited

1. Introduction

The advent of shared memory multi-processor workstations on the desk-top poses new
challenges and opportunities for symbolic computation. Parallel workstations support
programs that are multi-threaded; traditional single-threaded programs can utilize only
a fraction of their total computation power. Hence we must learn how to bring symbolic
computation into the multi-threaded future. More specifically, we must acquire know-
how in the areas of parallel data-structure design, parallel programming techniques, and
parallel systems environments, which permit us to build and run parallel symbolic com-
putation systems as our standard tools on the desk-top.

The specific topic of this paper is to provide an answer for the area of term-rewriting
and completion. We discuss the design, implementation, and performance, of PaReDuX,
a system evolving, by multi-threading, from the sequential ReDuX term-rewriting labo-
ratory (Bündgen, 1993; Bündgen et al. 1995).

1.1. overview

The contributions of this paper are in several areas. We parallelized plain Knuth–
Bendix completion, completion modulo AC, and unfailing completion, in a single system
and obtained a wealth of empirical performance data. Our parallelizations show good

† E-mail: {buendgen,goebel,kuechlin}@informatik.uni-tuebingen.de
‡ URL: http://www-sr.informatik.uni-tuebingen.de

0747–7171/96/040475 + 31 $18.00/0 c© 1996 Academic Press Limited

476 R. Bündgen et al.

overall speed-ups, roughly of the order of 2–3.8, on 4 processors of a parallel workstation.
We also developed a parallel term data-structure which permits several processes to use
terms simultaneously in matching or unification attempts.

We employed a high-level divide-and-conquer programming style which generates par-
allelism through calls to a well-defined kernel. Our parallel completion algorithms are
strategy compliant, i.e., are guaranteed to adhere to a statically selected strategy. Their
performance is stable, reproducible and predictable. It had been an open problem whether
significant speed-ups could be achieved using relatively fine-grained shared-memory tech-
niques on these algorithms.

The construction of PaReDuX started with the high-quality sequential implementation
of completion in the ReDuX system (Bündgen, 1993), which we parallelized gradually.
PaReDuX now contains data-structures and algorithms for parallel Knuth–Bendix com-
pletion of plain term-rewriting systems (Knuth and Bendix, 1970), of completion modulo
associativity and commutativity (AC) (Peterson and Stickel, 1981), and unfailing com-
pletion (Bachmair et al., 1989)†.

In order to develop PaReDuX, we must first ‘parallelize’ the ReDuX data structures in
such a way that concurrent access is possible by multiple threads of control with minimal
synchronization, and then we must parallelize the algorithms. We achieved this in a very
systematic way, using a high-level divide-and-conquer approach to parallel programming,
and hiding the key change in data structures behind an existing access abstraction.

We work under the general restriction of strategy compliance, i.e., no change of the
completion strategy is allowed when going parallel. Thus the parallel work is exactly the
same as the sequential work, and no new correctness proofs are needed. All speed-ups
come from spreading this work over the processors of a parallel workstation. Our parallel
algorithm library can be used as a building block within other, more coarse-grained,
completion algorithms which may derive additional speed-ups from parallel search.

This work is closely related to the design of PARSAC-2 (Küchlin, 1990, 1995), a sys-
tem which focusses on multi-threaded algebraic computation. PARSAC-2 is a paral-
lel extension of the sequential SAC-2 system in its SACLIB form (Buchberger et al.,
1993), whose algorithms form its algebraic kernel. All parallel constructs are provided
by its S-threads parallelization environment (Küchlin, 1992), which is an extension of
the threads (lightweight processes) environment supported by most modern operating
systems.

PaReDuX is also built on the S-threads system of PARSAC-2, and applies the same
high-level parallelization style. This was made possible because ReDuX also uses the
list processing module of SAC-2, which could then be replaced by S-threads. Within
PARSAC-2, similar parallel symbolic programming techniques have already been used
to develop algorithms for long integer multiplication, polynomial real root isolation,
and multivariate polynomial g.c.d. computation. Therefore, beyond their significance of
speeding up term-completion in practice, the results presented here contribute towards
our overall goal of developing the know-how for practically useful parallel symbolic com-
putation.

Our hardware architecture is a shared memory multiprocessor such as a typical parallel
workstation. S-threads acts as a resource broker between the demands of the algorithms
and the capacities of the hardware. The parallel algorithms themselves use no application

† ReDuX also contains a module for inductive completion whose parallelization is left for future work.

Strategy Compliant Multi-Threaded Term Completion 477

level assumptions on the architecture (such as the number of processors etc.) and do not
contain low-level code such as explicit task schedulers or assignment of tasks to processors.

We now proceed as follows. In the remainder of this section we give a more detailed
motivation for our work. In Section 2, we present the context of completion terminology
and of our parallelization approach as far as it is necessary to understand our results. In
Section 3, we present our parallelization philosophy. Section 4 proposes a classification of
parallel completion procedures and shows how known parallelization approaches fit into
that framework. Section 5 explains the parallel algorithms, and Section 6 the parallel
data-structures used in PaReDuX. Section 7 contains empirical data about the perfor-
mance of our parallel completion procedures on the problems whose specification is given
in the appendix. Finally, Section 8 presents our conclusions.

1.2. motivation

Since multi-processors have appeared on the desk-top, the programs we work with
on a daily basis must be parallel. For practical reasons, they must not be radically
different from the standard sequential programs. They must be upwardly compatible
in functionality, speed, and programming language. Therefore, we seek parallelizations
which start with proven sequential code and value reliability, predictability, and ease of
programming, over other aspects.

The general question motivating this work is: how can we routinely program shared
memory parallel workstations to perform standard symbolic computation tasks equally
well, but faster than before? It is particularly desirable to develop a discipline of parallel
programming which can be applied uniformly to many aspects of symbolic computation,
from Computer Algebra to Theorem Proving.

This paper contributes towards an answer for the important and complex compu-
tational process of completion (Buchberger and Loos, 1982). Completion has both a
term-rewriting form, in the tradition of Knuth and Bendix (1970), and a polynomial
ideal form, in the tradition of Buchberger (1965). Incidentally, the relationship between
both forms is by now well understood (Buchberger,1985; Bündgen, 1991, 1992), so that
advances with one version can frequently be transferred to the other.

Hence the question arises to what extent completion can be speeded up by paralleliza-
tion and by what means this can be accomplished. Completion procedures are, however,
notoriously hard to parallelize. This is due to several overlapping effects.

First, completion is a chaotic process in the sense that it is extremely data-dependent
and its course of action, and running time, are impossible to predict from the input data.
Any parallel form must cope with unpredictable and dynamically changing amounts of
parallelism and memory, and no fixed schedules or processor allocations are possible.

Second, completion is extremely strategy dependent and parallel forms are likely to
change the completion strategy, possibly dependent on dynamic scheduling decisions†.
Strategy induced speed-ups (or slow-downs) may therefore superpose with speed-ups
from parallel work and contort the picture.

Third, completion is at its core a closure computation [cf. Slaney and Lusk (1990)] and
therefore is inherently sequential in the sense that the nth generation of consequences
necessarily depends on the (n−1)st generation. The amount of parallelism in the process

† Thus parallelization even risks slow-downs, if highly tuned sequential strategies exist.

478 R. Bündgen et al.

is essentially limited by the size of the generations of consequences. This applies partic-
ularly to converging processes. If the number of consequences (and hence the amount of
parallelism) is great, the completion process may be diverging. If the process converges,
the number of consequences (and hence the amount of parallelism) must somehow be
limited. As we shall see in Section 7, the number of consequences to be considered is typ-
ically small during large stretches of a converging completion run, but is several orders
of magnitude larger in the remaining tight spots.

Because of the many facets of completion, it is important to parallelize the process at all
levels of granularity. Most theoretical work has so far focussed on extremely fine-grained
subproblems such as parallel matching. Practical work has focussed on the coarse-grained
end of the spectrum, where it is easier to get speed-ups, but where strategy effects may
come into play. In this paper, we attack the middle ground where speed-ups are already
difficult to obtain, especially when programming at a high level of abstraction.

So far, all our parallelizations are strategy compliant, i.e., they are guaranteed to ad-
here to the same completion strategy independent of task scheduling or the number of
processors or the number of other processes in the system. Strategy induced super-linear
speed-ups, but also slow-downs, are therefore impossible. We believe that strategy effects
should be isolated and exploited separately, and then combined with this work in an
orthogonal way.

Our strategy compliant design has a number of advantages. It produces predictable
and deterministic speed-ups. If processors are added, the code will run faster as long
as there is enough parallelism; if processors are taken away it will gracefully degrade to
sequential performance. Further, all parallel experiments are reproducible. This is impor-
tant for evaluating parallel data structures and for investigating optimal parallelization
grain sizes. Also, completion attempts can be broken off and restarted with predictable
behavior. Since our design also speeds up the main completion loop, it is well suited for
the interactive completion of new unknown problems.

We are not aware of other work that specifically attempts strategy compliant parallel
term completion. In the Gröbner basis case, Faugère’s (1994) parallelization is strategy
compliant, but it is based on modular computations that have no analogue in term
completion. Attardi and Traverso (1994) have designed a strategy compliant parallel
Gröbner basis algorithm similar to ours, but so far the empirical results are limited†.

In principle, ‘cross fertilization’ between term completion techniques and polynomial
ideal completion techniques is possible, due to the similarity of the procedures. For paral-
lelizations this has been done to some extent by Chakrabarti and Yelick (1993) and Yelick
and Garland (1992). However, polynomial completion seems to be harder to parallelize
than term completion. On the coarse grained level, significant speed-ups are difficult be-
cause very good sequential strategies exist. Put the other way, the practical significance
of even large speed-ups is limited if the base line of measurement is an inferior sequential
strategy. On the fine-grained level, parallel reduction of critical pairs (i.e., S-polynomials)
performs much excess work because most critical pairs can be deleted through conflu-
ence criteria without reduction. So far, only Faugère’s parallelization seems to be derived
from, and to achieve speed-ups over, a state-of-the-art sequential implementation†.

It should be noted that our strategy compliant parallelizations can be used within

† Note added in proof : for another parallelization with significant speed-ups see Amrhein et al. (1966).

Strategy Compliant Multi-Threaded Term Completion 479

other, more coarse-grained parallelizations, e.g., on the multi-processor nodes of a work-
station network.

2. Background

2.1. parallel computation with virtual S-threads

In traditional operating systems, each process has an address space and a single thread
of control. A thread of control is an execution context for a procedure, much as a process
is an execution context for a complete program. A threads system allows several threads,
i.e., procedures, to be active concurrently. Hence multi-threading achieves finer grained
parallelism than multi-processing. A threads system can be implemented at the user
level, but most modern operating systems (Tanenbaum, 1992), such as Mach, Solaris 2.x,
Windows NT or OS/2, provide kernel threads.

New threads can be created by a fork operation. Forking a new thread is similar to
calling a procedure, except that the caller does not wait for the procedure to return.
Instead, the parent continues to execute concurrently with the newly forked child; on a
multiprocessor system this may result in true parallelism. At some later time, the parent
may rendezvous with the child by means of a join operation and retrieve its results.

A thread provides a procedure with a private register file and a private stack. For
efficient parallel symbolic computation this is not enough: a private portion of the heap
is needed together with an appropriate (parallel) garbage collection facility. In PARSAC-
2 this is provided by the S-threads system (Küchlin, 1992). S-threads was originally
modeled after C Threads (Cooper and Draves, 1988), the interface to the Mach operating
system. It assumes that a minimal standard threads interface, such as POSIX threads,
is provided by some kernel below. Each kernel thread is then extended to an S-thread
capable of concurrent list processing. In this way, virtually all sequential C programs in
SACLIB will execute unmodified as a single S-thread, with a slight (say 2–5%) execution
penalty imposed by the parallel list-processing context. S-threads runs on the Mach and
Solaris 2.x kernel threads, but also on the user-level threads provided by PCR (Weiser
et al., 1989), which in turn runs on UNIX System V.

