
A Lightweight, Message-Oriented Application Server for
the WWW

Ralf-Dieter Schimkat
Wilhelm-Schickard Institute for

Computer Science
Sand 13

D-72076 Tfibingen, Germany
schimkat@informatik.uni-

tuebingen.de

Stefan M011er
Wilhelm-Schickard Institute for

Computer Science
Sand 13

D-72076 Tfibingen, Germany

muellers@informatik.uni-
tuebingen.de

Wolfgang Kfichlin
Wilhelm-Schickard Institute for

Computer Science
Sand 13

D-72076 T0bingen, Germany
kuechlin@informatik.uni-

tuebingen.de

ABSTRACT
In this paper, we present a lightweight system that loosely
couples and integrates any kind of source systems with in-
formation retrieval capabilities. The system provides mech-
anisms for a rapid integration of source systems into the
World Wide Web (WWW), allowing the generation of con-
figurable collections of individual, heterogeneous source sys-
tems.
The proposed system is based on a lightweight, message-
oriented application server and an object-oriented client
framework to provide an uniform, Java-based graphical user
interface. The system offers application middleware func-
tionalities that solve issues such as limited bandwidth and
scalability of both sides (W W W user clients and backend
server systems) in a generic manner.
Already integrated source systems include the system PRo-
GPd~SS (a method base system for mathematical algorithms
with functionalities for server-side computing) and SPECTO
(an XML-based, distributed monitoring system).

Keywords
Application server, uniform Web interface, application inte-
gration, message bus.

1. INTRODUCTION
During the last five years, a lot of different database and
information systems have been developed with an intention
to offer their functionalities to a wide range of users via the
Internet and especially via the World Wide Web (WWW).
Many more information systems do not even provide a Web
interface. Efforts are made in the field of Federated Infor-
mation Systems (FIS)[15] and by Commercial Application
Servers (CAS) to integrate those heterogeneous systems.

*Supported by debis Systemhaus Industry.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is g-anted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and or
fee.
SAC'00 March 19-21 Como, Italy
(c) 2000 ACM 1-58113-239-5/00/003>...>$I00

FIS accomplish this by a federated model or scheme on top
of the systems to be integrated. Our approach differs from
the one used in FIS in the way that we do not integrate
semantically the backend systems. Instead, we introduce
a general data description model which is only responsible
for the presentation of data, whereas the semantics is deter-
mined by the individual backend system (BES). The data
description model is part of a middieware component that
encapsulates all communication aspects and therefore can
be seen as a means to hide the technical heterogeneity of
the BES. Virtually any kind of source system with infor-
mation retrieval capabilities or database management sys-
tem can be considered a BES. Our approach should yield
a lightweight information system (explained in Section 2.2)
with which any BES can be rapidly adapted to our system.
After the adaption, each BES remains an autonomous sys-
tem but additionally offers its functionality to a wide range
of Web users through an uniform Web interface. Logical
changes to the BES do not affect our middleware because
of their autonomity. On the other hand, the missing inte-
grating logical view prevents a direct reuse of data or any
combination of the information provided by the BES. We
are therefore not concerned with the development of a meta
model that describes an integrated view of the incorporated
systems. Our "meta model" just determines the messages
that must be delivered between the client (the uniform Web
interface) and the individual BES.

In contrast to CAS, our system intends to offer a facility for
forming collections of individual heterogeneous systems with
the help of integration mechanisms. A collection (i.e. each
individual system within the collection) can be accessed via
a single uniform Web interface because the structure of the
transferred messages is general and different messages can be
mapped onto the same view, like different XML-documents
[3] can be displayed within a single viewer. The communica-
tion of most CAS is based on concepts like CORBA [11] or
Java's [6] Remote Method Invocation (RMI) with compiled
stubs on the client and server side which does not provide
an uniform access or view because each stub must be hun-
died individually. CAS provide uniform interfaces only for
the management of the integrated systems. Similiar to CAS,
our system architecture allows to solve communication prob-
lems like scalability and bandwidth. Additionally our sys-
tem solves the problem of uniform access to the individual
BES.

934

www Stow, (Q~,r~) Application Sm'ver Backend Syster~

Figure 1: Architecture of the

All these problems arise in an environment where a large
number of users want to interact with a large number of dif-
ferent information servers, which is the typical situation on
the Internet and the W W W . All the problems of an uniform
interface, of scalability and of bandwidth are explained and
discussed, together with the design and implementation of
our system, in the next two sections.
Section 2 describes the architecture of our lightweight, mes-
sage-oriented system. Section 3 explains how the different
communication problems mentioned above are solved by the
system, and Section 4 shows the integration of a scientific
method base system (PROGRESS) and an XML-based mon-
itoring system (SPECTO) as examples of how users can in-
teract with our system. The article concludes with a short
summary.

2. PROPOSED ARCHITECTURE
In this section, we discuss the main components of the ob-
ject-oriented framework architecture for the proposed sys-
tem. A framework is a reusable, semi-complete application
that can be specialized to produce custom applications [4].
It is characterized by an abstract set of classes and interfaces
which, taken together, establish a generic software architec-
ture for a family of related applications [8; 9]. An interface
defines an object-oriented class where all methods are ab-
stract. Thus it supports a clear distinction between the
specification of functionalities and their actual implementa-
tions.
Mainly due to the scalability issues (a large and unknown
number of clients and BES) we propose a strictly decoupled
multi-tier client-server architecture, as illustrated in Figure
1. A sophisticated lightweight, multithreaded application
server in the middle tier loosely couples W W W clients and
BES in the backend tier. Each tier is encapsulated into
an uniform object-oriented interface which guarantees sta-
ble interfaces over t ime even for future BES which might be
integrated into the system. Client and application server are

application middleware

connected via a message bus which serves as a standardized
point-to-point communication channel within the WWW.
Each client request is wrapped in a message and forwarded
to the application server, which in turn is responsible for
finding the appropriate application object (AO) to handle
the incoming request. Each BES is encapsulated within one
or a pool of dedicated application objects. Generally, as-
pects such as communication protocols and distribution of
objects are completely hidden behind uniform framework
interfaces. Thus, while guaranteeing application services at
the framework level, all instances of the framework, namely
all BES which are integrated into the framework, benefit
from the overall infrastructure in an uniform and predictable
way. Therefore, the proposed system can be seen as an ap-
plication middleware for connecting BES to the WWW. The
integrated BES form a loosely coupled information system.
We have adopted an object-oriented model, which is imple-
mented in Java. However, legacy BES components do not
have to be written in Java, as long as there are interfaces
to glue Java and the programming language in question to-
gether, e.g. C / C + + via Java Native Interface.

2.1 The Message Bus
Our architecture includes a messaging component that
serves as an uniformly accessible communication channel be-
tween each client and the application server. The proposed
message bus is characterized by point-to-point communica-
tion between the clients and the application server based
on the request/response model. The data delivery proto-
col can be synchronous or asynchronous depending on the
application's profile. Each client request is wrapped in a
message and transmitted to the application server. Accord-
ing to certain meta entries of the message, the application
server dispatches the incoming message to the appropriate
application object regardless of the actual content of the
message.

Each message is composed of a header, a set of properties,

935

and a body. The header contains values used by both the
clients and the application server to describe the structure
and the content of messages in a general manner. In addi-
tion, each message provides a set of optional and extensible
properties which are used by BES to specify dedicated ap-
plication protocols by adding application-specific fields to
a message. The body contains the data items themselves,
which can be of any type that is serializable in Java.
By using messages as the exclusive communication paradigm
between WWW clients and the application server, each call
to remote functionalities is dispatched to the appropriate
method call of the application server. Since the communi-
cation interfaces between clients and the application server
do not change over time regardless of the number and type of
BES which are or might be integrated in the system, no addi-
tional communication-related code has to be provided, such
as compiled static interfaces like stubs and skeletons. In-
stead, dedicated application protocols wrapped in messages
are used as generic interfaces to initiate remote requests and
to transmit the corresponding response back from the ap-
plication server.