The original S-threads memory management scheme distributes the SAC-2 heap to
threads as paged segments of cells, and it uses preventive garbage collection (Küchlin
and Nevin, 1991). If a side-effect free functional programming style is used, then the
result of a function can be copied into its parent’s heap segment, and its own heap
segment, containing all garbage, can be recycled in bulk. This scheme is efficient, naturally
concurrent, and does not assume that first all threads be stopped by a user.

During Knuth–Bendix completion, however, partial modifications are made to very
large critical pair queues. For reasons of efficiency, these queues are updated via side-
effects and preventive garbage collection is not applicable in this case. Therefore, the
memory management of S-threads was changed to use the PACLIB (Schreiner and Hong,
1993) scheme. Since it works on the cell level, cells allocated by one thread can be woven
into a global data-structure via side-effects. The PACLIB scheme assumes however that
all threads can be stopped by a user. Since we did not parallelize nor optimize our
implementation of this scheme yet, garbage collection times are always excluded from
our measurements.

S-threads has been successfully employed to parallelize a number of algebraic algo-
rithms (Küchlin, 1995). It was found, however, that kernel threads do not cope well

480 R. Bündgen et al.

with large amounts of dynamically created parallelism. Since each S-thread is mapped
one-to-one onto a kernel thread, limitations of kernel implementations may show up in
S-threads. This might include high fork/join times or a strict limitation on the number
of concurrently active threads. It has been observed elsewhere that differences in kernel
thread efficiency may destroy all parallel speed-ups on a new machine, making the system
effectively non-portable (Morisse and Oevel, 1995). As a consequence, either the applica-
tion must become involved in thread management decisions, or the threads system must
be improved.

S-threads was enhanced to virtual S-threads (Küchlin and Ward, 1992). The rôle of
a virtual thread is to document logical concurrency, i.e., it represents a task which can
possibly run in parallel on a separate processor. It is then up to the underlying thread
scheduler to decide whether a virtual thread is executed as a subroutine call, or whether
it is executed on a separate kernel thread leading to real concurrency.

VS-threads not only add application-level efficiency but also insulate the application
from the idiosyncrasies and limitations of the underlying threads implementation. VS-
threads manage fork requests using lazy task creation (Mohr et al., 1991), handling most
threads system calls itself and passing only a tiny fraction to the OS kernel. It keeps its
own run-queues of micro-tasks, and it manages a small pool of kernel threads which it
employs as workers. On each fork, a record containing the fork parameters is put in the
run-queue. These tasks can be asynchronously stolen by idle workers and executed as
S-threads. However, if a join finds that the task was not yet stolen, the parent S-thread
executes the task as a procedure call.

Thus, the virtually unbounded logical concurrency of the application is dynamically
reduced to the bounded amount of real parallelism that the kernel can support. At
the same time there is a significant reduction in the number of kernel thread context
switches, and the grain-size of the remaining threads is increased by executing child tasks
as procedures. Virtual threads also have a much lower overhead than kernel threads, so
that on average thread overhead drops and becomes easier to handle.

The system now manages the tasks at a small cost in execution overhead and a great
savings in programming complexity. VS-threads allow us to generate routinely tens to
hundreds of thousands of parallel tasks while maintaining execution efficiency. Thus, to
a great extent, virtual threads take the pain out of parallel symbolic programming in
practice.

2.2. term rewriting and completion

In this section, we will describe a term completion procedure to a level of detail which is
necessary to understand its parallelization. For a more detailed discussion and alternative
approaches the reader is referred to Dershowitz and Jouannaud (1990), Klop (1992) and
Plaisted (1993).

Terms are constructed from variables, constants and function symbols in the usual
way. The basic operations on terms are instantiation and tests for (structural) equality,
matching and unification. A term t′ is an instance of t if it can be obtained by substituting
terms for the variables in t; we write t′ = tσ where σ is the instantiating substitution. A
term s matches another term t if all variables in s can be substituted by terms such that
the new instance of s is equal to t. Two terms s and t unify if their respective variables
can be substituted in such a manner that s and t have a common instance. A substitution

Strategy Compliant Multi-Threaded Term Completion 481

Delete:
(P ∪ {s = s};R)

(P;R)
.

Simplify:
(P ∪ {s = t};R)

(P ∪ {s = u};R)
if t→R u.

Orient:
(P ∪ {s = t};R)

(P;R∪ {s→ t})
if s Â t for terminating term ordering Â⊇→R .

Compose:
(P;R∪ {s→ t})
(P;R∪ {s→ u})

if t→R u.

Collapse:
(P;R∪ {s→ t})
(P ∪ {u = t};R)

if s→R u by l→ r ∈ R where (s, t) � (l, r)a.

Deduce:
(P;R)

(P ∪ {s = t};R)
if (s, t) is a critical pair of R.

a � is a terminating ordering on term pairs.

Figure 1. Completion inference rules.

µ is a most general unifier of s and t if sµ = tµ and all other common instances of s
and t are also instances of sµ.

A rewrite rule is a pair of terms. It may be applied to reduce a term t if t contains an
instance l′ of l. Then t reduces to t′, where t′ is t with l′ replaced by a corresponding
instance of r. A set of rewrite rules is a term rewriting system (TRS). A TRSR presents a
reduction relation such that s→R t if there is a rule in R that reduces s to t. Computing
the (reflexive) transitive closure of the R-reduction of a term t is called normalizing t.
We assume that the normalization relation of the TRS considered in this paper is a
terminating procedure.

Let l → r and l′ → r′ be two rules where l contains a subterm s which unifies with
l′ such that a most general unifier of s and l′ is µ. Then lµ can be reduced by each of
the two rules, and the two terms resulting from the two different one-step reductions are
called a critical pair. Knuth and Bendix (1970) showed that a terminating TRS computes
unique normal forms iff all critical pairs have a common normal form.

A TRS is complete if for any term the result of the normalization procedure is uniquely
determined. Given a congruence relation on terms presented by a finite set of equations P,
a completion procedure computes a complete TRSR for P that can decide P-equivalences:
two terms are equal modulo P if their respective R-normal forms are equal. Such a
completion procedure was discovered by Knuth and Bendix (1970).

A term completion procedure compiles on success a set of equations P into a complete
TRS R. It does so by repeatedly applying the inference rules in Figure 1 (Bachmair and
Dershowitz, 1988) to a pair (P;R) of equations and rules. It succeeds if starting with
(P; ∅) a pair (∅;R) can be derived such that R is complete.

In many interesting applications some binary operators are known to be both associa-
tive and commutative (AC). In these cases term rewriting and completion is performed on
AC-equivalence classes of terms in order to avoid infinite rewrites. Technically this means
that tests for equality, matches, and unifications, must be performed modulo AC. Ex-

482 R. Bündgen et al.

R ← COMPLETE(P,Â)

Inputs: a set of equations P = {si = ti | 1 ≤ i ≤ m}, and a term ordering Â
Output: a complete TRS R = {li → ri | 1 ≤ i ≤ n}

R := ∅;
while P 6= ∅ do

(1) [Orient.] Select the best equation from P; remove it from P and add it as a rule l→ r
to R, provided that l Â r, else stop with failure;

(2) [Extend.]a If needed attach its extension rule to l→ r;
(3) [Collapse.] for each l′ → r′ ∈ R do

if l′ is reducible then remove l′ → r′ from R and put l′ = r′ back to P;
(4) [Compose.] for each l′ → r′ ∈ R do normalize r′ w.r.t. R;
(5) [Deduce.] for each l′ → r′ ∈ R do add critical pairs of l→ r and l′ → r′ to P;
(6) [Simplify.] for each s = t ∈ P do normalize s and t w.r.t. R;
(7) [Delete.] for each s = t ∈ P do if s = t is trivial then remove it from P;

od

a This step is only needed in AC-completion.

Figure 2. Procedure COMPLETE .

tended completion procedures to deal with terms containing AC-symbols are described
by Lankford and Ballantyne (1977), Peterson and Stickel (1981) and Jouannaud and
Kirchner (1986). Besides the replacement of the basic operations by their AC-variants,
two modifications to standard completion are necessary for AC-completion. First, AC-
equal pairs may be deleted from P and second there is a new extension inference rule
that essentially computes ‘critical pairs’ between a rule in R and equations specifying
the AC-theory.

The inference rule characterization of Knuth–Bendix completion leaves many decisions
open that determine how to perform the completion. In particular it does not prohibit
unfair inference chains that delay crucial reductions for ever. A regime which fixes the
order and the manner in which the inference rules are to be applied is called a completion
methodology. Figure 2 shows a first abstraction of the one used in ReDuX and also in
our parallelization experiments.

Note that COMPLETE fixes the strategy up to two decisions: the reduction strategy
used and the definition of the ‘best equation’ in Step 1. If the reduction strategy is nor-
malizing and every equation in P is eventually either deleted or considered for orientation
then COMPLETE is fair.

Knuth–Bendix completion and AC-completion are used to compute a complete TRS.
There is an alternative application of completion methods as proof procedures. In that
case the completion procedure stops as soon as the derived TRS computes a common
normal form for a pair of input terms (s, t) to be proven equal modulo the set of input
equations, i.e., s =P0 t if (P0; ∅) `∗ (Pi;Ri) and s→∗Ri n←

∗
Ri t.

Unfailing completion based on ordered rewriting (Bachmair et al., 1989) is such a
completion procedure meant to prove the validity of an equation modulo an equational
theory. Unfailing completion extends the standard Knuth–Bendix completion in that it
allows us to reduce terms w.r.t. ordered instances of equations: Let Â be a term ordering

Strategy Compliant Multi-Threaded Term Completion 483

and a↔ b be an equation, then s reduces to t by applying a↔ b if there is an instance
aσ ↔ bσ of a↔ b such that aσ Â bσ and s→{aσ→bσ} t, or bσ Â aσ and s→{bσ→aσ} t.

Consequently, unfailing completion does not fail if a non-orientable equation has been
selected in the orientation step. Further, the equations that have been selected to define
the reduction relation can be split into a set of orientable rules R, and a set of non-
orientable equations E of which only orientable instances may be used in reductions.
Thus in the deduction step we must distinguish between the case where a rule l → r or
an unorientable equation s = t has been selected. In the first case, critical pairs must be
computed between the rule l→ r and both R and E , and in the second case we have pairs
between the equation s = t and both R and E . For more details on unfailing completion
see Bachmair et al. (1989).

3. The Parallelization Philosophy

In the following, we list some key decisions in constructing PaReDuX, since they had a
substantial influence on the shape of the parallel system: we always attempt to parallelize
existing well proven sequential code before we radically alter the system. We program
in C and parallelize our code by including calls to VS-threads. Thus our PaReDuX code
is compatible with the existing sequential ReDuX code, and it contains many calls to the
sequential system.

The VS-threads system supports a programming style that focusses on concurrent
procedures, by making sure that they can be used very much like sequential procedures.
They can be forked in parallel largely (but within reason) where program logic permits
rather than where system load or application grain-size dictate. They can be called in
sequential or parallel code, sequentially or in parallel. They can be put into libraries and
linked and combined in the usual way, without worry of overloading the system.

Whenever possible we follow the divide and conquer paradigm when parallelizing code.
Where ReDuX normalizes a list of terms in greedy fashion, PaReDuX splits the list and
forks two threads with recursive calls to the reduction procedure. As an optimization, we
usually do stop dividing when the list is short. The point is that with the low overhead of
virtual threads it is often possible to determine by intuition rather than extensive tests
when short is short enough. Some of this intuition must be acquired for the parallel case,
so that testing is necessary in a first phase for a first application. We built this intuition
for plain completion first (Bündgen et al., 1994a), and then used it for AC and unfailing
completion.