2.2 RESPONDEO - A Lightweight Application Ser-
ver

RESPONDEO is a lightweight application server for managing
BES wrapped in application objects. It provides an object-
oriented framework for specialized communication and ap-
plication protocols which facilitates the connection of vari-
ous legacy BES to the WW'W. RESPONDEO is lightweight in
the sense that it is small in code size, it offers well-defined
interfaces for interaction and communication via the mes-
sage bus, and it provides stateless application objects only.
It manages application objects in a generic way: it does not
need to know anything about the application-specific be-
haviour and implementation of each BES. The abstraction
from these BES-specific details offers management function-
alities at a higher level of abstraction and in an uniformly ac-
cessible manner. Within the proposed system architecture,
RESPONDBO forms the object-oriented framework-based mid-
dle tier which is implemented in Java JDK 2.

2.2.1 Application Objects
An application object encapsulates all application-specific
logic for initialization and for handling incoming requests.
Since application objects are stateless, the number of avail-
able applicat ion objects for processing client requests can be
restr ic ted to a predefmed maximum number.
An application object can be configured by at t r ibute values
which can be defined in a special property file called Appli-
cationObjects.properties. In the upper part of Figure 2, an
extract of the file with two application objects is depicted.
In the lower part of Figure 2, the hierarchical structure of
the proper ty file is i l lustrated. Basically there are a t t r ibute
values related to RESPONDEO and to application objects in
general. The second paramete r (class name) is the class
name of an application object which is loaded dynamically
into R.ESPONDEO during the process of initialization. The
rest of the parameters are application-specific name-value
pairs which are passed through to the specified application
object as a black-box. This s trategy can be applied itera-
tively as shown for the appl icat ion object Pool. A pool is
a special application object managing a set of application
objects of the same type. I t has to have two parameters
called member and poolsize, which respectively specify the

type of the application object and the number of application
objects in the pool.
Each parameter is accessed by a general function which pro-
vides a stable and unique interface to all application objects.
The actual management of application-specific parameters
is left up to the application object's implementation. In
addition, the abili ty to obtain parameter information via a
general function enables the development of flexible collec-
tions of application objects tha t can be changed and adap ted
even at run-time by applying the initialization mechanism
as described above.
RESPONDEO provides a naming service that maps a sym-
bolic name to a set of application objects. The symbolic
name, shown in Figure 2 as the first property value (Debis-
Cerberus1, RandomProgressAlgorithms) of each applicat ion
object, provides independent ways to bind to an applicat ion
object, i.e. for availability, improved performance and for
reusing existing application objects in various applicat ion
contexts. The symbolic name can change over t ime and is
accessed via the general function mentioned above. In Sec-
tion 4 examples of application objects are illustrated.

2.2.2 Application Management Functionalities
RESPONDEO offers several management functionalities to
each application object regardless of the actual type of BES.
For each BES, it manages a single instance or pool of in-
stances of the corresponding application object. When an
incoming request has been processed, the active application
object is enqueued into the provided pool for future client
requests. If there is no application object available for pro-
cessing an incoming request, the request is blocked until the
application object pool can offer the object. The size of the
pool can be configured and changed at run-time in order to
adapt the scheduled number of application objects to the
currently active number of WW'W users and the processor's
load.
By controlling the entire communication process between
client and backend servers through an additional level of
indirection, RESPONDEO shields the backend servers from
the total load. By providing only stateless objects, all re-
sources (number of application objects for each BES) are
configurable, controllable and predictable regardless of the
number of WW'W clients trying to access the BES.
RESPONDEO strictly separates application- and communica-
tion-related logic by wrapping application objects and client
requests in standardized messages. Thus, the communica-
tion level of the proposed architecture has to deal with mes-
sages only regardless of their application specific content,
i.e. the application logic. Our architecture provides various
kinds of communication channels which can be
switched dynamically at run-time, e.g. the compression and
the security channel. In the former one, all messages are
compressed in order to reduce bandwidth. The latter one
provides a secure data transfer on the message bus between
clients and RESPONDEO. As far as RESPONDEO is concerned,
communication channels can be aggregated and plugged to-
gether in order to build customized channels which commu-
nicate down a single network connection.