An abstract rendition of our parallelization methodology is roughly as follows: a given
list C of uniform data, e.g., a list of critical pairs or rewrite rules, is either processed
sequentially if it is too short and the work it represents falls below a predetermined
grain-size, or it is split into two equal parts C1, C2 with C = C1 ◦C2. In the latter case,
one recursive call is forked in parallel for the list C2, and one recursive call is done by the
parent thread itself for the list C1. After computing the result for C1, the result for C2

is joined and both results are merged.
Together with the VS-threads environment, this divide-and-conquer approach to par-

allelization has a most desirable effect. Tasks generated early on have large grain-sizes
and these are the tasks that are stolen by initially idle workers. Tasks generated later
on have smaller grain-sizes, but those tasks are likely to be executed as procedure calls,
with a substantially lower overhead. Thus we enjoy a dynamic adjustment of grain-size,
with mostly large-grain VS-threads executing in parallel when there is much work to

484 R. Bündgen et al.

do, and fine-grain VS-threads executing in parallel only when workers would remain idle
otherwise. Note well that task scheduling is done automatically within VS-threads and
remains transparent to the application programmer.

4. Parallel Completion Schemes

The inference rule characterization of Knuth–Bendix completion is already completely
parallel, because the rules are logically independent. However, a straightforward parallel
implementation would also be horrendously inefficient, because most work would be
redundant. The sequential completion challenge is to organize the completion steps in
such a way that little redundant work is performed. The parallel completion challenge is
to improve upon the best sequential algorithm in such a way that the parallel algorithm
defaults to the best sequential one when there is only one processor, and that it achieves
good speed-ups as processors are added.

The procedure COMPLETE can be parallelized on the level of the outer while loop
(adding equations concurrently), on the level of any of the inner foreach loops, or below
(e.g., by parallelizing the reduction of a single term). Several independent inner loops
may also be computed in parallel. As a general rule of thumb, the greater the grain-size
of parallel tasks, the greater the efficiency of the parallelization. It is therefore clear that,
given a choice, the outer loop rather than the inner loops should be parallelized; this has
been argued by Slaney and Lusk (1990).

When new rules are selected concurrently by several tasks in the outer loop, the com-
pletion strategy depends on the order in which the tasks are scheduled. In effect, a new
parallel non-deterministic search strategy for good rules is executed. This may lead to
large super-linear speed-ups, but in general it is unpredictable and irreproducible. In any
case, a proof is required that the new strategy is fair in all cases. In contrast, inner loop
parallelizations are strategy compliant because they do not change the completion strat-
egy. However, they maintain a synchronization point, and hence a sequential bottleneck,
in Step 1 which can only be executed by a single thread.

The most coarse grained parallelization scheme exploits or-parallelism of non-determin-
istic procedures: It starts several completion processes with different strategies in parallel.
Intermediate results may be communicated. Such a scheme is appropriate for distributed
computation and has been presented by Avenhaus and Denzinger (1993), where each
process uses a different selection function in Step 1, and a referee process selects the best
intermediate results and communicates them to all workers.

A less coarse grained scheme parallelizes the outer loop of COMPLETE, letting sev-
eral workers perform concurrent completion cycles on common P and R, but such that
each worker computes a different fragment of P. But since P and R of round i + 1
depend on the respective sets of round i, synchronization overhead may be high. In
particular the need for backward subsumption may spoil potential parallelization gains.
Therefore, in distributed implementations, various schemes are employed to relax the
consistency assumptions between the distributed copies of P and R, so that computa-
tion can be overlapped with communication. Two approaches for the polynomial case
are to let each worker select the best rule independently and then communicate it to all
others (Chakrabarti and Yelick, 1993), or to let a central referee select the best of the
workers’ choices and communicate it back to the workers (Sawada et al., 1994). Bonacina
and Hsiang (1993), and Bonacina and McCune (1994), present distributed paralleliza-
tions of OTTER, including Knuth–Bendix completion, based on the scheme of Clause

Strategy Compliant Multi-Threaded Term Completion 485

Diffusion, which falls into this category. In Clause Diffusion, a worker either retains a
newly derived clause or sends it off to another worker. Using the switches of OTTER,
the workers can even be instructed to follow different strategies (but without referee-
ing). In the shared memory polynomial case, this scheme was used by Vidal (1990). It
has also been applied to general closure computations by Slaney and Lusk (1990), and
Lusk and McCune (1990) report a shared memory parallelization of OTTER including
Knuth–Bendix completion.

By a medium grained parallelization, we understand the parallelization of the inner
loops of COMPLETE†. In particular, lists of terms (equations) may be normalized in
parallel; in the same way the critical pairs of a rule and a list of rules may be computed
in parallel. Depending on the hardware and the problem, grain-size decisions must be
made fixing the minimal number of terms to be normalized and the minimal number
of superpositions to be computed in a single thread of control. Using VS-threads these
parameters may be controlled (to some extent) automatically by the machine load.

By a fine grained parallelization, we understand the parallelization of operations inside
the inner lops, such as parallel reduction of a single term or polynomial. In the term
completion case, Dershowitz and Lindenstrauss (1990) proposed the parallel reduction of
different subterms. In the polynomial case a parallel reduction algorithm was developed
by Melenk and Neun (1989) on a vector computer and it was later multi-threaded by
Schwab (1992).

5. Parallel Completion in PaReDuX

We parallelized the Knuth–Bendix completion procedure, the Peterson–Stickel com-
pletion procedure for TRS with AC-operators, and the unfailing completion procedure
of the ReDuX system. In all three cases we exploited medium grained parallelism by
parallelizing the inner loops of the completion procedure (cf. Figure 2). This leaves us
with a sequential synchronization phase in each cycle of the outer loop comprising the
orientation, extension, collapse, and composition steps.

The methodology of COMPLETE is certainly not the only possible choice [cf. Huet
(1981)]. The reasons why we decided to choose a parallelization based on this methodol-
ogy are manifold. First it turned out that the time spent in the synchronization phases
makes up only a small portion of the total completion time. Second, our completion
scheme keeps all critical pairs in normalized form. This allows us to avoid unnecessary
reductions (see below) and to use better heuristics in selecting the best equation in the
orientation step. A further advantage of our approach is that it allows us to keep the
overall completion strategy fixed by fixing the selection function and the normalization
strategy only. This is important for several reasons: the measurements are reliable, i.e.,
timings do not change if an experiment is repeated. Thus improvements during the de-
velopment of the parallel program can be contributed to better parallelization techniques
rather than to hazardous strategy effects. Similar arguments hold for the search of good
non-problem specific grain size settings. Comparisons between sequential and parallel
code is fair if both use the same strategy. For fixed strategies parallelization is scalable.
That is, for problems that contain enough parallelism, timings improve if processors are
added. In addition the correctness proof of a parallelization comes for free if it uses the

† In our parallelization of TC (Bündgen et al., 1994b) we characterized this as fine grained, because
for TC this is the finest level profitable in our system.

486 R. Bündgen et al.

same strategy as a correct sequential program. A last very practical argument in favor
of our completion scheme is that it minimizes ordering decisions which is important for
research in completing new equational theories. In these cases an appropriate term or-
dering is rarely known a priori and completion is run in semi-automatic mode where
ordering decisions are made interactively, controlled by the intuition of the researcher. In
this setting it is of utmost importance that repeated experiments yield the same results,
so that a wrong decision at one point can be corrected in a new trial and that the (human
idle) time between two ordering decisions is as short as possible.

Before we describe our parallelization of COMPLETE, we must describe the com-
pletion procedure implemented in ReDuX more precisely. As mentioned before, COM-
PLETE maintains all rules in R and equations in P in fully (inter)reduced form. Thus
collapse, compose, and simplify, apply only to those rules and old equations which are
reducible by the newly oriented rule l→ r. Also, delete need only be tried on newly sim-
plified equations. A further improvement which is also included in ReDuX and PaReDuX
is a special case of the subconnectedness criterion (Küchlin, 1985, 1986) which allows to
remove all equations in P which were derived from a collapsed rule.

Let us now investigate the synchronization requirements for the access to P and R
in the steps of COMPLETE. Steps 1 and 3 modify both P and R. Steps 2 and 4 read
and modify R. Steps 5–7 modify P while requiring read-only access to R. Further, note
that simplification and deletion of old equations is independent of deduction, simplifi-
cation, and deletion, of new critical pairs. Therefore these two tasks can be performed
in parallel. Figure 3 gives an outline of the resulting general parallel completion scheme
realized in PaReDuX. Besides computing independent loops of COMPLETE in parallel,
each of the loops depicted in doubly framed boxes is parallelized using the divide and
conquer scheme described in Section 3. To keep the tasks as coarse-grained as possible
the normalization and deletion procedures are called within the reducibility tests and
critical pair computations, respectively. Thus the parallelization of the reduction tests
and critical pair computations act as filters for the parallelization of the normalization
and deletion procedures.

This kind of parallelization requires that all parallel threads have simultaneous access
to R. In Section 6, we will describe data structures for terms that support sharing R
without the need of copying rules.

Since most of the operations depend on R, modifications of R have a strong limiting
influence on the parallelization of COMPLETE. The problem caused by changing and
deleting rules (Steps 3 and 4) has become known as the backward subsumption (Slaney
and Lusk, 1990) or backward contraction problem (Bonacina and Hsiang, 1993). In gen-
eral, there are two ways to overcome these problems: we may permit reductions with
outdated copies of R, which is correct but may possibly be inefficient, or we must syn-
chronize accesses to R by locking. As we will see in Section 7, the time spent in steps
1–4 makes up less than 10% of the whole completion time—in most cases even less than
5%. Therefore it is not worth putting much effort into parallelizing this portion of the
code.

All in all, the sequential ReDuX code had to be modified in the following ways:

1. Iterative loops had to be reorganized as divide and conquer style procedures,
2. VS-thread-fork and VS-thread-join instructions had to be inserted and
3. the term data structure had to be modified to allow for rule sharing in reductions

and critical pair computations (cf. Section 6).

Strategy Compliant Multi-Threaded Term Completion 487

R ← COMPLETE (P,Â)

[Initialize.] R := ∅
↓

while P 6= ∅ do

(1/2) [Orient/Extend.] . . . ; R := R∪ {l→ r};
↓

(3/4) [Collapse/Compose.] . . .

↓ ↓ · · · ↓

reducibility test for P

↓ ↓ · · · ↓

normalize P
↓ ↓ · · · ↓

↓ ↓ · · · ↓

deduce new critical pairs

↓ ↓ · · · ↓

normalize new critical pairs

↓ ↓ · · · ↓
[Join results.] P := P union the set of newly derived critical pairs.

od

Figure 3. Overall structure of parallel completion in PaReDuX.

The exact order in which equations are turned into rules is known to be of the utmost
importance for both term completion procedures and for Buchberger’s algorithm. This is
called the completion strategy and in our case it is encapsulated in the exact method after
which the best of the equations is determined. Minute changes in this strategy can have
huge effects (positive or negative) on the duration of completion. For example, we must
find the best of the equations (critical pairs) in P w.r.t. an ordering which is total on
the equations. Simple quasi orderings (like those based on counting the symbols in each
pair) are not sufficient: changing the ordering of pairs in P which are equivalent w.r.t.
the quasi-ordering (e.g., have the same number of symbols) may result in a different
completion behavior. Our parallel completion procedures are designed to ensure that
the priority queues containing P at each cycle exactly correspond to the queues in the
respective cycle of the sequential completion.

5.1. parallel Knuth–Bendix completion

The parallelization of the plain Knuth–Bendix completion procedure follows exactly
the scheme described above. Depending on our experiments, the parallelized portion
of the code took 91–98% of the total completion time. Our experiments indicate that
for problems of a similar class the sequential bottleneck decreases with the size of the
problem. We obtained speed-ups of 2.4–3.2 on four processors†.

† For problems that take more than 100s sequentially!

488 R. Bündgen et al.

5.2. parallel AC completion

Even though the differences between standard completion and AC completion seem
moderate, their effect is tremendous from a complexity point of view. Searching for a
most general AC-unifier of two terms results in general in a non-singleton set of substi-
tutions. Thus more than one critical pair can be computed for each two rules with fixed
superposition position. In addition, standard matches and unification can be computed
in linear time. To test for AC-matchability or AC-unifiability however is NP-complete,
and to compute a complete set of AC-unifiers is even of doubly exponential cost. This rise
in complexity had to be taken into account when deciding on the parallelization grain
size.

Parallelization of normalization tasks on the critical pair queue level turned out to be
too coarse. We had to allow for normalizing the individual terms of an equation in parallel
and we even allowed for fine grained parallelism, normalizing single terms in parallel.

For AC completion the sequential bottleneck was in general less than 2%. We obtained
speed-ups of 2.4–3.5 on four processors†.

5.3. parallel unfailing completion

Ordered rewriting in the unfailing completion procedure is either done w.r.t. a TRS
R or a set of unorientable equations E . Thus in the orientation step either R or E is
updated. The critical pairs between the new rule or equation on the one hand, and R
or E on the other hand, can be computed and normalized independently.

The computation of ordered reductions and critical pairs for ordered rewriting is more
expensive than the corresponding operations for plain Knuth–Bendix completion because
the application of equations in E involves a term comparison w.r.t. Â, and, by symmetry,
equations may be applied in both directions. The complexity is, however, much lower than
the complexity of the corresponding AC-operations. Clearly, the minimal parallelization
grain sizes for operations based on reductions by equations in E must be lower than the
corresponding operations based on rewrite rules in R.

Unfailing completion is mainly intended to prove a single equation. Thus it may be an
overkill to keep all critical pairs normalized. Keeping this consideration into account we
implemented a second variant of the unfailing completion procedure that normalizes a
critical pair only immediately after creation and just before selection in the orientation
step. This eliminates the left column of tasks in Figure 3.

Unless unfailing completion is used to complete a specification, both procedures spend
less than 4% of the total completion time in the sequential bottleneck, with slight ad-
vantages for the fully normalizing procedure. Surprisingly, none of the two procedures
is uniformly better than the other. With both we obtained speed-ups of 3.0–3.8 on four
processors†.

† For problems that take more than 100s sequentially!

Strategy Compliant Multi-Threaded Term Completion 489

6. Parallel Data Structures in PaReDuX

6.1. parallel Knuth–Bendix completion

In this section, we first explain the most important aspects of the data structures of the
sequential ReDuX System which were first designed by Küchlin (1982a) and further ex-
tended during the development of ReDuX. Then we describe the modifications necessary
for the parallel implementation.

ReDuX terms are represented as directed acyclic graphs (DAGs) with unique repre-
sentation of variables (and constants). The representation of variables and operators is
based on scoped property lists. The ‘most local’ properties of an object occur at the front
of the list, and the ‘global’ properties are at its end. Therefore the argument list of an
operator occurrence is stored in the first field of the list. The symbol (e.g., the operator,
constant, variable), together with all signature information, is stored in later fields. Thus
the signature information of operators, constants, and variables, can be shared by all
occurrences of these symbols. Likewise, each incarnation of a variable (i.e., a variable
occurring in a rule or term) starts with a binding field representing the binding property.
This field indicates whether the variable is currently bound (by a substitution), and if
this is the case the field points to the bound term. This accounts for an implicit represen-
tation of substitutions and allows for efficient equality tests, matching, and unification,
and is particularly well-suited for efficient normalizations (Küchlin, 1982b; Stickel, 1983).
In particular, matches and unifications do not consume memory.

Data structures for parallel programs should support easy access to shared resources
from several parallel tasks. The access to these resources should be granted with as little
synchronization overhead as possible. The solution to this problem is very easy if we can
enforce a functional programming discipline which does not allow the modification of
(shared) input parameters.

During the parallel completion procedure described in the last section the rule set R is
shared by all parallel threads. This creates a problem, because efficient algorithms for the
base operations like matching, unification, and subterm replacement, temporarily modify
the rules as they are applied to terms, by changing the binding property of variables. The
tasks we want to perform in parallel are normalizations and critical pair computations. In
the sequential normalization and critical pair computation procedures all side-effects are
hidden to the outside by undoing all temporary substitutions, and thus these procedures
have a functional behavior. However, in a parallel environment also temporary side-effects
which modify global shared memory must be hidden from other threads with access to
the same global data.

In particular, we must change the representation of substituted variables. This is re-
alized by introducing an additional level of indirection for variable bindings: instead of
storing in the binding field a pointer to a term, we now store a variable specific index
into a binding table which contains the pointer. The table associates a variable (index)
with (a pointer to) a term. The table is now a parameter to the matching and unification
procedures. It is realized as a local array declared in the normalization and critical pair
computation procedures calling Match or Unify. Thus the table is allocated on the C
stack in private thread memory.

Figure 4 depicts the situation where in thread j the variable y (with index 2) of the
term t = f(f(x, y), g(y)) is bound to f(v, w), and in thread k the variable y of the subterm
s = g(y) of the same term f(f(x, y), g(y)) is bound to g(z) simultaneously. Instead of

490 R. Bündgen et al.

private stack
local to thread j

1

2
...

t

1

2
...

private stack
local to thread k

s

v w

f

x:1 y:2

f g

f

g

z

dynamic memory
global heap

dynamic memory
local to thread j

dynamic memory
local to thread k

Figure 4. Variable bindings in PaReDuX.

a direct pointer from y to the bound term f(v, w) (or g(z) resp.) as it is conveniently
used in the sequential implementation, we now consider variable bindings relative to the
context in which the variable is used.

With this technique we can avoid copying global data, provided only one global object
per parallel thread is used (substituted) at a time. In case a thread accesses and modifies
the variable bindings of more than one global item at a time, all but one of the items
must be ‘colored’ in order to associate one binding table (of corresponding ‘color’) with
each item. Since ‘coloring’ is a real change of global data, items which are to be colored
must be copied.

Luckily, during Knuth–Bendix completion this situation occurs only in the critical pair
computation process when the subterms of two rules are to be unified. We decided to
always work with a (single) colored copy of the newly oriented rule l → r, and with the
original uncolored rules in R including the uncolored original l → r. Note that copying
a newly oriented rule does not lead to extra copy-overhead compared to the sequential
procedure because it must be copied anyway to obtain the critical pairs of the rule and
itself. Again both the colored and the uncolored copy of l → r can be shared by all
threads computing the critical pairs deduced from this rule.

Using the modifications described above, we could reuse all software for the basic
operations from the sequential system after changing the macros to access the variable
bindings.

6.2. parallel AC completion

As opposed to the standard case, the matching and unification procedures compute
in general more than one substitution in AC theories. Even for AC matching, where
only one matcher is needed to perform a reduction, it may be necessary to compute
several substitutions as intermediate results for non-linear matching terms. Therefore a
new data structure to represent substitutions, (an association list of variables and their
substitution values) had to be introduced into ReDuX. However the mechanism to apply
(and undo) a substitution [by (un)setting a pointer in the binding field of a variable]

Strategy Compliant Multi-Threaded Term Completion 491

remained unmodified because only one binding at a time is needed in the sequential
procedures. Thus the parallel binding mechanism described in the last section could be
carried over to the AC case.

A major difference between standard matching and unification and the respective AC
operations is the fact that AC matching and AC unification require to construct new
objects (substitutions, terms) that must be allocated in the dynamic memory. Using VS-
threads, new objects can be constructed independently by several VS-threads in parallel
since each VS-thread has a private portion of the heap allotted to it (Cf. Figure 4 where
the term f(v, w) is stored in the private heap segment of thread j.). Note that each
local heap segment may contain references into the global heap of a VS-thread but not
vice-versa, and the local heap of a VS-thread is global to all its child threads. Potential
read or write conflicts are avoided by the functional programming style at the level of
parallelization. Thus the problem of constructing new objects is solved automatically by
the VS-thread system.

A second difference between standard unification and AC unification is that the number
of variables needed in an AC unification procedure is not known a priori on entrance into
the AC unification procedure. Therefore we had to provide for dynamically extensible
binding tables. No further changes were necessary.

6.3. parallel unfailing completion

The parallel data structures designed for Knuth–Bendix completion could be reused
without change in the unfailing completion procedure.

7. Experiments with PaReDuX

7.1. hard- and software

We have implemented our parallel completion procedures on two different platforms:

1. Solbourne 5/704, 48 Mbyte of main memory, four 33 MHz SPARC processors,
common bus, SunOS 4.1.1C, threads provided by the user level PCR environment.

2. Sun SPARCstation 10, 64 Mbyte of main memory, two 66 MHz ROSS hyperSPARC
double processor modules (4 processors total), 2×512 Kbyte secondary level cache,
OS Solaris 2.4, Solaris 2.4 threads (4 LWP’s, max. 12 Solaris threads).

The experiments were run on platform 1 for Knuth–Bendix completion and AC comple-
tion, and on platform 2 for unfailing completion. All parallel experiments were run with
the VS-thread system (Küchlin and Ward, 1992). We ported ReDuX to the SACLIB
(Buchberger et al., 1993) and PARSAC-2 environments. ReDuX was translated to C
using the ALDES-to-C Compiler by Sperber (1994).

All runtimes given in the following are mean values of three instances of the same
experiments measured in wall-clock units. All experiments were performed with a mini-
mum amount of 4 000 000 SAC-2 list cells occupying 32 MByte of memory. Notice that
in our parallelization approach the sequential and parallel programs perform the same
work and use the same number of list cells.

492 R. Bündgen et al.

Table 1. General statistics for Knuth–Bendix completion.

Knuth–Bendix completion (platform 1)

max. max. final
TRS cyc. |P| Σ|P| |R| |R|

Z22W 507 2519 5696 345 188
Z22T 576 1461 13 643 80 27
Z22 174 983 2745 45 10

M15 547 12 367 17 425 529 19
M13 423 8301 11 775 407 17
M12 367 6655 9478 352 16
M10 267 4047 5820 254 14

P8 1305 13 392 16 263 1202 79
P7 617 3936 5283 546 55
P6 369 1656 2457 314 43
P5 269 960 1542 222 37

D64 160 323 760 111 87
D32 94 77 326 64 55
D16 62 34 190 42 39

Q4 55 56 178 44 44

7.2. parallel Knuth–Bendix completion

To evaluate our parallel implementation we used a set of input specifications that were
meant to cover a wide range of specification types. The full details of those specifications
are given in the appendix. Here we just give an informal description of the specifications.
Dn, Q4, Z22, Z22W and Z22T specify finitely presented groups. The term rewriting systems
can be classified into ordinary or ‘true’ term rewriting systems with at least one binary
operator and possibly non-linear rules (Dn,Mn, Pn, Q4, Z22W) and into simulated string
rewriting systems (Z22, Z22T). Most of our examples are so-called parametric or scalable
data-types (Dn, Pn,Mn). Note, that Z22 and Z22W specify the same group.

The sequential completion behavior of each specification is presented in Table 1. The
second column contains the number of outer loop cycles needed to complete the spec-
ification, the third column shows the maximal length of the critical pair queue during
the completion and column four sums up the lengths of the critical pair queues for all
cycles. Column five shows the maximal size of the TRS during the completion and the
last column shows its final size. These figures give a rough estimate on the potential
parallelism inherent to each completion task. E.g., if there are only a few critical pairs
and rules created over many cycles then our approach may not exploit much parallelism.

Our implementation of PaReDuX is parameterized by several parameters intended to
influence the parallelization behavior of the program. Three of those parameters are grain
size parameters: NF is the maximal length of a critical pair list not worth parallelizing,
CL is the maximal length of a critical pair list not worth to be checked for reducibility
and subconnectedness criterion application in parallel and AX determines the maximal
size of a rule set to be used in a non-parallelized critical pair computation procedure.
Remember that both CL and AX act as filters for NF. The last parameter, DTH, sets

Strategy Compliant Multi-Threaded Term Completion 493

Table 2. Grain size parameter analysis for Z22W .