2.3 The Client
In our architecture, the main component of the client t ier is
an object-oriented framework which provides both an uni-
form graphical user interface (GUI) for various applicat ions

936

~] "'" Debls~erberusl - ,cm~.debls.ml l~ondeo. loglc.Ewmtoembase. arcJllvePatl-wc:%%temp. IogFI lePre f lX iT . IogFl|eStJt'f lx,ff i log.maxE~vertt.~100

RandomProgress~ lgor l thmsmcom.deb ls .mapon~eo.AppLogtcPooL rrternberlcorn.debls.req::mldeojogtc.pn:~gr~leOb~ect ' poo ls l ze IS ,
servl~es--Progreu.F~rope~tkm, server -sunburn , p o r t I 4 4 4 4

Figure 2: Initialization process of application objects

and a message-based communication component. The frame-
work is based on JIMA which is presented in [13]. In order to
access a BES from the client framework, the corresponding
application-specific logic has to be provided by subclassing
so-called hotspots [12] of the framework. Each data entry of
a BES is described by a so-called general InputComponent.
This component does not provide a common data model.
Instead it describes a data entry of the BES by three at-
tributes. The attribute name assigns a name to a data en-
try, the attribute type describes the type of a data entry (e.g.
Integer, List, Picture, . . .), and the a t t r ibute value is a link
to the actual data. As far as the GUI is concerned, it only
needs to access the entries in an uniform manner, whereas
application-specific logic on the client-side is responsible for
interpreting the respective InputComponents. The visualiza-
tion of the data depends on the value of the type attribute.
This means that the visual representation is identical for a
given type independent of the application-specific represen-
tation. Therefore the user interface is uniform with respect
to a given type. In Section 4.1.1 an example of an Input-
Cornpo,ent is given. Generally, the client ~amework of_
fers facilities to build user-specific collections of BES at the
client-side. A collection is basically a group of BES which
provides an uniform WWW interface to the entire bundle of
BES. The client framework can be used transparently as an
applet via the Internet or as a common application which is
installed locally on a computer.
The GUI sepaxates presentation and interaction logic in dis-
tinct layers at the framework level. The presentation layer
provides uniformly accessible interfaces for the visualization
of tables, lists, text components, menus, etc. The interac-
tion layer notifies the application logic of changes initiated
by the user. However, both layers axe coupled loosely by
the command pattern [5] which provides a general callback
facility within the framework. The GUI-related framework
components axe largely reused by each BES.
The communication component is a message-based manager
for handling client requests. There is one single instance of
it for all integrated BES. This client-based manager forms

the communication end-point to RESPONDEO, which resides
in the middle tier. Each request that is initiated by the
GUI component is wrapped in a message and transferred
to the communication manager. According to the execution
strategy of the BES, the message is sent to RESPONDEO syn-
chronously or asynchronously. When transmitting messages
asynchronously, a callback handler has to be provided in
order to handle the results appropriately. Additionally, the
communication manager is responsible for choosing the right
communication strategy, such as the compression or security
channel described above.

3. SUPPORT SERVICES
In this section, we discuss how the goals of scalability, re-
duced bandwidth, and a sophisticated user interface axe
achieved by the system introduced in Section 2. Gener-
ally, our application middlewaxe supports application ser-
vices which provide solutions to the described goals at the
design level as opposed to the implementation level. There-
fore, these services apply to an entire set of related BES
which do not provide functionalities and accessibility fea-
tures for the Web themselves.

3.1 Scalability
The central issue of scalability is the system's ability to sup-
port both growing numbers of clients and backend servers.
Below we will focus on some important design considerations
which support scalability in different contexts.

3.1.1 WWW User Scalability
The number of WWW users connected concurrently to our
information system is not predictable and varies from time
to time. In addition, the collections of integrated BES on
the client-side should be customizable by each user. We
therefore propose a multi-tier client-server axchitecture with
the standardized message bus between client and applica-
tion server, as described in Section 2. By decoupling the
clients from the backend servers, the application server in

937

the middle tier manages the overall workload in a controlled
manner:

• The size of each pool of application objects is deter-
mined by a configurable value. If the number of active
requests exceeds the number of application objects in
a pool, a client request is blocked until one of the state-
less application objects is ready for processing the re-
quest. This allocation strategy guarantees that there
is a well-defined number of concurrent application ob-
jects which in turn determine the maximum workload
the BES are exposed to. The upper bound is inde-
pendent of the overall number of concurrent WWW
users. In addition, the statelessness of application ob-
jects results in a constant number of allocated objects
in memory regardless of the actual workload.