Knuth–Bendix completion (platform 1)

Grain size parameter Parallel on 4 proc. VS-
NF CL AX DTH time [s] speed-up threads

3 128 8 7 461.1 3.1 24 005

6 128 8 7 476.1 3.0 21 688
9 128 8 7 481.0 3.0 21 314

12 128 8 7 495.9 2.9 21 207

3 64 8 7 465.9 3.1 28 656
3 96 8 7 469.9 3.1 25 291
3 160 8 7 469.3 3.1 22 869

3 128 4 7 467.3 3.1 38 215
3 128 6 7 470.6 3.0 28 119
3 128 10 7 474.0 3.0 20 667

3 128 8 3 511.9 2.8 6566
3 128 8 5 474.4 3.0 18 940
3 128 8 9 463.1 3.1 24 193

an upper bound to the number of levels to be parallelized using the divide and conquer
scheme.

Given that degree of freedom in tailoring our parallel completion procedure the ques-
tion is to find an optimal set of assignments to the parallelization parameters. This
requires very extensive measuring experiments. Table 2 illustrates a small excerpt of our
efforts to determine optimal or at least good parameter settings. For several combina-
tions of parameter settings the times and speed-ups measured for completing Z22W on
four processors are given. The last row depicts the number of virtual threads created
during the whole completion. The results for Z22W are typical in that they show that
our approach to parallelizing completion is rather robust w.r.t. variations of grain sizes.

Only too small a bound for the divide-and-conquer approach leads to a significant loss
of speed-ups, since without generating enough threads of control there is not enough par-
allelism to keep all processors busy. Thus divide-and-conquer parallel programming with
lazy task generation appears to be a suitable programming model for parallel symbolic
computation because it is (within broad margins) efficient, robust and scalable. NF is
the only grain size parameter that seems to influence the runtimes. The variation of CL
and AX affects the runtimes less significantly. The reason for this is that CL and AX act
as filters for the normal form algorithm.

Many experiments with different specifications and a lot of parameter combinations
have shown that the combination NF = 3, CL = 128, AX = 8 and DTH = 7 performs very
well and is the best choice for many term rewriting systems for parallel Knuth–Bendix
completion (Bündgen et al., 1994a). Table 3 contains the runtimes and the percentage
of parallelized code needed by the sequential program in column 2, the speed-ups of
the parallelized program on one to four processors w.r.t. the sequential / 1 processor
implementation in the next four columns. The last column contains the number of VS-
threads. All experiments were run using the parameter settings stated above.

494 R. Bündgen et al.

Table 3. Results for parallel Knuth–Bendix completion.

Knuth–Bendix completion (platform 1)

Sequential Parallel speed-ups on VS-
TRS time [s]/pp 1 proc. 2 proc. 3 proc. 4 proc. threads

Z22W 1432.6/96% 1.0/1.0 1.7/1.8 2.5/2.5 3.1/3.2 24 005
Z22T 3037.4/98% 1.0/1.0 1.8/1.8 2.5/2.6 3.2/3.3 20 829
Z22 83.3/96% 1.0/1.0 1.7/1.7 2.3/2.4 2.8/2.9 3112

M15 753.8/91% 1.0/1.0 1.6/1.7 2.1/2.2 2.6/2.8 54 806
M13 404.5/91% 1.0/1.0 1.6/1.7 2.2/2.3 2.7/2.8 31 233
M12 276.0/91% 1.0/1.0 1.6/1.7 2.1/2.2 2.5/2.7 23 598
M10 125.2/90% 0.9/1.0 1.6/1.7 2.0/2.2 2.4/2.6 11 209

P8 2994.9/94% 1.0/1.0 1.6/1.7 2.2/2.3 2.7/2.7 158 710
P7 423.7/93% 1.0/1.0 1.6/1.7 2.2/2.3 2.7/2.7 34 565
P6 111.8/92% 0.9/1.0 1.5/1.6 2.0/2.1 2.4/2.5 13 761
P5 51.7/91% 0.9/1.0 1.5/1.6 2.0/2.1 2.2/2.4 7236

D64 2675.0/98% 1.0/1.0 1.7/1.7 2.3/2.3 2.7/2.7 4010
D32 208.2/97% 1.0/1.0 1.6/1.7 2.2/2.3 2.7/2.7 1389
D16 25.3/96% 0.9/1.0 1.6/1.7 2.1/2.3 2.5/2.7 637

Q4 6.4/95% 0.9/1.0 1.4/1.6 1.8/2.0 2.0/2.2 446

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70

N
u
m
b
e
r

Cycles

TRS D16 (Completion Profile)

R
P

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180

N
u
m
b
e
r

Cycles

TRS Z22 (Completion Profile)

R
P

Figure 5. TRS D16 and TRS Z22.

There is an up to 10% penalty for using the parallel implementation. The overall speed-
ups for the Knuth–Bendix completion are 1.4–1.8 for two, 1.8–2.5 for three and 2.0–3.2
for four processors compared to the sequential runtimes. One reason for this behavior
is given in the completion profiles for our examples which show that normally only a
rather small portion of the completion procedure provides the potential for good inner
loop parallelization. Figure 5 contains completion profiles for D16 and Z22. P (R) denotes
the length of the list of critical pairs P (set of rewrite rules R) during the completion at
a given cycle of the outer loop.

Another interesting aspect of our parallel completion procedures is illustrated by the
analysis for our parametric term rewriting systems in dependence of the parameter as
shown in Figure 6. This figure presents a run time and efficiency analysis for Pn depending
of the parameter n. The runtime plots contain the sequential runtime labeled by (s)

Strategy Compliant Multi-Threaded Term Completion 495

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8

T
im

e
[s

]

Index

TRS Pn (3,128,8,7)

(s)
(p)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

E
ffi

ci
en

cy

Index

TRS Pn (3,128,8,7)

(t)

Figure 6. TRS Pn, n = 0, . . . , 8.

Table 4. General statistics for AC completion.

AC completion (platform 1)

max. max. final normalization matching unification
TRS cyc. |P| Σ|P| |R| |R| # % # % # %

AGR 7 63 92 5 5 871 58 12 596 49 80 35
DLT 6 43 46 4 4 844 75 10 434 70 76 16
RX 26 110 251 21 21 2680 76 74 964 63 1522 17
BRG 64 741 1678 63 63 25 557 91 4 465 983 77 12 149 5

R3 18 103 220 13 13 1752 79 62 202 67 576 14
R7 17 97 224 13 13 1797 93 84 188 89 542 5
R23 33 113 482 25 18 3723 87 220 849 77 2202 8
R35 30 144 461 23 18 3382 92 230 565 85 1866 5
R235 58 512 1169 41 24 8694 95 1 129 449 93 7398 2

AZ22 51 461 1015 38 25 7868 78 720 366 67 5288 14
Z22 174 982 2745 45 10 9906 66 1 561 258 40 37 904 1

and the runtime on four processors labeled by (p). The efficiency plots for Pn show an
increasing efficiency w.r.t. a growing parameter n. The results suggest that our speed-ups
scale with the size of the input problem.

7.3. parallel AC completion

Our parallel AC-completion was evaluated using the following input specifications:
AGR presents the free Abelian group. DLT is the free distributive lattice. RX is a many
sorted specification of multivariate polynomials over commutative rings. BRG defines a
Boolean ring together with six atoms denoting a > 0, a < 0, a = 0, a ≥ 0, a ≤ 0 and
a 6= 0. R3, R7, R23, R35, and R235, are finitely presented commutative rings, respectively
specifying { 1

3}, {
1
7}, {

1
2 ,

1
3}, {

1
3 ,

1
5} and { 1

2 ,
1
3 ,

1
5} adjoined to the integers. AZ22 is Z22W

with the additional information that the binary operator is associative and commutative.
Z22 has already be used with the Knuth–Bendix completion. It does not contain any AC-
operator. For more details including the term orderings used see the appendix.

In analogy to Tables 1 and 3, the left half of Table 4 characterizes the sequential

496 R. Bündgen et al.

Table 5. Results for parallel AC completion.

AC completion (platform 1)

Sequential Parallel speed-ups on VS-
TRS time [s]/pp 1 proc. 2 proc. 3 proc. 4 proc. threads

AGR 8.9/99% 0.8/1.0 1.2/1.5 1.4/1.7 1.5/1.7 2702
DLT 10.0/99% 0.9/1.0 1.4/1.7 1.8/2.1 1.9/2.2 3966
RX 43.7/99% 0.9/1.0 1.5/1.8 1.9/2.3 2.1/2.4 9480
BRG 1598.3/99% 1.0/1.0 1.9/2.0 2.8/2.9 3.5/3.6 101 222

R3 31.7/99% 0.9/1.0 1.4/1.7 1.9/2.1 2.2/2.5 6588
R7 194.9/99% 0.9/1.0 1.7/2.0 2.5/2.8 3.0/3.3 17 934
R23 117.6/99% 0.9/1.0 1.7/1.9 2.4/2.6 2.8/3.1 16 094
R35 214.7/99% 0.9/1.0 1.8/2.0 2.5/2.7 3.0/3.3 20 006
R235 1923.2/99% 0.9/1.0 1.6/1.8 2.3/2.5 2.4/2.7 65 165

AZ22 232.5/98% 0.9/1.0 1.7/1.9 2.5/2.7 3.0/3.3 47 412
Z22 138.7/97% 0.9/1.0 1.7/1.9 2.3/2.6 2.8/3.1 19 048

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35

N
u
m
b
e
r

Cycles

TRS R23 (Completion Profile)

R
P

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70

N
u
m
b
e
r

Cycles

TRS BRNG (Completion Profile)

R
P

Figure 7. Completion profile of TRS R23 and TRS BRG.

completions and Table 5 summarizes the results of the parallel experiments†. For the AC
experiments the purely sequential part of the code comprises only 1–3% of the completion
time. Thus according to Amdahl’s law, the speed-ups for four processors are theoretically
limited to 3.6–3.9. The overall speed-ups for the AC completion are 1.2–1.9 for two,
1.4–2.8 for three and 1.5–3.5 for four processors compared to the sequential runtimes.
Speed-ups are better for the larger examples. Some of the speed-ups of our parallel
completion were not as good as expected. In particular, the speed-up of R235 is not very
high considering its long sequential runtime and large parallelizable part. One reason for
this may be seen in the completion profiles, which, like those in Figure 7, always exhibit
phases with a dearth of parallelism. A probably more serious problem is the extreme
irregularity in the costs of the operations to be computed in parallel. Therefore we want
to analyse the behavior and costs of the key procedures of the AC-completion. The
right half of Table 4 presents statistics about the number of normalizations, matchings

† The experiments include parallel term normalization after scheme (1) described later in this section.

Strategy Compliant Multi-Threaded Term Completion 497

Table 6. Distribution of costs for AC normalization tasks.

AC completion of R235 (platform 1)

Number of normalization tasks and % of total completion time
Cycle 0.0–0.1 [s] 0.1–1.0 [s] 1,0–10 [s] 10–100 [s] > 100 [s]

. . .
33 123 0% 6 0% 0 0% 0 0% 0 0%
34 24 0% 16 0% 0 0% 0 0% 0 0%
35 20 0% 12 0% 1 0% 1 0% 1 7%
36 207 0% 57 0% 17 1% 5 22% 0 0%
. . .

Σ 6504 10% 2039 26% 131 14% 19 35% 1 7%

and unifications performed during the AC completion process. Moreover, it contains the
percentage of the sequential runtime spent in these operations.

The percentage of time spent in matching (and thus in normalization) is always sig-
nificantly greater than in unification. With only one exception, unification consumes less
than 20% of the AC completion time. Most of the time (up to 95%!) is spent for normal-
izing terms. Note that most matches belong to the normalizations. There are only a few
independent reducibility tests. Only Z22, which does not contain AC operators, spends
more than 10% of its completion time outside the listed procedures. The costs of single
normalizations may vary largely. In extreme cases a single normalization may outweigh
all other normalizations in the same completion cycle. Such a case is documented in Ta-
ble 6 that shows that there are a few extremely time consuming normalizations during
the completion of R235. The table lists for a few cycles how many normalizations finish
within certain intervals of time. In addition, for each time interval, the percentage of the
completion time needed by all normalizations within that interval is given.

These findings encouraged us to investigate the parallelization of normalization of
critical pairs beyond normalizing one term per thread.

7.4. parallel AC normalization

We tried to parallelize the normalization in a fine grained fashion as proposed by
Dershowitz and Lindenstrauss (1990). Tests with single random terms were rather dis-
couraging. For example, normalizing the term t = 1

2 · (
1
2 ·

1
2 · (−

1
3 + b) + 0) · (− 1

5) by
the complete TRS for R235 takes 84s with an innermost reduction strategy. The longest
sequential subtask takes at least 26s, from which 12s are spent in top reductions and thus
form a pure sequential bottleneck. Applying Amdahl’s law, the theoretical bound for the
speed-up is 2.8 for four, and 7 for infinitely many processors. In practice, we obtained a
speed-up of 2 on four processors.

We can create yet more concurrency when the parallel normalization is applied to
lists of terms, but we have to beware of over-saturation. We have compared the parallel
normalizations of lists of 128 random terms using two different parallelization schemes.

1. Medium grained parallelism plus parallel normalization of the principal subterms
of each term, and

498 R. Bündgen et al.

Table 7. AC normalization statistics and speed-ups for scheme (1)/(2).

AC completion (platform 1)

max. seq. Parallel speed-ups on VS-
TRS |t| time [s] 1 proc. 2 proc. 3 proc. 4 proc. threads

AGR 36 542.3 0.9/0.9 1.7/1.7 2.3/2.3 3.0/3.0 3839 10 186
DLT 96 40.1 1.0/0.9 1.9/1.7 2.6/2.3 3.4/2.9 1310 33 040
RX 32 204.4 0.9/0.9 1.0/1.0 1.1/1.1 1.1/1.1 623 10 631
BRG 60 98.2 0.9/0.9 1.8/1.8 2.4/2.5 3.2/3.1 852 10 754

R3 16 59.2 0.9/0.9 1.7/1.6 2.2/2.2 2.5/2.3 618 6421
R7 13 73.8 0.9/0.9 1.7/1.7 2.3/2.3 2.8/2.5 529 10 051
R23 15 68.7 0.9/0.9 1.7/1.6 2.1/2.0 2.3/2.1 805 5618
R35 11 16.1 1.0/1.0 1.8/1.8 2.5/2.5 2.8/3.0 493 3793
R235 10 45.6 0.9/0.9 1.5/1.4 1.9/1.8 2.1/2.0 639 5582

AZ22 56 227.5 0.9/0.9 1.8/1.8 2.7/2.5 3.4/3.4 14 184 31 278
Z22 64 34.7 1.0/0.9 1.9/1.8 2.8/2.6 3.3/3.3 128 128

2. medium grained parallelism plus fine grained parallelism (independent subterms of
each term are reduced in parallel using an innermost reduction strategy).

To compute the random terms we used the ReDuX random term generator which com-
putes pseudo random terms with up to p positions where p is a positive integer. Table 7
describes the experiments. Column 1 contains the completed TRS used for the normal-
izations, column 2 shows the maximal size of the terms in the lists and column 3 lists
the times needed for the sequential normalization. The next four columns compares the
speed-ups of the two parallelization schemes relative to the sequential implementation.
The last column contains the number of VS-threads produced by the parallelization
schemes (1) and (2), respectively. Surprisingly, the speed-ups for the two schemes do not
differ much, and in some cases they are even worse for scheme (2)†. The extra overhead
for forking VS-threads may consume any additional speed-ups, or the costs of the ba-
sic operations used in the normalizations (in particular the AC matches) may differ too
much and the parallelization granularity may still be too large. Declining speed-ups of
(2) against (1) point to the former, while the good speed-ups of experiment Z22, which
does not contain any AC operators, point to the latter. This question certainly deserves
further investigation.

7.5. parallel unfailing completion

The following set of specifications and proof obligations was used to evaluate our un-
failing completion procedure. CGroup is the problem to show that in a commutative
group the inversion is a homomorphism. The Luka specifications are an equational ax-
iomatization for propositional calculus by Frege. Lukasiewicz gave another set of axioms,
which are the goals in our examples Luka1, Luka2, and Luka3. Lusk3 proves that a
ring with x2 = x is commutative. Lusk4 shows that the commutator h(h(x, y), y) = e

† This is why we used scheme (1) in our AC completion experiments.

Strategy Compliant Multi-Threaded Term Completion 499

Table 8. General statistics for unfailing completion.

Unfailing completion (platform 2)
With normalization Without normalization

max. max. max. max. max. max.
TRS cyc. |P| Σ|P| |R| |E| cyc. |P| Σ|P| |R| |E|

Luka1 107 3023 17 030 99 0 107 3376 17 030 99 0
Luka2 129 5449 25 965 121 0 129 5796 25 965 121 0
Luka3 382 51 746 240 629 373 0 382 54 757 240 629 373 0

Lusk3 83 6263 10 592 40 34 112 12 964 18 495 39 50
Lusk4 96 3408 7319 53 23 171 27 483 40 680 85 47
Lusk5 26 494 1081 21 5 26 494 1081 21 5

CGroup 29 2530 4228 9 20 29 2909 4228 9 20
Z22 193 632 3029 49 0 251 7407 8995 52 0

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

Cycles

TRS lusk4 (Completion Profile)

P
R
E

1

10

100

1000

10000

100000

0 20 40 60 80 100 120 140 160 180

N
um

be
r

Cycles

TRS lusk4 (Completion Profile)

P
R
E

Figure 8. Completion profiles for unfailing completion with (left) and without normalization (right).

holds in a group with x3 = e, and Lusk5 proves that f(x, g(x), y) = y holds in a ternary
algebra where the third axiom is omitted. Note that for completing Z22 the unfailing com-
pletion procedure uses a critical pair selection strategy different from the two previous
procedures. For more detailed information see the appendix.

As mentioned before, we have implemented two versions of the unfailing completion
procedure. The first one keeps all critical pairs normalized and the second one normalizes
critical pairs only immediately after their creation and upon selection for orientation. In
analogy to Table 1, Table 8 characterizes the sequential completions by the two proce-
dures. |E| denotes the maximal number of non-orientable equations that may be used for
ordered rewriting.

Figure 8 presents a typical completion profile for unfailing completion with (left col.)
and unfailing completion without normalization (right col.), respectively. R, E, and P
denote the lengths of the list of rewrite rules R, the list of equations E , and the list of
critical pairs P during the proof process at any given cycle of the outer loop.

The left half of Table 9 summarizes our parallel experiments with unfailing completion
that strictly normalizes all pairs (cf. Table 5 for explanations). Again all experiments
were conducted with a common set of grain size settings that proved favorable in our
grain size experiments: The minimal load of a single thread was either (1) normalizing at

500 R. Bündgen et al.

Table 9. Results for parallel unfailing completion.

Unfailing completion (platform 2)
With normalization Without normalization

sequential parallel speed-ups on VS- sequential speed-ups
TRS time [s]/pp 1 proc. 2 proc. 4 proc. threads time [s]/pp on 4 proc.

Luka1 118.7/99% 0.9/1.0 1.8/2.0 3.4/3.7 18 488 98.8/97% (1.2) 3.3 (1.0)
Luka2 232.4/99% 0.9/1.0 1.9/2.0 3.5/3.8 28 678 195.0/98% (1.2) 3.5 (1.0)
Luka3 8197.7/99% 1.0/1.0 1.9/2.0 3.8/3.9 260 119 6779.8/99% (1.2) 3.7 (1.0)

Lusk3 765.8/99% 0.8/1.0 1.5/1.9 3.2/4.1 14 450 1181.4/98% (0.7) 3.2 (1.0)
Lusk4 189.8/99% 0.9/1.0 1.9/2.0 3.6/3.8 10 660 2358.2/97% (0.1) 3.6 (1.0)
Lusk5 9.3/99% 0.7/1.0 1.1/1.6 2.0/2.8 1144 8.1/98% (1.2) 2.1 (1.0)

CGroup 309.1/99% 0.7/1.0 1.1/1.7 3.0/4.5 4942 250.8/98% (1.2) 3.0 (1.0)
Z22 62.3/98% 0.9/1.0 1.7/1.9 3.0/3.3 4130 745.4/26% (0.1) 1.1 (2.7)

least three terms, or (2) testing at least 96 terms for reducibility w.r.t. a rewrite rule, or
(3) testing at least 32 terms for reducibility w.r.t. an equation, or (4) computing critical
pairs between a rule and at least eight other rules, or (5) computing critical pairs between
a rule and at least four equations, or (6) computing critical pairs between an equation
and at least four rules, or (7) computing critical pairs between an equation and at least
two other equations.

Note that speed-ups of 4.1 and 4.5 measured against one processor parallel run times
are unrealistic as well as 0.7 and 0.8 slow down for one processor parallel code compared
to sequential code. This suggests that those parallel runtimes measured on one processor
are to high†. The remaining problems of appropriate size Luka1, Luka2, Luka3, Lusk4

and Z22 show good and regular speed-ups, where the largest problem Luka3 also provides
the best speed-ups.

The right half of Table 9 describes the result for the parallel implementation of unfailing
completion procedure that does not keep all critical pairs normalized. It contains the
sequential runtimes and percentages of the parallelized code in column 7 and the speed-
ups on four processors w.r.t. the sequential implementation in the last column. The
figures in parentheses show the corresponding ratios for runtimes and speed-ups between
unfailing completion with normalization and without normalization.

We recognize that there are different kinds of problems. Table 8 shows that CGroup,
the Luka examples and Lusk5 take the same number of completion rounds, no matter
whether we use unfailing completion with or without normalization. This is also mirrored
in the respective completion profiles. These hints lead us to conjecture that both versions
do roughly the same, where unfailing completion without normalization is about 1.2 times
faster than unfailing completion, because it has to do less work.

The other kind of problems are those where unfailing completion without normalization
takes more completion rounds than unfailing completion. In case of Lusk3, Lusk4 and
Z22, simplifying all critical pairs before choosing the best one in the orientation step
must lead to a more intelligent choice and thus to a short cut in the proof or completion

† It is possible that the system was employed by something else than our job, while we measured
these runtimes, which are wall-clock times.

Strategy Compliant Multi-Threaded Term Completion 501

process. Unfailing completion without normalization is significantly slower on standard
completion tasks.

Note that for all problems except Z22 speed-ups are roughly the same, no matter
whether we use unfailing completion with or without normalization. This is rather as-
tonishing, because unfailing completion without normalization does less work in parallel
than unfailing completion and therefore was expected to produce worse speed-ups gen-
erally. For more details on our experiments with unfailing completion see Maier et al.
(1995).

8. Conclusions

Completion and parallel computation each have a great many facets, and the combi-
nation of both opens a complex decision space. Currently, we think it is unlikely that
a single optimal solution exists. Our work represents an approach geared towards ev-
eryday operation on shared memory multiprocessors of the workstation class, such as
the 4-processor SPARCstation we use. In addition, we are working towards a discipline
of parallel programming which can be applied uniformly to many aspects of symbolic
computation, from Computer Algebra to Theorem Proving.

In this setting, we have provided a strategy compliant parallelization which shows
reliable and predictable speed-ups. These have been achieved by a high-level parallel
programming technique relying on the support of a well-defined user-level threads system.
We have thus demonstrated that this approach, which had proved successful in algebraic
applications before, is valid across the spectrum of symbolic computation. These results
are significant because it had been argued before that the inner completion loop could
not be profitably parallelized and that the parallelization must include low-level code.