• Since the presence of only one application server is a
potential bottleneck within the system, we have intro-
duced the concept of interconnected groups of appli-
cation servers to our middleware. Thereby, one dedi-
cated instance of the group serves primarily as a mes-
sage router, in order to balance the load among the
remaining group of application servers appropriately.
Since such routing objects are specialized application
objects which forward messages to specified locations,
the entire set of application management functional-
ities apply to them. Various sophisticated routing
strategies can be implemented in order to fulfill poten-
tial load-balancing requirements because application
objects can be configured at run-time.

The message bus provides an uniformly accessible commu-
nication channel which is completely independent from any
specific collection of BES representation at the client-side.
Therefore, the interaction of multiple applications through
dedicated application protocols which are wrapped in mes-
sages, makes no assumptions about the communication-re-
lated code of applications apart from the common message
bus interface. This scalable approach enables the access to
any collection of BES representations at the client-side.

3.1.2 Backend Server Scalability
The scaiabil i ty issues re la ted to the potent ia l ly huge num-
ber of different BES, such as relational, object- re la t ional , or
XML-based d a t a b a s e management systems, a re crit ical to
our appl icat ion middleware. The point to note here is t ha t
the appl icat ion server provides the right place to encapsu-
late different k inds of BES and to give them an uniformly
accessible and manageab le interface. Thus, our middleware
solves the appl ica t ion- re la ted scaiabil i ty issues a t a higher
level of abs t rac t ion:

• Each BES is encapsulated within general application
objects which hide the different kinds of BES and their
implementations respectively.

• For each appl ica t ion object, a pool can be configured
which is m a n a g e d by the general appl ica t ion server.
A pool basical ly synchronizes the access to and man-
ages the pool ing of appl icat ion objects, i.e. connection
pooling for fast and efficient handling of da tabase con-
nections.

Various configuration policies can be applied even a t
r un - t ime to each pool of appl ica t ion objects in an uni-
form m~nner since the architecture strictly separates
between the management of appl icat ion objects and
the i r implementa t ions , as discussed in [14].

Our naming scheme enables a scalable approach to
reuse existing application objects in different applica-
tion contexts by providing different symbolic names to
the application objects.

In general, solving scalabiUty issues a t a higher level of ab-
s t rac t ion leads to an exhaustive reuse of the provided mid-
dleware services and speeds up the overall integration pro-
cess t remendously .

3.2 Bandwidth
The issue of l imited bandwid th concerns network applica-
t ions which assume tha t the rel iabi l i ty and capacity of the
under ly ing network is not sufficient. Thus, one goal is to
keep the size of the t r ansmi t t ed d a t a as small as possible by
providing adequa te da t a encoding schemes. When applying
sophis t ica ted d a t a compression schemes, the availability of
local resources for the encoding and decoding of the d a t a
has to be kept in mind. In general, since there is a tradeoff
between manag ing bandwid th and the availability of local
resources, a flexible s t ra tegy has to be provided which can
be changed a t run-t ime. For example , when the volume of
the d a t a is large and local decoding resources are available,
apply adequa t e encoding mechanisms. Especially on the
Web, t he add i t iona l t ime for t he decoding of the t ransmi t -
t ed d a t a has only l i t t le affect on the overall communication
t ime. W h e n t h e volume of the d a t a is small, t ransmit the
d a t a wi thou t any addit ional encoding. This is also the de-
fault s t ra tegy.
Generally, scalability affects the limited bandwidth prob-
lem directly due to the increased volume of data, since an
increasing number of clients demands an increasing through-
put of method or object calls. The application middleware
provides a solution to these problems by encapsulating the
entire communication process and data transfer within the
uniformly accessible message bus which offers a compressing,
a secure and a default communication channel for transmit-
ting messages. The strategy for choosing the appropriate
communication channel is changeable at run-time.

3.3 User Interface
Traditional HTML-based Web interfaces are simple and tai-
lored to the requirements of a certain BES. Since the com-
munication paradigm is based on the stateless protocol
HTTP, this kind of user interface supports only basic in-
teraction facilities between client and server. Additionally~
it lacks sophisticated integration mechanisms due to the
common use of proprietary communication protocols and
of application-specific look and feel.
Our client-based framework overcomes these shortcomings
by providing uniformity along two dimensions:

• Uniform look and feel of the user interface by encap-
sula t ing visualization components within an object-
or iented framework implemented in Java. Each collec-
t ion of BES representat ion a t t he client-side can reuse
these framework components .