Reviewing all our parallelization experiments, we notice that the speed-ups mainly
depend on two factors. The first factor is the amount of independent work intrinsic to
a problem. Long total runtimes and completion profiles showing large rule and equation
sets during most completion cycles can be seen as indicators for the parallelism available.
The second factor is the (ir)regularity of the costs of basic operations. For very irregular
costs as in AC completion the indicators of much parallelism may be misleading. In
summary, we successfully parallelized all three completion procedures obtaining peak
speed-ups of over 3 on four processors in all three cases. We have thus shown that for
parallel completion on the desk-top good to excellent speed-ups can be achieved with an
inner loop parallelization that preserves the usual behavior and functionality of sequential
completion, but exploits the parallel hardware.

Acknowledgements

This paper is based upon work supported by grant Ku 966/1-2 from the Deutsche
Forschungsgemeinschaft within the Schwerpunkt Deduktion. We thank Patrick Maier for
his contribution to implementing the parallel unfailing completion procedure. Jeff Ward
and Nicholas Nevin contributed to the design and development of the VS-threads system;
their work was supported by a grant from NSF.

References
Amrhein, B., Gloor, O., Küchlin, W. (1996). A case-study of multi-threaded Gröbner basis completion.

Proc. ISSAC’96, ACM Press, New York.

502 R. Bündgen et al.

Attardi, G., Traverso, C. (1994). A strategy-accurate parallel Buchberger algorithm. In Hong, H. (1994),
pp. 12–21.

Avenhaus, J., Denzinger, J. (1993). Distributing equational theorem proving. In Kirchner, C., (1993),
pp. 62–76.

Bachmair, L., Dershowitz, N. (1988). Critical pair criteria for completion. J. Symbolic Computation,
6(1):1–18.

Bachmair, L., Dershowitz, N., Plaisted, D.A. (1989). Completion without failure. In Aı̈t-Kaci, Nivat,
(eds), Resolution of Equations in Algebraic Structures, volume 2 of Rewriting Techniques, chapter 1.
Boston, Academic Press.

Bonacina, M.P., Hsiang, J. (1993). Distributed deduction by clause-diffusion: the Aquarius prover. In
Miola, (ed), Design and Implementation of Symbolic Computation Systems, pp. 272–287, Gmunden,
Austria, September. Berlin, Springer-Verlag.

Bonacina, M.P., McCune, W.W. (1994). Distributed theorem proving by peers. In Bundy, (ed), Auto-
mated Deduction—CADE-12, pp. 841–846, Nancy, France, June. Berlin, Springer-Verlag.

Buchberger, B. (1965). Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal. PhD thesis, Universität Innsbruck.

Buchberger, B. (1985). Basic features and development of the Critical-Pair/Completion procedure. In
Jouannaud, (ed), Rewriting Techniques and Applications, pp. 1–45, Dijon, France, May. Berlin,
Springer-Verlag.

Buchberger, B., et al. (1993). Saclib user’s guide. On-line software documentation.
Buchberger, B., Loos, R. (1982). Algebraic simplification. In Computer Algebra: Symbolic and Algebraic

Computation, pp. 11–43. Berlin, Springer-Verlag, 2nd edition.
Bündgen, R., Göbel, M., Küchlin, W. (1994a). Experiments with multi-threaded Knuth–Bendix

completion. Technical Report 94–05, Wilhelm-Schickard-Institut, Universität Tübingen, D-72076
Tübingen.

Bündgen, R., Göbel, M., Küchlin, W. (1994b). A fine-grained parallel completion procedure. In von zur
Gathen, Giesbrecht, (eds), Proc. 1994 International Symposium on Symbolic and Algebraic Com-
putation: ISSAC’94, pp. 269–277, Oxford, England, July. New York, ACM Press.

Bündgen, R., Göbel, M., Küchlin, W. (1995). Parallel ReDuX→ PaReDuX. In Hsiang, J, (ed), Rewriting
Techniques and Applications, 6th Intl. Conf., RTA-95, pp. 408–413, Kaiserslautern, Germany, April.
Berlin, Springer-Verlag.

Bündgen, R. (1991). Completion of integral polynomials by AC-term completion. In Watt, (ed), Proc.
1991 International Symposium on Symbolic and Algebraic Computation: ISSAC’91, pp. 70–78,
Bonn, Germany, July. New York, ACM Press.

Bündgen, R. (1992). Buchberger’s algorithm: The term rewriter’s point of view. In Kuich, (ed), Au-
tomata, Languages and Programming, pp. 380–391, Vienna, Austria, July. EATCS, Berlin, Springer-
Verlag.

Bündgen, R. (1993). Reduce the redex → ReDuX. In Kirchner (1993), pp. 446–450.
Chakrabarti, S., Yelick, K. (1993). Implementing an irregular application on a distributed memory multi-

processor. In Fourth ACM SIGPLAN Symp. on Principles and Practices of Parallel Programming,
pp. 169–178, San Diego, CA, May. New York, ACM Press. (Also SIGPLAN Notices 28(7)).

Christian, J. (1989). Fast Knuth–Bendix completion: Summary. In Dershowitz, (ed), Rewriting Tech-
niques and Applications, pp. 551–555, Chapel Hill, North Carolina, USA, April. Berlin, Springer-
Verlag.

Cooper, E.C., Draves, R.P. (1988). C threads. Technical Report CMU-CS-88-154, Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA 15213, June.

Dershowitz, N., Jouannaud, J.-P. (1990). Rewrite systems. In Formal Models and Semantics, volume 2
of Handbook of Theoretical Computer Science, chapter 6. Amsterdam, Elsevier.

Dershowitz, N., Lindenstrauss, N. (1990). An abstract concurrent machine for rewriting. In Kirchner,
Wechler, (eds), Algebraic and logic programming: Second international conference, pp. 318–331,
Nancy, France, October. Berlin, Springer-Verlag.

Faugère, J.C. (1994). Parallelization of Gröbner basis. In Hong (1994), pp. 124–132.
Fleischer, J., Grabmeier, J., Hehl, F., Küchlin, W., (eds) (1995). Computer Algebra in Science and

Engineering, Singapore, World Scientific.
Hong, H. (ed) (1994). First Intl. Symp. Parallel Symbolic Computation PASCO’94, Linz, Austria,

September, Singapore, World Scientific.
Huet, G. (1981). A complete proof of correctness of the Knuth–Bendix completion algorithm. J. Com-

puter and System Sciences, 23:11–21.
Jouannaud, J.-P., Kirchner, H. (1986). Completion of a set of rules modulo a set of equations. SIAM J.

Computation, 15:1155–1194.
Kirchner, C. (ed) (1993). Rewriting Techniques and Applications, Montreal, Canada, June. Berlin,

Springer-Verlag.
Klop, J.W. (1992). Term rewriting systems. In Abramsky, Gabbay, Maibaum, (eds), Handbook of Logic in

Computer Science, volume 2: Background: Mathematical Structures, chapter 1, pp. 1–116. Oxford,
Clarendon Press.

Strategy Compliant Multi-Threaded Term Completion 503

Knuth, D.E., Bendix, P.B. (1970). Simple word problems in universal algebra. In Leech, (ed), Compu-
tational Problems in Abstract Algebra. Oxford, Pergamon Press.

Küchlin, W., Nevin, N.J. (1991). On multi-threaded list-processing and garbage collection. In Proc.
Third IEEE Symp. on Parallel and Distributed Processing, pp. 894–897, Dallas, TX, December.
Los Alamitos, CA, IEEE Press.

Küchlin, W., Ward, J.A. (1992). Experiments with virtual C Threads. In Proc. Fourth IEEE Symp.
on Parallel and Distributed Processing, pp. 50–55, Dallas, TX, December. Los Alamitos, CA, IEEE
Press.

Küchlin, W. (1982a). An implementation and investigation of the Knuth–Bendix completion algorithm.
Master’s thesis, Informatik I, Universität Karlsruhe, D-7500 Karlsruhe, W-Germany. (Reprinted as
Report 17/82.).

Küchlin, W. (1982b). Some reduction strategies for algebraic term rewriting. ACM SIGSAM Bull.,
16(4):13–23.

Küchlin, W. (1985). A confluence criterion based on the generalised Newman Lemma. In Caviness, B.
(ed), Eurocal’85, pp. 390–399, Linz, Austria, April. Berlin, Springer-Verlag.

Küchlin, W. (1986). A generalized Knuth–Bendix algorithm. Technical Report 86-01, Mathematics,
Swiss Federal Institute of Technology (ETH), CH-8092 Zürich, Switzerland, January.

Küchlin, W. (1990). PARSAC-2: A parallel SAC-2 based on threads. In Sakata, (ed), Applied Alge-
bra, Algebraic Algorithms, and Error-Correcting Codes: 8th International Conference, AAECC-8,
pp. 341–353, Tokyo, Japan, August. Berlin, Springer-Verlag.

Küchlin, W. (1992). The S-threads environment for parallel symbolic computation. In Zippel, (ed),
Computer Algebra and Parallelism, pp. 1–18, Ithaca, NY, March. Berlin, Springer-Verlag.

Küchlin, W. (1995). PARSAC-2: Parallel computer algebra on the desk-top. In Fleischer, J., et al.
(1995), pp. 24–43.

Lankford, D., Ballantyne, A.M. (1977). Decision procedures for simple equational theories with
commutative-associative axioms: Complete sets of commutative-associative reductions. Technical
Report Report ATP-39, Department of Mathematics and Computer Sciences, University of Texas,
Austin, August.

Lusk, E.L., McCune, W.W. (1990). Experiments with ROO, a parallel automated deduction system.
In Fronhöfer, Wrightson, (eds), Parallelization in Inference Systems, pp. 139–162, Dagstuhl Castle,
Germany, December. Berlin, Springer-Verlag.

Lusk, E.L., Overbeek, R.A. (1985). Reasoning about equality. J. Automated Reasoning, 1:209–228.
Maier, P., Göbel, M., Bündgen, R. (1995). Multi-threaded unfailing completion. Technical Report WSI

95–06, Wilhelm Schickard-Institut, Universität Tübingen, D-72076 Tübingen.
Melenk, H., Neun, W. (1989). Parallel polynomial operations in the large Buchberger algorithm. In

Della Dora, Fitch, (eds), Computer Algebra and Parallelism, Computational Mathematics and Ap-
plications, pp. 143–158, London, Academic Press.

Mohr, E., Kranz, D.A., Halstead, R.H., Jr. (1991). Lazy task creation: A technique for increasing the
granularity of parallel programs. IEEE Trans. on Parallel and Distributed Systems, 2(3):264–280.

Morisse, K., Oevel, G. (1995). New developments in MuPAD. In Fleischer, J., et al. (1995).
Peterson, G., Stickel, M. (1981). Complete sets of reductions for some equational theories. J. ACM,

28:223–264.
Plaisted, D. (1993). Equational reasoning and term rewriting systems. In Gabbay, Hogger, Robinson,

(eds), Logical Foundations, volume 1 of Handbook of Logic in Artificial Intelligence and Logic
Programming, chapter 5. Oxford, Oxford University Press.

Sawada, H., Terasaki, S., Aiba, A. (1994). Parallel computation of Gröbner Bases on distributed memory
machines. J. Symbolic Computation, 18(3):207–222.

Schreiner, W., Hong, H. (1993). The design of the PACLIB kernel for parallel algebraic computation. In
Volkert, (ed), Parallel Computation (2nd Internatl. ACPC Conf.), pp. 204–218, Gmunden, Austria,
October. Berlin, Springer-Verlag.

Schwab, St. A. (1992). Extended parallelism in the Gröbner Basis algorithm. Int. J. of Parallel Pro-
gramming, 21(1):39–66.

Slaney, J.K., Lusk, E.L. (1990). Parallelizing the closure computation in automated deduction. In Stickel,
(ed), 10th International Conference on Automated Deduction, pp. 28–39, Kaiserslautern, Germany,
July. Berlin, Springer-Verlag.