938

• Uniform accessibility of the user interface by providing
a client-based message manager which handles differ-
ent application protocols wrapped in messages.

4. EXAMPLES
As mentioned above, a wide variety of different BES can
be integrated rapidly into the system enabling an uniform
usage of their services via the WWW. As examples of how to
integrate BES and their functionalities, two different kinds
of BES, namely the method base system PROGRESS and an
XML-based monitoring system, will show the potential use
of our middleware.

4.1 The Integration of the Method Base Sys-
tem PROGRESS

The method base system PROGRESS [1; 2] facilitates the pro-
vision and usage of computational services via the Internet.
The basic idea behind PROGE.ESS is to build an environment
that renders the combination of "implementation languages"
like C or C + + with tools for modeling and Internet support.
PROGRI~SS provides a simple untyped scripting language.
It facilitates the definition and processing of complex and
nested structures (list, tuple, etc.). Algorithms (e.g. sort-
ing algorithms) implemented in a host language (e.g. C)
can be integrated with a small wrapper that transforms the
input and output parameters into the PROGRESS language.
The PROGRESS server (basically a PROGRESS language in-
terpreter) connects the system with the Internet so that the
integrated algorithms can be used remotely via a PROGRESS
shell or a special Web interface. PROGRESS also provides
a Java package with which PROGRESS language constructs
can be modelled, and by which a Java application can com-
municate transparently with a PROGRESS server [7]. This
package was created to build more powerful user interfaces
and in our context is the basis for the integration of a PRO-
ORESS server into our system.

4.1.1 The PRoGREss Application Object and the PRo-
oREss Input Component

In order to integrate a PROGRESS environment (respectively
a PROGRESS server), we have to implement a PROGRESS
Application Object (PAO). This PAO contains the name of
the remote PROGRESS server, the server port and the name
of the service. In addition, it contains a PROGRESS Input
Component Implementat ion (PICI), which implements an
interface of the application server to deal with the data that
have to be exchanged between the remote server and the
WWW client.
The PICI extends the framework's concept of the general
input component so that each object of the PROGRESS lan-
guage is handled as a general object with the three attributes
name, type and value. The PROGRESS language provides
recursive data structures (list of lists, etc.), therefore the
PICI has an array of sub-PICIs. The above mentioned Java
package for the communication with a PROGRESS server pro-
vides all neccessary methods for the construction of general
PROGRESS objects and the extraction of the data stored in
PROGRESS objects. The actual implementation of the PICI
must provide methods to transform the internal attributes
to a PROOPd~SS object (for a request) and vice versa (for a re-
sponse), but on the basis of the Java package these methods
can be implemented as simple case statements.

4.1.2 Initialization
The PAO is totally configurable, which means that every
time a PAO is in~antiated by the application server, its
at tr ibutes (name, service, server, port and PICI) axe pro-
vided by a special PROGrtESS property file. The parametric
instantiation of a PAO is similar to the initialization pro-
cess of general application objects as described in Section
2.2.1. The initialization of a PAO is divided into two steps.
The first step is setting the basic attributes (name, service,
server and port) which are simple objects (strings and inte-
gers) that can be coded directly within the property file. The
second step is the instantiation of PICI which is a bit more
complicated. Therefore, we code an example input value
for the denoted service as a PROGRt~SS language string in
the property file. On the one hand, this string provides the
structure of the request arguments (which corresponds to
the structure of the PICI) and on the other hand it is a valid
input useful in a first execution. Because we do not want
to implement a PROGPd~SS language parser within a PAO,
we use a special service (str2pg) that each PROGPdeSS server
supports. This service simply transforms a string given in
the PROGRESS language into a corresponding PROGRI~SS ob-
ject. The above mentioned Java package of PROGRESS then
allows us to construct the actual PICI for this PAO.

Now that the PAO has been constructed, it offers the un-
derlying PROGed~SS service transparently to the application
server (respectively the clients) through a general interface
(the PICI). Figure 3 schematically shows the structure of
the PROGRESS property file.

Piogress Properly Fde
Iivlcerne General~on ol d i . ~ n b u l e d random numbers tlllltomtly

p:nl ffi 4444 s c ~ c r = ~ l m m ~ = melhodrdr a ndom/r arldorr~unJ/~ n'~dL~

t~..on~oonent = <I ~'r~ple~e: 10, lower: O, upper: I I>

~ r n e 6ener~m:~nof d*sl t i lml~d r a n t l ~ numben) ~ u ~ y
b rvlce = nlelhod ~h aaclornhandont U l~ 'm I ~iver ffi lunbum |

J pod = 4444
[l~l~Ico~pom,~l = <l sample~cz.: I0, lo~tver: 0.0, up;x,: 1.0 l>

Figure 3: Scheme of the Progress property file

4.1.3 Handling of PAOs Within the Client
All PAOs and PICIs are mapped onto internal components
of the client framework (list, table, etc.). Result input com-
ponents (components that deliver the result of a PaoGm~SS
server computation) are dispatched to the presentation layer,
whereas the PA0 interface and the request input compo-
nents (the PICI that is instantiated within the PAO at boot-
strap time) are dispatched to the interaction layer of the
GUI. The use of internal frainework components leads to
the uniform look and feel of the user interface.
Figure 4 shows a snapshot of the GUI after the PROGaJ~SS
service for the generation of normally distributed random
numbers has been executed.

4.2 The Integration of the XML-based Moni-
toring System SPECTO

939

Figure 4: Generation of normally distr ibuted random numbers

The monitoring system SPECTO 1 [10] facilitates the manage-
ment of log information in distr ibuted systems. A log infor-
mation is captured as an event which is encoded as an XML
application [3]. SPECTO provides two kinds of servers for
online and ofltine monitoring. Whereas online monitoring
is characterized by pushing log information to the user per-
manently, offiine monitoring is more like a request/response
communication process where log information is requested
by the user. Each SPECTO server is embedded into RESPON-
DEO SUch tha t clients send their request messages to the ap-
plication server which in tu rn dispatches each message to the
specified application object. Each SPECTO application ob-
ject is responsible for managing either a single XML-based
log file or a directory of such files. For online monitoring of
system components, another middleware component, called
MITTO, is introduced in SPECTO, which provides a scal-
able infxastructure for asynchrononsly pushing log informa-
tion to the user. However, in what follows, we focus on how
the ofiline monitoring server of SPECTO is integrated into
RESPONDEO.

4.2.1 Initialization ofSPECTO % Application Logic
There is a single, configurable application object, called
EventDa~abase, which encapsulates the monitoring-related
logic of SPECTO, as shown in Figure 5. This object contains
the path to the directory of XML-files (archivePath), the

* SPECTO is used in several projects by debis Systemhaus In-
dustry (Competence Center Document and Workflow Man-
agement), which is the document and workflow management
group in the Engineering division of debis Systemhaus. de-
bis Systemhaus is the IT subsidiary of debis which in turn
is the service company of DaimlerChrysler.

SPECIO% Apldk~dion Eb~d$ Pmpedy F ~

~ ? ~4¢=¢0~s da~,..latspm~lo~.E t,4t~lO ~ ue,~d'lh~tl h=C ~llmp~'(og.4~t,t'iva¢~4i~ | ,Io ~ i~cz.it • - T , ~ Uf fm ~ I.miL~wzrits "tOGo

D*bi.~_C*r ~.~.mspcrde=to~.Appto~ool,m~,n~.~m.~.az.~pe,~awlwic-EwntOal~PO~ZQ-lO

Figure 5: Scheme of the SPECTO application objects

prefix (logFilePrefix) and the su•x (logFileSu~) of the log
files and the maximum number of log entries (maxgvents)
which are sent back to the client. In Figure 5, three ap-
plication objects are specified (Debisl_Cer, Debis2_Cer, De-
bis3_Cer) which reuse the object EventDatabaze in different
application contexts. Whereas Debis1_Cer and Debis2_Cer
provide only one instance of Even~Database to process client
requests, Debis3_Cer offers a pool of ten EventDatabase ob-
jects which are synchronized and managed by the special ap-
plication object Pool. The entire set of application objects is
mult i threaded and configurable at run-t ime since they take
full advantage of the management facilities described in Sec-
tion 2.2.2.