Sperber, M. (1994). Mørk: A generator for preprocessors. Master’s thesis, Universität Tübingen.
Stickel, M.E. (1983). A note on leftmost innermost term reduction. ACM SIGSAM Bull.,17(1):19–20.
Tanenbaum, A.S. (1992). Modern Operating Systems. Englewood Cliffs, NJ: Prentice Hall.
Tarski, A. (1956). Logic, Semantics, Metamathematics. Oxford University Press.
Vidal, J.-P. (1990). The computation of Gröbner bases on a shared memory multiprocessor. In Miola,

(ed), Design and Implementation of Symbolic Computation Systems, pp. 81–90, Capri, Italy, April.
Berlin, Springer-Verlag.

Weiser, M., Demers, A., Hauser, C. (1989). The portable common runtime approach to interoperability.
In 12th ACM SOSP, pp. 114–122.

504 R. Bündgen et al.

Yelick, K.A., Garland, S.J. (1992). A parallel completion procedure for term rewriting systems. In
Kapur, (ed), Automated Deduction—CADE-11, pp. 109–123, Saratoga Springs, NY, June. Berlin,
Springer-Verlag.

Appendix. Problem Specifications

Algebraic specifications and term orderings for Knuth–Bendix completion.

Q4: 1 ·X = 1, X−1 ·X = 1, (X · Y) · Z = X · (Y · Z), a4 = b2, a−1 = b · (a · b−1)

Knuth–Bendix order: ()−1 : 0 > · : 2 > b : 1 > a : 1 > 1 : 1

Dn: (Dihedral group) 1 ·X = 1, X−1 ·X = 1, (X · Y) · Z = X · (Y · Z), an = 1, b2 = 1, b · a = a−1 · b
Knuth–Bendix order: ()−1 : 0 > · : 2 > b : 1 > a : 1 > 1 : 1

Pn: (k equals 0, 2, 4, 6, 8, 10, 12, 16, 24 for P0, P1, P2, P3, P4, P5, P6, P7 and P8, cf. Christian (1989))
f(f(X,Y), X) = f(X, f(Y,X)), f(ei, X) = X, f(X, ji(X)) = ei for 1 ≤ i ≤ k
Knuth–Bendix order: jk > · · · > j1 > f > ek > · · · > e1, w(ei) = 1 for 1 ≤ i < k, w(ek) = 2, w(f) = 0,
w(ji) = 2(n− i) for 1 ≤ i ≤ k.

Mn: g(X, j(fi(fi+1 mod n(X)))) = fi+1 mod n(X) for 1 ≤ i ≤ n, g(fi(X), Y) = fi(Y) for 1 ≤ i ≤ n,
g(g(X,Y), j(Z)) = g(X, g(Y, Z)), g(g(X,Y), Z) = g(X,Z)
Knuth–Bendix order: j : 0 > g : (n+ 1) > f1 : n > · · · > fn : 1

Z22: (Cyclic group of order 22, cf. Avenhaus and Denzinger (1993)) a(b(c(X))) = d(X), b(c(d(X))) = e(X),
c(d(e(X))) = a(X), d(e(a(X))) = b(X), e(a(b(X))) = c(X), a(a1(X)) = X, a1(a(X)) = X, b(b1(X)) =
X, b1(b(X)) = X, c(c1(X)) = X, c1(c(X)) = X, d(d1(X)) = X, d1(d(X)) = X, e(e1(X)) = X,
e1(e(X)) = X
Path order: e1 > e > · · · > a1 > a

Z22T : (cf. Avenhaus and Denzinger (1993), modified) a(b(c(X))) = d(X), b(c(d(X))) = e(X), c(d(e(X))) =
f(X), d(e(f(X))) = a(X), e(f(a(X))) = b(X), f(a(b(X))) = c(X), a(a1(X)) = X, a1(a(X)) = X,
b(b1(X)) = X, b1(b(X)) = X, c(c1(X)) = X, c1(c(X)) = X, d(d1(X)) = X, d1(d(X)) = X, e(e1(X)) =
X, e1(e(X)) = X, f(f1(X)) = X, f1(f(X)) = X
Path order: f1 > f > · · · > a1 > a

Z22W : (cf. Avenhaus and Denzinger (1993), modified) X · 1 = X, X · X−1 = 1, (X · Y) · Z = X · (Y · Z),
a · (b · c) = d, b · (c · d) = e, c · (d · e) = a, d · (e · a) = b, e · (a · b) = c

Knuth–Bendix order: ()−1 : 0 > · : 3 > e : 2 > · · · > a : 2 > 1 : 1

Algebraic specifications and term orderings for AC completion.

AGR: (Abelian group, {+} ∈ FAC) 0 +X = X, X−1 +X = 0

Path order: ()−1 > + > 1 > 0

DLT : (Distributive lattice, {∧,∨} ∈ FAC) (X ∧ (X ∨ Y)) = X, (X ∨ (X ∧ Y)) = X, (X ∨ (X ∧ Y)) =
((X ∨ Y) ∧ (X ∨ Y))
Path order: ∨ > ∧

RX: (Multivariate polynomials over commutative rings with unit elements, cf. Bündgen (1991), {+, ·, ., ¯,
⊕} ∈ FAC) x+0 = x, x+−x = 0, x ·1 = x, x · (y+z) = (x ·y)+(x ·z), X.I = X, f⊕Ω = f , f¯Ω = Ω,
f¯M(1, I) = f , f¯(g⊕h) = (f¯g)⊕(f¯h), f⊕(f¯M(−1, I)) = Ω, M(x,X)⊕M(y,X) = M(x+y,X),
M(x,X)¯M(y, Y) = M(x · y,X.Y)
Polynomial Interpretation: 0 : 6, 1 : 2, I : 6, Ω : 6, X : 6, Y : 6, + : X1 + X2 + 5, · : X1X2, . : X1X2,
− : 10X1 + 2, M : (X1 + 5) ∗X2, ⊕ : X1 +X2 + 5, ¯ : X1X2

BRG: (Boolean ring, {⊕,∧} ∈ FAC) X ⊕ F = X, X ⊕ X = F , X ∧ T = X, X ∧ X = X, X ∧ F = F ,
X ∧ (Y ⊕Z) = (X ∧Y)⊕ (X ∧Z), a1⊕a2 = a6, a1⊕a3 = a4, a1⊕a4 = a3, a1⊕a5 = T , a1⊕a6 = a2,
a2 ⊕ a3 = a5, a2 ⊕ a4 = T , a2 ⊕ a5 = a3, a2 ⊕ a6 = a1, a3 ⊕ a4 = a1, a3 ⊕ a5 = a2, a3 ⊕ a6 = T ,
a4 ⊕ a5 = a6, a4 ⊕ a6 = a5, a5 ⊕ a6 = a4, a1 ∧ a2 = F , a1 ∧ a3 = F , a1 ∧ a4 = a1, a1 ∧ a5 = F ,
a1 ∧ a6 = a1, a2 ∧ a3 = F , a2 ∧ a4 = F , a2 ∧ a5 = a2, a2 ∧ a6 = a2, a3 ∧ a4 = a3, a3 ∧ a5 = a3,
a3 ∧ a6 = F , a4 ∧ a5 = a3, a4 ∧ a6 = a1, a5 ∧ a6 = a2, a1 ⊕ T = a5, a2 ⊕ T = a4, a3 ⊕ T = a6,
a4 ⊕ T = a2, a5 ⊕ T = a1, a6 ⊕ T = a3
Path order: ∧ > ⊕ > a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5 ∼ a6 > T > F

AZ22: (cf. Avenhaus and Denzinger (1993), modified, {·} ∈ FAC) X · 1 = X, X · X−1 = 1, a · (b · c) = d,
b · (c · d) = e, c · (d · e) = a, d · (e · a) = b, e · (a · b) = c

Path order: ()−1 > · > e > · · · > a > 1

Z22: (see above)

Strategy Compliant Multi-Threaded Term Completion 505

Rijk...: (Finitely presented rings, {+, ·} ∈ FAC cf. Bündgen (1992)) 0 +X = X, 0 ·X = 0, 1 ·X = X, −0 = 0,
−(−X) = X, X+−X = 0, −(X+Y) = −X+−Y , X ·−Y = −(X ·Y), X · (Y +Z) = (X ·Y) + (X ·Z),
(1 + · · ·+ 1︸ ︷ ︷ ︸

i

) · 1
i = 1, (1 + · · ·+ 1︸ ︷ ︷ ︸

j

) · 1
j = 1, (1 + · · ·+ 1︸ ︷ ︷ ︸

k

) · 1
k = 1, . . .

Polynomial Interpretation: 0 : 6, 1 : 2, 1
i : 1000, 1

j : 10000, 1
k : 100000, . . . , + : X1 + X2 + 5, · : X1X2,

− : 10X1 + 2

Algebraic specifications and term orderings for unfailing completion.

CGroup: g(e) = e, g(g(x)) = x, g(f(x, y)) = f(g(y), g(x)), f(f(x, y), z) = f(x, f(y, z)), f(e, x) = x,
f(g(x), x) = e, f(g(x), f(x, y)) = y, f(x, y) = f(y, x), f(x, e) = x, f(x, g(x)) = e, f(x, f(g(x), y)) = y
Knuth–Bendix order: g : 0 > f : 2 > e : 1 Task: prove g(f(x, y)) = f(g(x), g(y))

Luka1: (cf. Tarski (1956)) C(C(p, q), C(N(q), N(p))) = T , C(T, x) = x, C(p, C(q, p)) = T , C(N(N(p)), p) =
T , C(p,N(N(p))) = T , C(C(p, C(q, r)), C(C(p, q), C(p, r))) = T , C(C(p, C(q, r)), C(q, C(p, r))) = T
Path order: C > N > T > Ap > Aq > Ar Task: prove C(C(Ap,Aq), C(C(Ap,Aq), C(Ap,Ar))) = T

Luka2: (cf. Tarski (1956)) C(T, x) = x, C(p, C(q, p)) = T , C(p,N(N(p))) = T , C(N(N(p)), p) = T , C(C(p,
C(q, r)), C(C(p, q), C(p, r))) = T , C(C(p, C(q, r)), C(q, C(p, r))) = T , C(C(p, q), C(N(q), N(p))) = T
Path order: C > N > T > Ap Task: prove C(C(N(Ap), Ap), Ap) = T

Luka3: (cf. Tarski (1956)) C(C(p, C(q, r)), C(C(p, q), C(p, r))) = T , C(T, x) = x, C(p, C(q, p)) = T , C(C(p,
C(q, r)), C(q, C(p, r))) = T , C(N(N(p)), p) = T , C(p, N(N(p))) = T , C(C(p, q), C(N(q), N(p))) = T
Path order: C > N > T > Ap Task: prove C(Ap,C(N(Ap), Aq)) = T

Lusk3: (cf. Lusk and Overbeek (1985)) f(f(x, y), z) = f(x, f(y, z)), j(0, x) = x, j(x, 0) = x, j(g(x), x) =
0, f(x, j(y, z)) = j(f(x, y), f(x, z)), j(x, g(x)) = 0, j(x, y) = j(y, x), j(j(x, y), z) = j(x, j(y, z)),
f(j(x, y), z) = j(f(x, z), f(y, z)), f(x, x) = x
Knuth–Bendix order: f : 5 > j : 4 > g : 3 > 0 : 1 > b : 1 > a : 1 Task: prove f(a, b) = f(b, a)

Lusk4: (cf. Lusk and Overbeek (1985)) f(f(x, y), z) = f(x, f(y, z)), f(g(x), x) = e, f(e, x) = x, f(x, f(x, x)) =
e, h(x, y) = f(x, f(y, f(g(x), g(y)))), f(x, g(x)) = e, f(x, e) = x
Knuth–Bendix order: f : 4 > g : 3 > h : 5 > b : 1 > a : 1 > e : 1 Task: prove h(h(a, b), b) = e

Lusk5: (cf. Lusk and Overbeek (1985)) f(f(v, w, x), y, f(v, w, z)) = f(v, w, f(x, y, z)), f(y, x, x) = x,
f(x, x, y) = x, f(g(y), y, x) = x
Path order: g > f > b > a Task: prove f(a, g(a), b) = b

Z22: (see above) Task: completion