4.2.2 SPECTO'S Offline Application Logic - EventData-
base

During the initialization of the application object Event-
Database, each XML-file is parsed in order to gather some
statistical information such as the number, type (error, warn-
ing, etc.), and date of log entries. When a request is sched-

940

uled for EventDatabase, the specified XML-file is parsed us-
ing the client's parameters specified in the request message.
As long as the maximum number of log entries is not ex-
ceeded, a result is sent back to the client containing all log
entries as serialized Java objects in the body of the message.

5. SUMMARY
We presented a lightweight system that enables the access
of various heterogeneous BES via the W W W (e.g. a Web
browser). The object-oriented design establishes a frame-
work that sepaxates all communication aspects from the in-
dividual BES and provides an uniform GUI with general
interfaces to the underlying BES and several application
management facilities. Communication problems (scalabil-
ity and limited bandwidth) are solved at the framework level
in order to enable excessive reuse of the system's compo-
nents for a rapid integration of BES. The communication
components of the framework together with the loosely cou-
pled BES lead to a lightweight, message-oriented informa-
tion system that is especially useful in an environment like
the WWW where an unpredictable number of users want to
interact with various information sources.

6. ACKNOWLEDGEMENTS
The authors would like to acknowledge Andreas Ludwig and
Manuel Geiger for their contributions on various aspects of
RESPONDEO.

7. ADDITIONAL AUTHORS
Additional authors: PLainer Krautter, debis Systemhaus In-
dustry (Competence Center Document and Workflowman-
agement) CU DMS / PP, Erich-Herion-Strasse 13, D-70736
Fellbach, Germany. Email: Rainer. Krautter~debis. cos).

8. REFERENCES

[1] P. Becker. A framework for providing and using al-
gorithms and algorithmic meta knowledge on the In-
ternet. In S. Ram and M. Jaxke, editors, Proceedings
of the 5th Annual Workshop on Information Technolo-
gies ~ Systems (WITS'95), number 95-15 in Aachener
Informatik-Berichte, pages 2-11, 1995.

[2] P. Becker. An embeddable and extendable language for
large-scale programming on the Internet. In Proceed-
ings of the 16th International Conference on Distributed
Computing Systems (10DCS'96), pages 594--603, 1996.

[3] T. Bray, J. Paoli, and C. Sperberg-McQueen. Ex-
tensible Markup Language (XML) 1.0. Available
at http://www.w3.org/TR/1998/REC-xmI-19980210,
Feb. 1998.

[4] M. Fayad and D. Schmidt. Object-oriented application
frameworks. Communications of the ACM, 40(10), Oct.
1997.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, Massachusetts,
1995.

[6] J. Gosling and K. Arnold. The Java Programming Lan-
guage. Addison-Wesley, Reading, Massachusetts, 1996.

[7] T. Hermann. Communication between Progress and
Java. Internal report, Wilhelm-Schickard Institute for
Computer Science, University of T/ibingen, 1997.

[8] R. Johnson and B. Foote. Designing reusable classes.
Object-Oriented Programming, 1(2):22-35, 1988.

[9] R. Johnson and V. Russo. Reusing object-oriented de-
sign. Technical Report 91-1996, University of Illinois,
1991.

[10] M. H~.usser. XML--based monitoring in distributed sys-
tems. Master's thesis, Wilhelm-Schickard Institute for
Computer Science, University of T/ibingen, 1999.

[11] Object Managemant Group (OMG). The Common Ob-
ject Request Broker: Architecture and Specification,
Feb. 1999. Revision 2.3.

[12] W. Pree. Design Patterns for Object-Oriented Soft-
ware Development. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

[13] R. Schimkat, W. Kiichlin and R. Krautter. An object-
oriented framework for rapid client-side integration of
information management systems. South African Com-
puter Journal, (24):244-248, Nov. 1999.

[14] S. Schroeder. Design and implementation of a sys-
tem management framework. Master's thesis, Wilhelm-
Schickard Institute for Computer Science, University of
T/.ibingen, 1999.

[15] A. Sheth and J. Larson. Federated database systems for
managing distributed, heterogenous, and autonomous
databases. ACM Computing Surve!/% 22(3):183-236,
Sept. 1990.

941

